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While entanglement between distant parties has been extensively studied, entangled measurements have
received relatively little attention despite their significance in understanding nonlocality and their central role
in quantum computation and networks. We present a systematic study of entangled measurements, providing
a complete classification of all equivalence classes of iso-entangled bases for projective joint measurements
on two qubits. The application of this classification to the triangular network reveals that the elegant joint
measurement, along with white noise, is the only measurement resulting in output permutation invariant
probability distributions when the nodes are connected by Werner states. The paper concludes with a discussion
of partial results in higher dimensions.
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I. INTRODUCTION

In 1935, Schrödinger stated that entanglement is not one
but rather the characteristic trait of quantum mechanics. In-
deed, today it is well-known that entanglement is not only
necessary for the violation of celebrated Bell inequalities—
disproving local hidden variables—but for most of the
applications in quantum information science such as security
proofs of quantum cryptography or quantum teleportation, to
name but a few examples.

Entanglement is sometimes called the quantum tele-
portation channel. However, this overlooks the fact that
entanglement plays a dual role in this fascinating process:
First, as the channel connecting the distant parties, indeed, but
also in the joint measurement that triggers the teleportation
process [1]. Similarly, these joint measurements are at the
heart of entanglement swapping [2] and dense coding [3]. For-
mally, they are represented in quantum theory by self-adjoint
operators which, in turn, are characterized by their eigenvec-
tors. When these eigenvectors are entangled, one says that the
measurement is entangled. For example, in the best-known
joint measurement, the eigenvectors are the Bell states which
are all maximally entangled.

Entanglement between distant parties, traditionally named
Alice and Bob, is by now well-studied and understood.
However, entangled measurements have so far received rel-
atively little attention [4,5] and, to our knowledge, have
never been studied in a systematic manner. This is somewhat
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surprising and disappointing, given their importance for both
the conceptual understanding of quantum foundations and
for applications. In fact, it has been recently pointed out
that understanding entangled measurements is one of the
most interesting future directions in the foundations of quan-
tum physics [6]. Moreover, the problem of joint (entangled)
measurements is a central concern for quantum field theory,
which, to date, still lacks a complete theory of measurement
and faces conceptual issues like the so-called impossible mea-
surements [7,8]. Understanding entangled measurements is
necessary to shed light on these fundamental problems [9].

For what concerns the applications, entangled measure-
ments play a major role in quantum computation [10,11], the
estimation of coherent states [12] and eigenvalues of channels
[13], and in quantum networks [14]. These are pivotal for the
development of a quantum internet [15], which is one of the
most promising future quantum technologies.

Furthermore, studying entanglement beyond maximal
value can lead to deeper understanding and unique applica-
tions. Indeed, it is known by now that maximally entangled
states are not always the best resource for quantum infor-
mation tasks: nonmaximally entangled quantum states, in
general, outperform maximally entangled ones in most mea-
sures of nonlocality, such as Bell inequalities, entanglement
simulation with communication, the detection loophole and
quantum cryptography [16,17]. While this has not been in-
vestigated nearly as thoroughly for joint measurements, it
has been shown that nonmaximally entangled measurements
represent stronger resources for certain tasks, such as the
violation of bilocality [18].

In this paper, we provide the first systematic study of en-
tangled measurements for the simplest case. The problem is
known to be difficult in full generality, hence we assume that
all the eigenvectors have the same degree of entanglement,
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i.e., they form an iso-entangled basis (previous works on non-
maximally entangled joint measurements and iso-entangled
bases are Refs. [18–24]). Moreover, we mostly limit our anal-
ysis to projective joint measurements on two qubits.

Here, we give a complete classification of all iso-entangled
bases of two qubits, up to the natural equivalence relation
of local unitary rotations and swapping of the qubits. Next,
we apply our parametrization to the triangular network and
prove that the elegant joint measurement (EJM) (and white
noise) is the only measurement that leads to output permuta-
tion invariant (OPI) probability distributions when the nodes
are connected by identical Werner states. Finally, we discuss
partial results in higher dimensions.

II. COMPLETE CLASSIFICATION OF ALL EQUIVALENCE
CLASSES OF ISO-ENTANGLED BASES OF TWO QUBITS

Consider measurements on two qubits, i.e., the partition
of the Hilbert space C4 = C2 ⊗ C2 is fixed. An iso-entangled
basis is an orthonormal basis such that all four vectors |ψ j〉,
j = 1, . . . 4, have the same degree of entanglement.

There are many measures of entanglement, but for pure
bipartite states ρAB = |ψ〉〈ψ |AB they are all equivalent [25].
We quantify the degree of entanglement by its tangle, equal to
squared concurrence [26–28]

ξ = 2
(
1 − Tr

(
ρ2

A

)) ∈ [0, 1], (1)

where ρA = TrB(ρAB) is the reduced density matrix; this
monotonically quantifies entanglement from 0 (separable
states) to 1 (maximally entangled states).

Definition 1 (local equivalence of bases). Let us define the
equivalence relation ∼ : two bases B1 and B2 are equivalent
iff they are identical under local unitaries, Ui (equivalently,
local changes of basis), or identical under swap SA↔B and
local unitaries, i.e.,

B1 ∼ B2 ⇔ B2 = (UA ⊗ UB)(·)B1P, (2)

with (·) ∈ {1, SA↔B} and P an arbitrary permutation, corre-
sponding to an arbitrary relabeling of the states within the
basis. Our goal is to find a parametrization of each family of
equivalence classes. Starting with 12 real parameters for an
arbitrary dephased orthonormal basis of C4 (meaning that for
each state |ψ〉 we disregard the global phase by acknowledg-
ing the equivalence of the states within the complex projective
space, |ψ〉 ∼ 〈ψ |1〉

|〈ψ |1〉| |ψ〉), we subtract 3 + 3 parameters for
local changes of bases, and the three constraints that all four
vectors have the same degree of entanglement. We thus expect
an iso-entangled basis of two qubits to depend, in general, on
three parameters.

Our main result consists of the following proposition:
Proposition 1 (complete classification of iso-entangled

bases of two qubits). All equivalence classes of iso-entangled
bases on space C with respect to the relation (2) constitute
a three-dimensional manifold composed of two families, to-
gether with the closure of discontinuous submanifolds, given
by three additional families of equivalence classes of smaller
dimension. The specific functional form of the families is
provided in Eq. (15) for the general family, (12) for the Bell
family, and in Eqs. (9) and (10) for the families of smaller
dimensions.

Constructive proof. Let B be a matrix of order 4 whose
columns are four basis vectors {|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉} in C4 =
C2 ⊗ C2. Let us write B in the following skewed basis (by ap-
plying local change of basis only), consisting only of product
states, but, in general, different from the computational basis,

|0, 0〉, |0, 1〉, |1, ϕ〉, |1, ϕ⊥〉, (3)

where |ϕ〉 = cos(τ )|0〉 + sin(τ )|1〉 and |ϕ⊥〉 = cos(τ )|1〉 −
sin(τ )|0〉. To simplify the derivation, we use the fact that any
two-dimensional subspace of C4 contains at least one product
state [29]. Imposing the orthonormality leads to the following
parametrization of an arbitrary equivalence class of two-qubit
orthonormal bases (for derivation, see Appendix A):

B|ϕ〉 =

⎛
⎜⎜⎜⎜⎝

0 0 −cα · eiγ sα · eiγ

sδ · cθ cδ · cθ −sα · sθ −cα · sθ

sδ · sθ cδ · sθ sα · cθ cα · cθ

−cδ · eiβ sδ · eiβ 0 0

⎞
⎟⎟⎟⎟⎠, (4)

where we have introduced the compact notation cδ = cos δ,
sδ = sin δ, and similarly for cα and sα, and cθ and sθ . The
subscript |ϕ〉 indicates that the coefficients are expressed in the
basis provided in Eq. (3). As expected, this parametrization
has 6six parameters: α, δ, θ, γ , β, and τ [with τ included
implicitly in skewed basis (3)].

By computing the tangle ξ j [Eq. (1)] for each state |ψ j〉 of
B, we can now impose the constraints of iso-entanglement:

ξi = ξ j, ∀i, j ∈ {1, 2, 3, 4}. (5)

Note that only three of these equations are independent;
thus, solving these constraints will lead to a parametrization
depending on 6 − 3 = 3 parameters. The previous equa-
tions yield the following complete set of solutions:

(i) cos θ = 0, or
(ii) sin 2θ �= 0, and sin τ = 0 ⇒ α = π

4 = ±δ + lπ
2 , or

(iii.a) sin θ = 0, and sin τ �= 0 ⇒ α = ±δ + kπ
2 , or

(iii.b) cos τ = 0 ⇒ α = ±δ + mπ
2 , or

(iv) cos θ �= 0, and sin θ �= 0, and cos τ �= 0, and
sin τ �= 0, and sin(2δ) �= 0, and sin(2α) �= 0 ⇒ α =
±δ + nπ

2 .
As we shall see, the first solution (cos θ = 0) is somehow

trivial, for it leads to all four basis states being separable.
All the other solutions imply that α = ±δ (omitting here the
periodicity of π/2). This condition can thus be substituted in
(three of) Eq. (5), leading to the following simplified expres-
sions for the iso-entanglement conditions:

0 = ξ1 − ξ2 = −8 cos2 θ sin θ cos τ

· (cos τ sin θ cos(2δ) − sin τ sin(2δ) cos β ),

(6)

0 = ξ3 − ξ4 = −8 cos2 θ sin θ cos τ

· (cos τ sin θ cos(2δ) + sin τ sin(2δ) cos γ ),

(7)

0 = ξ1 − ξ3 = 8 cos2 θ sin θ cos τ

· sin(2δ) sin2 δ sin τ (cos β + cos γ ). (8)
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FIG. 1. Both reduction density matrices for four pure states for
an exemplary member of the skewed product family. Note that in the
first reduction (left), all states lie on the z axis, while in the second
they form a rectangle in the x-z plane.

We are now in a position to fully characterize the differ-
ent classes of parametrizations of iso-entangled bases of two
qubits. These correspond to the five different solutions (i)–(v)
above of Eqs. (6)–(8). Note, however, that two of the solutions
[namely, (iii.a) and (iii.b)], lead to equivalent families up to a
swap (so they belong to the same equivalence class). There-
fore, we arrive at four families of iso-entangled bases. We
will denominate the different families I ( j) with j ∈ (1, . . . , 4),
and we will express them in either the computational basis or
in the skewed basis (3); we will indicate this by a subscript
|0〉 or |ϕ〉, respectively. We will see that each of them is
characterized not only by a different functional form of the
states (which reflects different geometrical properties thereof)
but also by the amount of parameters which the degree of
entanglement ξ ( j) depends on.

III. FOUR INEQUIVALENT FAMILIES
OF ISO-ENTANGLED BASES

Solutions (i)–(iv) lead to the following four families of
isoentangled bases:

1. Skewed product family. Starting from condition (i), the
parametrization can be reduced to

I (1)
|0〉 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 cos τ − sin τ

0 0 sin τ cos τ

⎞
⎟⎟⎟⎠, (9)

where the other parameters have been absorbed into local
transformations. Note that the degree of entanglement is
ξ (1) = 0, independently of τ . As already mentioned, this fam-
ily contains only product bases, equivalent to the skewed basis
provided in Eq. (3).

From the point of view of the Bloch ball (see Fig. 1), this
family is always composed from two twice degenerate points
on the north and south poles in one reduction, and two pairs
of opposite poles in the other.

2. Elegant family. Condition (ii) yields a family which can
be parametrized as

I (2)
|0〉 = 1√

2

⎛
⎜⎜⎜⎝

0 0 −eiζ eiζ

cθ cθ −sθ −sθ

sθ sθ cθ cθ

1 −1 0 0

⎞
⎟⎟⎟⎠, (10)

FIG. 2. Partial traces for a selected member of the elegant family
(in red) together with the EJM (blue). A generic member of this
family forms simplex structures with all states lying on cones with
opening angles 2θ and π − 2θ for the two reductions, respectively;
the second pair is rotated with respect to the first by an angle ζ .
In particular, EJM is found by setting θ = π/4 and ζ = π/2, thus
forming two regular simplices.

where we have introduced the local transformation of the form
exp(iζσz )⊗2, with ζ = γ − β. Hence, this family has only two
parameters. Note that in this case, the skewed basis and the
computational one correspond, i.e., |ϕ〉 = |0〉. The squared
concurrence reads

ξ (2) = sin2(2θ )

4
, (11)

which depends only on one parameter. Note that the degree of
entanglement is bound: ξ (2) ∈ [0, 1

4 ]. Nil entanglement (i.e.,
ξ (2) = 0) corresponds to θ = 0, which leads again to the
separable basis (3). The maximal amount of entanglement,
ξ (2) = 1/4, is obtained by θ = π/4. Note that this family
contains the EJM, which plays a special role in network non-
locality [30]. EJM has, in fact, ξ = 1/4, and is retrieved for
ζ = π/2. Since EJM is the extremal case of this family, we
name this the elegant family. Fixing the maximal amount of
entanglement, however, does not single out EJM and leads to
a one-parameter subfamily.

In Bloch ball representation (see Fig. 2), the first two states
lie on a hyperbole in the x-z plane, whereas the other two
lie on a full rotational hyperboloid with symmetry around
the z axis. The opening angle of the limiting cone of these
hyperboloids is θ in one, and π − θ in the other reduction.
A generic member of this family forms a simplex with three
pairs of edges of different lengths. The EJM is singled out by
maximizing the volume of both reductions.

3. Bell family. This family is the conflation of conditions
(iii.a) and (iii.b), which are equivalent up to a swap SA↔B and
substituting τ by θ , respectively. In both cases, phase eiβ can
be reabsorbed into the computational state |1〉 of the first qubit
and defining ζ = γ + β, or into |0〉 of the second qubit and
defining ζ ′ = γ − β, respectively. Hence, this family reads

I (3)
|0〉 =

⎛
⎜⎜⎜⎝

0 0 −cδ · eiζ sδ · eiζ

sδ cδ 0 0

sτ · cδ −sτ · sδ cτ · sδ cτ · cδ

−cτ · cδ cτ · sδ sτ · sδ sτ · cδ

⎞
⎟⎟⎟⎠. (12)

Hence, one has the three expected parameters (δ, ζ , and τ ).
The tangle reads

ξ (3) = sin2(2δ)sin2(τ ), (13)
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FIG. 3. Generic member of the Bell family. Note that the four
vectors in both reductions form two rectangles, with the first one
lying on a cone with the rotation axis along the z axis.

which depends on two parameters and varies between 0 and 1.
For δ = π/4 and τ = π/2, one achieves maximally entangled
states, i.e., ξ (3) = 1. This is equivalent to the standard Bell
state measurement, which is the unique maximally entangled
basis up to local transformations [31]. This thus suggests the
name of this family. For nil entanglement, i.e., ξ (3) = 0, one
has either δ = 0, or cos(τ ) = ±1; both cases are equivalent to
the already discussed separable family (3).

Despite the full range of attainable entanglement, from the
perspective of the Bloch ball, this family always produces
rectangles lying in the x-z plane in one reduction, and in a
rotated plane in the other, with rotation being controlled by
the ζ phase. In particular, we note that in Bloch representation
(see Fig. 3), a part of the Bell family will overlap with the
subset of the elegant family with ζ = 0.

An alternative derivation of this family, resulting in a
canonical form, is given in Appendix B.

4. General family. In the case of condition (iv), we find that,
necessarily, we have eiγ = −e±iβ , which yields the relation

tan(τ ) = cos(2δ) sin(θ )

sin(2δ) cos(β )
. (14)

Hence, the parametrization reads

I (4)
|ϕ〉 =

⎛
⎜⎜⎜⎝

0 0 cδ · e±iβ −sδ · e±iβ

sδ · cθ cδ · cθ −sδ · sθ −cδ · sθ

sδ · sθ cδ · sθ sδ · cθ cδ · cθ

−cδ · eiβ sδ · eiβ 0 0

⎞
⎟⎟⎟⎠.

(15)

The expected three parameters are δ, θ , and β. The tangle
reads

ξ (4) = sin2(2θ )sin2(2δ)

4

· sin2(2δ)cos2(β ) + cos2(2δ)

sin2(2δ)cos2(β ) + cos2(2δ)sin2(θ )
, (16)

which varies between 0 and 1. Note that this is the most
general family of iso-entangled bases, for its degree of entan-
glement depends on all three parameters and has overlaps with
all the other families. Furthermore, a generic basis from this
family will yield nondegenerate simplices in both reductions.

Note that Eqs. (14) and (16) have five singularity points.
Studying the (directional) limits of these multivariable func-
tions yields the following cases:

(i) lim β → π/2 reduces the general family (15) to a two-
parameter subfamily of the Bell family (12). In particular, this
implies that τ → π/2 and ξ (4) → cos2(θ )sin2(2δ), which has
the same form of Eq. (13). Note that the Bell family depends
on the same number of parameters as the general family,
therefore it cannot be fully retrieved by any of the limits.

(ii) lim δ → π/4 reduces the general family to the elegant
family (10).

(iii) lim θ → 0 and δ → 0 reduces the general family to
the skewed product family (9), independently of the direction
of approach of these limits.

(iv) lim β → π/2 and δ → π/4 lead to an interpolation
between a part of the elegant family and a subfamily of the
Bell family, depending on the direction of approach of the
limit. In Ref. [18], a one-parameter iso-entangled family was
proposed that also interpolates between EJM and BSM. How-
ever, this cannot be contained within this limit case because
the latter does not admit regular simplices within the reduc-
tions, contrarily to the family in Ref. [18] (see Appendix C).

(v) lim β → π/2 and lim θ → 0 leads to a subfamily of
the Bell family wherein, however, the degree of entanglement
is upper bounded, with the bound depending on the angle of
approach φ ∈ (−π/2, π/2) as (1 + tan(|φ|))−2.

From this, one sees that the three particular families (9),
(10), and (12) (partly) form the closure of the General family.

A. An application to quantum networks

Let us consider a triangular network scenario, in which
Alice, Bob, and Charlie share pairwise a Bell state of two
qubits, e.g.,

|�〉ABC = |ψ+〉AB ⊗ |ψ+〉AC ⊗ |ψ+〉BC, (17)

with ψ+ = 1√
2
(|00〉 + |11〉), and each chooses a basis to

perform a joint measurement on their pair of qubits (see
Ref. [32]). The scenario is said to be OPI if the output proba-
bility distribution can be defined by three constants

p1 = piii, p2 = pσ (ii j), p3 = pσ (i jk) (18)

for i �= j, j �= k, k �= i and any permutation σ ; intuitively,
it means that no node, nor output, of the network is distin-
guished. A similar notion can be defined for larger networks
based on the network graph automorphism group.

Since the iso-entangled bases set each of the measurement
states on equal footing, they appear to be natural candidates
for measurements realizing OPI in such networks. We find that
setting ζ = π/2 + arccos(− sin(2θ )) followed by the local
transformation exp(− i

4 arccos(− sin(2θ ))σz )⊗2 in the elegant
family leads to a one-parameter subset of measurements,
which leads to OPI distributions. Interestingly, none of the
measurements in this family, except for the extremal points,
remains OPI under local noise �ε (ρ) = (1 − ε)ρ + ε

4I acting
on each edge of the network (see Fig. 4).

IV. DISCUSSION AND OUTLOOK

In this paper, we have provided complete classification
of all the equivalence classes of bases of two qubits, whose
four states have all the same degree of entanglement (i.e.,
iso-entangled bases). In particular, we have shown that
there exist four inequivalent families of equivalence classes,
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FIG. 4. p3-p1 plane for OPI measurements, with the red line
representing probabilities corresponding to EJM acting on Bell states
under local noise, �ε (|ψ+〉〈ψ+|)⊗3, while green line corresponds to
the OPI stemming from the elegant family acting on the network state
|�〉〈�| from (17). The Finner inequality is known to be a bound for
local and quantum distributions [33].

characterized by their numbers of parameters and geometrical
constraints of their reductions in the Bloch ball representation.

This paper represents a necessary step towards a deeper
understanding of entangled measurements, a topic that has re-
ceived surprisingly little attention—especially if compared to
entangled states between distant parties—despite their pivotal
importance for our fundamental understanding of measure-
ments in different quantum frameworks (including quantum
field theory) and in applications such as quantum computa-
tion, and other quantum tasks (quantum teleportation, dense
coding, nonlocality in networks, etc.).

Although our findings provide the theoretical framework
for further studies, many questions remain open. Most of
the aforementioned tasks, such as quantum teleportation or
dense coding, make use of Bell state measurements. Our
paper provides a tool to start asking in a systematic man-
ner questions like: For which tasks do partially entangled
measurements provide stronger resource than the maximally
entangled ones? This can bring insights into nonlocality, es-
pecially in the context of quantum networks with no inputs,
in which nonlocality is triggered exclusively by the selected
measurements. Moreover, further questions arise concerning
implementability: Which of the entangled measurements can
be experimentally realised using standard resources such as
linear optical elements?

Furthermore, this preliminary study has addressed only
the problem of entangled measurements in the simplest case
of two qubits. The natural extension to higher dimensions
turns out to be hard, with sparse known examples in literature
[20–22,34]. In Appendix D, we provide a short review of al-
ready known families together with another family of partially
entangled bases. This represents an attempt towards a gener-
alization to higher dimensions that will remain a direction of
future research.
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APPENDIX A: CANONICAL LOCAL FORM OF THE BASIS

Let us denote with B the matrix whose columns are the vec-
tors {|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉} with coefficients expressed in the
computational basis. Any two-dimensional subspace spanned
by, e.g., |ψ3〉 and |ψ4〉, necessarily contains (at least) one
product state (Theorem 2 in Ref. [29]). We may introduce
local rotations in such a way that it corresponds to the state
|0, 0〉. Hence, the first line of the matrix representing that basis
starts with two zeros. Similarly, the subspace spanned by |ψ1〉
and |ψ2〉 contains a product state |ϑ, ϕ〉 which is necessarily
orthogonal to |0, 0〉. Without loss of generality, let us assume
|ϑ〉 = |1〉, whereas |ϕ〉 = cos(τ )|0〉 + sin(τ )|1〉 and |ϕ⊥〉 =
cos(τ )|1〉 − sin(τ )|0〉. Hence, one gets ψ33 · ψ44 = ψ34 · ψ43,
where ψ jk = χ jkeiφ jk denotes the element j, k of the matrix B,
i.e., the kth component of vector |ψ j〉 in the computational
basis. Next, we choose the phases of ψ3 and ψ4 such that
their fourth components are real, i.e., ψ34 = χ34 and ψ44 =
χ44. The aforementioned relation implies that φ33 = φ43 := φ.
Thus, it is possible to remove this phase by applying the local
transformation of the form exp(i(σz ⊗ 1 − 1 ⊗ σz )φ). Hence,
the general form of our basis written in the computational
basis is given by

B|0〉 =

⎛
⎜⎜⎜⎝

0 0 · ·
· · · ·
· · χ33 χ43

· · χ34 χ44

⎞
⎟⎟⎟⎠, (A1)

where the four displayed entries are real and satisfy the
relation χ33 · χ44 = χ34 · χ43.

Let us now write B in the skewed basis provided in Eq. (3).
This implies that the last two entries of the last line are also
zeros. Starting from the form of the basis provided in Eq. (19),
let us choose the global phases such that the third component
of each vector is real, i.e., ψk3 = χk3. Applying the local
change of basis in Eq. (3) leads to

B|ϕ〉 =

⎛
⎜⎜⎜⎝

0 0 ψ31 ψ41

ψ12 ψ22 ψ32 ψ42

χ13 χ23 χ33 χ43

ψ14 ψ24 0 0

⎞
⎟⎟⎟⎠. (A2)

These coefficients depend at this point, in general, on 20 real
parameters (21 counting also τ in the definition of the skewed
basis).

We now impose the orthogonality constraints between
the pair of vectors for which two components of the scalar
product vanish. Denoting by χ jk the norm of each (in gen-
eral, complex) element ψ jk , from 〈ψ1|ψ3〉 it follows that
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χ12 · χ32 = ±χ13 · χ33 and φ12 = φ22(+kπ ); from 〈ψ2|ψ3〉,
that χ22 ·χ32 = ±χ23 ·χ33 and φ22 = φ32(+lπ ); from 〈ψ1|ψ4〉,
that χ12 · χ42 = ±χ13 · χ43 and φ12 = φ42(+mπ ); and, finally,
from 〈ψ2|ψ4〉, one finds that χ22 · χ42 = ±χ23 · χ43 and φ22 =
φ42(+nπ ).

In the next step, we reintroduce the normalization con-
straints. Note that since in the considered skewed basis, each
vector has only three nonzero components, such that the nor-
malization can be written as |ψ j |2 = a2

j + b2
j + c2

j , where each
a j, b j, c j is one of the nonzero real component χ jk of the
jth vector. Note that imposing the normalization conditions
|ψ j |2 = 1 leads to the following general parametrization:

a j = sin(α j ) sin(β j ),

b j = sin(α j ) cos(β j ),

c j = cos(α j ).

This, together with the four orthogonality conditions above,
leads to reduce the matrix of coefficients to eight real parame-
ters (nine, also counting also τ in the definition of the skewed
basis). After this simplification, we impose the orthogonal-
ity constraints of the last two pair of vectors 〈ψ1|ψ2〉, and
〈ψ3|ψ4〉, which remove two additional parameters. Finally,
one can apply a further local rotation that eliminates one last
parameter, leading to the form in Eq. (4) which depends, as
anticipated, on five explicit parameters (six if one counts also
the implicit τ ).

APPENDIX B: CANONICAL FORM OF THE BELL FAMILY

Here we provide a canonical form of the Bell family by
starting from its geometric structure, which will allow us to
give the three free parameters explicit interpretations. We start
by defining local bases

|A1〉 = cos x|0〉 + sin x|1〉 |A2〉 = cos x|0〉 − sin x|1〉,
|B1〉 = cos y|0〉 + sin y|1〉 |B2〉 = cos y|0〉 − sin y|1〉,

(B1)

together with the orthogonal states marked by the upper index,
|·⊥〉, defined such that the second entry is dephased. Then, we
define the four bipartite states in the basis as

|ψ1〉 = cos z|A1〉|B1〉 + eiφ1 sin z|A⊥
1 〉|B⊥

1 〉,
|ψ2〉 = cos z|A⊥

1 〉|B2〉 + eiφ2 sin z|A1〉|B⊥
2 〉,

|ψ3〉 = cos z|A2〉|B⊥
1 〉 + eiφ3 sin z|A⊥

2 〉|B1〉,
|ψ4〉 = cos z|A⊥

2 〉|B⊥
2 〉 + eiφ4 sin z|A2〉|B2〉,

(B2)

with z ∈ [0, π/4]. These four states follow the general geo-
metric property of the Bell family considered in the Bloch
ball: In both reductions, there are two pairs of colinear states,
and if a pair is colinear in reduction A, it is not colinear in
reduction B.

To derive generic member of the Bell family, we impose
that sin x �= 0 and analogically for cosines and y variable. Af-
ter carrying out elementary inner products between the states,
we find that the phases are given by

φ1 = −φ2 = −φ3 = φ4 (B3)

and

cos(±φ1) = − tan 2x tan 2y

sin 2z
. (B4)

In this way, we arrive at the canonical form for the Bell
family, since the three parameters are well connected to the
properties of the resulting bases: x and y angles are connected
to the geometric arrangement in the Bloch ball, while z angle
corresponds to the degree of entanglement in the basis.

APPENDIX C: PLACING FAMILY FROM REF. [18]
WITHIN THE GENERAL FAMILY

A family of iso-entangled bases, I (5) = {|ψi〉}4
i=1, has been

considered in Ref. [18] in the context of violating bilocality in
a linear three-partite network. It can be given explicitly in the
form

I (5)
|0〉 = 1

2
√

2

⎛
⎜⎜⎜⎜⎜⎝

1 + i 1 − i 1 − i 1 + i

−ieiφ − i ieiφ − i i − ieiφ ieiφ + i

ieiφ − i −ieiφ − i ieiφ + i i − ieiφ

1 − i 1 + i 1 + i 1 − i

⎞
⎟⎟⎟⎟⎟⎠

,

(C1)

which, a priori, does not correspond to any of the families
introduced in this paper. By considering the simple fact that
it interpolates between EJM and Bell state measurements for
φ = 0 and φ = π

2 , it cannot lie in the skewed-product fam-
ily, Bell family, or elegant family—therefore, it is natural to
assume it to be fully embeddable within the general family.

To find its relation to the members of the general family,
let us first define vA

i as the Bloch vector corresponding to the
A reduction of the state |ψi〉, and likewise for B reduction. We
will consider the Gram matrices

(GA)i j = vA
i · vA

j , (GB)i j = vB
i · vB

j . (C2)

Similarly, we define G̃A and G̃B for members of the general
family I (4) = {|ψ̃i〉}4

i=1. Using the above, we define a cost
function

F (β, θ, δ) =
∑
i, j

(
GA

i j − G̃A
σ (i)σ ( j)

)2 + (
GB

i j − G̃B
σ (i)σ ( j)

)2
,

(C3)

and we use minimization of the above function with respect
to the parameters β, θ, δ with the acceptance threshold of
F � ε = 10−12. Using this, we arrive numerically at curves
(β(φ), θ (φ), δ(φ)) for embedding the family I (5)

|0〉 within the
general family, as shown in Fig. 5.

APPENDIX D: PROBABILITIES AND NOISE
IN A TRIANGULAR NETWORK

Let us consider three parties—Alice, Bob, and Charlie—
sharing a joint state of six qubits, a pair per party. Each
pair is initialized in the maximally entangled state |�+〉 =
(|0, 0〉 + |1, 1〉)/

√
2 (see Fig. 6). Thus, the overall network

state without noise is given by

|�〉ABC = |ψ+〉AB ⊗ |ψ+〉BC ⊗ |ψ+〉AC . (D1)
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FIG. 5. Family of iso-entangled bases defined in (C1) can be
placed within the general family as defined in (15) (in the main text)
using numerically generated functions β(φ), θ (φ), and δ(φ), with
the last one expressible directly as δ = (φ − π/2)/2.

The measurement of the network state is carried out by
implementing the same local von Neumann measurement M
defined by a selected basis B = {|φi〉}4

i=1. The probability
of Alice, Bob, and Charlie outputting results i, j, and k,
respectively, is then given by

pi jk = ∣∣〈�i jk|�〉ABC

∣∣2 = Tr(|�i jk〉〈�i jk||�〉〈�|), (D2)

where we define |�i jk〉 = |φi〉 ⊗ |φ j〉 ⊗ |φk〉 for convenience.
OPI distribution is characterized by just three numbers,

p1 = piii, p2 = pσ (ii j), p3 = pσ (i jk), (D3)

with i �= j �= k and σ any permutation on three elements. The
name OPI stems from the fact that for such distributions, any
permutation of the three involved parties leaves the output
probability unchanged.

FIG. 6. Triangular network, where three parties—Alice, Bob,
and Charlie—share a distributed network state. We assume that
each pair shares a maximally entangled state of qubits, |ψ+〉 =
(|00〉 + |11〉)/

√
2.

By evaluating the outcome probabilities for measure-
ment bases B coming from our families I (1) through I (4)

we find that, except for the expected solutions stemming
from certain local bases, maximally entangled Bell bases,
and the EJM, a subfamily contained in I (4) which generates
a one-parameter set of OPI distributions in the triangu-
lar network. We find it by setting the phase ζ = π/2 +
arccos(− sin(2θ )) and introducing a local rotation of the form
exp(− i

4 arccos(− sin(2θ ))σz )⊗2. The resulting OPI distribu-
tion with

p1 = 29 − 21x

512
, p2 = 3x + 5

512
, p3 = 9 − x

512
, (D4)

with x = cos(4φ) interpolates linearly between the distribu-
tion generated by EJM and a flat distribution (see green line
in Fig. 4), which can be generated with a local measurement.
Furthermore, the entire family of the OPI distributions above
remains OPI under global noise channel � of the form

�(|�〉〈�|)δ = (1 − δ)|�〉〈�| + δ
I

64
. (D5)

Interestingly, however, for 0 < φ < π
4 the measurements

belonging to the discussed sub-family cease to generate OPI
distributions under the action of local noise, which transforms
the input network state into

[�ε (|ψ〉〈ψ |)]⊗3 =
(

(1 − ε)|ψ+〉〈ψ+| + ε
I

4

)⊗3

. (D6)

The trivial exception of φ = 0 is the case of local measure-
ments with local noises, and as such can be expected to remain
a flat distribution with p1 = p2 = p3 = 1/64. More interest-
ingly, the φ = π/4 case, equivalent to the EJM,

B = 1

2

⎛
⎜⎜⎜⎜⎝

0 0 −i
√

2 i
√

2

1 1 −1 −1

1 1 1 1√
2 −√

2 0 0

⎞
⎟⎟⎟⎟⎠, (D7)

leads to the following OPI distribution:

p1 = −3ε3 + 18ε2 − 36ε + 25

256
,

p2 = ε3 − 6ε2 + 8ε + 1

256
,

p3 = −ε3 + 6ε2 − 6ε + 5

256
,

(D8)

which is depicted as the red line in Fig. 4. Thus, we find
two one-parameter families of OPI distributions which are
joined only at their extreme points. Using extensive numerical
searches, we have not been able to generate any other OPI
distributions, which leads us to conjecture that these are the
only possible cases for a triangular quantum network.

APPENDIX E: ISOENTANGLED FAMILIES
IN HIGHER DIMENSIONS

The natural next step after the analysis of the simplest two-
qubit bases is to shift to objects with larger local dimension,
residing in spaces Cd ⊗ Cd . Direct application of methods
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presented in this paper does not seem to be realistic, thus
we expect that new techniques would need to be developed
to extend the current results beyond qubits. Nevertheless,
there exist certain partial results and limited families in the
literature.

Separable bases are the simplest case, and can be fully
given in terms of conditional measurement bases

|ψi j〉 = |i〉 ⊗ | ji〉, (E1)

where one imposes the relations

〈i|i′〉 = δii′ , 〈 ji| ji′ 〉 = δ j j′ . (E2)

and the product of the form 〈 ji| j′i′ 〉 need not be defined for
i �= i′. Using local transformations, we can always set the local
bases |i〉 and | j0〉 to the computational basis, thus simplifying
this family to a direct sum of unitaries,

∑d
i=1 Ui.

The other extreme—bases composed of maximally entan-
gled states—have been considered by Werner [34], where a
one-to-one equivalence between maximally entangled bases,
unitary bases, teleportation schemes, and dense coding
schemes has been established. Furthermore, a family of shift-
and-multiply bases based on Hadamard matrices and Latin
squares has been introduced therein.

Limited families of isoentangled bases have been con-
sidered in Refs. [20–22], without claims of being complete
constructions. Below we demonstrate a method to merge
methods from Refs. [21,34], arriving at another family of
bases with intermediate entanglement degrees.

First, we focus on a construction from Ref. [34]. Therein,
a family of unitary bases based on Hadamard matrices
and Latin squares is introduced. Given a d × d Latin
square λ( j, k) : Id × Id �→ Id and j (not necessarily distinct)
Hadamard matrices, the set of unitary matrices U i j o f
dimension d is defined by

U i j |k〉 = (H j )ik|λ( j, k)〉, (E3)

and they provide an orthogonal unitary basis due to the easily
verifiable property:

tr(U i j†U i′ j′ ) = dδii′δ j j′ . (E4)

It is also easily verified that vectorized versions

U �→ |U 〉 = 1√
d

∑
nm

Unm|nm〉

provide a maximally entangled bases of the d2-dimensional
Hilbert space.

We may now replace Hadamard matrices with robust
Hadamard matrices considered in Ref. [21], such that R jR j† =
I. The corresponding bistochastic matrix has the structure

∣∣R j
∣∣2 =

⎛
⎜⎜⎜⎜⎝

a b . . . b

b a . . . b
...

...
. . .

...

b b . . . a

⎞
⎟⎟⎟⎟⎠, (E5)

with absolute value understood entrywise. Then, a nonunitary
shift-and-multiply basis:

Bi j |k〉 = (R j )ik|λ( j, k)〉. (E6)

The entire proof from Ref. [34] can be retraced to demon-
strate the orthogonality of the resulting states |Bi j〉 and the
isoentangled character of the basis down to the specific
Schmidt coefficients follows directly from the form of the
vectorization map.

Indeed, one can extend the above construction to all unitary
R j such that all rows and columns contain the same ampli-
tudes up to permutation.

It is important to note that the above construction is distinct
from the equientangled bases given in Ref. [21], which is al-
ready evident on the level of the number of robust Hadamards
R j used in the construction.
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