
PHYSICAL REVIEW RESEARCH 6, 023089 (2024)

Entangling excitons with microcavity photons
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We provide a systemic theory to entangle excitons with microcavity photons. This is realized by adopting an
exciton-optomechanics system and introducing a nonlinear dispersive interaction with a mechanical oscillator.
We show that when either the exciton and cavity modes in the weak-coupling regime, or the two exciton-polariton
modes in the strong-coupling regime are, respectively, resonant with the optomechanical Stokes and anti-Stokes
sidebands, entanglement between excitons and cavity photons, or between two exciton polaritons, can be
established. The entanglement is in the steady state and can potentially be achievable at room temperature.
In both cases, genuine tripartite entanglement is shown to be present.
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I. INTRODUCTION

An exciton is an electrically neutral quasiparticle that is
formed by the binding of an electron and a hole via the
Coulomb interaction. It exists mainly in condensed matter,
e.g., insulators and semiconductors, and can interact with
electromagnetic fields through the exciton-photon dipole in-
teraction [1,2]. It was theoretically predicted that the strong
interaction between excitons and photons can lead to the
generation of exciton polaritons [3], which was first ex-
perimentally observed in the semiconductor quantum well
(QW) microcavity [4,5], benefiting from the significantly
improved coupling strength between excitons and photons
due to the strongly confined light in the microcavity. Since
then, extensive research has been made on achieving the
exciton-photon strong coupling, e.g., by adopting various
microcavity structures, including the micropillar cavity, the
photonic crystal slabs, and the whispering gallery microcavity
[6,7], and employing different materials, such as organic [8,9],
wide-bandgap [7], and perovskite semiconductors [10]. Novel
exciton-polariton devices have been designed by exploiting
the coherence and nonlinearity properties of the polaritons,
including spin memory [11], polariton light emitting diodes
[12,13], and polariton transistors [14,15].

As half-matter, half-light bosons, exciton polaritons offer a
unique avenue for exploring the interface between quantum
optics, spontaneous coherence, and quantum condensation
[2]. They can be manipulated and probed via the light com-
ponent and generate rich nonlinear interactions through the
matter component [2]. Because the effective mass is much
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lower than that of typical atomic systems, the critical tem-
perature for achieving the Bose-Einstein condensation (BEC)
of the exciton polaritons can be several orders of magnitude
higher than the atomic one, which is potentially attainable
even at room temperature [1]. Despite the highly dissi-
pative two-dimensional system with weak particle-particle
interactions, which do not conform to the ideal BEC, the
exciton-polariton BEC has been successfully achieved in
the experiments [16,17], with the observation of relevant
macroscopic quantum phenomena, including Bogoliubov ex-
citations [18], quantized vortices [19], and superfluidity [20].
The coherent nature of the polariton condensates can be ex-
ploited to create a high-efficiency low-threshold laser without
inversion [21], which was first demonstrated in the experi-
ments [22,23]. After that, a variety of configurations have
been adopted to realize the room-temperature lasing [24–26],
and a more efficient polariton laser has been demonstrated
by using an electrical pump method [27–29]. In addition,
quantum entanglement of the exciton polaritons has been
studied by exploiting the parametric process [30–32] and spin
squeezing [33], and the photon-polariton entanglement has
been experimentally observed by swapping a photon for a po-
lariton in two-photon entangled states [34]. Besides, squeezed
light has been produced utilizing the strong nonlinearity of the
polariton-polariton interaction [35].

Here, we provide a complete theory to entangle excitons
with microcavity photons by coupling the latter to a me-
chanical oscillator via a nonlinear dispersive interaction. The
system then becomes a tripartite bosonic system, namely,
exciton-optomechanics (EOM) [36–42]. Due to the linear ex-
citation-exchange (beam-splitter-type) interaction between
excitons and photons, the two modes are intrinsically not
entangled. The mechanical oscillator couples to the optical
cavity mode via a dispersive manner, which can enable an ef-
fective optomechanical parametric down-conversion (PDC) or
state-swap interaction, corresponding to the optomechanical
Stokes or anti-Stokes scattering. We consider a complete set of
two situations depending on whether excitons and microcavity
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FIG. 1. Sketch of the EOM system. A QW is placed within
a semiconductor microcavity that is formed by two DBRs, which
enables the interaction between the exciton mode (x) and the optical
cavity mode (c). The DBRs are movable and the mechanical motion
(b) couples to the cavity photons via a dispersive interaction. The
gray area is a diagram of the mechanical motion, which does not
correspond to the real motion.

photons are strongly coupled to form exciton polaritons. We
show that when either the exciton and cavity modes (in the
weak-coupling regime) or the two exciton-polariton modes (in
the strong-coupling regime) are, respectively, resonant with
the optomechanical Stokes and anti-Stokes sidebands, the
entanglement between excitons and cavity photons, or be-
tween two polariton modes, can be established. The entangle-
ment is in the steady state and can be achieved even at room
temperature for a not very high mechanical quality factor.
We further show that both the excitons and cavity photons
(or the two polaritons) are entangled with the mechanical
oscillator, exhibiting genuine tripartite entanglement in the
EOM system.

The paper is organized as follows. In Sec. II, we describe
the EOM system, provide its Hamiltonian and the corre-
sponding Langevin equations, and show how the steady-state
solutions of the system can be achieved. We then present in
Sec. III the results of the exciton-photon entanglement and the
tripartite entanglement in the weak-coupling case. In Sec. IV,
we reformulate the theory for the exciton-polariton-mechanics
system in the strong-coupling regime, and show the results
of the entanglement of two polaritons and the tripartite en-
tanglement in Sec. V. Finally, we make a discussion on the
two entanglement protocols in the weak- and strong-coupling
regimes and summarize the findings in Sec. VI.

II. THE EXCITON-OPTOMECHANICS SYSTEM

The EOM system consists of a QW and a semiconduc-
tor microcavity formed by two movable distributed Bragg
reflectors (DBRs), as depicted in Fig. 1. A DBR is made
of layers of alternating high and low refraction indices, and
each layer has an optical thickness of λ/4, with λ being the
optical wavelength. Thus, light reflected from each interface
destructively interfere and create a stop band for transmission.
The DBR then acts as a high-reflectivity mirror when the
wavelength of the incident light is within the stop band. The
DBRs are movable and the mechanical displacement couples
to the cavity photons via a dispersive optomechanical inter-
action [37,41,43]. A QW is a thin layer of semiconductor,
which is sandwiched between two barrier layers with a much
larger band gap. The QW is placed within the microcav-
ity, which enables a linear excitation-exchange (beam-splitter
type) interaction between excitons and cavity photons. The
Hamiltonian of the EOM system reads

H/h̄ = ωxx†x + ωcc†c + ωbb†b + G0c†c(b + b†)

+ g(x†c + xc†) + i�(c†e−iω0t − ceiω0t ), (1)

where x, c, and b (x†, c†, and b†) are the annihilation (cre-
ation) operators of the excitons, cavity photons, and phonons,
respectively, satisfying the commutation relation [ j, j†] = 1
( j = x, c, b), and ωx, ωc, and ωb are their resonance frequen-
cies. Here, g denotes the exciton-photon coupling strength,
which is variable depending on the position of the QW placed
within the microcavity and can be very strong. When the cou-
pling strength exceeds the exciton and cavity decay rates κx

and κc, i.e., g > κx, κc, the system enters the strong-coupling
regime leading to the exciton polaritons [4,5]. The single-
photon optomechanical coupling strength G0 is typically weak
[44], but the effective optomechanical coupling can be signif-
icantly enhanced by driving the microcavity with an intense
laser field. The last term corresponds to the driving Hamilto-
nian, where � = √

2Pκc/h̄ω0 signifies the coupling strength
between the cavity and the drive field with frequency ω0 and
power P.

By incorporating the dissipation and input noise of each
mode, we obtain the following quantum Langevin equa-
tions (QLEs) in the frame rotating at the drive frequency ω0:

ẋ = − (i�x + κx )x − igc +
√

2κxxin,

ċ = − (i�c + κc)c − igx − iG0c(b + b†) + � +
√

2κccin,

ḃ = − (iωb + κb)b − iG0c†c +
√

2κbbin, (2)

where �x = ωx − ω0, �c = ωc − ω0, κb is the mechanical
damping rate, and jin(t ) ( j = x, c, b) are the input noise
operators of the three modes, which are zero-mean and char-
acterized by the correlation functions [45]: 〈 jin(t ) jin†(t ′)〉 =
[Nj (ω j ) + 1]δ(t − t ′), 〈 jin†(t ) jin(t ′)〉 = Nj (ω j )δ(t − t ′), with
Nj (ω j ) = [exp[(h̄ω j/kBT )] − 1]−1 being the equilibrium
mean thermal excitation number of the mode j, and T as the
bath temperature.

Owing to the strong driving of the cavity and the exciton-
photon excitation-exchange interaction, the cavity and exciton
modes exhibit large amplitudes |〈c〉|, |〈x〉| � 1. This allows
us to linearize the system dynamics around the steady-state
values by expressing each mode operator j as the sum of its
classical average 〈 j〉 and quantum fluctuation operator δ j, i.e.,
j = 〈 j〉 + δ j, and neglecting small second-order fluctuation
terms. As a result, the QLEs are separated into two sets of
equations, one for the classical averages and the other for the
quantum fluctuations. The linearized QLEs of the quantum
fluctuations are obtained as

δ̇x = − (i�x + κx )δx − igδc +
√

2κxxin,

δ̇c = − (i�̃c + κc)δc − igδx − Gcb(δb + δb†) +
√

2κccin,

δ̇b = − (iωb + κb)δb − (Gcbδc† − G∗
cbδc) +

√
2κbbin, (3)

where �̃c = �c + 2G0〈b〉 is the effective cavity-drive detun-
ing including the frequency shift due to the optomechanical
interaction, and Gcb = iG0〈c〉 is the effective optomechanical
coupling strength. The expressions of the classical averages
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are given by

〈x〉 = −i�g

g2 + (i�̃c + κc)(i�x + κx )
,

〈c〉 = �(i�x + κx )

g2 + (i�̃c + κc)(i�x + κx )
,

〈b〉 = − G0

ωb
|〈c〉|2. (4)

The QLEs (3) can be expressed in a compact matrix form with
the quadrature fluctuation operators δXj = (δ j + δ j†)/

√
2,

and δYj = i(δ j† − δ j)/
√

2, i.e.,

u̇(t ) = A u(t ) + n(t ), (5)

where u(t ) = [δXx(t ), δYx(t ), δXc(t ), δYc(t ), δXb(t ), δYb(t )]T

represents the vector of quantum fluctuations,
n(t ) = [

√
2κxX in

x ,
√

2κxY in
x ,

√
2κcX in

c ,
√

2κcY in
c ,

√
2κbX in

b ,√
2κbY in

b ]T is the vector of input noises, where X in
j and

Y in
j are defined similarly as δXj and δYj but with the noise

operators jin and jin†, and the drift matrixA is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κx �x 0 g 0 0

−�x −κx −g 0 0 0

0 g −κc �̃c −2Re Gcb 0

−g 0 −�̃c −κc −2Im Gcb 0

0 0 0 0 −κb ωb

0 0 −2Im Gcb 2Re Gcb −ωb −κb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Due to the linearized dynamics and the inherent Gaus-
sian properties of the quantum noises, the steady state of
the quadrature fluctuations is a three-mode Gaussian state,
which is fully characterized by a 6 × 6 covariance matrix
(CM) V , with its entries Vi j = 1

2 〈ui(t )u j (t ′) + u j (t ′)ui(t )〉
(i, j = 1, 2, ..., 6). The steady-state CM can be obtained by
directly solving the Lyapunov equation [46,47]

AV + VAT = −D, (7)

where D = Diag[κx(2Nx + 1), κx(2Nx + 1), κc(2Nc + 1), κc

(2Nc + 1), κb(2Nb + 1), κb(2Nb + 1)] is the diffusion
matrix, with its entries defined via Di j δ(t − t ′) = 〈ni(t )n j

(t ′) + n j (t ′)ni(t )〉/2.
Once the CM V is achieved, we adopt the logarithmic neg-

ativity EN [48] to quantify the quantum entanglement between
any two modes of the system, which is defined as

EN ≡ max[0,− ln 2ν̃−], (8)

where ν̃− = min eig|i�2Ṽ4| (the symplectic matrix
�2 = ⊕2

j=1iσy and σy is the y-Pauli matrix) is the minimum
symplectic eigenvalue of the CM Ṽ4 = PV4P, with V4 being
the 4 × 4 CM of the two modes under consideration, obtained
by removing in V the rows and columns associated with the
uninteresting modes, and P = Diag[1,−1, 1, 1] being the
matrix that performs partial transposition on the CM [49].

To determine the tripartite entanglement, we adopt the
residual contangle [50,51]

Ri| jk
τ ≡ Ci| jk − Ci| j − Ci|k, (9)

where Cu|v is the contangle of subsystems of u and v

(v contains one or two modes), which is a proper en-
tanglement monotone defined as the squared logarithmic
negativity. To calculate the one-vs-two-modes logarithmic
negativity, one only needs to follow the definition of
Eq. (8) by simply replacing �2 = ⊕2

j=1iσy with �3 =
⊕3

j=1iσy, and Ṽ4 = PV4P with Ṽ = Pi| jkVPi| jk , where the
partial transposition matrices P1|23 = Diag[1,−1, 1, 1, 1, 1],

P2|13 = Diag[1, 1, 1,−1, 1, 1], and P3|12 = Diag[1, 1, 1, 1,

1,−1]. The residual contangle satisfies the monogamy of
quantum entanglement, Ri| jk

τ � 0, i.e.,

Ci| jk � Ci| j + Ci|k, (10)

which is similar to the Coffman-Kundu-Wootters monogamy
inequality [52] hold for the system of three qubits. A bona
fide quantification of the tripartite entanglement is given by
the minimum residual contangle [50,51]

Rmin
τ ≡ min

[
Ri| jk

τ , R j|ik
τ , Rk|i j

τ

]
, (11)

which guarantees that Rmin
τ is invariant under all permutations

of the modes, thus indicating a genuine three-way property of
any three-mode Gaussian state. A nonzero minimum residual
contangle Rmin

τ > 0 denotes the presence of tripartite entan-
glement in the system.

III. ENTANGLEMENT BETWEEN EXCITONS
AND MICROCAVITY PHOTONS

In this section, we consider the weak-coupling case where
the interaction between excitons and microcavity photons
does not lead to exciton polaritons. Specifically, we consider
a relatively weak exciton-photon coupling g < κc, κx, and the
exciton and cavity modes are nonresonant but of close fre-
quencies, cf. Fig. 2(a).

The prerequisite for obtaining entanglement in the sys-
tem is to cool the lower-frequency mechanical mode close
to its quantum ground state and eliminate the detrimental
thermal noise. To this end, we adopt a red-detuned laser
field to drive the microcavity (with �̃c ≈ ωb � κc) to activate
the optomechanical anti-Stokes scattering, which is respon-
sible for cooling the mechanical motion. For mechanical
cooling, the drive field should be relatively weak, such that
the rotating-wave approximation (under the weak-coupling
condition Gcb � ωb) can be taken to obtain the effective op-
tomechanical beam-splitter interaction ∝ δc†δb + δcδb† [53].
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FIG. 2. (a) The mechanical motion with frequency ωb scatters
the driving photons at frequency ω0 onto two sidebands at ω0 ± ωb.
When the exciton and cavity modes are resonant with the Stokes
(red) and anti-Stokes (blue) sidebands, respectively, genuine tripar-
tite entanglement of cavity photons, excitons, and phonons is present.
(b) Stationary exciton-photon (solid), photon-phonon (dashed), and
exciton-phonon (dot-dashed) entanglement and tripartite entangle-
ment (inset) versus the exciton-drive detuning �x . We take �̃c =
0.9ωb, and the other parameters are provided in the text.

However, the optomechanical beam-splitter interaction, as
well as the linear exciton-photon interaction, does not produce
any entanglement. To create entanglement, we increase the
drive power, such that the weak-coupling condition is broken
and the counter-rotating-wave (CRW) terms ∝ δc†δb† + δcδb
in the linearized optomechanical interaction cannot be ne-
glected, which correspond to the PDC interaction yielding
the optomechanical entanglement [47]. The entanglement is
further distributed to the exciton-phonon and exciton-photon
subsystems when the exciton mode resonates with the me-
chanical Stokes sideband, i.e., −�x ≈ ωb � κx [Fig. 2(a)]
[54,55]. In this situation, i.e., �̃c ≈ −�x ≈ ωb, all bipar-
tite subsystems are entangled, as shown in Fig 2(b), and
the EOM system shares genuine tripartite entanglement, as
witnessed by a nonzero Rmin

τ [inset of Fig. 2(b)]. The comple-
mentary relation of the dashed curve and the solid and dot-
dashed curves in Fig. 2(b) indicates that the exciton-phonon
and exciton-photon entanglement are transferred from the
photon-phonon entanglement. Similar entanglement distribu-
tion phenomena in multipartite systems have been observed
in cavity magnomechanics [54] and optomagnomechanics
[56].

The exciton-photon entanglement can be understood
straightforwardly as follows. The mechanical motion scatters
the driving photons at frequency ω0 onto the two mechan-
ical sidebands at frequencies ω0 ± ωb. When the exciton
and cavity modes are resonant with the two sidebands, i.e.,
�̃c ≈ −�x ≈ ωb, the optomechanical Stokes and anti-Stokes

scatterings are simultaneously activated and enhanced (here
Stokes photons and excitons are of the excitation-exchange
interaction). The Stokes scattering corresponds to the PDC
interaction, leading the Stokes photons to be entangled with
the mechanical oscillator, whereas the anti-Stokes scattering
results in the state-swap (beam-splitter) interaction between
the anti-Stokes photons and the oscillator. Therefore, the two
sidebands become entangled via the mediation of the mechan-
ical motion. Since the exciton and cavity modes resonate with
the two sidebands, respectively, the exciton and cavity modes
thus get entangled.

In getting Fig. 2(b), we employ the following feasible
parameters [36,37,43]: ωb/2π = 20 GHz, κb/2π = 1 MHz,
κc/2π = 1 GHz, κx/2π = 102 MHz, G0/2π = 10 MHz,
�/2π = 6 THz (corresponding to the drive power
P ≈ 26 mW for ω0/2π ≈ 345 THz), and at temperature
T = 1 K. We take a moderate coupling g/2π = 0.9 GHz, and
the exciton and cavity frequencies are nearly resonant and on
both sides of the drive frequency. Under these parameters, the
mechanical motion is cooled to its quantum ground state with
the mean phonon number of 0.03 at the optimal condition
�̃c ≈ −�x ≈ ωb. In Fig. 3, we study the impact of various
dissipation rates of the system and the bath temperature on
the exciton-photon entanglement. Clearly, the entanglement
is robust against all dissipation rates and is still present
for κc, κx, κb being up to ∼10 GHz, 1 GHz, and 10 MHz,
respectively, based on the parameters of Fig. 2(b). Due to
the relatively high mechanical frequency in the typical EOM
system, the entanglement survives at a temperature up to
∼60 K.

IV. THE POLARITON-MECHANICS SYSTEM

When the exciton-photon system enters the strong-
coupling regime, g > κc, κx, excitons and cavity photons are
hybridized forming two exciton polaritons, which are termed
as the upper polariton (UP) and the lower polariton (LP),
respectively. The theory presented in Secs. II and III is
based on the original exciton and cavity modes and thus
becomes inefficient for the study of the entanglement be-
tween two polaritons. In this case, it is more convenient to
express the theory in terms of two polaritons. Consequently,
we rewrite the EOM Hamiltonian (1) with the polariton
operators

H/h̄ = ωuU
†U + ωlL

†L + ωbb†b

+ G0(b + b†)(U †U sin2 θ + U †L sin θ cos θ

+ L†U cos θ sin θ + L†L cos2 θ )

+ i�(U † sin θe−iω0t + L† cos θe−iω0t

− U sin θeiω0t − L cos θeiω0t ), (12)

where U and L (U † and L†) denote the annihilation (cre-
ation) operators of the UP and LP, respectively, which
are the hybridization of the exciton and cavity modes
via the unitary Hopfield transformation [3]: U = x cos θ +
c sin θ and L = −x sin θ + c cos θ , with the corresponding
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FIG. 3. Stationary exciton-photon entanglement versus (a) dissipation rates κx and κc; (b) bath temperature T and mechanical damping
rate κb. We take �x = −1.1ωb, and the other parameters are the same as in Fig. 2(b).

eigenfrequencies

ωu = 1
2 [ωx + ωc +

√
(ωx − ωc)2 + 4g2],

ωl = 1
2 [ωx + ωc −

√
(ωx − ωc)2 + 4g2]. (13)

The proportions of excitons and cavity photons in the two
polaritons are characterized by the Hopfield coefficients sin2 θ

and cos2 θ , where θ = 1
2 arctan 2g

ωx−ωc
∈ [0, π

2 ], implying that
the proportions can be varied by altering the coupling g
and/or the exciton-photon detuning ωx − ωc. Therefore, the
mechanical mode couples to both the polaritons because both
of them contain the photon component, as shown in the
Hamiltonian (12). When the cavity photons and excitons are
resonant, yielding θ = π

4 , both the UP and LP are exactly
half-photon, half-exciton with the minimum frequency
splitting ωu − ωl = 2g. Since both photons and excitons are
bosons, the exciton polaritons, as their linear superposition,
are also bosons, and satisfy the bosonic commutation relation
[k, k†] = 1 (k = U, L).

Likewise, we obtain the following QLEs, in the frame ro-
tating at the drive frequency, concerning two polariton modes
and a mechanical mode:

U̇ = − i�uU − iG0(b + b†)(U sin2 θ + L sin θ cos θ )

− κuU − δκL + � sin θ +
√

2κuU
in,

L̇ = − i�lL − iG0(b + b†)(L cos2 θ + U cos θ sin θ )

− κlL − δκU + � cos θ +
√

2κlL
in,

ḃ = − iωbb − iG0(U †U sin2 θ + U †L sin θ cos θ

+ L†U cos θ sin θ + L†L cos2 θ ) − κbb +
√

2κbbin,

(14)

where �u = ωu − ω0 and �l = ωl − ω0 denote the
polariton-drive detunings; κu = κx cos2 θ + κc sin2 θ and
κl = κx sin2 θ + κc cos2 θ are the dissipation rates of the two
polariton modes; and δκ ≡ (κc − κx ) sin θ cos θ signifies
the dissipative coupling between the polaritons stemming
from the unbalanced decay rates of the original modes,
i.e., κx �= κc. U in ≡ (

√
2κx cos θxin +√

2κc sin θcin)/
√

2κu

and Lin ≡ (−√
2κx sin θxin +√

2κc cos θcin)/
√

2κl represent

the input noises entering the UP and LP, which are the
combination of the input noises xin and cin of the exciton and
cavity modes.

Similarly, the linearization of the system dynamics around
the steady-state values leads to the following QLEs for the
quantum fluctuations of the system:

˙δU= −(i�̃u + κu)δU− (iGb + δκ )

δL− Gu,b(δb + δb†)+
√

2κuU
in,

δ̇L= −(i�̃l + κl )δL− (iGb + δκ )

δU− Gl,b(δb + δb†)+
√

2κlL
in,

δ̇b= −(iωb + κb)δb−(Gu,bδU † + Gl,bδL†

− G∗
u,bδU − G∗

l,bδL) +
√

2κbbin, (15)

where �̃u = �u + 2G0〈b〉 sin2 θ and �̃l = �l + 2G0〈b〉
cos2 θ are the effective polariton-drive detunings,
including the frequency shift caused by the optomechan-
ical interaction; Gu,b = (Gu sin θ + Gl cos θ ) sin θ and
Gl,b = (Gu sin θ + Gl cos θ ) cos θ are the coupling strengths
between the two polaritons and the mechanical mode,
respectively, where Gu = iG0〈U 〉 and Gl = iG0〈L〉; and
Gb = G0〈b〉 sin 2θ denotes the coupling between the two
polaritons via the mediation of the mechanical mode. The
steady-state averages are given by

〈U 〉 =�[δκ cos θ − i sin θ (�̃l − 2G0〈b〉 cos2 θ − iκl )]

(�̃l − iκl )(�̃u − iκu) + δκ2 − Gb (Gb − 2iδκ )
,

〈L〉 =�[δκ sin θ − i cos θ (�̃u − 2G0〈b〉 sin2 θ − iκu)]

(�̃l − iκl )(�̃u − iκu) + δκ2 − Gb (Gb − 2iδκ )
,

〈b〉 = − G0

ωb
|〈U 〉 sin θ + 〈L〉 cos θ |2. (16)

Note that since the single-photon optomechanical coupling
G0 is typically small [44] and G0〈b〉 ∝ G2

0, one can safely
neglect the weak coupling terms Gb(δU †δL + δUδL†) in the
QLEs (15) and the last term of the denominator of 〈U 〉
(〈L〉) in Eq. (16), and assume the effective detunings to be
|�̃u,l | � |�u,l |, as the optimal detunings for entanglement
correspond to |�u,l | � ωb, which will be shown later.
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In the same way, the QLEs (15) can be rewritten in terms of the quadrature fluctuations (δXu, δYu, δXl , δYl , δXb, δYb), which
can be cast in the matrix form similarly as in Eq. (5). The steady-state CM V ′, with its entries defined as V ′

i j = 1
2 〈u′

i(t )u′
j (t

′) +
u′

j (t
′)u′

i(t )〉, where u′(t ) = [δXu(t ), δYu(t ), δXl (t ), δYl (t ), δXb(t ), δYb(t )]T, can be achieved by solving the Lyapunov
equation

A′V ′ + V ′A′T = −D′, (17)

where the diffusion matrix D′ = Diag[κu(2Nu+ 1), κu(2Nu+ 1), κl (2Nl + 1), κl (2Nl + 1), κb(2Nb + 1), κb(2Nb + 1)] +
1
2 tan 2θ [−κu(2Nu+ 1) + κl (2Nl+ 1)]σx ⊗ I2×2 ⊕ 02×2, with σx being the x-Pauli matrix, and Nu = 1

2 {[κx cos2 θ (2Nx +
1) + κc sin2 θ (2Nc + 1)]/κu − 1} and Nl = 1

2 {[κx sin2 θ (2Nx + 1) + κc cos2 θ (2Nc + 1)]/κl − 1} as the mean thermal excitation
numbers of the UP and LP, respectively. The drift matrixA′ is given by

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κu �u −δκ 0 −2Re Gu,b 0

−�u −κu 0 −δκ −2Im Gu,b 0

−δκ 0 −κl �l −2Re Gl,b 0

0 −δκ −�l −κl −2Im Gl,b 0

0 0 0 0 −κb ωb

−2Im Gu,b 2Re Gu,b −2Im Gl,b 2Re Gl,b −ωb −κb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

With the CM V ′ in hand, we can then calculate the bipartite
(tripartite) entanglement in the system using the logarithmic
negativity (the minimum residual contangle) introduced in
Sec. II.

V. ENTANGLEMENT BETWEEN TWO
EXCITON POLARITONS

As analyzed in Sec. III, the two optomechanical sidebands
at ω0 ± ωb are entangled due to the mediation of the me-
chanical oscillator involved in both the Stokes and anti-Stokes
scatterings. It is quite natural to conjecture that the entan-
glement between the two polaritons can be achieved when
they are respectively resonant with the two sidebands, i.e.,
�u = −�l = ωb [Fig. 4(a)]. Since both the polaritons contain
the photon component and their exciton component has no
coupling with the mechanical mode, the interaction between
each polariton and the mechanics is fully determined by the
interaction between its photon component and the mechanics,
i.e., the dispersive optomechanical interaction [55]. The UP
(LP) being resonant with the anti-Stokes (Stokes) sideband
greatly enhances the strength of the anti-Stokes (Stokes) scat-
tering and thus the optomechanical cooling (PDC) interaction.
A unique feature and advantage of the polariton system is that
the strength of the cooling (PDC) interaction associated with
the UP (LP) is adjustable by changing the weight of the photon
component in the polaritons via altering θ . As also discussed
in Sec. III, the emergence of entanglement in the system
requires the combination of both the cooling and PDC interac-
tions for eliminating thermal noise and creating entanglement,
respectively. The fact that the cavity photons enter the two
polaritons with the weights of sin2 θ and cos2 θ , respectively,
implies that there is a trade-off between the cooling and PDC
interactions for achieving the maximal entanglement, which
indicates an optimal value of θ .

To reach such an optimal θ in a real experiment, we fix
the exciton frequency and the exciton-photon coupling, e.g.,
at ωx/2π = 345 THz and g/2π = 13 GHz (g < ωb), but set
the cavity frequency ωc as a variable, which can be realized

by adopting the configuration where the microcavity layer
thickness is tapered by growth and thus the cavity reso-
nance can be continuously tuned across the sample [1,4]. This
leads to a continuous varying of θ , since θ = 1

2 arctan 2g
ωx−ωc

.
It should be noted that as the cavity frequency changes,
the two polariton-drive detunings �u and |�l | change, but
they are generally not equal [cf., Eq. (13)]. To maintain the
optimal condition �u = −�l ≈ ωb as the cavity frequency

FIG. 4. (a) Strongly coupled excitons and cavity photons form
two exciton polaritons at frequencies ωu and ωl . When the UP
resonates with the anti-Stokes (blue) sideband and the LP res-
onates with the Stokes (red) sideband, the system exhibits genuine
tripartite entanglement. (b) Stationary UP-LP (solid), LP-phonon
(dot-dashed), and UP-phonon (dashed) entanglement and tripartite
(inset) entanglement versus detuning �u = −�l . See text for the
other parameters.
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FIG. 5. Stationary entanglement between two polaritons versus (a) κx and κc; (b) bath temperature T and κb. We take the optimal detunings
�u = −�l = ωb. The other parameters are the same as in Fig. 4(b).

varies, we set the drive frequency to be ωc dependent, i.e.,
ω0 = ωx+ωc

2 .
In Fig. 4(b), we present the results of the bipartite and

tripartite entanglement of the system. As expected, the entan-
glement between the two polaritons is maximized, EN ≈ 0.28,
at the detunings �u = −�l ≈ ωb, and the LP-phonon entan-
glement is also optimized at this point, because the LP-phonon
entanglement is a direct result of the Stokes scattering, of
which the strength is maximal when the LP resonates with
the Stokes sideband. However, at this point the UP-phonon
entanglement is absent. This is because the effective inter-
action between the UP and the mechanical mode is solely
the cooling (beam-splitter) interaction, which does not yield
entanglement. One can increase the UP-mechanics coupling
strength by raising the weight of the photon component in
the UP, such that, as analyzed in Sec. III, the weak-coupling
condition is broken and the CRW terms start to play the
role in creating the UP-phonon entanglement. The increase
of �u in Fig. 4(b) corresponds to a continuous rise of ωc,
which leads to a continuous increase of θ , starting from θ = π

4
corresponding to ωc = ωx. This results in a growing weight
of the photon component in the UP and thus an increasing
UP-mechanics coupling strength. When �u >≈ 1.2ωb, the
coupling strength becomes sufficiently strong, leading to the
emergence of the UP-phonon entanglement. A much larger
detuning �u causes the polaritons to deviate from the me-
chanical sidebands, thus diminishing the entanglement. The
system also exhibits genuine tripartite entanglement around
�u = −�l ≈ ωb, as shown in the inset of Fig. 4(b). In get-
ting Fig. 4(b), we keep the coupling strength Gl fixed at
|Gl |/2π = 0.6 GHz by adjusting the drive power as the de-
tuning �u varies [cf. Eq. (16)]. The corresponding �/2π =
3.5 THz and drive power P ≈ 8.6 mW at the optimal detun-
ings �u = −�l = ωb. The other parameters are the same as
those in Fig. 2.

The entanglement of two polaritons is much stronger than
the exciton-photon entanglement generated in Sec. III even
with a smaller drive power. The entanglement is stationary and
robust with respect to the dissipation rates of the three modes,
as seen in Fig. 5. The entanglement can be achieved even at
room temperature if using a sub-MHz mechanical damping

rate. For example, the entanglement is still present for the
temperature up to 300 K with κb/2π = 0.5 MHz [Fig. 5(b)],
corresponding to a mechanical Q factor of 4 × 104, which is
high but reachable [36,43].

VI. DISCUSSION AND CONCLUSION

In view of the presented two entanglement protocols in
the weak- and strong-coupling regimes, they share similarities
but also have their own characteristics. In both situations, the
generation of entanglement requires the combination of the
cooling and PDC interactions. For the cooling interaction, in
both cases it is achieved by activating the optomechanical
anti-Stokes scattering, realized by keeping the anti-Stokes
sideband resonant with the cavity mode in the weak-coupling
regime (with the UP in the strong-coupling regime). However,
their entanglement mechanisms are not exactly the same. In
entangling excitons and cavity photons, the power of the red-
detuned drive field must be sufficiently strong to activate the
CRW terms to have the PDC interaction (Sec. III); whereas
in the strong-coupling case of entangling two polaritons, the
PDC interaction can be directly provided by the optome-
chanical Stokes scattering associated with the LP (Sec. V),
which does not require a strong drive field. The fact that
the cavity photons enter the two polaritons to simultaneously
participate in both the optomechanical Stokes and anti-
Stokes scatterings makes the protocol in the strong-coupling
case more efficient, reflected by the fact that the entan-
glement between the two polaritons is much stronger than
the exciton-photon entanglement even under a weaker drive
field.

The generated bipartite and tripartite entanglement can be
verified by measuring the corresponding CMs [47,54]. For
the exciton-photon entanglement, the cavity field quadratures
can be measured directly by homodyning the cavity output
field. The excitonic quadratures can be detected by sending
a weak probe field that realizes a state-swap interaction with
the excitons, and by homodyning the cavity output field of the
probe field. Note that in typical exciton-microcavity systems,
the cavity decay rate is much larger, such that when the laser
drive is switched off and all cavity photons dissipate, the
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excitonic state remains practically unchanged, at which time
the probe field is sent. Similarly, to measure the entanglement
of two polaritons, one can successively send two weak probe
fields that are, respectively, resonant with the two polaritons,
and perform the homodyne detection of the cavity output
fields. To verify the tripartite entanglement, the mechanical
state must be accessed. This can be realized by sending a weak
red-detuned light into the cavity, which activates an effective
optomechanical state-swap interaction and maps the mechan-
ical state to the cavity field, and by homodying the cavity
output field. Due to the much longer mechanical coherence
time, the probe light can be sent after all cavity photons and
excitons die out.

In conclusion, we present a systemic theory for entangling
excitons and microcavity photons, or two exciton polaritons
when they are strongly coupled. The idea is to introduce
a dispersively coupled mechanical mode into the exciton-
photon system, which brings in the optomechanical cooling
and PDC interactions, responsible for eliminating thermal
noise and creating entanglement in the system, respectively.
By appropriately adjusting the strengths of the two
interactions, stationary exciton-photon or polariton-polariton

entanglement can be achieved. Impressively, room-
temperature polariton entanglement can potentially be
obtained by improving relevant experimental parameters of
the EOM system.

Although many classical phenomena have been stud-
ied in the EOM system [37–40,42], quantum effects
have been rarely explored [36,41]. This work repre-
sents the first entanglement study, to our knowledge, in
the field of EOM. The work also provides theoretical
guidance for the experimental realization of the exciton-
photon entanglement and the polariton entanglement, which
may find applications in quantum information process-
ing with exciton polaritons, e.g., entangled polaritons can
lead to the emission of frequency-entangled photon pairs
[30].
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