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Qutrit quantum battery: Comparing different charging protocols

Giulia Gemme ,1,* Michele Grossi ,2 Sofia Vallecorsa,2 Maura Sassetti,1,3 and Dario Ferraro 1,3

1Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
2CERN, 1 Esplanade des Particules, CH-1211 Geneva, Switzerland

3CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy

(Received 24 October 2023; revised 7 March 2024; accepted 22 March 2024; published 24 April 2024)

Motivated by recent experimental observations carried out in superconducting transmon circuits, we compare
two different charging protocols for three-level quantum batteries based on time-dependent classical pulses.
In the first case, the complete charging is achieved through the application of two sequential pulses, while in
the second the charging occurs in a unique step applying the two pulses simultaneously. The latter approach is
characterized by a shorter charging time, and consequently by a greater charging power. Moreover, both protocols
are analytically solvable, leading to a complete control on the dynamics of the quantum system and opening
unique perspectives in the manipulation of the so-called qutrits. To support this analysis, we have tested both
protocols on IBM quantum devices based on superconducting circuits in the transmon regime. The minimum
achieved charging time represents one of the fastest stable charging reported so far in solid-state quantum
batteries.
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I. INTRODUCTION

Quantum batteries (QBs) are miniaturized devices able to
efficiently store and release energy on demand, exploiting the
puzzling rules of quantum mechanics [1,2]. They are intended
to play a major role in the future developments of quantum
technologies [3,4]. In this direction, it is possible to imag-
ine, for example, networks of QBs connected to a quantum
computer with the aim of locally providing the energy supply
to support reversible quantum operations [5–7]. The starting
point of this field can be traced back to the seminal work by
Alicki and Fannes in 2013 [8]. Since then, theoretical investi-
gations have focused on the study of the charging dynamics of
one or more quantum systems, each one with a finite dimen-
sion Hilbert space, usually two-level systems (TLSs) [9].

For what concerns the charging of QBs, two main ap-
proaches have been discussed in literature. The first one
is based on the coherent energy transfer between a purely
quantum charger and the QB [10–13]. This case has been
discussed, in particular, for arrays of artificial atoms [14–19]
and systems for cavity in circuit quantum electrodynamics
[20–31]. Remarkably enough, experimental evidence of a
quantum charged QB has been recently reported in a system
where fluorescent organic molecules play the role of TLSs
embedded in a microcavity [32]. This system shows a behav-
ior consistent to that predicted in Ref. [20], with dissipative
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effects counterintuitively leading to an improvement of the
stability of the QBs [23].

On the other hand, the charging induced by a classical
external drive has also been considered [33–35]. This idea
culminated in the first experimental evidence of a three-level
QB realized with a superconducting circuit in the transmon
regime [36]. The authors of this work compared different
charging protocols able to promote a qutrit (three-level quan-
tum system) from the ground state to a second excited state.
In particular, they reasonably assume that the maximum ad-
missible amplitude for the independently applied drives is
bounded both at the level of the intensity or in modulus. Ex-
actly saturating these bounds, they have been able to apply the
quantum brachistochrone theory [37] to obtain analytically
solvable stable adiabatic charging protocols. By controlling
the sequence of these applied drives, they have been able to
obtain both fast and unstable and slow and stable charging
processes. This latter case shows charging times of the order
of ≈200 ns, namely, two orders of magnitude shorter with
respect to the typical relaxation and dephasing times of the
considered device (≈20 µs).

In the present paper, we will demonstrate that a full analyti-
cal description of the qutrit’s dynamics is possible under more
general conditions where the bound in the amplitude of the
drives is fulfilled but not saturated. In this case, the possibility
to exactly solve the dynamics of the system relies on the
rotating wave approximation (RWA) and not on adiabatic con-
siderations. Reviewing the recently discussed case of a qubit
QB, we will identify faster stable protocols able to realize an
almost complete charging of the qutrit QB. In particular, driv-
ing the systems with properly modulated Gaussian pulses, we
will determine the charging time considering (i) a sequential
charging protocol where the qutrit is first promoted from the
ground to the first excited state and afterwards from the first
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to the second excited state and (ii) a simultaneous charging
protocol where the transition directly involve the ground and
the second excited state.

We will test these protocols on IBM quantum devices
showing that in the simultaneous protocol, the charging time
can be decreased down to ≈20 ns. This is an order of magni-
tude shorter with respect to that observed in Refs. [36,38] in
the presence of a comparable stored energy and longer relax-
ation and dephasing times (≈100 µs). This is a consequence
of the stronger intensity of the matter-radiation coupling in
the considered devices. To the best of our knowledge, this
represents the fastest stable charging reported so far in the
framework of QBs based on superconducting circuits, indicat-
ing that IBM quantum devices are ideal candidates to develop
stable multilevel solid-state QBs.

II. TWO-LEVEL QB

We start our analysis by reviewing the case of a super-
conducting circuit in the transmon regime working as a qubit
(see Ref. [39] and Appendix A for more details). To access
quantum features, these devices are put at cryogenic temper-
atures (few mK). Under these working conditions, which are
conventionally used in the framework of solid state quantum
computation [40], the QB can be effectively described as a
TLS with Hamiltonian (from now on, we consider h̄ = 1)

Ĥ (2)
QB = ω0|0〉〈0| + ω1|1〉〈1| (1)

and level spacing

� = ω1 − ω0 (2)

between the ground state |0〉 and the first excited state |1〉. Its
dynamics is controlled by means of a classical external time-
dependent drive such that the total Hamiltonian reads [41,42]

Ĥ (2)(t ) = Ĥ (2)
QB + Ĥ (2)

C (t ), (3)

with

Ĥ (2)
C (t ) = gf (t ) cos(�t )(|0〉〈1| + |1〉〈0|). (4)

In the above equation, f (t ) is a time-dependent envelope
function with maximum amplitude equal to one, whose form
will be specified in the following. Such function is further
modulated by a cosine with controllable frequency �. Finally,
g represents the intensity of the (dipole) coupling between the
QB and the classical drive. Notice that in our study we can
safely neglect the dynamics of the external charger, due to the
fact that it can be considered as a classical object not affected
by the state of the QB [34].

To study the time evolution of the state and, consequently,
the time behavior of the stored energy stored, we consider the
generic initial wave function at time t = 0 [38],

|ψ (0)〉 = √
a|0〉 + √

1 − aeiφ |1〉, (5)

with 0 � a � 1 and 0 � φ < 2π real parameters. The ex-
perimentally realized transmon devices, typically used in the
quantum computing framework, including the devices devel-
oped by IBM, usually satisfy g � � (with typically more
then an order of magnitude between the two quantities) [40].
Under this condition, to achieve a complete charging of the
QB, namely, a perfect transition |0〉 → |1〉, one needs to tune

the frequency of the drive in such a way to precisely fulfill
the condition � = �. At this point, it is useful to consider the
time-dependent rotation

Ŝ(2)(t ) = eiĤ (2)
QBt , (6)

leading, in the rotating frame, to the new Hamiltonian

Ĥ ′(2) = Ŝ(2)Ĥ (2)(Ŝ(2) )† − iŜ(2) d (Ŝ(2) )†

dt
. (7)

Further considering the RWA [43–45], which is very well
justified under the conditions of resonance and small coupling
discussed above [46], as we have also checked numerically for
experimentally relevant values of the parameters (not shown),
one obtains the effective Hamiltonian

Ĥ (2)
eff (t ) = g

2
f (t )(|0〉〈1| + |1〉〈0|), (8)

where we have omitted a constant term that plays no role in
the dynamics. This leads to the Schrödinger equation

i|ψ̇ ′(t )〉 = Ĥ (2)
eff |ψ ′(t )〉, (9)

where |ψ ′(t )〉 = Ŝ(2)(t )|ψ (t )〉 with |ψ (t )〉 the wave function
of the qubit at a given time [38]. Note that we are using
the conventional Newton’s dot notation to indicate the time
derivative.

Starting from this, the energy stored in the QB at the same
time t can be defined as [10,20]

E (2)(t ) = 〈ψ (t )|Ĥ (2)
QB|ψ (t )〉. (10)

According to this definition and taking into account the analy-
sis described above, the energy stored into the QB at the time
t can be explicitly written (assuming for now on ω0 as the
energy reference) as

E (2)(t ) = �

[
a sin2 θ (t )

2
+ (1 − a) cos2 θ (t )

2
(11)

+ 2
√

a
√

1 − a sin φ sin
θ (t )

2
cos

θ (t )

2

]
, (12)

where

θ (t ) = g
∫ t

0
f (τ )dτ. (13)

According to this expression, the key parameter to control
the system’s dynamics is the area under the envelope function
f (t ). However, to evaluate the energy stored in the QB as a
function of time, the knowledge of the form of f (t ) is there-
fore necessary. According to the analysis reported in Ref. [38],
a good choice for the envelope function is

f (t ) = N e− (t−tm/2)2

2σ2 , (14)

namely, a Gaussian with amplitude N and standard deviation
σ , centered at t = tm/2, with tm the time at which the mea-
surement of the state is carried out. In the following, we will
assume

σ = tm
8

, (15)
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FIG. 1. Blue curve: Theoretical behavior of the energy E (2)

stored into the qubit QB (in units of �) as a function of t (in units of
tm) and with initial condition |ψ (t )〉 = |0〉 [a = 1 and arbitrary φ in
(5)]. Horizontal grey line indicates a QB charging of E (2)

thr = 0.95�,
while the vertical grey line is in correspondence with the charging
time tc = 0.59tm. Here we are considering θm = π .

where the condition tm 	 σ is fulfilled, and

N = θm

(gσ
√

2π )
, (16)

with θm the total phase induced by the application of the pulse.
Indeed, one has

θ (t ) ≈ θm

2

[
Erf

(
t − tm

2√
2σ

)
+ 1

]
, (17)

with Erf(x) the error function of argument x. This leads to
θ ≈ θm for t ≈ tm 	 σ .

Replacing the above expression into (12), one can deter-
mine the charging time tc, namely, the time at which the QB is
(almost) completely charged, as a fraction of tm. For example,
in Fig. 1, the QB reaches a charging E (2)

thr = 0.95� for a time
tc = 0.59tm.

It is also useful to consider more realistic situations. In-
deed, according to the analysis reported in Ref. [38], in a
real device it is not possible to initialize the system exactly
in the ground state. According to this, considering, for exam-
ple, the conditions a = 0.98, φ = 0 [Fig. 2(a)], and a = 0.96,
φ = 0 [Fig. 2(b)], the charging E (2)

thr = 0.95� is achieved for
tc = 0.61tm and tc = 0.63tm, respectively.

Obviously, the arbitrary choice of the value for the thresh-
old E (2)

thr could, in general, play a relevant role in determining
the charging time. However, assuming E (2)

thr ranging from
0.92� to 0.99�, the charging times are only marginally dif-
ferent, namely, tc ≈ 0.6tm (see Table I). This strengthens the
validity of our estimation.

Despite the above analysis, the charging behavior in real
time cannot be directly addressed in a cloud-based access as
the one provided by IBM. However, it is possible to recon-
struct it starting from the evolution of the stored energy by
fixing the time at t = tm 	 σ and by changing the amplitude

(a)

(b)

FIG. 2. Blue curves: Theoretical behavior of the energy E (2)

stored into the qubit QB (in units of �) as a function of t (in
units of tm) and with a = 0.98, φ = 0 (a) and a = 0.96, φ = 0 (b),
respectively. We have considered E (2)

thr = 0.95� in both panels (hor-
izontal grey lines). This leads to tc = 0.61tm (a) and tc = 0.63tm (b),
respectively (vertical grey lines). Here we are considering θm = π .

TABLE I. Charging times (in units of tm) for different initial
states of the QB [denoted by a and φ according to (5)] and values
of the energy threshold.

a φ Ethr/� tc/tm

1 0 0.92 0.58
1 0 0.95 0.59
1 0 0.99 0.63
0.98 0 0.95 0.61
0.98 π

4 0.95 0.63
0.96 0 0.95 0.63
0.96 π

4 0.95 0.68
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FIG. 3. Energy stored in the QB (in units of �) as a function of
θm. The black line is obtained analytically using (18) and with initial
condition |ψ (t )〉 = |0〉 [a = 1 and arbitrary φ in (5)]. The blue points
correspond to experimental data obtained from the ibm_auckland
device, using the Gaussian pulses described in the main text with
tm = 30 ns.

of the applied pulse θm. According to this, one has

E (2)(θ (t = tm)) ≈ E (2)(θm) = a sin2 θm

2
+ (1 − a) cos2 θm

2

+ 2
√

a
√

1 − a sin φ sin
θm

2
cos

θm

2
. (18)

The theoretical prediction for this quantity in the case of an
ideal charging starting from the ground state |0〉 is reported in
Fig. 3 and compared to the real data extracted from the IBM
quantum machine ibm_auckland. Data are extracted from
the machine following the calibration procedure described
in Ref. [38]. Notice that this curve does not depend on the
functional form of the drive, provided that tm 	 σ with σ the
typical width associated to f (t ), and that the deviation with
respect to the theoretical prediction mainly depends on the
fact that the system cannot be initialized exactly in the ground
state, that the pulses are discretized, and to possible readout
errors [38]. Taking into account the fact that for this specific
experiment, tm = 30 ns and due to the above considerations,
one can estimate a charging time tc ≈ 20 ns. This value is
orders of magnitude shorter with respect to the decay time
of the device (≈100 µs), leading to a great stability of the QB
[47]. Moreover, this time is shorter with respect to the one
achieved in Ref. [38] due to the greater values of coupling
characterizing ibm_auckland in comparison with the one of
ibm_armonk used there (g ≈ 1 GHz vs g ≈ 0.1 GHz).

III. THREE-LEVEL QB

We want now to investigate the possibility of realizing
charging protocols addressing the ground (|0〉) and first two
excited states (|1〉, |2〉) of a transmon, namely, realizing a
qutrit QB described by the Hamiltonian (see Appendix A for
more details)

Ĥ (3)
QB = ω0|0〉〈0| + ω1|1〉〈1| + ω2|2〉〈2|. (19)

Also in this case, the dynamics is controlled by means of
classical external drives such that

Ĥ (3)(t ) = Ĥ (3)
QB + Ĥ (3)

C (t ), (20)

with

Ĥ (3)
C (t ) = gf1(t ) cos(�1t )(|0〉〈1| + |1〉〈0|)

+ gf2(t ) cos(�2t )(|1〉〈2| + |2〉〈1|). (21)

Here, f1(t ) and f2(t ) are two generally different time-
dependent envelope functions generalizing that shown in the
previous section.

Notice that the general form of the classical driving Hamil-
tonian in (21) allows for a direct coupling only between states
with opposite parity (|0〉 ↔ |1〉, |1〉 ↔ |2〉). Despite the fact
that a transition |0〉 ↔ |2〉 could be useful for the following
analysis, it cannot be implemented in these machines. The
Hamiltonian in (21) has also been investigated in Ref. [36],
assuming an adiabatic evolution where the functions f1(t ) and
f2(t ) were properly constrained at the level of the maximum
admissible amplitude. However, in the following we will dis-
cuss more versatile and efficient charging protocols, leading
to a faster and more stable charging.

Proceeding in full analogy with what done in the case of
the qubit QB, one can consider a time-dependent rotation of
the form

Ŝ(3)(t ) = eiĤ (3)
QBt (22)

to describe the system in the rotating frame. To simplify the
notation, one can define

� = ω1 − ω0, (23)

�′ = ω2 − ω1. (24)

In the transmon geometry considered in this paper, one has
� > �′ due to the fact that this device can be described as a
anharmonic oscillator of the Duffing type (see Refs. [39,40]
and Appendix A for more details). In this direction, the ro-
tation introduced in Eq. (22) has the important advantage
of getting rid of the Ĥ (3)

QB contribution of the Hamiltonian,
allowing us to describe both an evenly spaced and a more
realistic anharmonic case on the same ground. Moreover, it is
worth noting that, also in this case, the condition g � �,�′
is typically well fulfilled.

Considering again the RWA, valid for �1 = � and �2 =
�′, the effective Hamiltonian in the rotating frame can be
evaluate by means of the relation

Ĥ ′(3)(t ) = Ŝ(3)Ĥ (3)(Ŝ(3) )† − iŜ(3) d (Ŝ(3) )†

dt
(25)

and reads

Ĥ (3)
eff = g

2
f1(t )(|0〉〈1| + |1〉〈0|) (26)

+ g

2
f2(t )(|1〉〈2| + |2〉〈1|). (27)

This leads to the Schrödinger equation

i|�̇ ′(t )〉 = Ĥ (3)
eff |� ′(t )〉, (28)

where |� ′(t )〉 = Ŝ(3)(t )|�(t )〉, with |�(t )〉 the wave function
of the qutrit at a given time.
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Considering the conventional spinorial notation

|� ′(t )〉 =

⎛
⎜⎜⎝

c2(t )

c1(t )

c0(t )

⎞
⎟⎟⎠, (29)

the dynamics of the system is obtained by solving the set of
differential equations⎛

⎜⎜⎝
ċ2(t )

ċ1(t )

ċ0(t )

⎞
⎟⎟⎠ = −i

g

2

⎛
⎜⎜⎝

0 f2(t ) 0

f2(t ) 0 f1(t )

0 f1(t ) 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c2(t )

c1(t )

c0(t )

⎞
⎟⎟⎠. (30)

According to the previous discussion, to excite the QB
from |0〉 to |2〉 we have to apply two pulses to the system.
To achieve this goal, in the two following subsections we
will address two different situations: (i) the two pulses are
applied sequentially and (ii) two pulses are simultaneous.
As will be clear in the following, both cases can be treated
analytically. From a theoretical point of view, intermediate
situations where the two pulses partially overlap can also be
studied by considering a numerical approach, however, we are
not going to discuss these cases in detail because it not easy
to directly implement them on IBM machines [48]. It is worth
noting that, besides the application in the framework of QBs,
a deeper understanding of the dynamics of a qutrit is relevant
to characterize the behavior of quantum devices outside the
conventional schemes of quantum computation [49].

In the following, we will evaluate the energy stored in the
three-level QB,

E (3)(t ) = 〈�(t )|Ĥ (3)
QB|�(t )〉, (31)

assuming the ground state of the qutrit as initial state, namely,

|�(0)〉 = |0〉. (32)

We will also comment about possible deviations with
respect to this ideal condition in realistic implementations.
Note that, despite the different physical implementation and
objectives, the formalism we are considering presents analo-
gies with recently reported protocols for coherent energy
transfer [50].

A. Sequential charging protocol

Here, we can choose two identical, but properly delayed in
time, pulses, namely, f2(t ) = f1(t − tm/2) and with f1(t ) of
the same Gaussian form as in (14) but with tm → tm/2, in such
a way that the total duration of the protocol is tm. In this limit,
one can analytically solve the problem in two steps, each one
identical to that previously discussed in the case of the qubit.

1. |0〉 → |1〉 transition

In this case, one needs to solve the set of differential equa-
tions:⎛

⎜⎜⎝
ċ2(t )

ċ1(t )

ċ0(t )

⎞
⎟⎟⎠ = −i

g

2

⎛
⎜⎜⎝

0 0 0

0 0 f1(t )

0 f1(t ) 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c2(t )

c1(t )

c0(t )

⎞
⎟⎟⎠. (33)

The energy stored in the QB in this phase is [see (12) with
a = 1]

E (3)
seq (t ) = � sin2 θ1(t )

2
, (34)

with

θ1(t ) = g
∫ t

0
f1(τ )dτ (35)

and t ∈ [0, tm/2]. Note that one can safely assume that out of
this interval, f1(t ) is essentially zero.

2. |1〉 → |2〉 transition

Here, we need to solve the set of differential equations:⎛
⎜⎜⎝

ċ2(t )

ċ1(t )

ċ0(t )

⎞
⎟⎟⎠ = −i

g

2

⎛
⎜⎜⎝

0 f2(t ) 0

f2(t ) 0 0

0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c2(t )

c1(t )

c0(t )

⎞
⎟⎟⎠. (36)

Assuming that in the previous step the system reaches the first
excited state (|�(tm/2)〉 ≈ |1〉), the energy stored in the QB is
given by

E (3)
seq (t ) = � + �′ sin2 θ2(t )

2
, (37)

with

θ2(t ) = g
∫ t

tm
2

f2(τ )dτ (38)

and t ∈ [tm/2, tm]. Also in this case, out of this interval, f2(t )
can be considered as null. Using the same Gaussian envelope
function discussed in the previous section, with σ = tm/16,
one has

θ1(t ) ≈ θ1,m

2

[
Erf

(
t − tm

4√
2σ

)
+ 1

]
, (39)

θ2(t ) ≈ θ2,m

2

[
Erf

(
t − 3tm

4√
2σ

)
+ 1

]
. (40)

In Fig. 4, we show the energy stored in the battery as a
function of time. Here, one can clearly see a two-step charging
(blue curve). For what concerns the charging time, due to
the similarity with the qubit charging, the same estimation
discussed above also works here, limited to the second step
(tc ≈ 0.8tm).

Also in this case, the real time-dynamics cannot be ac-
cessed directly in IBM quantum devices. It is, however,
possible to proceed in analogy with that done for the qubit,
extracting it from the behavior of the energy stored at the final
measurement time t = tm and changing the pulse amplitude,
which can be redefined as

ϕm =
{

θ1,m if θ1,m ∈ [0, π ]

π + θ2,m if θ1,m = π & θ2,m ∈ [0, π ].
(41)

This definition has been introduced to keep track of the fact
that as long as the total amplitude is smaller then π , we are
considering |0〉 → |1〉, while for a total amplitude greater then
π we are addressing the |1〉 → |2〉 transition.
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FIG. 4. Energy stored in the QB (in units of �max = � + �′) as
a function of t (in units of tm) for both a sequential (blue curve) and
simultaneous (red curve) charging protocol. Here we have considered
pulses of Gaussian form, satisfying the constrains discussed in the
main text, with ϕm = 2π , m = π , and a = 1.

In terms of this new variable, one has

E (3)
seq (ϕm) =

{
� sin2 ϕm

2 if ϕm ∈ [0, π ]

� + �′ sin2
(

ϕm−π

2

)
if ϕm ∈ [π, 2π ].

(42)

The behavior of the above function, together with the
relative experimental data obtained using the ibm_auckland
device (a machine composed by 27 transmon circuits, of
which we address the number 0 that is characterized by the
the best compromise between the longer relaxation and de-
phasing times and the smaller readout error), are reported
in Fig. 5 [51]. Data are extracted from the machine follow-
ing the calibration procedure described in Appendix B. The

FIG. 5. Energy stored in the QB (in units of �max) as a function
of ϕm following the sequential charging protocol. The black line
is obtained analytically using (42). The blue points correspond to
experimental data obtained from the ibm_auckland device, using the
Gaussian pulses described in the main text with tm = 30 ns.

agreement between data and the theoretical function is very
good, in particular, in the first half of each step. However, the
experimental data show that it is not possible to fully charge
the QB. Indeed, the maximum energy reached is 92.1% of the
maximum energy �max = � + �′.

Here, the charging occurs in a time (tc ≈ 25 ns), which
is way shorter with respect to the decay time of the device
(≈100 µs). This stable charging protocol is similar to the
one discussed in Ref. [36], although there the charging was
reached in the longer time tc ≈ 200 ns. This faster charging
is a consequence of the stronger dipole coupling character-
izing this quantum device. For what concerns the amount of
energy stored in the qutrit, one has �max ≈ 39.2 µeV, which is
smaller but of the same order of magnitude of the one reported
in Ref. [36] (�max ≈ 50.6 µeV).

B. Simultaneous charging protocol

In this case, one has f1(t ) = f2(t ) = f (t ), which leads to
the set of differential equations:⎛

⎝ċ2(t )
ċ1(t )
ċ0(t )

⎞
⎠ = −i

g

2
f (t )

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠

⎛
⎝c2(t )

c1(t )
c0(t )

⎞
⎠. (43)

We underlie the fact that the particularly simple form of the
above Schöedinger equation is a direct consequence of work-
ing in the rotating frame and in the RWA with a careful fine
tuning of the drive frequencies with the level spacings of the
qutrit. The matrix

T̂ =
⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ (44)

is diagonalized by means of the unitary transformation

Û =

⎛
⎜⎜⎝

1
2 − 1√

2
1
2

1
2

1√
2

1
2

1√
2

0 1√
2

⎞
⎟⎟⎠. (45)

This leads to a new set of the decoupled equations:⎛
⎜⎜⎝

ċ−(t )

ċ+(t )

ċB(t )

⎞
⎟⎟⎠ = −i

g

2
f (t )

⎛
⎜⎜⎝

−√
2c−(t )

√
2c+(t )

0

⎞
⎟⎟⎠ (46)

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c−(t ) = ei g√
2

∫ t
0 f (τ )dτ c−(0)

c+(t ) = e−i g√
2

∫ t
0 f (τ )dτ c+(0)

cB(t ) = cB(0).

(47)

In this basis, the state at time t is given by

|� ′(t )〉 =

⎛
⎜⎜⎝

ei(t )c−(0)

e−i(t )c+(0)

cB(0)

⎞
⎟⎟⎠, (48)

with

(t ) = g√
2

∫ t

0
f (τ )dτ. (49)
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Is this new basis, the initial conditions lead to⎛
⎜⎜⎝

c−(0)

c+(0)

cB(0)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
2
1
2
1√
2

⎞
⎟⎟⎠ (50)

and, consequently,

|� ′(t )〉 =

⎛
⎜⎜⎝

1
2 ei(t )

1
2 e−i(t )

1√
2

⎞
⎟⎟⎠. (51)

Returning back to the original basis, we finally have

|� ′(t )〉 =

⎛
⎜⎜⎝

1
2 [cos (t ) − 1]

− i√
2

sin (t )
1
2 [cos (t ) + 1]

⎞
⎟⎟⎠. (52)

Considering the same Gaussian pulse as in the qubit case,
one obtains

(t ) = m

2

[
Erf

(
t − tm

2√
2σ

)
+ 1

]
, (53)

with m = θm/
√

2.
In Fig. 4, we report the energy stored in the QB as a

function of time (red curve), given (assuming again ω0 as the
reference energy) by

E (3)
sim(t ) = �

2
sin2 (t ) + �max

4
[1 − cos (t )]2. (54)

As expected, the complete charging of the QB can be obtained
here in a unique step as long as m = π . Note that a similar
form of the stored energy can be obtained under proper condi-
tions within the adiabatic approximation (see Appendix C for
more details).

Assuming, in analogy with that done for the qubit QB, the
charging time as the one required to reach E (3)

thr = 0.95�max,
one has also in this case tc = 0.59tm. Note that, for a fix tm,
this leads to a faster charging (greater charging power) with
respect to the sequential case.

In analogy to that done in the qubit case, the relative exper-
imental data are reported, for tm 	 σ , as a function of m:

E (3)
sim(m) = �

2
sin2 m + �max

4
[1 − cos m]2. (55)

Data have been obtained using the ibmq_toronto device (a
machine composed of 27 transmon circuits, of which we
address the number 16 that is characterized by the best com-
promise between the longer relaxation and dephasing times
and the smaller readout error) are reported in Fig. 6 [52].
It is worth noting that this simultaneous charging protocol
cannot be implemented on all IBM quantum machines that can
be accessed via qiskit-pulse due to software constraints [53].
Also in this case, data are obtained following the calibration
procedure described in Appendix B. The maximum energy
reached is 92.0% of �max. This indicates that efficiencies of
the two considered protocols are very close. Moreover, the
charging occurs in roughly the same amount of time with
respect to the other (tc ≈ 20 ns) with an analogous relaxation

FIG. 6. Energy stored in the QB (in units of �max) as a function
of m following the simultaneous charging protocol. The black line
is obtained analytically from Eq. (55). The red points correspond
to experimental data, obtained from the ibmq_toronto machine. We
have considered the same Gaussian pulse as in the qubit case with
tm = 30 ns.

time (tc ≈ 100 µs). As far as we know, this is the fastest stable
charging process reported so far for a multilevel QB. Shorter
times seem out of reach in the currently available IBM quan-
tum devices due to discretization of the signal implemented
at the level of software [38]. The amount of energy stored in
the qutrit in this case is almost identical to the one reported
for ibm_auckland (�max ≈ 39.3 µeV). It is worth mentioning
the fact that the departure from the theoretical curve could
be related to errors at the level of the initialization, due to
discretization of pulses or to readout errors.

IV. CONCLUSIONS

We have considered two experimentally relevant cases in
which the dynamics of a three-level QB can be treated an-
alytically without any assumption, except the rotating wave
approximation which is well justified in the considered range
of parameters. Taking inspiration from an analysis carried
out for the simpler two-level case, we have determined the
charging time for (i) a sequential charging protocol where
the qutrit is charged according to the two subsequent steps
|0〉 → |1〉 and |1〉 → |2〉 and (ii) a simultaneous charging
protocol where it is possible to achieve a direct |0〉 → |2〉
transition. We underline the fact that the reported results for
both charging protocols are robust against crosstalk among the
various circuits composing the considered machines.

We have also tested these protocols on IBM quantum de-
vices estimating a charging time tc ≈ 20 ÷ 25 ns. These times
are an order of magnitude shorter with respect to a previous
analysis carried out in Ref. [36] and have been obtained for
devices in with a comparable stored energy and characterized
by longer relaxation and dephasing times. As far as we know,
these results, in particular, for what it concerns the simulta-
neous charging, represent the fastest stable charging reported
so far in the framework of multilevel solid state quantum
batteries based on superconducting circuits.
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FIG. 7. Scheme of a superconducting circuit composed by a
Josephson junction (crossed square symbols) with energy EJ and a
capacitance Cs.

As an interesting byproduct of our analysis, we have shed
light on the time-dependent control of multilevel quantum
systems with relevant impact in the field of quantum com-
putation. Indeed, the possibility to use quantum devices both
as qubit and as qutrit [49] or, more generally, qudit [54]
could make the current quantum computers more versatile,
broadening the panorama of future possible applications [55].
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APPENDIX A: THEORETICAL DESCRIPTION
OF THE TRANSMON QUBIT

Here we want to provide a simple circuital scheme leading
to the two- and three-level quantum devices discussed in the
main text (see Fig. 7).

Its Hamiltonian is given by [39,40]

H = 4ECN2 − EJ

2
cos �, (A1)

with

EC = e2

Cs
> 0 (A2)

the charging energy associated to the capacitive part of the
circuit (e here is the charging energy and Cs the capacitance),
EJ > 0 the energy associated to the Josephson junction, N
the Cooper pair number operator, and � the conjugate phase

FIG. 8. Example of data distribution associated to the measure-
ments of the state |0〉 (blue dots), |1〉 (red dots) and |2〉 (green dots)
in the (I, Q) plane (in arbitrary units) for the ibm_auckland device.
Big black dots indicate the centers of the different distributions,
while straight lines separate the regions associated to every state.
The efficiency of the considered separation is roughly 95.5% for
the ground state, 95.7% for the first excited state, and 90.0% for
the second excited state. For each state shown in the plot, we have
considered 1024 runs (3072 in total).

operator. They satisfy the commutation relation

[�, N] = i. (A3)

In the transmon limit EC � EJ , this problem maps into the
one of a particle with very small kinetic energy trapped in a
cosinelike potential. Under these conditions, it is possible to
Taylor expand the cosine term up to fourth order, obtaining

H ≈ 4ECN2 + EJ

2
�2 − EJ

24
�4. (A4)

The previous Hamiltonian can be quantized introducing lad-
der operators satisfying

[b, b†] = 1 (A5)

and such that

N = i

(
EJ

32EC

) 1
4

(b† − b), (A6)

� =
(

2EC

EJ

) 1
4

(b† + b). (A7)

According to this, one obtains an anharmonic oscillator of the
Duffing type,

H ≈ ωPb†b − EC

12
(b† + b)4, (A8)

with

ωP =
√

8ECEJ (A9)

the so-called plasma frequency of the circuit.
In the considered limit, the energy levels are very well de-

termined already at first order in perturbation theory, leading
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FIG. 9. Example of data distribution associated to the sequential charging protocol. Each plot shows the results (black dots) in the (I, Q)
plane (in arbitrary units) as a function of ϕm. For each state shown in the plot, we have considered 1024 runs. These measurements have been
carried out using the ibm_auckland device. The background is colored according to that discussed in the calibration phase. In particular, the
blue part is classified as |0〉, the red one as |1〉, and the green one as |2〉.

(up to a constant) to

ωn = (ωP − EC )n − 1
2 ECn(n − 1). (A10)

From this, we finally derive

� = ω1 − ω0 = ωP − EC, (A11)

�′ = ω2 − ω1 = ωP − 2EC = � − EC, (A12)

�max = ω2 − ω0 = � + �′ = 2ωP − 3EC . (A13)

These parameters are the ones considered in the main text. As
a final comment, it is easy to note that � > �′, as assumed in
our analysis.

APPENDIX B: CALIBRATION AND DATA ANALYSIS

The reconstruction of the state of a transmon, after the ap-
plication of a time-dependent external drive, is done through
a readout in the so-called dispersive regime. Here, a harmonic
oscillator (LC circuit playing the role of a resonator) is weakly
coupled to the transmon and off resonant with respected to it
[40]. In this regime the frequency of the oscillator depends
of the state of the transmon. This allows for a so called
non-destructive measurement [56] based on the fact that a
monochromatic microwave with frequency �0 applied to the

resonator is modified in such a way that

cos �0t → A cos(�0t + χ ), (B1)

with A and χ real numbers representing an amplitude and a
phase, respectively. Taking into account the complex repre-
sentation of the transmitted wave at a given time, one can write

Aeiχ = I + iQ, (B2)

with I and Q real numbers. Every measurement of the trans-
mon state is therefore reported as a point in the (I, Q) plane.
To accumulate proper statistics, the machine performs mul-
tiple runs (1024 in default settings). They are typically very
scattered, requiring further analysis to extract meaningful in-
formation from them. We have classified the points according
to the three relevant states of the system (|0〉, |1〉, and |2〉)
by means of scikit-learn, an open-source machine-learning
library based on the Python programming language [57]. We
have used support vector machines method with linear kernel
function. This method takes as input two arrays: an array X of
shape (n_samples, n_ f eatures) holding the training samples
and an array y of class labels, that can be strings or integers, of
shape (n_samples). In our case, we have 3072 samples with
two features, I and Q, and three possible labels: 0, 1, or 2.
After being trained, the model can be used to classify new
values.

023091-9



GIULIA GEMME et al. PHYSICAL REVIEW RESEARCH 6, 023091 (2024)

FIG. 10. Example of data distribution associated to the simultaneous charging protocol. Each plot shows the results (black dots) in the
(I, Q) plane (in arbitrary units) as a function of m. For each state shown in the plot, we have considered 1024 runs. These measurements have
been carried out using the ibmq_toronto device. The background is colored according to that discussed in the calibration phase. In particular,
the blue part is classified as |0〉, the red one as |1〉, and the green one as |2〉.

Figure 8 shows an example of data distribution with the
colored regions graphically representing the data labels. Ac-
cording to this picture, the energy stored in a qutrit QB (with
respect to the ground state) can be determined through the
relation

E (η) = �P1(η) + �maxP2(η), (B3)

with

Pi(η) = |〈�(η)|i〉|2 (B4)

and η = ϕm,m, depending on the considered charging pro-
tocol.

In Figs. 9 and 10, we show the different evolutions of the
state of the qutrit in the (I, Q) plane considering the sequential
and simultaneous charging, respectively. In particular, while
in the former case there is an intermediate situation in which
the system is in state |1〉 with high probability, this doesn’t
happen in the latter.

APPENDIX C: ADIABATIC CHARGING
OF THE THREE-LEVEL QB

An alternative way to charge the qutrit QB realizing a
stable |0〉 → |2〉 transition involves a classical charging [see

(21)], with two identical time-dependent drives such that

f1(t ) = f2(t ) = f (t ) (C1)

and

�1 = �2 = � + �′

2
, (C2)

namely, resonant with a unique frequency given by the av-
erage of the two-level spacing [58]. Under such conditions,
assuming again the RWA, one obtains the new effective
Hamiltonian

Ĥ(3)
eff (t ) = g

2
f (t )

⎛
⎝ 0 e−iδt 0

eiδt 0 eiδt

0 e−iδt 0

⎞
⎠, (C3)

with

δ = � − �′

2
. (C4)

Note that, according to the derivation reported in Appendix A,
this parameter is positive and can be written only in terms of
the transmon charging energy, namely,

δ = EC

2
. (C5)
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FIG. 11. Energy stored in the qutrit QB (in units of �max) as a
function of t (in units of tm) for both an adiabatic (green curve) and
simultaneous (red curve) charging protocol. Here we have considered
the same Gaussian pulses as in the qubit case.

To solve the dynamics, in this case it is possible to consider
a full numerical approach. However, in the following we will
proceed along a different path based on the adiabatic approxi-
mation [59], which will allow us to have a better insight of the
physics of the system. In this case, the state of the system at a
given time t can be approximated as

|� ′(t )〉 ≈
∑

σ

cσ e−i
∫ t

0 Eσ (τ )dτ eiγσ (t )|�σ (t )〉 σ = B,±. (C6)

In the above expression, one needs to take into account the
instantaneous eigenstates of the Hamiltonian in (C3),

|�B(t )〉 =

⎛
⎜⎝

− 1√
2

0
1√
2

⎞
⎟⎠; |�±(t )〉 =

⎛
⎜⎝

1
2

± eiδt√
2

1
2

⎞
⎟⎠, (C7)

with instantaneous energy eigenvalues

EB(t ) = 0, E±(t ) = ± g√
2

f (t ). (C8)

Other important terms which compare to (C6) are the geo-
metric or Berry phases [59]:

γB(t ) = i
∫ t

0
dτ 〈�B(t )| d

dτ
|�B(t )〉 = 0,

γ±(t ) = i
∫ t

0
dτ 〈�±(t )| d

dτ
|�±(t )〉 = −δt

2
. (C9)

Taking into account the initial condition already discussed
in the main text, namely,

cB = 1√
2

; c± = 1

2
, (C10)

one finally obtains

|� ′(t )〉 ≈

⎛
⎜⎜⎜⎝

1
2

[
cos (t )e−i δt

2 − 1
]

− i√
2

sin (t )ei δt
2

1
2

[
cos (t )e−i δt

2 + 1
]

⎞
⎟⎟⎟⎠, (C11)

with stored energy

E (3)
ad (t ) ≈ �

2
sin2 (t )

+ �max

4

[
1 − 2 cos (t ) cos

(
δt

2

)
+ cos2 (t )

]
.

(C12)

In the regime where both approaches are applicable, the
adiabatic charging usually leads to a faster but less sta-
ble charging with respect to the simultaneous one (see
Fig. 11).
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