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Incompatibility is a feature of quantum theory that sets it apart from classical theory, and the inability to
clone an unknown quantum state is one of the most fundamental instances. The no-hiding theorem is another
such instance that arises in the context of the black-hole information paradox, and can be viewed as being dual
to no-cloning. Here, we formulate both of these fundamental features of quantum theory in a single form that
is amenable to efficient verification, and that is robust to errors arising in state preparation and measurements.
We extend the notion of unitarity—an average figure of merit that for quantum theory captures the coherence
of a quantum channel—to general physical theories. Then, we introduce the notion of compatible unitarity
pair (CUP) sets, that correspond to the allowed values of unitarities for compatible channels in the theory.
We show that a CUP set constitutes a simple “fingerprint” of a physical theory, and that incompatibility can
be studied through them. We derive information-disturbance constraints on quantum CUP sets that encode
both the no-cloning/broadcasting and no-hiding theorems of quantum theory. We then develop randomized
benchmarking protocols that efficiently estimate quantum CUP sets and provide simulations using IBMQ of
the simplest instance. Finally, we discuss ways in which CUP sets and quantum no-go theorems could provide
additional information to benchmark quantum devices.
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I. INTRODUCTION

Quantum physics places much stronger limits on how we
can transform information, compared to classical physics.
These limits can be captured by the notion of incompati-
bility, that encapsulates fundamental impossibility results in
quantum theory [1–4]. The most commonly encountered form
of incompatibility refers to measurements—position and mo-
mentum cannot be simultaneously measured with the same
precision—leading to formulations of no information without
disturbance [5]. However, incompatibility can be described
far more generally [6–8]. Two local processes on systems
A and B are said to be compatible if there exists a global
process that can produce both. The no-broadcasting theorem,
an extension of the famous no-cloning theorem, can be cast as
the incompatibility of local identity channels at A and B [4]. It
is readily seen that if a physical theory admits perfect cloning,
such as classical theory, then the theory cannot have any form
of incompatibility.

Quantum technologies open new directions to experimen-
tally test foundational aspects of quantum theory [9–13].
However, current devices are inherently noisy with error mit-
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igation and correction being key obstacles to overcome for
scalable quantum computing [14–17]. This presents a chal-
lenge in developing tests for foundational properties in a
way that is robust to errors arising from the implementation
of the experiment itself (e.g., at the state preparation and
measurement stage). Viewed another way, such tests can also
produce valuable benchmarks of errors in noisy intermediate
scale quantum devices [18], as they have clear operational
significance rooted in fundamental properties of quantum me-
chanics.

With this in mind, in this work we address the following
question:

Can we formulate measures of quantum incompatibility that
can be robustly and efficiently estimated?

Existing criteria to decide the compatibility of quantum
channels can be formulated generally in terms of semidefinite
programming and by introducing witnesses of incompatibil-
ity [19,20]. The task has also been shown to be equivalent to
the quantum state marginal problem [21]. Other formulations
rely on the Fisher metric [22] or on the diamond norm [23] to
capture information disturbance trade-offs. Another approach
is via robustness measures [24,25]. Evaluating these different
figures of merit for incompatibility requires extensive opti-
mizations that typically assume access to a full description
of the (quantum) processes involved.

The inability to clone a quantum state [1] can be shown
to be an extremal case of incompatibility [6], and the ability
to “hide” data in correlations can be viewed as being dual
to cloning. This problem arises in the black-hole information
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paradox [26–28], and the no-hiding theorem was established
to prove the impossibility of hiding a qubit state in quantum
correlations [26]. This has the implication that black hole
information must have some degree of spatial localization,
either within the black hole interior or in the external region
to the black hole [26–28].

No-cloning and no-hiding can also be related to other
quantum impossibility results such as no-masking [29,30] and
no-deleting [31]. There have been some recent experimental
tests of the no-hiding theorem [12] including the utilization
of small scale quantum computers [32]. No-cloning has also
been tested in the context of information disturbance [13].
However, here we develop a broader framework that exploits
recent theoretical ideas that arise in the analysis of quantum
technologies.

Our approach to this problem is motivated by randomized
benchmarking techniques [33,34]. Such methods produce es-
timates of average channel properties (fidelity, unitarity etc.)
in a way that is robust to state preparation and measurement
(SPAM) errors and does not require exponentially difficult
process tomography. In particular, we argue that the unitarity
of a quantum channel, which is a measure of its coher-
ence [35–37], is a natural means to simultaneously describe
both no-cloning and no-hiding. In particular we show how
such incompatibility can be captured by unitarity within a
single information-disturbance inequality.

At a high level, our paper can be viewed as extending the
simple concept of the purity of a state, which is a measure of
disorder [38], to what can be viewed as a purity measure of
the physical theory itself. This extension serves as a simple
and intuitive two-dimensional “fingerprint” of the theory. An
example for quantum theory is shown in Fig. 1.

A. Structure and main results of the paper

Our main focus is to simultaneously handle both classical
and quantum theories under a unifying umbrella using average
channel properties. In Sec. II, we first develop a generalization
of the unitarity u(E ) of a quantum channel, that allows exten-
sions of our paper to more general physical theories [39–41].
We show that the unitarity has key properties that make it well
suited to capturing compatibility, compared to other average
measures such as fidelities [42,43].

We briefly summarize the framework we develop to cap-
ture incompatibility of a theory. For any theory and a globally
isometric process VX→AB from a system X into systems AB,
we consider marginal channels

E := trB ◦ VX→AB, Ē := trA ◦ VX→AB, (1)

by tracing out either A or B respectively. These channels let us
define compatible unitarity pairs (CUPs), which we write as

(u(E ), u(Ē )) ≡ (u, ū). (2)

Ranging over the set of all valid CUPs in a probability
theory forms a CUP set C—which depends only on the un-
derlying physical theory and the dimensions dX , dA, and dB.
In Sec. II, we show that CUP sets allow us to compare and
contrast fundamental aspects of different physical theories, in-
cluding incompatibility. In Sec. III, we establish that classical
physics has a CUP set on the boundary of the unit square,

FIG. 1. Robust and efficient verification of quantum incompati-
bility. In classical theory we have the ability to perfectly clone and
perfectly hide classical information. In contrast, quantum theory has
fundamental incompatibility that prohibits the same behavior. This is
captured by defining CUP sets, and shown here is the estimation of
the simplest quantum CUP set C. The reversible CUP set for classical
theory corresponds to the full boundary of the unit square [0, 1]2,
and allows perfect cloning [the point (1,1)] and perfect hiding [the
point (0,0)]. Using benchmarking techniques we estimate C, shown
here, on an IBM Q device and find that it saturates the general
quantum bounds we derive in Theorem IV.1. Verifying such funda-
mental bounds provides a means to test the performance of emerging
quantum computers.

while in stark contrast the simplest CUP set in quantum theory
is described by a nontrivial shape in the plane (see Fig. 1).

We explain why the shape of CUP sets encode incompati-
bility and we prove (see Theorem IV.1) the following result:

Result (Incompatibility bound on quantum CUP set). Any
point (u, ū) in a quantum CUP set lies in the band defined by

dX

dX + 1

(
1

dA
+ 1

dB

)
� u + ū � 1, (3)

where dX is the shared input system dimension, and dA and dB

are the respective output dimensions.
This provides a general constraint on any quantum CUP

set. In Sec. IV, we relate this result to the no-cloning theorem
and the impossibility of perfect hiding of quantum informa-
tion under unitary evolution, to which there is no classical
equivalent. Moreover, the above bounds are tight under gen-
eral conditions that we discuss. Further, when dX = dA = dB a
quantum CUP set captures the no-hiding theorem exactly (see
Theorem IV.2), which we discuss in Sec. IV.

We next turn to the estimation of CUP sets on quan-
tum devices. Firstly, by directly estimating a range of CUPs
using the SWAP test [44]. These methods are detailed in
Sec. V. Secondly, we consider how techniques for device
benchmarking [35,45,46] can be used to estimate CUPs in a
SPAM-robust way, see Secs. VI A and VI B. We show that—
with some assumptions—quantum CUP sets can be estimated
SPAM robustly on current devices (see Fig. 1).
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Finally, we discuss how these methods compare, and to
what degree we can infer that current devices obey the limits
of quantum incompatibility.

II. CUP SETS AND INCOMPATIBILITY

We now construct a framework to study fundamental
incompatibilities of a physical theory in a form that is suf-
ficiently simple to allow for efficient and robust estimation.
The analysis in this section focusses on quantum and classical
theory, but we can extend it to any general probabilistic theory
as described in Appendix A.

A. Unitarity of a general channel

We first introduce a measure—the unitarity—that quanti-
fies how noisy a channel is. This measure can also be viewed
as the variance of the channel [47]. For both quantum and
classical theory, we have the notion of a physical state x of
a system, which may be mixed or pure [48]. For example,
in classical statistical mechanics a pure state is a microstate,
while a macrostate is a mixed state. The most general evolu-
tions of states are called channels, and a channel E , is simply
any map that takes valid states to states. For example, the
identity channel id (x) := x for all states x. We next need a
couple of additional concepts in order to define the unitarity
of a channel.

Firstly, for both classical and quantum theory, we have a
notion of geometry that arises for the states. In quantum theory
we have the Hilbert-Schmidt inner product. For two Hermitian
operators A and B this inner product is defined as 〈A, B〉 :=
tr(AB), and leads to the definition of the purity of a quantum
state ρ given by γ := 〈ρ, ρ〉 = tr(ρ2). The same features exist
in classical theory, and for a given probability distribution (pk )
describing a classical state of a system we have its associated
purity given by γ (p) := 〈p, p〉 := ∑

k p2
k . Therefore, in either

classical or quantum theory, we can define the purity of a
state x as given by γ (x) := 〈x, x〉 for the appropriate inner
product. The purity provides a measure of the noisiness of a
given state, and for example can be associated to the minimal
collision entropy over discriminating measurements in the
theory [49]. Moreover, this quadratic-order measure can be
readily estimated for either classical or quantum theory.

Secondly, for both quantum and classical theory we have a
preferred measure dμ(x), which is nonzero over the set ∂S of
pure states of the theory. For quantum theory this is the Haar
measure, while for finite-dimensional classical systems it is
the uniform measure over the discrete pure states.

Given this, we now define the unitarity of a channel E as

u(E ) := var(E ) := α

∫
∂S

dμ(x) γ (E (x − η)), (4)

where η := ∫
∂Sdμ(x) x is the maximally mixed state under

either quantum or classical theory, and where the normalizing
constant α is chosen such that u(id ) = 1.

This unitarity measure has a range of nice properties. For
example, in Lemma A.1, we prove that u(E ) = 0 if and only
if E is a completely depolarizing channel that acts as E (x) = y
for all x and some fixed y. Such a channel can be viewed
as erasing all information in the input state of the system.

Additionally, for any theory in which γ (x) = 〈x, x〉 the uni-
tarity is bounded between 0 and 1, and u(V ) = 1 for all
isometries V (see Corollary A.2), which are transformations
that perfectly preserve all information in the input state x.
Similarly, for such theories, the unitarity is invariant under
changes of basis u(V1 ◦ E ◦ V2) = u(E ) for any channel E and
unitaries V1,V2 (see Lemma A.3) [35,50]. These attributes
make unitarity a natural tool for capturing the incompatibility
of channels.

B. Defining cloning and hiding

Given a channel G from a subsystem X to subsystems AB
we define the marginal channels as

trB ◦ G(x), (5)

trA ◦ G(x), (6)

where trA denotes the action of discarding the subsystem A,
and similarly trB denotes discarding B. With the concept of a
marginal channel, we can define what it means to clone or hide
a state in a theory. The ability to perfectly clone/broadcast a
state can be defined as the existence of a channel G from an
input system X to two output systems A and B such that

trB(G(x)) = id (x) = x, (7)

trA(G(x)) = id (x) = x, (8)

for all states x. In other words the state is perfectly copied
to the two output subsystems. Note that broadcasting is where
one allows correlations between the two output systems, while
cloning does not have correlations and is normally considered
for pure states only. This distinction is not important here
since we focus on the marginal outputs only, and henceforth
we refer to the above process as cloning. The no-cloning
theorem [1] can therefore be cast as a statement that—under
quantum theory—there is no channel G such that Eqs. (7)
and (8) both hold for all states x.

The no-hiding theorem in its original formulation [26] says
that given a quantum state |ψ〉 that unitarily evolves such that
the output on one subsystem is a constant state—namely a
completely depolarizing channel—then the state |ψ〉 can be
perfectly recovered from the remaining environment subsys-
tem. We can formulate the no-hiding theorem in terms of the
above channel marginals in the following way. For a closed
quantum system under unitary evolution (e.g., when G = V),
if trB(V (x)) = y for some fixed state y, then necessarily x
must be completely recoverable at trA(V (x)). Therefore the
no-hiding theorem requires that trB′ ◦ trA(V (x)) = x, up to
final change of basis, and where the additional partial trace
(trB′ ) may be required to match the dimension of the input
system.

Channel marginals can also capture a more general notion
of hiding in any theory. More precisely, we say that we can
perform perfect hiding in a theory if there is a channel G from
an input system X to two output systems A and B such that for
all input states x we have

trB(G(x)) = D1(x) = y1, (9)

trA(G(x)) = D2(x) = y2, (10)

023090-3



GIRLING, CÎRSTOIU, AND JENNINGS PHYSICAL REVIEW RESEARCH 6, 023090 (2024)

where D1 and D2 are completely depolarizing channels send
all states to the fixed states y1 and y2 respectively. In other
words the marginal channels of G fully erase any information
encoded in x. However, this is not everything. We also require
that x is genuinely encoded in the global correlations between
A and B. Therefore, we additionally require that G is a re-
versible transformation, which means there is another channel
F from A and B to X such that F ◦ G(x) = id (x) = x. This
defines perfect hiding, but it might be possible to have partial
hiding of a state, in the same way as it is possible to partially
clone a quantum state.

We next turn to quantifying how well a theory (classical,
quantum, or a more general theory) can both clone and hide.
To completely capture hiding our framework should repro-
duce both quantum theory’s no-hiding theorem, as well as
identify perfect hiding. We do this through the above focus
on marginal channels, and use the unitarity to quantify how
well these local channels preserve information.

C. Compatible unitarity pairs of a theory

We now label the two marginal channels defined in Eq. (5)
from the input system X to the two output systems A and B as

E (x) = trB ◦ G(x), (11)

Ē (x) = trA ◦ G(x). (12)

We name the tuple of the unitarities of these channels a com-
patible unitarity pair (CUP) and use the notation

(u(E ), u(Ē )) ≡ (u, ū). (13)

From the previous discussion of cloning and hiding we see
that the set of global channels we consider G matters. For
hiding, we must consider the set of isometric channels to
capture quantum theory’s no-hiding theorem—as well as the
set of reversible channels for perfect hiding [51]. In contrast,
for cloning we are free to range over all possible channels
within a theory.

It is possible to describe a general process on a closed sys-
tem in terms of reversible channels on (larger) open systems
for both quantum and classical theory [52,53]. In quantum
theory, global isometries suffice (captured by a Stinespring
dilation [54]); however, classical theory requires the use of
auxiliary randomness [53]. The isometric channels are a
proper subset of reversible channels for both classical and
quantum theory and are defined as those channels V for which
we have 〈V (x),V (y)〉 = 〈x, y〉 for all states x, y. The smaller
set of isometry channels are the traditional set considered
for incompatibility in quantum theory, due to the Stinespring
dilation theorem.

When G ∈ V , the set of isometric channels, and E and Ē are
its marginal channels [as defined in Eqs. (11) and (12)] then
we write E ∼ Ē and say that these channels are isometrically
compatible. In this case, for quantum theory, the channels E
and Ē are complementary to each other.

Similarly if G ∈ R, the set of reversible channels, then we
write E ∼r Ē . Finally, when we consider G to be the set of
all channels in a theory, we write E ∼∗ Ē such that E and
Ē are marginals of any valid channel G from X to AB. This

notation is just to simplify definitions, and does not suggest
an equivalence relation.

We now define the set of compatible unitarity pairs (the
CUP set) as

CX→AB := {(u(E ), u(Ē )) ∈ R2 : E ∼ Ē}, (14)

which is determined by both the structure of the particular
state spaces and the admissible isometry channels in the the-
ory. In a similar way, we define the reversible CUP set, CX→AB

r ,
when E ∼r Ē . Finally, we define the full CUP set CX→AB

∗ for
the marginals of any valid channel, when E ∼∗ Ē .

For the remainder of this paper we shall drop the super-
scripts specifying the subsystems and just write C, Cr , and C∗
for the CUP sets.

Since the unitarity is bounded between 0 and 1, we have
the following series of inclusions:

C ⊆ Cr ⊆ C∗ ⊆ [0, 1]2. (15)

It turns out that CUP sets can be defined for general prob-
abilistic theories, and we discuss this in Appendix A. Note
that for any theory we have (0, 0) ∈ C∗, since we are always
free to discard the input state and prepare an arbitrary constant
state on the output systems (for which the unitarity vanishes).
Likewise, since the identity channel is in any theory, and we
are free to swap/relabel subsystems (all isometric processes)
we also have that (1,0) and (0,1) lie in C. These are common
points for CUP sets across different physical theories.

D. No-cloning and no-hiding through the CUP set

No-cloning and no-hiding fit into this framework as fol-
lows. Firstly, if the physical theory admits perfect cloning then
this implies that (1, 1) ∈ C∗ since u(E ) = 1 if and only if E =
id up to a final isometry [50]. We also note that it has been
shown [3,39] that broadcasting is possible in a physical theory
if and only if the theory has a simplex state space of perfectly
distinguishable states, and so essentially only classical theory
has (1,1) in its CUP sets. The no-cloning theorem can be cast
compactly as a statement that—for quantum theory, the full
CUP sets C∗ (and therefore all CUP sets) exclude the point
(1,1).

Secondly, from Sec. II B, the no-hiding theorem given in
terms of marginal channels states that—for quantum theory
under isometric evolution—if E = D (a completely depolariz-
ing channel) then necessarily the input state can be completely
recovered in the other subsystem. In the case dX = dA = dB,
this implies Ē = V , an isometry. We will show (see Sec. IV)
that this statement of the no-hiding theorem is captured ex-
actly by the isometric quantum CUP set C, as for the point
(0, x) in C then x = 1 only. Additionally in the case of unequal
subsystems, the no-hiding theorem and the impossibility of
perfect hiding implies the point (0,0) must still be strictly
excluded from the isometric CUP set C. We prove this also
holds in Sec. IV.

We also consider whether a theory admits perfect hiding
with the addition of auxiliary randomness. This is captured by
the reversible CUP sets Cr . If the theory admits perfect hiding
with auxiliary randomness then we have D1 ∼r D2 for some
completely depolarizing channels D1 and D2. However, as we
prove in the Appendices, this statement is equivalent to the
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existence of the origin in the reversible CUP set, (0, 0) ∈
Cr . We will show that the reversible CUP sets of classical
probability theory always contain (0,0) whereas the quantum
reversible CUP sets only contain (0,0) under certain dimen-
sional restrictions related to mixed state purification.

Finally, for both quantum and classical theory we examine
the case with the smallest nontrivial dimensions in detail.
Since quantum physics neither admits perfect cloning, nor
perfect hiding under unitary evolution, the simplest quantum
CUP sets form nontrivial subsets of the unit square [0, 1]2,
which we discuss shortly. In contrast, both (0,0) and (1,1)
always lie within the classical (reversible) CUP sets.

III. CLASSICAL CUP SETS

We now explore in detail how the classical CUP set cap-
tures the compatibility allowed in classical probability theory.
We shall see that the CUP sets of classical theory are radically
different from quantum theory, and so are a simple and vivid
way to contrast the two theories.

A. Unitarity of classical channels

For a classical probability distribution on a d-dimensional
system, the pure states correspond exactly to the d extremal
points {xi}d

i=1 of the state space. The unitarity reduces to

u(E ) = d

d − 1

d−1∑
i=0

γ (E (xi − η)), (16)

where η = 1
d

∑d−1
i=0 xi is the maximally mixed state.

The only isometric operations with input and output sys-
tems of the same dimensions are those that permute the
pure states. Recall that for any isometry we have u = 1.
Furthermore, reversible classical channels are fully generated
by the set of isometries and auxiliary classical random-
ness [53,55,56], as they correspond to injective Boolean
functions. This allows us to characterize CUP sets for classical
theory.

The state space of a single probabilistic classical bit is a
d = 2 system with two possible pure states x0 := (1, 0) and
x1 := (0, 1) in R2. Any pure state xm encodes the bit m ∈
{0, 1}. There are only two single-bit isometries: the identity
channel id and NOT operation for which NOT(x0) = x1 and
NOT(x1) = x0. For a two-bit system d = 4, we can define the
pure states through the tensor product of the single bit pure
states, e.g., xab := xa ⊗ xb for a, b ∈ {0, 1}.

B. Cloning and hiding in classical theory

To clone/broadcast a classical probabilistic bit in a state
x := (p, 1 − p) with 0 � p � 1, one simply brings in an aux-
iliary bit in the pure state x0 = (1, 0) and then performs a
controlled-not (CNOT) gate, controlled on the state x with the
auxiliary bit as the target. The marginal distributions are then
both given by x; the input information was perfectly copied
to the marginals. In terms of channels, the protocol is simply
given by

Vbroad(x) = CNOT(x ⊗ x0), (17)

which outputs a 2-bit state.

Hiding of a deterministic bit involves encoding a bit m = 0
or m = 1 entirely in correlations so that the marginal bit states
are η = (1/2, 1/2), the maximally disordered state. However,
we also require that the bit m is still perfectly recoverable from
the total state. This can be done as follows, using the general
case of a probabilistic bit state, x := (p, 1 − p). We introduce
a single auxiliary bit in the state η, which is viewed as an
unknown key bit, and we perform a controlled-not gate on x
that is controlled on η. Equivalently we get

Rhide,1/2(x) = CNOT(η ⊗ x), (18)

which is a correlated 2-bit state. It has marginals η but since
CNOT ◦ CNOT = id we can perfectly recover x from the
joint 2-bit state. This is the classical one-time-pad protocol
for encryption and the operation performs perfect hiding in
classical theory [57].

C. The simplest classical CUP set

The most general isometries from a single bit into two bits
take the form of V (x) := πAB(x ⊗ x0) where πAB is a permu-
tation on the four basis states. There will be six such different
isometric operations; however, they produce the same three
points on the CUP diagram as follows. As the unitarity of the
marginal channels E and Ē are invariant under local isometries
at A and B, then separable operations πAB = πA ⊗ πB will give
the point (u, ū) = (1, 0), corresponding to E = id and Ē = D.
The swap operation permuting the two systems will produce
the point (u, ū) = (0, 1). Finally, if the permutation corre-
sponds to the CNOT operation with control on system A, then
on the CUP set diagram this gives the point (u, ū) = (1, 1), as
E = Ē = id . We therefore have that

C = {(1, 0), (0, 1), and (1, 1)}, (19)

for the simplest nontrivial CUP set in classical theory.

D. Classical reversible CUP set

We now consider the CUP set produced by the set of
reversible global operations R.

The following class of operations

Rp(x) = x ⊗ (px0 + (1 − p)x1) (20)

introduces an auxiliary system B prepared in a fixed proba-
bilistic state. This is not isometric, but satisfies trB ◦ Rp(x) =
x, and is therefore reversible. All such channels Rp corre-
spond to point (u, ū) = (1, 0) of the CUP sets. Generally,
reversible operations are given by

R := πAB ◦ Rp. (21)

Motivated by the single-bit hiding protocol in Sec. III B,
we consider πAB = CNOTAB, the controlled-not with A as the
control and with B as the target, that generates the following
family of reversible maps

Rhide,p := CNOTAB ◦ Rp. (22)

These are partially hiding channels with the perfect-hiding
channel occurring for p = 1/2, corresponding to the point
(u, ū) = (0, 0). For general p ∈ [0, 1] we have (u, ū) = (1, p′)
with p′ = (1 − 2p)2. Since we can swap output subsystems
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we also get (u, ū) = (p′, 1). The remaining reversible chan-
nels are obtained from

Rbroad,p := CNOTBA ◦ Rp, (23)

which gives the points (u, ū) = (0, p′) with p′ = (1 − 2p)2

and similarly, (u, ū) = (p′, 0) if we swap the output subsys-
tems. We therefore have that

Cr = {(t, 0), (0, t ), (t, 1), and (1, t ) for all t ∈ [0, 1]}. (24)

In other words the reversible CUP set Cr is simply the border
of the unit square [0, 1]2.

E. Classical full CUP set

Finally, we consider the full 1 to 2 bit CUP set C∗ obtained
by ranging over all single-bit to two-bit systems. It can be
shown (see Corollary A.1) that if a global channel E from X
to AB gives a point (u, ū) in any CUP set and D is any global,
completely depolarizing channel, then the set of convex mix-
tures pE + (1 − p)D give the line segment joining (u, ū) to
(0,0). This automatically implies that for classical theory we
have

C∗ = [0, 1]2, (25)

since we can take convex mixtures of reversible channels
with a completely depolarizing channel and the resulting line
segments fill the unit square.

IV. QUANTUM CUP SETS

Quantum CUP sets are much more tightly constrained in
the unit square [0, 1]2 than their classical counterparts, and we
relate this to quantum no-go theorems. In this section we pro-
vide evidence for this statement, via tight analytical bounds
on the sum of quantum CUPs.

A. Unitarity of quantum channels

Under quantum theory, from Eq. (4), the unitarity of a
quantum channel E : B(HX ) → B(HY ) is

u(E ) := dX

dX − 1

∫
dψ tr[E

(
ψ − 1X

dX

)2

], (26)

where dX is the dimension of system X , and where the inte-
gration is with respect to the Haar measure.

Within the context of benchmarking quantum devices, the
unitarity u of the average noise channel E associated with
a gateset can be estimated using randomized benchmarking
(RB) [58]. The unitarity of a noise channel gives additional
information, beyond the average gate fidelity [37]. Knowing
the unitarity of a channel in addition to the average gate
fidelity, gives improved bounds on the diamond norm distance
of a given channel to the identity [59], a key figure of merit
for fault-tolerant computation. Benchmarking protocols to es-
timate the unitarity of noise are efficient and robust against
state preparation and measurement (SPAM) errors.

B. Incompatibility and hiding via trade-off relations
on CUP sets

We can now establish the following general bounds on the
quantum CUP sets that arise from isometric channels. This
gives us a handle on the structure of such sets and in particular
how they relate to cloning and hiding.

Theorem IV.1 (General bounds on quantum CUP set C).
Given any input system X of dimension dX and output
systems A and B of dimensions dA, dB, with dX � dAdB. The
associated quantum CUP set C ⊆ [0, 1]2 is confined to the
band in the (u, ū) plane defined by

dX

dX + 1

(
1

dA
+ 1

dB

)
� u + ū � 1. (27)

This bound is tight and the quantum CUP set C intersects
the bounding lines at (1, 0), (0, 1) and when dA = dB it also
attains the optimal hiding point (u, ū) = ( dX

dA(dX +1) ,
dX

dA(dX +1) ).
The proof of this is provided in Appendix B 1. These

bounds place hard limits on the amount of quantum informa-
tion that can be hidden in the correlations between systems,
and also how it can be shared between local systems. The
upper bound can be directly related to the no-cloning theorem,
as if u = 1 for the identity channel then necessarily ū = 0 and
the other marginal is completely depolarizing.

The perfect hiding point (0,0) is always precluded from the
(isometric) CUP set, which is a consequence of the no-hiding
theorem. Further, the upper bound can always be saturated
using the bipartite identity and swap channels, while the lower
bound can be saturated in the case dX = dA = dB = d via a
d2-dimensional generalization of the controlled-NOT opera-
tion.

In the case of equal subsystem dimensions, the quantum
CUP set is further restricted.

Theorem IV.2 (No-hiding bound on quantum CUP set C).
Given any input system X and output systems A and B all
of equal dimension. The associated quantum CUP set C is
confined such that for

(u, ū) = (0, x) ⇒ x = 1. (28)

Proof given in Appendix B 1. This restriction on quantum
CUP sets encapsulates both the no-hiding theorem in the
following manner. The no-hiding theorem here states that if
one marginal channel contains no information about the input
system, then necessarily all the information can be recovered
through the other marginal channel [26]. Therefore when
dX = dA = dB, if E = D then necessarily Ē = U , a unitary.
From Theorem IV.2, a quantum CUP set captures this geo-
metrically, as for the point (0, x) in C then x = 1 only. Which
corresponds exactly (and only) to E = D and Ē = U , thereby
capturing the no-hiding theorem.

C. The simplest quantum CUP set

The simplest quantum CUP set, with nontrivial bipartite
outputs, is the case dX = dA = dB = 2. From Theorem IV.1,
for the (isometric) CUP set C, this gives the following bounds:

2
3 � u + ū � 1 (29)

with the optimal hiding point given by (u, ū) = (1/3, 1/3).
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ρ RZ(2γ − π
2
) RZ(−π

2
) E

|0〉〈0| RZ(π
2
) RY (π

2
2α) RY (2β π

2
) Ē

FIG. 2. Circuit decomposition for generic 2 qubit isometry V (α, β, γ ). For dX = dA = dB = 2, all isometries can be expressed in the
above form, where 0 � α, β, γ � π [60]. The complementary channels E = trB ◦ V and Ē = trA ◦ V are shown, by ranging over α, β, γ we
can generate the CUP set C for 1 to 2 qubits.

For isometries mapping single qubit to two qubits, V (ρ) :=
UAB(ρ ⊗ |0〉〈0|), it is sufficient to range over all unitaries UAB

to explore the full parameter space of (u, ū) for C. The general
form of two qubit unitaries contains at most three CNOTs and
three independently parametrised single qubit rotations [60]
(see Fig. 2). However, the two parameter isometry set with
UAB = UAB(α, β ) (for α, β ∈ R) (with circuit as in Fig. 3
below) generates all possible complementary channel pairs,
up to local unitaries [60]. As the CUP set is invariant under
local unitaries, this family suffices to fully describe it. We plot
in Fig. 4 the shape of this simplest CUP set, which we obtain
by numerically ranging over all α and β.

In Fig. 4, three boundary curves can be identified. The
families of channels generating the boundary are of interest
for structural reasons and will be key to the experimental
implementation we devise. The curved upper curve is given
by a smooth interpolation between the identity channel and
the SWAP channel that simply swaps the outputs on A and
B. More precisely it is given by UAB = SWAPα for 0 � u � 1
and 0 � α � 1. The analytical relationship between u and ū
for the upper curve is

(u, ū) = (u, 3 + u − 2
√

1 + 3u). (30)

The analytical relationship between u and ū for the lower
curves is linear, as shown in Fig. 4. The lower-right curve is
given by UAB = CNOTα

AB, over the domain 1
3 � u � 1. While

the left curve is given by UAB = CNOTα
BA ◦ CNOTAB over the

domain 0 � u � 1
3 . The derivations of the boundary curves

are provided in Appendix D.

D. The reversible CUPset

A general reversible quantum CUP set Cr (where dA, dB,
and dX are not necessarily equal) is given by considering the
marginals of the set of globally reversible channels. For dX <

dAdB this set will be strictly larger than the set of isometric
channels. The set of reversible quantum channels has been
fully characterized [51]: R is a reversible channel if and only

ρ E(ρ)

|0〉〈0| RY (π
2
− 2α) RY (2β − π

2
) Ē(ρ)

FIG. 3. Sufficient circuit decomposition for 2 qubit isometry
V (α, β ). For dX = dA = dB = 2, the above isometry is sufficient to
generate all points of the CUP set (u, ū) with 0 � α, β � π [60].
This follows from the general decomposition given in Fig. 2 below,
observing that the initial two gates do not change the state of the
system, and the invariance of unitarity under local unitaries.

if there is a unitary U and a mixed state σ ,

R(ρ) = U (ρ ⊗ σ )U †. (31)

Restricting σ to a pure state gives the smaller set of iso-
metric channels. As a consequence, as for classical theory,
we can always write any reversible channel R as the convex
combination of isometries R = ∑r

i piVi (see Corollary C.2).
Therefore we can think of the reversible CUP set Cr as intro-
ducing auxiliary classical randomness to the isometric CUP
set C. We analytically show that any point (u, ū) in Cr will
obey the same upper bound as C (see Corollary C.2)—adding
randomness does not increase our ability to clone information.
However, the existence of a nontrivial lower bound for Cr , and
therefore the possibility of perfect hiding, will depend on the
values of dA, dB, and dX .

FIG. 4. Quantum CUP sets. The simplest isometric and re-
versible CUP sets under quantum theory, with their analytical bounds
(dX = dA = dB = 2). The CUP set C generated by global isometries
is the central boomerang-shaped region (blue). Extending this to
reversible operations Cr increases the set in the direction of (0,0) to
the boundary with the Hiding zone (yellow). The two diagonal red
lines are obtained from the general analytic upper and lower bounds
for CUP sets in quantum theory. In contrast, for classical theory we
have that Cr is the border of the unit square, while C is the triple of
points (1, 1), (1, 0), (0, 1).

023090-7



GIRLING, CÎRSTOIU, AND JENNINGS PHYSICAL REVIEW RESEARCH 6, 023090 (2024)

1. Perfect hiding with classical randomness

In the case dX = dA = d and dB = d2, the reversible CUP
set Cr contains the point (0,0) and perfect hiding can be
achieved. However, as the channel is both nonunitary and not
isometric, it does not constitute a violation of the no-hiding
theorem. The following channel illustrates the perfect hiding
channel when d = 2, and can be generalized.

Labeling the four Pauli operators on a single qubit as {Pi} =
{1, X,Y, Z} we randomly apply an operator to the input state
and record which to a classical register, such that

R(ρ) = 1

4

4∑
i

PiρPi ⊗ |i〉〈i|, (32)

where {|i〉〈i|} are the four computational basis states on
two qubits. This channel has maximally mixed marginals,
trA[R(ρ)] = 1/2 and trB[R(ρ)] = 1/4. Thus (u, ū) = (0, 0).
However, there exists a quantum channel R′ such that R′ ◦
R(ρ) = ρ for any state ρ. Physically, R′ is implemented
by measuring the classical register B, and applying the cor-
responding Pauli operator to system A, then discarding the
register. The Kraus operators, R′(·) = ∑

i R′
i · R′†

i , for this
channel will be of the form

{R′
i} = {Pi ⊗ 〈i|}. (33)

It is readily seen that
∑

i R′†
i R′

i = 1.
We can connect any channel, to a isometric CUP set in a

higher dimension through the Stinespring dilation. The fol-
lowing isometry

V = 1

4

4∑
i

Pi ⊗ |i〉B ⊗ |i〉C (34)

gives R(ρ) = trC[V ρV †] where the dimension of subsystem
C is dC = 4. However, by tracing out the A subsystem, we find
ρ can be completely recovered in BC. In fact, any bipartite
combination of the subsystems A, B and C defines a pair
of marginal channels for the isometric CUP sets C with di-
mensions (2,16) or (4,8). The lower bound on isometric CUP
sets given in Theorem IV.1 then guarantees that there is no
arrangement of A, B and C such that both marginals are com-
pletely depolarising—confirming that quantum information
cannot be completely hidden, and can always be recovered
fully in the unitary dynamics of the larger system.

2. Boundaries of the simplest reversible CUP set

In the case dX = dA = dB = 2, the reversible quantum
CUP set Cr is quite similar to C. It has exactly the same
upper boundary but different lower boundaries, which are
again straight lines. We have the following analytical bounds
for reversible CUPs of these dimensions

1
3 � u + ū � 1. (35)

Where the lower bound can be found algebraically from the
general circuit decomposition of a unitary on two qubits and
using the characterization theorem of reversible channels.

The lower bounding curves are straight lines, and given
by considering the marginal unitarities of the reversible chan-
nel R(ρ) = UAB(ρ ⊗ 1

2 ). The right-lower surface is given by
UAB = CNOTα

AB over the domain 1
3 � u � 1. The middle-

lower surface is UAB = CNOTα
BA ◦ CNOTAB for 0 � u �

1
3 . Finally, the left surface is given by UAB = CNOTα

AB ◦
CNOTBA ◦ CNOTAB for u = 0.

A similar construction to the lower boundaries of this re-
versible CUP set appears in the context of interleaved fidelity
randomized benchmarking [61].

E. The full CUP set

Finally, the full quantum CUP set C∗ is given by the
marginal unitarities of any quantum channel from a system
X to a joint system AB. We have the following analytical
bounds, which constrain full CUP sets, with proofs given in
Appendix B 3.

Theorem IV.3 (No-cloning bound on full quantum CUP set
C∗). Given any input system X and output systems A and B.
The associated full quantum CUP set C∗ is confined such that
for

(u, ū) = (1, x) ⇒ x = 0. (36)

Therefore, similar to C and Cr , the full CUP set C∗ captures
the impossibility of perfect cloning under quantum theory;
as if u = 1 for one marginal being the identity channel then
necessarily u = 0 for the other marginal being completely
depolarizing.

We conjecture that the full CUP set obeys the same an-
alytical upper bound as the isometric and reversible CUP
sets given in Theorem IV.1. However, the proof does not
generalize straightforwardly. In the case of equal subsystem
dimensions—which is relevant for partial cloning processes—
we have the following result that in the limit of large system
sizes converges to the conjectured bound.

Theorem IV.4 (General bound on full quantum CUP set
C∗). Given any input system X and output systems A and B
with equal dimensions dX = dA = dB = d . The associated full
quantum CUP set C∗ ⊆ [0, 1]2 is confined in the (u, ū) plane
by

u + ū � 1 + 1

d + 1
. (37)

This bound places a general limit on how quantum infor-
mation, quantified through the unitarity, can be distributed
between two parties using any quantum channel.

It is readily seen that there is no lower hiding bound on a
full CUP set by considering a partially depolarizing channel
on each output subsystem, as discussed in Sec. V A.

F. Partial cloning

Throughout this section we have derived bounds on
quantum CUP sets, which we have related to quantum incom-
patibility and how quantum information can be distributed
between two parties using different families of quantum chan-
nels. As a special case, we can consider partially cloning two
copies of an unknown quantum state in the following way.

Asymmetric state independent partial cloning [62] of two
copies of a quantum state will be given by setting dX = dA =
dB = d and requiring that the marginals channels E and Ē both
be partially depolarizing such that

E (ρ) = pρ + (1 − p)
1

d
, Ē (ρ) = qρ + (1 − q)

1

d
, (38)
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for 0 � p, q � 1 [62–64]. Note that, from the no-cloning
theorem, if p = 1 then necessarily q = 0 and vice versa.
The optimality of a partially cloning process is typically as-
sessed through the fidelity of the output states with the target
state [65,66]; for state independent cloning this is equivalent
to assessing the average gate fidelities, f (E ) and f (Ē ), or
finding the maximal value of p + q.

The fidelity of a quantum channel is upper bounded by the
unitarity [36] such that(

df (E ) − 1

d − 1

)2

� u(E ) ≡ u (39)

and similarly for ū. Moreover, we have equality for a partially
depolarizing channel with u = p2. Therefore any bound on
the sum of CUPs immediately gives a bound on the fidelities
possible for partial cloning. When we consider any partial
cloning process (C∗)—ranging over of all CPTP maps—we
have the bound in Theorem IV.4 such that

p2 + q2 � 1 + 1

d + 1
. (40)

We can compare this bound to results from the literature.
The optimal (with respect to fidelity) symmetric partial
cloning process can be shown [66–68] to yield p = q = (d +
2)/2(d + 1) giving

p2 + q2 = 1

2

(
1 + 1

d + 1

)2

. (41)

Therefore the bound in Eq. (40) maintains a separation from
the optimal value for d > 1. If we restrict to isometric (C) or
reversible (Cr) partial cloning processes we have a bound of
p2 + q2 � 1, which is tight, from Theorem IV.1.

Alternatively, we can consider the optimality of partial
cloning with respect to unitarity—such that we maximize
u + ū directly. This may be different to using fidelity as unitar-
ity is a quadratic measure of a channel. For example, the case
of partially cloning two copies of a qubit state with a 1 to 2
qubit reversible channel is captured by the simplest CUP sets
decomposed in Sec. IV C. We can read off that the optimal
reversible partially cloning process with respect to unitarity
is the isometry V (ρ) = SWAPα (ρ ⊗ σ ) up to local unitaries
on the outputs and where σ is any pure qubit state. From
Fig. 4, we observe that u + ū is maximized only for α = 0
or α = 1 when no partial cloning occurs. Therefore when
using unitarity as a measure of optimality, all partial cloning
situations are sub-optimal compared with simply copying the
input state to one output system. This suggests that when
partially cloning some quantum information must necessarily
be “lost” in the correlations between the output states.

V. DIRECT QUANTUM CUP SET ESTIMATION THROUGH
STATE PURITY MEASUREMENTS

Having established the relationship between CUP sets, no-
go theorems and quantum incompatibility, we now address
the estimation of quantum CUP sets. In this section, we use
formulations of unitarity in terms of quantum state purities to
directly estimate the individual terms. Our simulations using
IBMQ focus on two qubit systems, as this allows for the
smallest nontrivial quantum CUP set. In all cases we use the

ρ E(ρ)

|0〉〈0| √
X RZ(π(1 − α)) RZ(−π

2
) Ē(ρ)

FIG. 5. Circuit decomposition in IBM gateset for lower right
CUP set surface. Circuit for 2 qubit isometry CNOTα

AB(ρ ⊗ |0〉〈0|),
and complementary channels E and Ē for the lower right surface of
the CUP set are shown. The final RZ rotation is optional but aids in
the estimation of CUPs through spectral techniques.

IBMQ model of device noise, derived from the performance
of the corresponding real world device—such that there are
errors on the gateset, in the preparation of states, and in their
measurement. The minimal circuit decompositions generating
the boundary of the isometric quantum CUP sets are shown in
Figs. 5 and 6.

A. Effects of noise

The methods for estimating CUP sets we employ can be
separated into two stages: (i) the preparation of the channels
that generate the CUP set, (ii) the estimation of the prepared
channel’s unitarity. There will be errors associated with both
(i) and (ii). The errors in (i) are our primary interest as they
place a limit on the device’s performance at estimating CUPs.
However, for the direct methods we cannot easily distinguish
between these errors, so refer to a noisy version, (·)N , of the
whole process (uN , ūN ) for estimating (u, ū).

The simplest way to model how noise affects CUP sets is
through a depolarizing channel given by

Dp := (1 − p)id + pD, (42)

where id (ρ) = ρ and D(ρ) = σ , for σ another fixed quantum
state. Given u(id ◦ E ) = u(E ◦ id ) = u(E ) and u(D ◦ E ) =
u(E ◦ D) = u(D) = 0 then for any CUP set we have

(uN , ūN ) = (u(DpA ◦ E ), u(DpB ◦ Ē )),

= ((1 − pA)2u, (1 − pB)2ū). (43)

Therefore by varying pA and pB independently a CUP set
can be projected towards either axis or towards the origin, as
illustrated in Fig. 7. As this allows us to reach any point in the
full CUP set (C∗), we can use depolarization as a crude way to
quantify how “noisy” an estimated CUP set is (C or Cr).

ρ E(ρ)

|0〉〈0| √
X RZ(π(1 − α))

√
X Ē(ρ)

FIG. 6. Circuit decomposition in IBM gateset for lower left CUP
set surface. Circuit for 2 qubit isometry CNOTα

BA ◦ CNOTAB(ρ ⊗
|0〉〈0|), and complementary channels E and Ē for the lower left
surface of the CUP set are shown.
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B. Estimation through complementarity formulation

For any quantum channel E (with input dimension dX ) we
can express the unitarity in terms of purities as

u(E ) = dX

d2
X − 1

(
dX γ

(
Ẽ
(

1

dX

))
− γ

(
E
(

1

dX

)))
, (44)

where Ẽ is any channel complementary to E [50]. For the
isometric CUP set, C, any compatible pair of channels (E, Ē )
will be complementary to each other. Therefore, by estimating
the two purity terms in Eq. (44) we get the point (u, ū).

The purity of a quantum state can be estimated through a
SWAP test [17]. For two unknown quantum states, ρ and σ ,
the following circuit performs a SWAP test of the states

|0〉〈0| H H 〈Z〉
ρ

σ

(45)

giving 〈Z〉 = tr[ρσ ], for the expectation value of Pauli Z
measured on the first qubit. The central gate is the controlled
SWAP (or Fredkin) gate.

With ρ = σ = E (1/2) or ρ = σ = Ē (1/2) (restricting to
the case dX = dA = dB = 2), we can use the SWAP test circuit
on a quantum device to get direct, albeit noisy, estimation
(uN , ūN ) of a point (u, ū) of the CUP set. This, however,
requires the preparation of the maximally mixed state, which
we discuss in Sec. V D.

C. Estimation through Choi state formulation

For the reversible CUP set Cr , the resulting compatible pair
of channels (E, Ē ) are not necessarily complementary to each
other. While it is straightforward to derive complementary
channels for the families of channels we consider, the num-
ber of purity terms to be estimated from Eq. (44) doubles
compared to C. Further, these new complementary channels
will necessarily have a larger dimension, thereby increasing
the complexity of the SWAP test. However, equivalently, and
perhaps more naturally, we can formulate an approach using
only the channels (E, Ē ) through the Choi-Jamiołkowski iso-
morphism.

For any quantum channel E (with input dimension dX ) we
have

u(E ) = dX

d2
X − 1

(
dX γ (J (E )) − γ

(
E
(

1

dX

)))
, (46)

where J (E ) is the Choi-Jamiołkowski state of the channel E
(given in Appendix C) [50].

Restricting to dX = dA = dB = 2, from Eq. (45) we can
estimate the first purity by preparing two copies of the Choi
state, e.g., ρ = σ = J (E ). For a channel with dimension d ,
the Choi state has dimension d2, therefore the number of tar-
get qubits in the controlled SWAP for Cr is doubled compared
to estimating C. The second term in Eq. (45) can be obtained
from ρ = σ = E (1/2). As this process must be repeated for
u(Ē ), estimating points on Cr will generally require twice the
number of experiments of C.

FIG. 7. CUP set deformation through depolarization. The sim-
plest CUP set C is shown when one output is depolarized, [u(Dp ◦
E ), u(Ē )] for different values of p.

D. Preparation of the maximally mixed state and
experimental results

Both of the above methods require the preparation of the
maximally mixed state. With a unitary circuit, we can do
this (i) statistically, by averaging the results of experiments
performed on computational basis states, or (ii) by discarding
information about a prepared pure state (e.g., a marginal state
of a Bell state). The former method requires more experiments
while the later introduces further uncertainty into the estima-
tion.

We use (i) to estimate the isometric CUP set C using
complementarity formulation, as it requires a smaller system
size. The exact circuits for the complete purity estimations are
given in Fig. 8(a). We then experimentally estimate a range
of CUPs on the surface of the CUP set C on a simulated IBM
device. The results of this experiment are shown in Fig. 9(a)
where a partially depolarizing model has been fitted to each
surface.

Then we pair (ii) with estimation through the Choi state.
The exact circuits for this method are given in Fig. 8(b). We
again estimate a range of CUPs on the surface of the reversible
CUP set Cr . The results of this experiment are shown in
Fig, 9(b) where a partially depolarizing model has been fitted
to each surface. A comparison of the resources required for
each direct method is given in Table I.

E. Discussion of direct methods

The direct methods we have implemented have a few
sources of errors. For any estimated CUP, (uN , ūN ), the largest
error, in terms of the size of intended operation, will be on the
controlled SWAP gate(s). Secondly, as the SWAP test relies
upon the final measurement being taken in the correct basis,
the direct methods are sensitive to even small final SPAM
errors.

Examining Fig. 9 we observe variance in the data, even af-
ter a round of averaging over 100 experimental runs has been
performed. The lack of robustness to SPAM errors, means
that we cannot ascribe this variance to one source—it may
come primarily from SPAM [uN ≈ uN (E )] or it may occur in
the preparation of the channel itself [uN ≈ u(EN )]. This is the
main weakness with the direct methods, compared to methods
we discuss in the following section.
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|0〉〈0| H • H 〈Zi,j〉

|0〉〈0| Xi E × �

|0〉〈0| Xj E × �

|0〉〈0| H • • H 〈Z〉

|0〉〈0| H • E × �

|0〉〈0| × �

|0〉〈0| H • E × �

|0〉〈0| × �

FIG. 8. Circuits for estimation of unitarity u(E ) of single qubit channel E through state purity relations.

However, we note that even after the depolarizing fit is ap-
plied, for both C and Cr the noisy estimated CUP set is found
strictly below the no-cloning upper bound, and therefore in
the full CUP set C∗.

The size of parameters needed for the depolarizing fit let us
compare between the estimation of C and Cr . From Table II,
the estimated depolarization is two to three times higher for
Cr . As the channels required to generate Cr are very similar
to C, we can prescribe this increase directly to the larger
overhead and complexity of the protocol for Cr .

Finally, we note that the direct methods rely on a SWAP
test(s), and are therefore not efficiently scaleable in number of
qubits.

VI. SPAM ROBUST CUP SET ESTIMATION

With the direct method of the previous section, we make no
distinction between errors in the implementation of the target
channel, and errors in the estimation protocol including initial
state preparation and final measurement (SPAM) errors. This
severely limits the usefulness of the direct method as a mea-
sure of whether a device obeys the CUP set’s informational
bounds. For example, in the extreme, we could imagine a

device that implements any quantum channel perfectly but has
SPAM errors such that it applies a final Hadamard transform
on all qubits before measurement. With the direct SWAP test
method, this would only generate the point (0,0) on the CUP
set diagram. From this we might conclude the device is not
acting as a closed quantum system—when in fact, prior to
measurement, it was performing perfectly.

With the above in mind, in this section we consider proto-
cols to estimate quantum CUP sets that are robust to SPAM
errors. However, will see that the SPAM robust protocols
come with a cost of much larger operational overheads, and
introduce different sources of potential noise compared to the
direct methods.

A. Estimation through randomized benchmarking

Through randomized benchmarking (RB) [35] we can es-
timate the unitarity u(�C ) of the average error channel �C

induced by a computational gateset {UC} generating the Clif-
ford group.

If we interleave a target channel of fixed dimension E be-
tween rounds of random Clifford unitaries in the RB protocol,
we can estimate the unitarity of the joint channel u(E ◦ �C ).
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FIG. 9. Direct estimation of quantum CUP sets. The simplest quantum CUP sets are experimentally estimated directly through SWAP test
schemes. A best-fit depolarizing noise model has been applied to each surface (see Table II).
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TABLE I. Comparison of total number of experiments undertaken for the estimation of a point on the CUP distribution. For each technique,
an experimental scheme was run on a simulation of a quantum device, with device noise imported from IBM Q via qiskit.

Technique No. of qubits (C) No. of qubits (Cr) States Measurements Sequences Repetitions Shots Total Runs

Complementarity SWAP 5 7 4 1 1 100 200 80 000
Choi SWAP 7 9 1 1 1 100 200 20 000
Spectral tomography 2 3 2 3 40 10 200 480 000
Interleaved RB 2 3 6 3 10 10 200 360 000

Therefore in the limit �C = id the interleaved RB protocol re-
turns an exact estimation of u(E ). More generally, as unitarity
is proportional to the Hilbert-Schmidt norm of the channel’s
matrix representation we also have the relation u(E ◦ �C ) �
u(E )||�C ||∞, where ||�C ||∞ corresponds to the largest singu-
lar value of the average noisy Clifford gateset channel. This
may also be determined, for example via spectral methods as
in Sec. VI B to obtain more precise bounds for u(E ) in the
presence of noisy Clifford operations.

Applying interleaved RB to an estimation of the CUP set
follows from the above. However, in addition, it involves an
interleaved implementation of E using an ancilla initialization,
the global unitary UAB and a partial trace. We require the
additional assumption that we can perform mid-circuit resets,
D(ρ) := |0〉〈0|, and that the noisy version of these resets are
incoherent—in that none of the state ρ is carried through even
if D induces some larger error on the device. This allows us
to include the error D in �C .

Through interleaved RB we can estimate the unitarity of
the following channel in a SPAM robust manner

EN (ρ) = trB ◦ �AB ◦ UAB ◦ �C (ρ ⊗ |0〉〈0|), (47)

where �AB is the noise channel associated with the experi-
mental implementation of (E, Ē ), the channels generating the
(isometric) CUP set. Therefore, in the noiseless limit �C =
�AB = id the following protocol returns exactly u(E ) in the
isometric CUP set C.

Protocol 1: Interleaved unitarity RB for channel E (ρ ) := trB ◦
UAB(ρ ⊗ |0〉〈0|).

1. Prepare the system in the state ρA ⊗ |0〉〈0|B.
2. Select a sequence of length k of random elements of the
Clifford group, {UC,i}, on subsystem A, starting with k = 1, while
performing a reset on subsystem B after every gate. Such that for
each gate UC,i ⊗ D.
3. Interleave the bipartite unitary UAB after every Clifford gate
(such that the final gate is a Clifford gate).
4. Estimate the square (mA)2, of the expectation value of an
observable MA on subsystem A for this particular sequence of
gates.
5. Repeat 1, 2, 3, and 4 for many random sequences of the same
length, finding the average estimation Eρ[(mA)2] of (mA)2.
6. Repeat 1, 2, 3, 4, and 5 increasing the length of the sequence k
by 1.
7. Fit the data Eρ[(mA)2] = c0 + c1sk−1 where c0, c1 are real
constants, and find the estimated unitarity s.

The above protocol gives the decay parameter that esti-
mates s = u(EN ) for the noisy channel EN , which includes

the device errors from preparation of the channel E , but also
protocol-specific errors coming from the noisy random Clif-
fords.

The protocol for Ē is very similar (see Appendix E) but
requires an additional SWAP operation after each interleaved
unitary, and the resource costs associated with it. Allowing us
to estimate u(ĒN ) for

ĒN (ρ) = trA ◦ �AB ◦ UAB ◦ �C (ρ ⊗ |0〉〈0|). (48)

Proofs showing that the above protocols indeed produce
estimates of CUP sets can be found in Appendix E. An exam-
ination of how the protocols behave under gate independent
noise is given in Appendix E 3.

We implement these protocols on a simulated version
of the IBM Belem device, in an efficient manner (see Ap-
pendix E 2) [36]. The results of the experiment for C are
shown in Fig. 10(a), and for Cr in Fig. 10(b), where a depolar-
ization model has been fitted to each surface. A comparison
of the resources used for each experiment can be found in
Table I.

B. Estimation through spectral methods

We next discuss if spectral methods (that estimate eigen-
values of a channel) are an alternative SPAM robust path to
estimate CUP sets. We include several results that link unitar-
ity to quantities estimable through spectral tomography [46],
which may be of independent interest.

1. Unitarity and channel eigenvalues

Any quantum channel E : B(H) → B(H) on a system H of
dimension d has a (Liouville) representation as a d2 × d2 ma-
trix. Its nonunital d2 − 1 × d2 − 1 block TE has eigenvalues
{λi(E )} that are real or come in complex conjugate pairs [69].
The following bound (with proof given in Appendix C) holds
for all quantum channels of fixed dimension.

Lemma VI.1. For any quantum channel E , of fixed dimen-
sion d and any unitary channels U and V we have

u(E ) �
d2−1∑
k=1

|λk (U ◦ E ◦ V )|2
d2 − 1

. (49)

Further, for a single qubit channel E , we can improve upon
this bound:

Theorem VI.1 (Variational formulation). For any single
qubit quantum channel E , maximizing over all single qubit
unitary channels {Ui} gives

u(E ) = max
Ui,U j

3∑
k=1

|λk (Ui ◦ E ◦ U j )|2
3

. (50)
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TABLE II. Depolarization fits for noisy CUP sets. For each experimental estimation of the quantum CUP sets C and Cr we fit a depolarizing
noise model (uN , ūN ) = ((1 − pA)2u, (1 − pB )2ū) to each surface (see Sec. V A). Best fit values for (pA, pB ) are tabulated here.

Upper C Left C Right Cr Left Cr Middle Cr Right

Interleaved RB (0.063,0.137) (0.032,0.125) (0.095,0.159) (0,0.015) (0.047,0.107) (0,0)
SWAP test (0.165,0.147) (0.073,0.160) (0.084,0.153) (0,0.562) (0.365,0.337) (0.253,0)

Proof given in Appendix C. The practical application of
Theorem VI.1 to the channels that generate the CUP set is
shown in Fig. 11.

2. Estimation of CUP set through spectral tomography

Putting this together, a spectral protocol to estimate the
CUP set would require the following steps. For any point,
estimate the eigenvalues of the channel Ui ◦ E ◦ U j through
spectral tomography for N different randomly chosen Ui and
U j . From Lemma VI.1, the set of estimated eigenvalues pro-
vide a lower bound on u(EN ) where EN is a noisy experimental
implementation of Ui ◦ E ◦ U j . Repeat for Ē to obtain a lower
bound on u(ĒN ) similarly. For N → ∞, and in practice for at
most N ≈ 100 (see Fig. 11), from Theorem VI.1 the estimated
lower bound becomes an estimation of exactly the required
unitarities.

We performed the above sequence of spectral tomographic
experiments on a simulated version of the IBMQ device, IBM
Belem. However, using a similar number of resources to the
interleaved RB protocol, we were unable to extract eigenval-
ues accurately from the tomographic data. We suspect this
was due to the finite sampling of expectation values, as for
state vector simulations (without sampling) we were able to
extract eigenvalues correctly. While increasing the number of
shots may therefore help, the experimental overhead would
be greatly increased compared to the other SPAM robust tech-
niques we consider.

C. Discussion of SPAM robust methods

We now briefly discuss the limitations of the interleaved
randomized benchmarking technique we give for estimating
CUP sets. While the protocol is robust to SPAM errors, it
relies on mid-circuit measurements to perform resets, which
must be incoherent (but can be noisy). Under this assumption,
the decay parameter of the protocol gives a robust estima-
tion of the unitarity of the given channel, s = u(EN ). If, as
we might expect on a NISQ device, the reset allows some
coherent information through, then the decay parameter can
no longer be directly related to the unitarity, e.g., s = uN (EN ).
For further discussion see Appendix E 3.

For the channels (EN , ĒN ) to be close (in terms of unitarity)
to the channels that generate the CUP set (E, Ē ), we need
the error �C on one qubit Clifford unitaries to be small. As
the error preparing (E, Ē ) should be of similar size to �C ,
then we expect that the approximately half of the depolarizing
fit required in Fig. 10 can be attributed to the preparation of
(E, Ē ).

D. Comparison with direct methods

While the SPAM robust methods require an additional as-
sumption about the nature of resets on the device, this is a vast
improvement over the direct methods of Sec. V, where errors
arising in the protocol and in the channel preparation could
not be separated. The estimation of each CUP set obtained
through interleaved RB is also significantly better in terms

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

ū
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FIG. 10. SPAM robust estimation of quantum CUP sets. The simplest quantum CUP sets are experimentally estimated through an
interleaved unitarity randomized benchmarking scheme. A best-fit depolarizing noise model has been fitted to each surface (see Table II),
where each surface is produced from 9 pairs of experimental values.
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FIG. 11. Bound on CUP set through random unitaries. For two surfaces of the CUP set C (for a range of 50 discrete values of 0 � α � 1)
we can test how quickly the lower bound given in Lemma VI.1 converges towards the actual unitarity given in Theorem VI.1. Roughly, we
observe, for bound within 1% of the unitarity we need one random setting if u > 2/3, and at most 100 random settings for lower values.

of the required depolarizing fit than the direct methods (see
Table II). The variance in the data points is also significantly
lower for interleaved RB, even when performing an additional
round of averaging for the direct methods.

Additionally, we see that the interleaved RB protocol is
very good at estimating points where u or ū = 0, especially
compared to the direct methods. This is likely due to the fact
that, for the direct methods, these points require the estimation
of two nonzero purities for any value of u, whereas the SPAM
robust methods estimate a single decay parameter.

VII. OUTLOOK

A. The long arm of purity

One way of viewing the approach we have taken here, is
that we are starting with the concept of purity and applying it
with greater and greater abstraction in the sequence

States → Channels → Theories. (51)

Let us make this more precise. In any general theory we
can begin with an elementary notion of disorder of a state,
which can be quantified via the purity γ (x). This can now be
extended to the channel level for the theory and we obtain the
unitarity u(E ), which is the natural generalization of purity.
Indeed if we view a state x as itself being a preparation chan-
nel 1 → x from the trivial system to S then it is readily seen
that we have that u(x) = γ (x) and the two notions coincide.
For more nontrivial channels it can be shown [50] that the
unitarity coincides with the conditional purity of the Choi state
of E . The unitarity is a variance-based measure of the disorder
of a channel from one input system to one output system.

We next extend this further to consider how order can be
shared or distributed amongst subsystems A and B of a theory
and unitarity pairs (u, ū), and subsets of channels. Again,
this is a generalization of the preceding concept since if B
is the trivial system then (u, ū) = (u(E ), 0), which is just the
unitarity of a channel. When applied to sets of channels this
leads to encodings of no-go results of the theory. In this sense

CUP sets are purity measures of a given physical theory within
the space of all operational theories.

B. Conclusions

We have derived a simple formulation of information
disturbance and incompatibility in quantum theory, given
through the set of compatible unitarity pairs (CUPs). These
pairs of compatible channels can be defined in any generalized
probability theory, and they capture key limits of information
transformation under the chosen theory.

We undertook a thorough comparison between CUP sets
under quantum theory, where they are tightly bound, and
classical theory where the CUP set lies on the boundary of
the unit square. We then explored the CUP set for quantum
theory in detail, including general bounds on these sets, which
we related to quantum no-go theorems.

As the CUP set encapsulates fundamental incompatibil-
ity limits of quantum theory, it may be used as a tool for
benchmarking quantum devices. To this aim, we showed how
the quantum CUP set can be estimated through simple and
direct purity methods, but also in a SPAM robust way through
interleaved randomized benchmarking of unitarity. While es-
timating many points on the CUP set may not be an efficient
method of benchmarking, the extremal points [given for the
qubit case by (0,1), (1,0), and (1/3, 1/3)], requires just six
experiments. The extremal points capture both the core CUP
set geometry and the unitarity-based information disturbance
relation given in Theorem IV.1, and therefore are a natural
minimal set. Future work will focus on implementing the esti-
mation methods for CUP set on different quantum hardware.
In particular, we may also consider randomized measure-
ments [70] for direct purity estimation, which would give
an additional method to produce the CUP set, with minimal
implementation overhead.

Recently, many theoretical results have analyzed how the
effect of noise on quantum algorithms results in a computation
that can be efficiently simulated classically [71]. This behav-
ior remains even for quantum advantage experiments [72].
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Similarly, we have seen that noise affects the quantum CUP
set by shifting it towards regions that exhibit classical behav-
ior such as hiding. An interesting future direction would be
to connect these two aspects and determine if device bench-
marking via CUP sets can provide additional information to
bound finite size classical simulability of quantum circuits in
the presence of noise.

While we expect classical devices to perform a perfect
estimation of the isometric CUP set, the reversible classical
CUP set relies on a source of randomness to perform perfect
hiding. The accuracy of the estimated CUP set can then be
directly related to the bias in the randomness. Therefore the
CUP set formulation may also be useful as a diagnostic tool
in assessing the quality of a source of randomness.

Finally, in this paper we primarily considered two theories,
classical theory and quantum theory; however, CUP sets can
be derived for more general physical theories. It would be
interesting to see how the structure of CUP sets varies between
different theories.
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APPENDIX A: GENERAL INCOMPATIBILITY
AND REVERSIBILITY

1. A general definition of unitarity

Generalized probability theories (GPTs) provide a broad
framework in which one can compare different physical the-
ories and study their fundamental properties from an abstract,
often information-theoretic viewpoint [39]. Our primary aim
is to capture incompatibility, and no-go theorems through
measures, which, at least for quantum theory, can be effi-
ciently computed and are robust to noise. However, our paper
can be framed in a general GPT setting, which we explore in
this section.

A GPT is defined by a closed, convex set S of states, and
an effects space E , from which the allowed measurements on
S are constructed. The extremal points of S are called the
pure states, and we denote this set by ∂S . We shall further
assume that we can embed both the state space S and effects
space E in a Euclidean vector space, with inner product 〈·, ·〉.
A measurement M is given by any tuple of effects M =
{m1, m2, ..., mN } with mi ∈ E such that

∑N
k 〈mk, x〉 = 1 for all

states x in S . The probability of getting an outcome mk on a
state x is given by p(mk|x) = 〈mk, x〉. The dimension d of the
state space is given by be the maximal number of completely
distinguishable states {x1, x2, ..., xd} in S , where a set of states
is completely distinguishable if there is a measurement M =
{m1, m2, ..., md} that unambiguously identifies which of the
states was measured through its deterministic outcome. We
call M a sharp measurement. Any physical process corre-
sponds to a channel E , which is a linear map that sends any

valid state x in the input system to another valid state E (x) in
the output system.

We define the following function, the purity γ (x) of a state
x via

γ (x) := max
M

∑
k

〈mk, x〉2, (A1)

where the maximization is taken over all sharp measurements
M = {mk} in the theory [73]. While this optimization is non-
trivial it turns out that the optimal measurements are simply
the measurement of the pure states in classical theory, and the
rank-1 projective measurement in the eigenbasis of the state in
the case of quantum theory (see Lemma A.4). Additionally we
can define a generalized maximally mixed state for any GPT
obtained by averaging over the pure states ∂S of the theory

η :=
∫

∂S
dμ(x) x. (A2)

Together Eqs. (A1) and (A2) allow for the unitarity of a
channel to be calculated for theories, which do not have an
inner product purity 〈x, x〉. More generally, the constant α

in the definition of unitarity given in Eq. (4) will generally
depend on the structure of the state space S and the measure
dμ(x).

The way in which the state space of subsystems relates
to the state space of the global system is slightly nontrivial,
and the details can be found in [39,40,74–76]. For composite
systems we also have the notion of tracing out or discarding
of subsystems, that corresponds to the unit effect. Sometimes
for clarity, we put subscripts to specify the systems involved,
so that xA is a state for system A and xABC is a state for a
tripartite system ABC. For a state xAB on a bipartite system AB
we assume there is channel xAB → trA[xAB] =: xB that outputs
a state xB on B that results from discarding or ignoring system
A. This amounts to computing the marginal of a probability
distribution. We also define the identity channel as id (x) = x
for all x ∈ S . Given a channel E from a subsystem X to
subsystems AB we define the marginal channels as

EA(x) := trB ◦ E (x), (A3)

EB(x) := trA ◦ E (x). (A4)

2. Channel compatibility in general theories

While recent papers deal with incompatibility of mea-
surements in general theories [7,8], one can also extend to
the notion of (in)compatible channels [77]. Two (or more)
channels in a theory are compatible if they arise as marginal
channels of a valid global channel within the theory.

Given the structure of the perfect-hiding channel in classi-
cal theory, we therefore argue that to capture no-go theorems,
the appropriate set of global channels to consider in a theory is
the set of reversible channels. In any theory, we say a channel
E is reversible precisely if there is a second channel F in the
theory such that F ◦ E (x) = x for all states x ∈ S . A particular
subset of reversible channels are isometry channels V , which
preserve the inner product structure, i.e., for any pair of states
y, z it satisfies 〈y, z〉 = 〈V (y),V (z)〉.

We also note that perfect cloning in classical theory in-
volves an isometry channel, while perfect hiding in classical
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theory involves a nonisometric, but reversible channel. There-
fore if we restricted to isometric channels in a theory this
would suggest that is impossible to hide a bit in classical
theory, which is not true.

In light of this, we say that a theory admits perfect cloning
precisely if there is a channel E from a system X into a
bipartite system AB such that the marginal channels are both
the identity channel. We also say that the theory admits perfect
hiding precisely if there is a reversible channel R from X into
AB with marginals being two completely erasing channels D1

from X into A and D2 from X into B. Here a channel D is
completely erasing if for all x ∈ S we have D(x) = y for some
fixed y.

For quantum theory, a channel E is reversible if and only if

〈E (ρ), E (τ )〉 = c〈ρ, τ 〉 (A5)

for all states ρ, τ and some constant c > 0 [51]. Here the
inner product is the Hilbert-Schmidt inner product given
by 〈X,Y 〉 := tr[X †Y ]. The latter demonstrates that reversible
channels are a natural generalization of isometry channels, for
which c = 1.

3. Properties of unitarity for GPT channels

Lemma A.1. For any GPT in which dμ(x) is nonzero over
all of ∂S we have that u(E ) = 0 if and only if E = D a
completely depolarizing channel D(y) = z for all states y, and
z fixed.

Proof. A sum of non-negative numbers is zero if and only
if each number is identically zero. Therefore we have that
u(E ) = 0 if and only if 〈mk, E (x − η)〉 = 0 for all mk in the
optimal measurement and for all x ∈ ∂S. Since mk �= 0 for all
k this means that u(E ) = 0 if and only if E (x − η) = 0 for all
x, which is true if and only if E (x) = E (η) = y for all x and
fixed y. �

Lemma A.2. For any GPT in which dμ(x) is nonzero over
all of ∂S we have u(pE + (1 − p)D) = p2u(E ), where E is
any channel, and D is a completely depolarizing channel
D(y) = z for all states y with z fixed.

Proof. The proof follows from the expansion of the defini-
tion of unitarity under linearity, and that D(x − η) = 0 (from
Lemma A.1). Putting this together

u(pE + (1 − p)D)

:= α

∫
∂S

dμ(x) γ (pE (x − η) + (1 − p)D(x − η)),

= α

∫
∂S

dμ(x) max
M

∑
k

〈mk, pE (x − η)〉2,

= p2α

∫
∂S

dμ(x) max
M

∑
k

〈mk, E (x − η)〉2 = p2u(E ).

(A6)

�
Corollary A.1. For any CUP set if the global channel E

from X → AB gives the point (u, ū) then the set of convex
mixtures pE + (1 − p)D gives the point (p2 u, p2 ū), where
D is a global completely depolarizing channel D(y) = z for
all states y with z fixed.

Proof. This follows from Lemma A.2 with the observation
that the marginals trA ◦ D and trB ◦ D of a completely depo-

larizing channel are also completely depolarizing channels (to
a different fixed state). �

Lemma A.3. Consider a GPT in which γ (x) = 〈x, x〉. Then
for any isometry, V , and any other channel, E , we have u(V ◦
E ) = u(E ).

Proof. The proof also follows from expansion of the defini-
tion of unitarity under linearity, and that 〈V (x),V (x)〉 = 〈x, x〉
for all isometries V and states x. Then

u(V ◦ E ) = α

∫
∂S

dμ(x) γ (V (x − η)),

= α

∫
∂S

dμ(x) 〈V ◦ E (x − η),V ◦ E (x − η)〉,

= α

∫
∂S

dμ(x) 〈E (x − η), E (x − η)〉,

= α

∫
∂S

dμ(x) γ (E (x − η)) = u(E ). (A7)

�
Corollary A.2. Consider a GPT in which γ (x) = 〈x, x〉.

Then for any isometry, V , we have u(V ) = 1.
Proof. This follows from Lemma A.3 with E = id , noting

that u(id ) = α
∫
∂S dμ(x) γ (x − η). �

4. Sharp measurements for quantum theory

Lemma A.4. For any quantum state ρ of dimension d we
have

max
M

∑
k

〈mk, ρ〉2 = tr[ρ]2, (A8)

where the maximization is taken over all sharp measurements
M = {mk} of dimension d .

Proof. We can write any quantum state in its eigenbasis,
ρ = ∑d

i λi|ei〉〈ei|, such that tr[ρ]2 = ∑d
i λ2

i . As M com-
pletely distinguishes d states we have

max
M

∑
k

〈mk, ρ〉2 = max
M

d∑
k

(
d∑
i

λitr[m
†
k |ei〉〈ei|])2,

= max
M

d∑
k

(
d∑
i

λiMki )
2, (A9)

where Mki := tr[m†
k |ei〉〈ei|], and forms a doubly stochastic

matrix where
∑d

i Mki = ∑d
k Mki = 1. Expanding the purity

max
M

∑
k

〈mk, ρ〉2 = max
M

d∑
i, j,k

λiλ jMkiMk j,

= max
M

d∑
i, j

λiλ j (M
T M )i j . (A10)

As the product of any two doubly stochastic matrices is
doubly stochastic,

∑
i(M

T M )i j = ∑
j (M

T M )i j = 1. We then
use that the vector λ = (λ1, λ2, ..., λd )T majorizes the vector
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μ := MT Mλ. Such that

max
M

∑
k

〈mk, ρ〉2 =
∑

i

λiμi �
∑

i

λ2
i + μ2

i

2
�

∑
i

λ2
i .

(A11)

Where the last inequality follows the Schur-convexity of
f (x) = x2. Equality holds as we can choose the measurement
in the eigenbasis, which attains the bound. �

APPENDIX B: PROPERTIES OF QUANTUM CUP SETS

1. Information disturbance and no-go bounds on
isometric CUP set

Theorem B.1 (General incompatibility bound on isometric
quantum CUP set C). Given any input system X of dimension
dX and output systems A and B of dimensions dA, dB, with
dX � dAdB. The associated quantum CUP set Q ⊆ [0, 1]2 is
confined to the band in the (u, ū) plane defined by

dX

dX + 1

(
1

dA
+ 1

dB

)
� u + ū � 1. (B1)

This bound is tight and the CUP set Q intersects the bounding
lines at (1, 0), (0, 1) and when dA = dB it also attains the
optimal hiding point ( dX

dA(dX +1) ,
dX

dA(dX +1) ).
Proof. It can be shown [50] that the unitarity of a channel

can be expressed as

u(E ) = dX

d2
X − 1

(dX tr[Ẽ (1/dX )2] − tr[E (1/dX )2]) (B2)

where Ẽ is any complementary channel to E , which we can
choose to be Ē . Applying the above expression to the comple-
mentary pair (E, Ē ) we then have that

u(E ) + u(Ē ) = dX

dX + 1
(tr[E (1/dX )2] + tr[Ē (1/dX )2]).

(B3)
For the lower bound, we bound each purity term individually.
For any quantum state ρ for a system of dimension d we have
the purity is lower bounded as tr[ρ2] � 1/d , and therefore

u(E ) + u(Ē ) � dX

dX + 1

(
1

dA
+ 1

dB

)
. (B4)

For the upper bound, we use the following property of com-
plementary channels. We have that E := trB ◦ VX→AB and
Ē := trA ◦ VX→AB for an isometric channel VX→AB. There-
fore the state ρAB = VX→AB(1/dX ) has the marginals ρA =
E (1/dX ) and ρB = Ē (1/dX ). For a general bipartite quantum
state ρAB we have [78] that

γ (ρA) + γ (ρB) � 1 + γ (ρAB), (B5)

and therefore

u(E ) + u(Ē ) � dX

dX + 1
(1 + γ (VX→AB(1/dX ))). (B6)

As VX→AB is an isometry

γ (VX→AB(1/dX )) = tr[(V (1/dX )V †)2] = 1

dX
. (B7)

Substituting this into the previous inequality we obtain

u(E ) + u(Ē ) � 1, (B8)

which completes the proof. �
Lemma B.1. Any isometry VX→AB from an input system X

and joint output system AB with equal dimensions dX = dA =
dB = d , defines the complementary fixed dimension channels
E := trB ◦ VX→AB and Ē := trA ◦ VX→AB. The pair E and Ē
obey the following equivalence relations:

E = U ⇐⇒ Ē = D
� � (B9)

u(E ) = 1 ⇐⇒ u(Ē ) = 0

where D(ρ) = σ is a completely depolarizing channel to a
fixed state σ .

Proof. We first prove E = U ⇐⇒ Ē = Dψ . Note that for
any quantum channel F , its complementary channel F̃ is
unique up to an isometry on the output of F̃ [79]. Further, we
can write any isometry from n = log d to 2n qubits in the form
VX→AB(ρ) = UAB(ρ ⊗ |0〉〈0|⊗n). Therefore it suffices to find
any fixed dimension channel Ẽ complementary to E , and apply
a final unitary rotation. The isometry VX→AB = UA ⊗ UB(ρ ⊗
|0〉〈0|⊗n) = UA(ρ) ⊗ UB(|0〉〈0|⊗n) where UA and UB are uni-
taries on the respective subsystems A and B, gives the required
form for E , and we are free to set UB(|0〉〈0|) = |ψ〉〈ψ |, which
is the exact form of Ē . Applying the same argument starting
from Ē completes the inverse direction.

We now prove E = U ⇐⇒ u(E ) = 1. For any quantum
channel we have F = V ⇐⇒ u(F ) = 1 for any isometry
V [50]. For fixed input and output dimensions the set of
isometric channels is equivalent to the set of unitary channels,
which completes the proof.

Finally, we prove Ē = Dψ ⇐⇒ u(Ē ) = 0. For any quan-
tum channel we have F = D ⇐⇒ u(F ) = 0 for any com-
pletely depolarizing channel D(ρ) := σ to a fixed (potentially
mixed) state σ . However, given the form of VX→AB the
only marginal channel that can be constructed that disregards
any input state completely is given by Ē (ρ) = UB(|0〉〈0|) =
|ψ〉〈ψ |. Therefore all completely depolarizing channels gen-
erated by VX→AB must be to pure states, Dψ , and the condition
holds.

Corollary B.1. Given any input system X , and output
systems A and B of equal dimension dX = dA = dB. The asso-
ciated (isometric) quantum CUP set C is confined such that if

(u, ū) = (0, x) ⇒ x = 1. (B10)

Proof. This follows directly from the previous lemma, and
the definitions of u and ū. �

2. No-cloning bound on reversible CUP set

Lemma B.2. For any convex combination of channels E =∑r
i piEi, the respective TE matrix has the form

TE =
r∑
i

piTEi . (B11)
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Proof. TE = ∑d2
X −1,d2

Y −1
j,k 〈yk|E (x j )〉|yk〉〈x j | = ∑d2

X −1,d2
Y −1

j,k

〈yk|
∑r

i piEi(x j )〉|yk〉〈x j |. However, as quantum channels

are linear, this is
∑r

i pi
∑d2

X −1,d2
Y −1

j,k 〈yk|Ei(x j )〉|yk〉〈x j | =∑r
i piTEi . �
Lemma B.3. The unitarity u(E ) is a convex function of any

quantum channel E .
Proof. From Lemma C.2, for any convex combination of

channels E = ∑r
i piEi the corresponding TE matrix is the

convex combination of each individual term, TE = ∑r
i piTEi .

All norms are convex non-negative functions, including the l2
norm, || · || [80]. Further, if f (x) is convex and non-negative
function of x then f (x)2 is also convex. Therefore ||TE ||2
is a convex function of TE . Putting this together with the
appropriate dimension factor we have

u(E ) = α||
r∑
i

piTEi ||2 �
r∑
i

piα||TEi ||2 =
r∑
i

piu(Ei),

(B12)
which completes the proof.

Corollary B.2. Given any input system X and output sys-
tems A and B, the associated reversible quantum CUP set
Cr ⊆ [0, 1]2 is confined in the (u, ū) plane by

u + ū � 1. (B13)

Proof. We can always write a reversible channel R as the
convex combination of isometries Vi as

R(ρ) = UAB(ρ ⊗ σ ) = UAB(ρ ⊗
r∑
i

piψi )

=
r∑
i

piUAB(ρ ⊗ ψi ) =
r∑
i

piVi (B14)

for some pure states ψi = |ψi〉〈ψi|. Therefore we can write
the marginal channel ER := trB ◦ R as

ER = trB ◦ R =
r∑
i

pitrB ◦ Vi =
r∑
i

piEi (B15)

and similarly for ĒR := trA ◦ R. As the unitarity is convex

u(ER) = u(
r∑
i

piEi ) �
r∑
i

piu(Ei ) (B16)

and similarly for ĒR. As u(Ei ) + u(Ēi ) � 1 for all i, we have

u(ER) + u(ĒR) �
r∑
i

pi(u(Ei ) + u(Ēi )) �
r∑
i

pi = 1.

(B17)
This completes the proof.

3. Cloning bounds on full CUP set

Theorem B.2 (No-cloning bound on full quantum CUP set
C∗). Given any input system X and output systems A and B.
The associated full quantum CUP set C∗ is confined such that
for

(u, ū) = (1, x) ⇒ x = 0. (B18)

Proof. Consider any isometry, V , from system X to a tri-
partite system ABC. Due to the Stinespring dilation, we can set
E = trBC ◦ V and Ē = trAC ◦ V to be the channels that gener-
ate any full CUP set with (u, ū) ≡ (u(E ), u(Ē )). We have that
u = u(E ) = 1 if and only if E = U for some isometry, U . The
channel trA ◦ V is complementary to E and from Theorem IV.1
(and as a consequence of [5]) must therefore be completely
depolarizing, trA ◦ V = D, to some fixed state. Therefore Ē =
trAC ◦ V = trC ◦ D. However, the marginal, Ē = trC ◦ D, of
any completely depolarizing channel is also a completely
depolarizing channel Ē = D′ to a different fixed state. This
ensures u(Ē ) = 0, which completes the proof.

Theorem B.3 (Partial cloning bound on full quantum CUP
set C∗). Given any input system X and output systems A and B
with equal dimensions dX = dA = dB = d . The associated full
quantum CUP set C∗ ⊆ [0, 1]2 is confined in the (u, ū) plane
by

u + ū � 1 + 1

d + 1
. (B19)

Proof. Consider an isometry, V from system X to a tripar-
tite system ABC where dX = dA = dB = d and the dimension
of system C is dC . Due to the Stinespring dilation, we can
set EA = trBC ◦ V and EB = trAC ◦ V to be the channels that
generate the full CUP set with (u, ū) ≡ (u(EA), u(EB)) in a
similar manner to the previous proof. For compactness, we
write any marginal channel as Ei = tr �=i ◦ V , such as EBC =
trA ◦ V . Further, we will write the purity of a marginal channel
Ei acting on the maximally mixed state to be γi := γ (Ei(1d )) =
tr[Ei(1d )2]. The unitarity u(Ei ) of any marginal channel Ei is
then simply [50]

u(Ei ) = d

d2 − 1
(dγ �=i − γi ). (B20)

The unitarities for the full CUP set are then

u + ū = u(EA) + u(EB) = d

d2 − 1
(d (γBC + γAC ) − γA − γB).

(B21)
We can use a result from the study of the entropy of marginal
quantum states to bound this quantity. From Theorem 2 in [81]
for any tripartite quantum state ρABC with marginal states
defined in the usual way, the marginal purities must obey

dAγ (ρAC ) + dBγ (ρBC ) � dAdBγ (ρABC ) + γ (ρC ). (B22)

Therefore for ρABC = V (1d ) and with subsystems A and B of
the same dimension, d , we have d (γAC + γBC ) � d2γABC +
γC . Applying this to Eq. (B21) gives

u + ū � d

d2 − 1
(d2γABC + γC − γA − γB). (B23)

Further, we must have γABC = γ (VABC (1d )) = γ (1d ) = 1
d as

isometries preserve the inner product. We also have the gen-
eral bounds of 1

d � γ � 1 for any purity of any quantum state
of dimension d . This gives

u + ū � d

d2 − 1
(d + γC − γA − γB),

� d

d2 − 1

(
d + 1 − 1

d
− 1

d

)
= d + 2

d + 1
. (B24)

This completes the proof.
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APPENDIX C: PROPERTIES OF UNITARITY

1. Properties of the eigenvalues of T and a bound on unitarity

Lemma C.1. For any quantum channel E , of fixed dimen-
sion d and unitary channels U and V of the same dimension,
we have

u(E ) �
d2−1∑

k

|λk (U ◦ E ◦ V )2|
d2 − 1

, (C1)

where for any quantum channel F , {λk (F )} are the eigenval-
ues of the associated matrix TF .

Proof. For a complex n × n matrix A with eigenvalues
{λk} arranged such that |λ1| � ... � |λn| and singular values
{σk} arranged such that σ1 � ... � σn. From Weyl’s Majorant
theorem [82], we have the following majorization:

n∑
i

|λi|p �
n∑
i

|σi|p (C2)

for any p � 0. For any quantum channel F , the unital
block TF is real matrix [83], therefore

∑d2−1
k |λk (F )2| �∑d2−1

k σk (F )2, where λk (F ) denote eigenvalues and σk (F )
singular values of TF . With F = U ◦ E ◦ V for unitary chan-
nels U and V it follows that

d2−1∑
k

|λk (U ◦ E ◦ V )2| �
d2−1∑

k

σk (U ◦ E ◦ V )2. (C3)

However, the singular values are invariant under unitary rota-
tions, therefore

d2−1∑
k

σk (U ◦ E ◦ V )2 =
d2−1∑

k

σk (E )2 = (d2 − 1) u(E ), (C4)

which completes the proof. �
Lemma C.2. For any single qubit quantum channel E , over

all single qubit unitary channels {Ui} we have

u(E ) = max
Ui,U j

3∑
k

|λk (Ui ◦ E ◦ U j )2|
3

. (C5)

where for any quantum channel F , {λk (F )} are the eigenval-
ues of the associated matrix TF .

Proof. From the previous lemma we have
∑3

k |λk (Ui ◦ E ◦
U j )2| � ∑3

k σk (Ui ◦ E ◦ U j )2 for any Ui and U j . However, for
any single qubit channel E , we can always find [84] two
specific unitaries U1 and U2 such that TU1◦E◦U2 is a diagonal
matrix, and therefore for which the eigenvalues and singular
values coincide {λi(U1 ◦ E ◦ U2)} = {σi(U1 ◦ E ◦ U2)}. This
guarantees we can saturate the inequality with

3∑
k

|λk (U1 ◦ E ◦ U2)2| =
3∑
k

σk (U1 ◦ E ◦ U2)2. (C6)

Therefore over two copies the complete set of single qubit

unitary channels {Ui}, from the above two equations

max
Ui,U j

3∑
k

|λk (Ui ◦ E ◦ U j )
2|

=
3∑
k

σk (U1 ◦ E ◦ U2)2

=
d2−1∑

k

σk (E )2 = (d2 − 1) u(E ), (C7)

which completes the proof. �

2. Choi-Jamiołkowski isomorphism

For a quantum channel E with input dimension dX the
Choi-Jamiołkowski state is given by

J (E ) := E ⊗ id (ψ ), (C8)

where ψ = |ψ〉〈ψ | with |ψ〉 := 1√
dX

∑dX
i |i〉 ⊗ |i〉, a general-

ized Bell state [17].

APPENDIX D: ANALYTICAL FORM OF MARGINAL
UNITARITIES FOR SURFACES

1. Analytical form for marginal unitarities of SWAPα isometry

Lemma D.1. For the isometry Vα (ρ) := SWAPα (ρ ⊗
|0〉〈0|) where 0 � α � 1, we define the marginals
Eα (ρ) := trB[V (ρ)α] and Ēα (ρ) := trA[V (ρ)α]. The unitarities
of each marginal are

u(Eα ) = (1 − s)(3 − s)

3
(D1)

and

u(Ēα ) = 1 − (1 − s)(3 + s)

3
(D2)

respectively, where s = sin2( πα
2 ).

If we consider the sum of the marginals from Lemma E.1
we have

u(Eα ) + u(Ēα ) = 1 − 2s(1 − s)

3
(D3)

with 0 � s � 1 and produce a tighter bound on the marginals,
namely for any isometry with dX = dA = dB = 2, for a given
u(E ) we have

u(Ē ) � 3 + u(E ) − 2
√

1 + 3u(E ). (D4)

Proof. (of Lemma E.1) First we must obtain a useful an-
alytical form for SWAPα . As SWAP is a unitary channel to
derive the analytical form it is sufficient to find the unitary
matrix U that transforms the two qubit pure state |ψ〉 ⊗ |φ〉
such that

U |ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉 . (D5)

From this definition we can write

U = |00〉〈00| + |10〉〈01| + |01〉〈10| + |11〉〈11|,
= 1

2 (1⊗2 + X ⊗2 + Y ⊗2 + Z⊗2), (D6)
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where {1, X,Y, Z} are the Pauli matrices on 1 qubit. Defin-
ing the Bell states as |�±〉 := 1√

2
(|00〉 ± |11〉) and |�±〉 :=

1√
2
(|01〉 ± |10〉), we can diagonalise this unitary as

U = |�+〉〈�+| + |�−〉〈�−| + |�+〉〈�+| − |�−〉〈�−|,
= |�+〉〈�+| + |�−〉〈�−| + |�+〉〈�+| + eiπ |�−〉〈�−|.

(D7)

As SWAPα (ρ) = U αρ(U α )†, up to a global phase we can
find [85]

U α = |�+〉〈�+| + |�−〉〈�−| + |�+〉〈�+| + eiπα|�−〉〈�−|,
(D8)

and through careful expansion

U α = |00〉〈00| + |11〉〈11| + 1
2 (1 + eiπα )(|01〉〈01| + |10〉〈10|) + 1

2 (1 − eiπα )(|01〉〈10| + |10〉〈01|),
= 1

2 (1⊗2 + Z⊗2) + 1
4 (1 + eiπα )(1⊗2 − Z⊗2) + 1

4 (1 − eiπα )(X ⊗2 + Y ⊗2),

= 1
2 (1 + eiπα )1⊗2 + 1

4 (1 − eiπα )(1⊗2 + X ⊗2 + Y ⊗2 + Z⊗2),

= 1
2 (1 + eiπα )1⊗2 + 1

2 (1 − eiπα )U . (D9)

If we now expand the isometry definition we have

V (ρ)α = U αρ ⊗ |0〉〈0|(U α )†,

=
(

1

2
(1 + eiπα

)
1⊗2 + 1

2
(1 − eiπα )U )(ρ ⊗ |0〉〈0|)

(
1

2
(1 + e−iπα )1⊗2 + 1

2
(1 − e−iπα )U †

)
,

= cos
(πα

2

)2
1⊗2(ρ ⊗ |0〉〈0|)1⊗2 + sin

(πα

2

)2
U (ρ ⊗ |0〉〈0|)U †

+ i

2
sin(πα)1⊗2(ρ ⊗ |0〉〈0|)U † − i

2
sin(πα)U (ρ ⊗ |0〉〈0|)1⊗2,

= cos
(πα

2

)2
ρ ⊗ |0〉〈0| + sin

(πα

2

)2
|0〉〈0| ⊗ ρ + i

2
sin(πα)1⊗2(ρ ⊗ |0〉〈0|)U † − i

2
sin(πα)U (ρ ⊗ |0〉〈0|)1⊗2.

(D10)

From this point it is relatively straightforward to show that the
unital block T for the 1 qubit channels Eα and Ēα will be

TE,α =

⎛
⎜⎜⎝

|X/
√

2〉 |Y/
√

2〉 |Z/
√

2〉
〈X/

√
2| cos

(
πα
2

)2 1
2 sin(πα) 0

〈Y/
√

2| − 1
2 sin(πα) cos

(
πα
2

)2
0

〈Z/
√

2| 0 0 cos
(

πα
2

)2

⎞
⎟⎟⎠,

(D11)

and

TĒ,α =

⎛
⎜⎝

|X/
√

2〉 |Y/
√

2〉 |Z/
√

2〉
〈X/

√
2| sin( πα

2 )2 − 1
2 sin(πα) 0

〈Y/
√

2| 1
2 sin(πα) sin( πα

2 )2 0
〈Z/

√
2| 0 0 sin( πα

2 )2

⎞
⎟⎠,

(D12)
respectively. Therefore the unitarity of Eα is given by

u(Eα ) = 1

3
tr[T †

E,α
TE,α]

= cos
(πα

2

)4
+ 1

6
sin(πα)2

= 1

6
cos

(πα

2

)2
(5 + cos(πα)). (D13)

For the other marginal, the unitarity of Ēα is given by

u(Ēα ) = 1

3
tr[T †

Ē,α
TĒ,α]

= sin
(πα

2

)4
+ 1

6
sin(πα)2

= 1

6
sin

(πα

2

)2
(5 − cos(πα)). (D14)

This completes the proof.

2. Analytical form for marginal unitarities of CNOTα
AB isometry

Lemma D.2. For the isometry V (ρ)α := CNOTα
AB(ρ ⊗

|0〉〈0|) where 0 � α � 1, we define the marginals Eα (ρ) :=
trB[V (ρ)α] and Ēα (ρ) := trA[V (ρ)α]. The unitarities of each
marginal are

u(Eα ) = 1 − 2s

3
(D15)

and

u(Ēα ) = s

3
(D16)

respectively, where s = sin2( πα
2 ).

If we consider the sum of the marginals from Lemma E.2
we have

u(Eα ) + u(Ēα ) = 1 − s

3
(D17)

with 0 � s � 1.
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Proof. (of Lemma E.2) The proof follows in a similar way
to the SWAPα case. For the CNOTAB channel we use the
notation CNOTAB(ρ) = UρU †, to clarify that we mean the
unitary matrix U itself. We can diagonalise U with respect to
the computational basis by applying a Hadamard transform
H = (Z + X )/

√
2 on the target qubit before and after such

that the sandwiched unitary is the controlled phase gate,

U = 1
2 (1 ⊗ 1 + Z ⊗ 1 + 1 ⊗ X − Z ⊗ X ),

= 1
2 (1 ⊗ H1H + Z ⊗ H1H + 1 ⊗ HZH − Z ⊗ HZH ),

= (1 ⊗ H ) 1
2 (1 ⊗ 1 + Z ⊗ 1 + 1 ⊗ Z − Z ⊗ Z )(1 ⊗ H ),

= (1 ⊗ H )(|00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|)
× (1 ⊗ H ),

= (1 ⊗ H )(|00〉〈00| + |01〉〈01| + |10〉〈10| + eiπ |11〉〈11|)
× (1 ⊗ H ). (D18)

Therefore we have

U α = (1 ⊗ H )(|00〉〈00| + |01〉〈01| + |10〉〈10| + eiπα|11〉
× 〈11|)(1 ⊗ H ),

= |0〉〈0| ⊗ 1 + 1
2 (1 + eiπα )(|1〉〈1| ⊗ 1) + 1

2 (1 − eiπα )

× (|1〉〈1| ⊗ X ). (D19)

From the isometry definition we have V (ρ)α = U αρ ⊗
|0〉〈0|(U α )†, substituting in the definition of U α we can show
that the unital block T for the 1 qubit channels Eα and Ēα will
be

TE,α =

⎛
⎜⎝

|X/
√

2〉 |Y/
√

2〉 |Z/
√

2〉
〈X/

√
2| cos2

(
πα
2

)
1
2 sin(πα) 0

〈Y/
√

2| − 1
2 sin(πα) cos2

(
πα
2

)
0

〈Z/
√

2| 0 0 1

⎞
⎟⎠,

(D20)
and

TĒ,α =

⎛
⎜⎝

|X/
√

2〉 |Y/
√

2〉 |Z/
√

2〉
〈X/

√
2| 0 0 0

〈Y/
√

2| 0 0 0
〈Z/

√
2| 0 1

2 sin(πα) sin2
(

πα
2

)
⎞
⎟⎠,

(D21)
respectively. Therefore, with some multiplication, the unitar-
ity of Eα is given by u(Eα ) = 1 − 2

3 sin2( απ
2 ) and the unitarity

of Ēα is given by u(Ēα ) = 1
3 sin2( απ

2 ). This completes the
proof. �

3. Analytical form for marginal unitarities
of CNOTα

BA ◦ CNOTAB isometry

Lemma D.3. For the isometry V (ρ)α := CNOTα
BA ◦

CNOTAB(ρ ⊗ |0〉〈0|) where 0 � α � 1, we define the
marginals Eα (ρ) := trB[V (ρ)α] and Ēα (ρ) := trA[V (ρ)α].
The unitarities of each marginal are

u(Eα ) = 1
3 (1 − s) (D22)

and

u(Ēα ) = 1 − 2
3 (1 − s) (D23)

respectively, where s = sin2( πα
2 ).

If we consider the sum of the marginals from Lemma E.3
we have

u(Eα ) + u(Ēα ) = 1 − 1
3 (1 − s) (D24)

with 0 � s � 1.
Proof. (of Lemma E.3) Proof follows in the same way

as the previous two lemmas. From the previous lemma we
can write the unitary matrix for the channel CNOTBA(ρ) :=
UBAρU †

BA as

UBA = (H ⊗ 1)(|00〉〈00| + |01〉〈01| + |10〉〈10| + eiπ |11〉
× 〈11|)(H ⊗ 1), (D25)

and therefore

U α
BA = (H ⊗ 1)(|00〉〈00| + |01〉〈01| + |10〉〈10| + eiπα|11〉

× 〈11|)(H ⊗ 1),

= 1 ⊗ |0〉〈0| + 1
2 (1 + eiπα )(1 ⊗ |1〉〈1|) + 1

2 (1 − eiπα )

× (X ⊗ |1〉〈1|). (D26)

The unitary matrix for the channel CNOTAB(ρ) := UABρU †
AB

is given in the Pauli basis as

UAB = 1
2 (1 ⊗ 1 + Z ⊗ 1 + 1 ⊗ X − Z ⊗ X ), (D27)

therefore from the isometry definition V (ρ)α = U α
BAUABρ ⊗

|0〉〈0|U †
AB(U α

BA)† we can show that the unital block T for the 1
qubit channels Eα and Ēα will be

TE,α =

⎛
⎜⎝

|X/
√

2〉 |Y/
√

2〉 |Z/
√

2〉
〈X/

√
2| 0 0 0

〈Y/
√

2| 0 0 0
〈Z/

√
2| 0 − 1

2 sin(πα) cos2
(

πα
2

)
⎞
⎟⎠,

(D28)
and

TĒ,α =

⎛
⎜⎝

|X/
√

2〉 |Y/
√

2〉 |Z/
√

2〉
〈X/

√
2| sin2

(
πα
2

) − 1
2 sin(πα) 0

〈Y/
√

2| 1
2 sin(πα) sin2

(
πα
2

)
0

〈Z/
√

2| 0 0 1

⎞
⎟⎠,

(D29)
respectively. Therefore, with some multiplication, the unitar-
ity of Eα is given by u(Eα ) = 1

3 cos2( απ
2 ) and the unitarity of

Ēα is given by u(Ēα ) = 1 − 2
3 cos2( απ

2 ). This completes the
proof. �

APPENDIX E: SPAM ROBUST ESTIMATION THROUGH
INTERLEAVED RB

1. Interleaved unitarity protocol for (E, Ē ) without noise

We now give a sketch of the proof for Protocol 1. Define
the elements of the Clifford group on qubit A to be {UA,i}.
We define channel induced by averaging over many Clifford
unitaries as

UA := 1

N

N∑
i

CA,i. (E1)
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In the case � = �C = id , the circuit diagram representation
of Protocol 1 is

ρA UA

UAB

UA MA

|0〉〈0| D D �

Repeat k 1 times

(E2)

where � indicates the channel preparing |0〉〈0| and � the trace
operation. As ��= D, the circuit reduces to

ρA UA UAB

UA MA

� �

Repeat k 1 times

(E3)

which further reduces to

ρA UA E UA MA

Repeat k 1 times
(E4)

Which is exactly the right form for the circuit to estimate u(E ).
The decay parameter e1 in Protocol 1 is exactly u(E ) in this
idealized case.

The protocol to estimate u(Ē ) is the same as for u(E )
replacing UAB with SWAP ◦ UAB. This follows from the fact
that

Ē (ρ) := trA ◦ UAB(ρ ⊗ |0〉〈0|)
= trB ◦ SWAP ◦ UAB(ρ ⊗ |0〉〈0|), (E5)

or as a circuit diagram

− Ē −
UAB

×
×

=
(E6)

where we implicitly assume dA = dB, which is appropriate in
this two qubit case.

2. Efficient implementation of protocols

In the experiments for the SPAM robust CUP set, we per-
form an efficient unitarity RB protocol, as introduced in [36].
The protocol allows for rigorous bounds on the variance in the
associated decay curve, and therefore the value of unitarity
extracted. We summarize the efficient unitarity RB protocol
applied to our scheme here, where we consider E as a black

box single qubit channel whose implementation is detailed in
Appendix E 1.

Protocol 2: Efficient interleaved unitarity RB for E .

1. Select a random sequence,
Uk := Uk ◦ E ◦ Uk−1 ◦ E ◦ ... ◦ U2 ◦ E ◦ U1, of random Clifford
gates interleaved with target channel E .
2. Prepare the system in the state ρ±,i := 1

d (1 ± Pi ) for all
nonidentity elements Pi, of the Pauli group P �= 1. In the single
qubit input and output case, the states ρ±,i are pure states given by
ρ±,i = {|+〉 , |−〉 , |+i〉 , |−i〉 , |0〉 , |1〉}.
3. Estimate the average purity of the sequence across all possible
traceless input and output Pauli:

qk = 1
d2−1

∑d2−1
i, j (tr[Pj Ck(ρ+,i )] − tr[Pj Ck(ρ−,i )])2.

4. Repeat 1, 2, and 3 for Nk random sequences of length k, finding
the average estimation E[qk] := 1

Nk

∑Nk
k qk.

5. Repeat 1, 2, 3, and 4 increasing the length of the sequence,
e.g., k = k + 1.
6. Fit the data with E[qk] = c1sk−1, to find s the estimated value of
u(E ).

3. Interleaved unitarity protocol for (E, Ē ) with noise

In this section we set out the minimum assumptions re-
quired to produce interleaved unitarity RB circuits, where
all operations are assumed to be noisy. We then show how
this effects the estimation of CUP sets. For channels, states,
functions, any X , we write the noisy version XN .

For a two qubit system when we implement any gate or
mid-circuit measurement, the noise associated with the pro-
cess may effect the whole device. Therefore we should model
errors as bipartite quantum channels. We make two simpli-
fying assumptions about these errors. Firstly, we consider
the noise to be fixed across the Clifford group gateset, such
that �C,i = �C for all Ui. For example, Ui,N = �C ◦ Ui ⊗ idB.
Secondly, we assume the reset of a qubit is perfectly inco-
herent, but potentially noisy. Therefore the total channel can
be written as DB,N = �D ◦ idA ⊗ DB, with a general bipartite
error channel �D.

A direct consequence of these two assumptions is that
we can write the noisy version of the summation of Clifford
unitaries UA,N and the reset operation as

UA,N ⊗DB,N

UA

ΛC

B

=
(E7)

where �C is an error channel associated with the operations
together. Putting this together with a noisy version of the
interleaved unitary UAB,N = UAB ◦ �AB we can write a noisy
version of the circuit for Protocol 1:

ρN UA

ΛC UAB ΛUAB

UA

ΛC

MA,N

|0〉〈0|N DB DB �

Repeat k 1 times

(E8)
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Further we can write the reset operations as trace and preparation operations in our notation and absorb the initial and final
error channels as SPAM errors in the A subsystem. This leaves us with

ρN UA
ΛC UAB ΛUAB

UA MA,N

� �

Repeat k 1 times

(E9)

As the protocol is SPAM robust, we get an estimation of the unitarity u(EN ) of the channel EN (ρ) := trB ◦ �AB ◦ UAB ◦ �C (ρ ⊗
|0〉〈0|).

When we implement the protocol for Ē we will have an additional required operation, SWAP, and the noise associated with
it. We can write the noisy version of this in full generality, by including it with the preceding defined unitary UAB. For example,
SWAPN ◦ UAB,N := �S,AB ◦ SWAP ◦ UAB. This leads to a noisy circuit of the form

ρN UA

ΛC UAB

×
ΛS,AB

UA

ΛC

MA,N

|0〉〈0|N DB × DB �

Repeat k 1 times

(E10)

Finally, absorbing the initial and final error channels as SPAM errors in the A subsystem leaves us with

ρN UA
ΛC UAB

×
ΛS,AB

UA MA,N

� × �

Repeat k 1 times

(E11)

Giving an exact estimation of the unitarity u(ĒN ) for the channel ĒN (ρ) := trA ◦ �S,AB ◦ UAB ◦ �C (ρ ⊗ |0〉〈0|).
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