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Optimal probe states for single-mode quantum target detection in arbitrary object reflectivity
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Quantum target detection (QTD) utilizes nonclassical resources to enable radar-like detection for identifying
reflecting objects in lossy and noisy environments, surpassing the detection performance achieved by classical
methods. To fully exploit the quantum advantage in QTD, determining the optimal probe states (OPSs) across
various detection parameters and gaining a deeper understanding of their characteristics are crucial. In this study,
we employ optimization algorithms to identify the single-mode continuous-variable OPSs for entire range of
target reflectivity. Our findings suggest that OPSs are non-Gaussian states in most reflectivity scenarios, with
exceptions under specific conditions. Furthermore, we provide a comprehensive physical interpretation of the
observed phenomena. This study offers a tool for identifying OPSs along with a clear physical interpretation. It
also contributes to further advancements towards optimal multi-mode QTD, which holds the potential for broad
applications in quantum sensing and metrology.

DOI: 10.1103/PhysRevResearch.6.023084

I. INTRODUCTION

Quantum target detection (QTD) is a critical task within the
field of quantum sensing. In the context of QTD, a reflecting
target is situated amidst a lossy and noisy environment, like
typical radar detection scenarios. The probe emits a quantum
signal to the target area, receives the reflected signal, and
further analyzes its quantum nature to ascertain the pres-
ence of the target [1–3]. To enhance the effectiveness of
QTD, Lloyd initially introduced discrete variable (DV) en-
tanglement into QTD, known as quantum illumination (QI)
[4,5]. Subsequently, the concept of QI was applied to var-
ious types of quantum states as probes, including Gaussian
states in continuous-variable (CV) systems [6–10], and even
non-Gaussian states [11,12]. In 2013, the first experimental re-
alization of quantum illumination was presented [13] based on
the protocol proposed by Lloyd and Tan et al. [4,9]. Further-
more, a series of experimental demonstrations of QTD based
on QI was presented in the optical frequency region [14,15]
and even in the microwave region [16–23], laying the founda-
tion for the implementation of type-III quantum lidar/radar
[24–29]. In more practical application scenarios, quantum
radar systems must advance beyond previous quantum illu-
mination protocols, which merely identify the presence of a
target within a specific space. Recently, there has been further
discussion on the three-dimensional localization of targets by
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quantum radar. Positioning within three-dimensional space by
utilizing the protocol of Gaussian beam entangled photons
in the frequency domain was first proposed in [30], which
further demonstrates a

√
N times quantum enhancement over

the unentangled case when N photons are used. Moreover,
achieving more precise azimuth resolution of targets through
the use of dual-receiver quantum radar protocols has also been
discussed [31].

In the aforementioned work, these studies are all based on
a known probe quantum state as the foundation for research.
The discussion revolves around the quantum advantage of
this quantum state under stringent probing conditions (high
loss and noisy environment). For example, in [8], a two-mode
squeezed vacuum (TMSV) is discussed as the probe quantum
state and achieves a quantum advantage of 6 dB. However,
an intriguing question arises: are these discussed quantum
states the optimal probe states (OPSs)? Is achieving a higher
advantage using other types of quantum states under the same
probing conditions possible?

In DV systems, the issue of OPSs is addressed in [32],
where the maximally entangled state is identified as the OPS.
Subsequent experiments demonstrate that using the maxi-
mally entangled state as the probe state can approach the
theoretical limit of the Helstrom bound [33]. In CV systems,
much research focuses on verifying the OPSs under condi-
tions of low-reflection targets. In [34], Mark et al. employ
mathematical methods (Lagrange multiplier) to investigate
the OPSs for quantum target detection under extreme con-
ditions (high noise and low target reflectivity or high-loss
channels) for both single-mode (without entanglement) and
two-mode (involving entanglement) detection scenarios. They
conclude that under single-mode and extreme detection con-
ditions, the OPS approximates a coherent state, while for
two-mode scenarios, the OPS corresponds to TMSV, which is
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consistent with the results presented in [35]. Furthermore, in
the case of given probe states, optimizing the parameters of
the probe state’s properties is also an essential topic for QTD.
In [36], the study focuses on using displaced squeezed states
as probe states and investigates the joint optimal squeezing
and displacement parameters of these states under various
target reflectivities. It further demonstrates that these states
can outperform coherent states with the same mean number
of input photons.

Although studies on OPSs have provided solutions un-
der strict conditions (such as extremely high losses or low
target reflectivity), there has been no clear discussion on
CV OPSs for targets with finite or even high reflectivity.
These non-extreme conditions more accurately reflect real-
world detection scenarios. Moreover, the study of the arbitrary
reflectivity of objects could also be analogous to various
detection tasks. For example, when dealing with targets ex-
hibiting high reflectivity, the situation resembles scenarios
where the optical field is reflected back and detected under
conditions of low loss. This implies weak interaction be-
tween the target and the probing light, a condition commonly
encountered in measurements involving biological samples
[37–41].

In this study, to comprehend OPSs under global reflectivity,
we utilize optimization algorithms to identify the single-mode
OPS that minimizes the error probability of QTD under ar-
bitrary detection conditions. We demonstrate that the OPSs
we identified exhibit higher identification performance than
coherent state probes in QTD across arbitrary detection con-
ditions. Drawing from the observed behavior of OPS under
different conditions, we also delve into OPS from various
physical perspectives to offer reasonable interpretations of
its behavior. Our analysis shows that in most cases, single-
mode OPSs are non-Gaussian, but under specific background
noise and target reflectivity conditions, OPS can revert to
coherent states. Furthermore, an important finding is that the
probe-obtained information for distinguishing target absence
or presence can be determined by the probe state’s phase or
photon number distribution. This insight allows us to distin-
guish OPSs into two regimes based on target reflectivity: those
dominated by phase-squeezed states and those dominated by
photon number squeezed states (PNSSs), confirming the types
of OPSs in given detection conditions. Our paper provides a
comprehensive understanding of OPSs under arbitrary target
reflectivity conditions, offering insights for optimizing QTD
techniques. The developed approach can be extended to ex-
plore higher-mode quantum states for optimal probe states
with quantum entanglement.

The paper is structured as follows: In Sec. II, we present the
theoretical model of quantum target detection, covering as-
pects such as error probability estimation, beam-splitter (BS)
model, and optimal probe states. Subsequently, in Sec. III, we
provide numerical results and discuss the underlying physical
concepts. To present our findings systematically, we initially
examine an athermal environment (noise-free environment) in
Sec. III A. Building upon the insights gained in this section,
we then extend our discussion to a more general scenario of a
thermal environment in Sec. III B. In Sec. IV, we summarize
the results of this study. The optimal algorithm and the details
for calculation are described in the Appendix.

II. THEORETICAL MODEL

Quantum target detection is a scenario similar to common
radar detection, as illustrated in Fig. 1(a). In this scenario,
a quantum transmitter emits quantum light to illuminate the
target within a noisy environment, and a quantum receiver is
employed to capture the reflected signal. The objective of the
detector is to distinguish between two hypotheses H0,1 in a
binary test.

H0: The target is absent, and the receiver obtains the
quantum state ρ̂0, which is all occupied by noise states.

H1: The target is present, and parts of the probe state
mixing with noise states will be detected by the receiver and
identify the state as ρ̂1.

In this sense, two hypotheses H0,1 are represented by
two different quantum states ρ̂0,1, respectively. Thus, briefly
speaking, the hypotheses testing task is a problem of quantum
state discrimination. Due to the probable harsh detection sce-
nario, however, the quantum states ρ̂0 and ρ̂1 may be similar to
each other and further make some error in distinguishing the
hypotheses H0,1. To estimate the error, the Helstrom bound
[42] offers a theoretical limit on the minimum error proba-
bility when distinguishing between the two states in a single
measurement of ρ̂0 and ρ̂1,

Perr = 1 − ||p0ρ̂0 − p1ρ̂1||1
2

, (1)

where ||M||1 ≡ tr
√

M†M is trace norm of matrix M, p0 is
prior probabilities of H0, and p1 = 1 − p0 for H1. Note that
Eq. (1) holds only when employing the optimal receiver. If a
nonoptimal receiver is utilized, the error probability behavior
may differ. In practice, the choice of quantum receivers in a
quantum sensing system depends on the quantum state of the
light or the encoding dimension. This selection aims to extract
the quantum state of the returned probing light field with
utmost accuracy, thereby minimizing the error probability.
As an example, when utilizing Gaussian states as CV probe
states, potential solutions involve the utilization of quantum
receivers like homodyne detection [8,43], optical parametric
amplifier (OPA), and phase-conjugate receiver [6,44]. On the
other hand, for DV probe states, extensive research has been
conducted on using the measurement of Bell states as an op-
timal quantum receiver [32,33]. However, within the context
of identifying the optimal probing quantum states discussed
in this study, it may not necessarily be a Gaussian state.
In fact, it can be any quantum state for optimizing sensing
tasks. Therefore, we assume that the quantum receivers are
optimized for all the probe states under consideration.

To estimate the error probability Perr , the states ρ̂0 and ρ̂1

must be calculated. Here, we utilize a BS model to analogy
the lossy and noisy detection scenario, as shown in Fig. 1(b),
and further calculate the states ρ̂0 and ρ̂1. In the BS model,
a quantum transmitter inputs a quantum state of ρ̂pr as a
probe to a BS as the target with a reflectivity r. The noisy
environment is simulated by coupling into another mode of
BS (see Fig. 1). To facilitate comparison with the majority of
research on quantum target detection [6,9–11,34], in this case,
the environmental noise quantum state is considered a mixed
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FIG. 1. (a) Schematic diagram of radar detection scenario. (b) QTD with the beam-splitter (BS) model. The quantum transmitter sends
a probe quantum state ρ̂pr to the BS, which can be used to analogy the lossy channel and un-unitary reflected object. To simulate the noisy
environment, the thermal state ρ̂env is coupled into the BS from another input mode and mixed with the probe state. Then, the quantum
receiver finally receives ρ̂recv to process the hypotheses testing for target detection. The state ρ̂lost = Trrecv[ρ̂out] is the quantum state leak to the
environment, which will not be detected.

thermal state ρ̂env . The thermal state is given by

ρ̂env =
∞∑

n=0

n̄n
env

(n̄env + 1)n+1 |n〉〈n|, (2)

where n̄env is the mean photon number of noise. Notice that
the state ρ̂env has no off-diagonal term in the density matrix at
Fock basis, which means the state has no phase information.
For the probe state ρ̂pr , since the phaseless nature of ρ̂env ,
the suitable form of the probe state is to consider it as a

single-mode pure state |ψ〉pr to maximally the performance
for distinguish the ρ̂0 and ρ̂1,

|ψ〉pr =
∞∑

n=0

cn|n〉, (3)

and ρ̂pr = |ψ〉pr〈ψ |. To evaluate the output quantum state
after interacting with the target, we characterize the BS as a
quantum process tensor EBS , and further, the density matrix
elements of the total output state ρ̂out can be represented as

ρout
j1k1 j2k2

=
∑

m1,n1,m2,n2∈N0

Em1n1m2n2
j1k1 j2k2

ρ in
m1n1m2n2

, (4)

where ρ in
m1n1m2n2

is the density matrix elements of total input state of ρ̂ in = ρ̂pr ⊗ ρ̂env , and

Em1n1m2n2
j1k1 j2k2

=
√

m1!m2!n1!n2!

j1! j2!k1!k2!

j1∑
p=0

k1∑
q=0

(
j1
p

)(
j2

m1 − p

)(
k1

q

)(
k2

n1 − q

)

×
√

1 − r2
2p+2q+ j2+k2−m1−n1

(−1) j1+k1−p−q√r
j1+k1+m1+n1−2p−2q

δm1+m2, j1+ j2δn1+n2,k1+k2

(5)

is the process tensor element of BS in the Fock basis [45].
Based on this BS setup, the total output state comprises two
modes: the transmitted mode and the reflected mode. Since
the quantum receiver only receives the mode reflected from
the target, we trace over the lost mode on the total output
state as ρ̂recv = Trlost[ρ̂out] to obtain the quantum state that
finally is received by the quantum receiver. Notice that since
the noise state has no defined phase, it will not interfere with
the probe states. Under the model, two hypotheses can be
easily described. In the case of H0 indicating target absence,
we have ρ̂0 = ρ̂env . For H1 suggesting target presence, we get
ρ̂1 = ρ̂recv = Trlost[ρ̂out]. By utilizing the earlier result and
Eq. (1), we can further calculate the error probability for a
given probe state ρ̂pr .

Now, our attention shifts to determining the OPSs for
single-mode quantum target detection. The objective for these
specified OPSs is to minimize Perr under specific conditions,
such as target reflectivity r and mean environmental noise
photon n̄env . To achieve this, the OPSs must arrange the com-

position of cn in Eq. (3) for minimizing Perr . However, the
composition of cn is not arbitrary, subject to two important
constraints. Firstly, the normalization of quantum states re-
quires that the probe states must obey the rule∑

n

|cn|2 = 1. (6)

Secondly, the mean photon number of probe states should be
limited to a finite value; thus,∑

n

|cn|2n = n̄, (7)

where n̄ is the mean photon number of probe states.
Based on the model above, one can understand that the

error probability Perr is a function of the variable set of {cn}
with the constraints of Eqs. (6) and (7). Once a specific set of
{cn}, which lets the Perr become minima, the set of {cn}, the
corresponding probe states, is called optimal probe states. To
find the OPSs, we regard the error probability Perr as a target
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FIG. 2. (a) Error probability of classical (black) and quantum (yellow) cases. (b) Quantum advantage (yellow) and fidelity (black)
of optimal probe states. [(c)–(e)] Demonstration of Wigner functions of optimal probe states at a reflectivity of 10−3, 0.85, and 0.99,
respectively. [(f)–(h)] Density matrices of optimal probe state at the same conditions as above. In all cases, the mean photon number is set
at n̄ = 1.

function to perform the sequential quadratic programming
(SQP) [46]. After processing the algorithm (see Appendix),
the output set of {cn} or the OPSs are obtained.

To emphasize the difference between the evolved OPSs
and conventional coherent state probing, we first set the initial
condition of {ccoh

n } for the algorithm as a coherent state of

ccoh
n = e−n̄/2 n̄n/2

√
n!

. (8)

Then, we calculate the error probabilities by substituting both
the coherent state and OPSs into Eq. (1), respectively, re-
sulting in Pcoh

err , representing the error probability when the
coherent state is used, and Popt

err , representing the error prob-
ability when optimal probe states are used. To show the
advantage of optimal probe states, we compare Pcoh

err and Popt
err

by introducing a quantum advantage (QA) of

QA(dB) = 10 log10

(
Pcoh

err

Popt
err

)
(9)

in the following discussions.

III. RESULTS AND DISCUSSION

Utilizing the theoretical tools introduced earlier, we will
analyze the properties of OPSs under various scenarios and
conditions in this section. Specifically, we will examine a
scenario where the probe possesses no prior knowledge of
the target, denoted as p0 = p1 = 0.5. In this case, the error
probability [Eq. (1)] simplifies to (1 − 1

2 ||ρ̂0 − ρ̂1||1)/2, rep-
resenting the most generic detection scenario.

To gain a clear physical understanding of the results ob-
tained for OPSs in a general case of a noisy environment
(n̄env 	= 0), our subsequent discussion will initiate by focusing
on an athermal environment (n̄env = 0). This initial emphasis
aims to demonstrate the evolution strategy of OPSs under
athermal conditions. Drawing insights from these athermal

cases, we will then explore the behavior of OPSs in a noisy
environment.

A. Athermal environment (n̄env = 0)

Let us commence our discussion with the scenario of an
athermal environment. In this case, the environmental state
is designated as n̄env = 0, corresponding to the noise state
ρ̂0 = |0〉〈0|, representing a vacuum state. Under these condi-
tions, we illustrate the advantages and characteristics of OPSs
evolved through the optimization algorithm in Fig. 2.

In Figs. 2(a) and 2(b), we showcase the error probabili-
ties for both coherent states and OPSs with a mean photon
number of n̄ = 1, along with the QA at different reflectivities.
It is evident that OPSs exhibit a higher detection preference
than coherent state probes across all reflectivity regions. In
addition, two exciting phenomena are observed in the results.
Firstly, an important observation is that the photon number
distribution (the diagonal term of density matrix) of OPSs
becomes concentrated as reflectivity increases, as shown in
Figs. 2(c)–2(h).

We first discuss the OPSs in the high-reflectivity region
to understand the behavior. For the OPSs in QTD, it should
be chosen to maximize the dissimilarity between ρ̂1 and ρ̂0.
In the region of r → 1, ρ̂1 is primarily composed of the
probe state ρ̂pr with slight attenuation, while ρ̂0 represents a
vacuum state. Therefore, the optimal strategy for constructing
an OPS is to minimize the overlap with the vacuum state after
reflection by the BS. An extreme case of r = 0.99 is shown
in Fig. 2(h), for example, the mean photon number is set at
n̄ = 1. Consequently, the optimal strategy for OPS, in this
case, is to concentrate the population as much as possible
on the single-photon state, resulting in the OPS being in a
single-photon Fock state.

Expanding on the aforementioned concepts, intuitively,
when considering the state constrained by Eq. (7), any arbi-
trary combination of number states that avoids overlapping
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FIG. 3. Comparison of the diagonal term of OPSs obtained by
the methods of photon statistics [PS, Eq. (11)] and density matrix
[DM, Eq. (1)]. The mean photon number of probe state is set at
(a) n̄ = 1; (b) n̄ = 1.25; (c) n̄ = 1.5; (d) n̄ = 1.75; (e) n̄ = 2. The
reflectivity is set at r = 0.99 for all tests. The fidelity between the
distributions calculated by the two methods is consistently higher
than 0.999.

with |0〉 as much as possible will satisfy the conditions for
OPSs as r → 1, since ρ̂1 is quite close ρ̂pr . However, the
inference above is incomplete; further exploration makes the
results more inspiring and exciting. In Fig. 3, we conducted
tests with various n̄ in the case of r = 0.99 to study the
behavior of OPSs in the high-reflectivity region, as repre-
sented by the gray bars. Notably, it is observed that the choice
of n̄ for OPSs is not arbitrary. OPSs tend to squeeze the pho-
ton number distribution towards higher-number Fock states
as much as possible. We term this phenomenon the photon-
number squeezed states (PNSSs).

To understand the behavior, let us examine the characteris-
tics of ρ̂1 in this high-reflectivity region. As r → 1, the state
ρ̂1 is primarily influenced by ρ̂pr , with a slight attenuation
caused by the imperfect reflectivity of the BS. After the at-
tenuation, the photon number statistics undergo alterations,
resulting in a redistribution of the population from higher
photon-number states to lower photon-number states, thereby
creating an overlap with the vacuum state. Ultimately, this
gives rise to the error probability. To minimize this overlap,
OPSs should concentrate the population as much as possi-
ble on higher photon-number states. However, the energy
limitation of Eq. (7) imposes a constraint on the highest occu-

pation of the photon-number state. Hence, OPSs are unable to
distribute the population limitlessly across an infinitely high
number of states, ultimately resulting in the emergence of
PNSSs.

The core of the above idea is that, in the region where
r → 1, the key information for distinguishing between the
hypotheses of H0 and H1 primarily arises from the change in
the diagonal term of the probe state’s density matrix. In other
words, if the calculation of error probability only considers
the photon number statistics (the change in the diagonal term
of the density matrix) but not the whole density matrix like
Eq. (1), and further processes the optimal algorithm, the eval-
uated OPSs should still be the PNSSs in the r → 1 region.

To verify the concept, we assume that the impact of the
nonunity reflectivity of the BS on ρ̂pr can be analogized as
a photon-number-counting measurement with nonunity effi-
ciency. To capture this effect, we introduce photon number
statistics with a finite efficiency [47]

Pm =
∞∑

n=m

(
n

m

)
rm(1 − r)n−mρpr,nn, (10)

where Pm is the probability that measured mm photon, ρpr,nn is
the photon number distribution of the initial probe state, and
r is the reflectivity or efficiency of photon-number-counting
measurement. For m = 0, it presents the probability of ρ̂1

occupying the vacuum state, which is contributed by the de-
cayed nonzero photon states. Thus, we can obtain that from
Eq. (10) as

P0 =
∞∑

n=0

(1 − r)nρpr,nn. (11)

As discussed above, P0 is the source of error probability. Thus,
OPSs should minimize P0. Here, we implement the optimal
algorithm on Eq. (11) again with different n̄. The numerical re-
sults are shown by the yellow bars in Fig. 3, demonstrating the
good agreement between the two optimal methods, Eqs. (1)
and (11). It is important to emphasize that the methods of
Eq. (1) consider the whole density matrix (DM) to evaluate the
OPSs, while, as a comparison, the methods of Eq. (11) only
consider the diagonal terms (photon statistics, PS). Based on
the close results between these two methods, we conclude that
OPSs do not require information about the phase (off-diagonal
terms of the probe’s density matrix) to discriminate between
H0 and H1 in the r → 1 region. The majority of information is
obtained from the photon number distribution. Furthermore,
this implies that the optimal quantum measurement in the
r → 1 region is the photon-number-counting measurement
with a PNSS probe source. By observing the trend in Fig. 3,
we find the OPSs in r → 1, as

|ψ〉opt
pr = √

pn|�n̄�〉 +
√

1 − pn|
n̄�〉, (12)

where pn = n̄ − �n̄� + 1, �x� = min{n ∈ Z|x � n} and 
x� =
min{n ∈ Z|x � n}.

Now, we discuss another region of low reflectivity. When
r → 0, we can observe that the QA approaches 0, which
means that the coherent state and OPSs now have the same
error probabilities. To clarify the exact quantum state of OPSs
in r → 0 regions, the fidelity between the coherent states and
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FIG. 4. (a) Comparison of phase distribution of OPSs obtained by the methods of phase overlapping [PO, Eq. (15)] and density matrix
[DM, Eq. (1)] in different mean photon numbers. The fidelity between the distributions calculated by the two methods is consistently higher
than 0.999. (b) Demonstration of Wigner functions of vacuum state (ρ0, dashed line) and received state (ρ1, color map) by using OPSs. The
mean photon number of probe state is set at 1. The reflectivity is set at 0.01 for this figure.

OPSs,

F = [Tr
√√

ρ̂cohρ̂opt

√
ρ̂coh]2, (13)

is calculated and shown in Fig. 2(b). The corresponding
Wigner function and density matrix of OPS in the low-
reflectivity case (r = 10−3) are also plotted in Figs. 2(c) and
2(d), respectively. It is clear to see the OPSs in the r → 0 re-
gion tend to be in a coherent state since the fidelity approaches
1. The above results are consistent with and have been demon-
strated in [34] using the method of Lagrange multipliers.

Even though the fact that coherent states are the OPSs in
the r → 0 region has been proven in [34], here we present an
alternative perspective on the physical insight of this result.
Since the overlap between ρ̂recv and ρ̂env = |0〉〈0| is unavoid-
able due to the high attenuation in the low-reflectivity region,
the optimal strategy to distinguish between H0 and H1 is to
introduce the off-diagonal term of ρ̂pr to induce coherence
for ρ̂recv; in other words, the phase information of ρ̂recv now
contributes some information for distinguishing H0 and H1.
Once a given ρ̂pr enables a significant difference between the
phase distribution of ρ̂recv and ρ̂env , the given state is an OPS
in the case of r → 0.

To describe the above idea quantitatively, here we intro-
duce the phase distribution function P(φ) for the quantum
state ρ̂, as [48]

P(φ) = 1

2π

∞∑
n,m=0

ρn,mei(m−n)φ, (14)

where ρn,m is the density matrix element of the state ρ̂, φ is the
phase, and P(φ) is the probability of the phase distribution. It
is easy to observe that when the state is a maximum mixed
state or a number state (e.g., thermal state or vacuum state,
ρn,m = 0 for n 	= m), the phase distribution function is a con-
stant of 1/2π . This implies that those states have no defined
phase information and are symmetrical relative to the origin
point in the phase space. For OPSs in the low-reflectivity
region, efforts should be made to minimize the overlap in
phase distribution of ρ̂recv with the constant phase distribution
of 1/2π in environment states. Thus, we proceed to calculate

the overlap between these states,

〈Precv, Penv〉 =
∫ π

−π

[Precv (φ)Penv (φ)]
1
2 dφ, (15)

where Precv (φ) is the phase distribution of ρ̂recv and Precv (φ)
is the phase distribution of ρ̂env . Equation (15) now serves as a
new target function for characterizing OPSs in the r → 0 re-
gion. Similar to the discussion in the high-reflectivity region,
we investigate an alternative method by employing the opti-
mal algorithm described in Eq. (15) to minimize the overlap
and, consequently, identify the OPSs.

In Fig. 4, we examine various n̄ values for probe states,
starting with an initial condition of r = 0.01, to evaluate the
optimal algorithm based on Eq. (15). The resulting optimal
phase distributions of OPSs obtained using this method are
then presented. In Fig. 4(a), it is evident that the phase distri-
bution of the evaluated OPSs closely mirrors the distribution
of coherent states used as probes. This observation implies
that OPSs in the r → 0 region are near coherent states. Fur-
thermore, since the optimal method in Fig. 4 is grounded in
Eq. (15), emphasizing our focus on utilizing phase distribution
as the means to distinguish between H0 and H1, the results af-
firm our previously discussed idea—the primary information
source is the phase of the received states in the r → 0 region.

To highlight the effect of coherent states as OPSs in r → 0
regions, in Fig. 4(b), we present the phase space representa-
tion of Wigner functions of received states with OPSs in both
target-present and target-absent cases. It can be observed that
after the injection of OPSs into the low-reflectivity BS, ρ̂recv

obtains a defined phase. Since the OPSs are the coherent states
in this low-reflectivity case, the process can be likened to a
displacement operator that acts on ρ̂env [49], which maximally
reduces the overlapping of Wigner functions between ρ̂env and
ρ̂recv .

Let us revisit Fig. 2(b), where both fidelity and QA are
shown as monotonic functions. This implies that OPSs trans-
late monotonically from near-coherent states to PNSSs. Thus,
OPSs in the whole-reflectivity region are non-Gaussian states.
On the other hand, the source of information for distin-
guishing between H0 and H1 gradually shifts from phase
distribution to photon number statistics. Please note that the
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FIG. 5. (a) Quantum advantage of OPSs in the case of n̄env =
{0.04; 0.1; 0.2}, which are represented by yellow, gray, and black
symbols, respectively. The mean photon number is set at 0.04.
(b) The standard deviation (SD) ratio of photon number (square) and
phase (circle) between OPSs and coherent state is presented. (c) The
coherence ratio between OPSs and coherent state with a series of n̄env

(as shown by the label).

results mentioned above are for the cases where nenv = 0. In
the next section, we will start discussing the case where n̄env 	=
0, which will reveal more interesting behaviors different from
the case where n̄env = 0.

B. Noisy environment (n̄env �= 0)

In this section, we examine the scenario of a noisy en-
vironment, where n̄env 	= 0, and ρ̂env represents a thermal
state. Similar to the discussion in the preceding section, we
initially compute the QA for various reflectivities of the BS,
considering a range of n̄env values, as depicted in Fig. 5(a).
Additionally, to comprehend the characteristics of OPSs in
this context, we compute the variance of photon number distri-
bution, �n2

OPS = n̄2 − n̄2, and the full width at half maximum
(FWHM) of the phase distribution �φOPS of the OPSs. To
compare the differences between OPSs and coherent states,
we further calculate the ratio between the photon number
variance and the phase distribution of the two states (SD
ratio). The SD ratio between these two states is illustrated in
Fig. 5(b).

In Fig. 5(a), the QA approaches 0 in the r → 0 region.
Moreover, in Fig. 5(b), the ratio of the variance of the

photon number distribution and the phase distribution both
tends towards 1, indicating that OPSs behave approach coher-
ent states in this scenario. This outcome mirrors the discussion
in an athermal environment. In a noisy setting, the phase
distribution of thermal states remains constant. Hence, the
optimal discrimination method involves assigning a defined
phase to ρ̂recv , while Eq. (15) can also be applied in this case.
This results in OPSs behaving as coherent states even in the
presence of noise in the r → 0 region.

In the r → 1 regions, as depicted in Fig. 5(b), the photon
number variance of OPSs gradually decreases, indicating that
OPSs are evaluated towards PNSSs. Similar to the discussion
in an athermal environment, in the noisy and r → 1 region,
the probe states now dominate the received states but with a
slight leakage of thermal states. As thermal states exhibit a
decreasing photon number distribution, the optimal strategy
for constructing OPSs is to allocate the population to higher
photon number states to minimize the overlap between re-
ceived and thermal states. Consequently, OPSs manifest as
PNSSs in noisy environments and as r → 1.

Unlike the athermal case, however, an interesting behavior
is observed in Fig. 5, where the QA and SD ratio do not
always evolve monotonically and depend on the value of n̄env

for those cases. According to the simulation, the QA and SD
ratio exhibit monotonic behavior for approximately n̄env � n̄.
In this case, since n̄env � n̄, the received states are consistently
dominated by ρ̂pr ; hence, the behaviors of QA and OPS align
with those observed in the athermal environment, as discussed
in Sec. III A. Similar results are illustrated by the SD ratio
of n̄env = 0.04 in Fig. 5(b). It can be observed that both the
�n2

OPS and �φOPS of OPSs are decreasing and increasing,
respectively, implying that the OPSs are evolving into PNSSs
throughout the entire reflectivity region.

In the case of n̄env > n̄, however, the trend of QA and SD
ratio does not exhibit monotonic behavior. In Fig. 5(a), we can
observe that QA has an inflection point at a specific reflec-
tivity rT ; furthermore, the QA is close to 0 when r = rT . In
Fig. 5(b), the SD ratio also exhibits a nonmonotonic behavior.
It is noteworthy that the SD ratio is equal to 1 when r = rT .
Both results indicate that not only the coherent state is the
OPSs for r → 0, but coherent states also serve as the OPSs
for r = rT .

Another crucial discovery is that when 0 < r < rT , the SD
ratio indicates that OPSs have a more precise phase distribu-
tion than coherent states (and higher variance in the photon
number distribution), implying that OPSs are phase-squeezed
states within this region. To comprehend this characterization,
one should realize that this situation is quite different from
the case of an athermal environment. For n̄env > n̄, the ρ̂env

now contributes unavoidable noise photons on the diagonal
terms of the state ρ̂recv not only in the region of r → 0 but
also at a finite reflectivity to a certain degree. Thus, the OPSs
cannot always follow the strategy used in the athermal case
(PNSSs as probe states). To optimally distinguish between
ρ̂env and ρ̂recv , the off-diagonal terms (the coherence) of the
probe states now play a crucial role in providing the difference
between ρ̂env and ρ̂recv , further resulting in the phase-squeezed
state in the 0 < r < rT region.

To validate the idea, we introduce the size of off-diagonal
elements to quantify the coherence, denoted as C, of the OPSs
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and further analyze its relation with the reflectivities. The
coherence of the quantum state ρ̂ is defined as [50]

C(ρ̂) =
∞∑

n 	=m

|ρn,m|, (16)

where ρn,m is the off-diagonal matrix elements of ρ̂. In
Fig. 5(c), we depict the coherence ratio between OPSs and
coherent states with a fixed mean photon number of n̄ = 0.04.
The trend of the coherence ratio illustrates that under the
conditions of 0 < r < rT and n̄env > n̄, the coherence of OPSs
surpasses that of coherent states. This observation supports
our perspective that coherence plays a crucial role in dis-
tinguishing between ρ̂env and ρ̂recv within the conditions of
0 < r < rT and n̄env > n̄.

We now elucidate and consolidate the behaviors and prop-
erties of OPSs across the entire range of r. In Fig. 5, in
the region 0 < r < rT , as r increases, the contribution of the
photon number distribution from the thermal states gradually
loses influence on ρ̂recv . Thus, the optimal strategy for distin-
guishing between ρ̂recv and ρ̂env starts to shift from mainly
using coherence to a combination of both photon number
distribution and coherence. This results in the SD ratio of
OPSs gradually tending towards 1. Finally, when r = rT , the
OPSs revert to coherent states. When r > rT , ρ̂recv start to be
dominated by ρ̂pr . Therefore, the behavior of OPSs tends to
PNSSs, as demonstrated in Fig. 5(b).

IV. SUMMARY

In this section, we consolidate the study and results from
the preceding sections. Based on the preceding discussion,
we can distill OPSs into two scenarios. In the case where
n̄ � n̄env , the characteristics of ρ̂pr wield a dominant influ-
ence on the received states throughout the entire range of
r. Consequently, OPSs consistently shift towards PNSS as r
increases. Conversely, when n̄ < n̄env , OPSs display features
that allow us to classify them into two distinct regions. For r <

rT , the coherence of OPSs surpasses that of coherent states,
presenting phase-squeezed states that predominantly utilize
the off-diagonal term of ρ̂pr as the information source for
executing QTD. When r > rT , ρ̂pr recapture the domination
of ρ̂recv , the OPSs turn back to PNSSs. In addition, regardless
of whether n̄ � n̄env or n̄ < n̄env , the OPSs are near-coherent
states and PNSSs [Eq. (12)] as r tends towards 0 and 1,
respectively.

At the specific point r = rT , identified as a transition
point, OPSs transition from phase-squeezed states to PNSSs.
In other words, r = rT marks a demarcation point for the
primary information utilized in QTD. When r < rT , the off-
diagonal term of OPSs takes main effect in distinguishing
between the H0 and H1. For r > rT , it transitions to the di-
agonal term of OPSs.

Intuitively, as the ratio of n̄env/n̄ increases with the growth
of rT , it implies that ρ̂recv requires a greater composition of
probe states to counteract the influence of ρ̂env . This specu-
lation is also illustrated in Fig. 5. Interestingly, OPSs assume
the form of coherent states at r = rT , resulting in the absence
of quantum advantage at this specific point. This occurrence

presents a potential strategy for the target or jammer to
weaken the impact of QTD.

V. CONCLUSIONS

In conclusion, this study utilizes an optimization algorithm
to identify single-mode OPSs across the entire range of target
reflectivity, thereby complementing the existing knowledge
of OPSs in non-extreme detection conditions. Additionally,
through a comparative analysis with alternative methods for
OPSs assessment, we provide a clear physical interpretation
of the observed phenomena. For future work, expanding the
analytical approach to include two- or even higher-mode QTD
could facilitate the identification of OPSs with entanglement
and contribute to a more comprehensive theoretical model of
quantum illumination and quantum target detection. On the
other hand, from the perspective of the target and jammer,
their objective is to diminish the performance of the prober’s
quantum advantage. In this scenario, the jammer could emit
various possible noise quantum states arbitrarily to reduce
the information obtained by the prober. Therefore, from the
perspective of both the target and the jammer, identifying an
optimal jammer (noise) quantum state will also be a crucial
future task in defending against quantum target detection.
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APPENDIX: OPTIMIZATION ALGORITHM

In this section, we introduce the optimal algorithm, se-
quential quadratic programming (SQP), used to evaluate the
OPSs in this study. SQP is a numerical optimization algorithm
utilized to minimize a nonlinear objective function while ad-
hering to equality and inequality constraints.

Figure 6 presents the flow chart of SQP. Consider a parent
problem that needs to find the solution xk to minimize a
target function f (x). Newton’s method provides an iterative
approach for finding this solution. However, when the prob-
lem includes constraints such as h(x) � 0 and g(x) = 0, SQP
suggests considering a quadratic programming (QP) subprob-
lem to calculate the Newton step direction dxk in order to
generate a better approximation xk+1. In QP subproblem, the
target function is transformed to

f (xk ) + ∇ f (xk )T dxk + 1
2 dxT

k ∇2
xxL(xk, λk, σk )dxk, (A1)

with the constraints that be considered to the first-order term
of Taylor expansion

h(xk ) + ∇h(xk )T dxk � 0,

g(xk ) + ∇g(xk )T dxk = 0.
(A2)

We begin the algorithm by initializing a set of param-
eters, denoted as [x0, λ0, σ0]. These initial values are then
fed into the QP subproblem to compute the first Newton
step dx0 using the Lagrange multiplier method. Subse-

023084-8



OPTIMAL PROBE STATES FOR SINGLE-MODE QUANTUM … PHYSICAL REVIEW RESEARCH 6, 023084 (2024)

FIG. 6. Schematic diagram for the basic SQP algorithm. L is the Lagrangian for the problem, λk and σk are Lagrange multipliers. ∇2
xx is

Hessian matrix.

quently, the parameter set in the parent problem is updated
as [x1, λ1, σ1]T = [x0, λ0, σ0]T + dx0. This updated parame-
ter set serves as the initial condition for the second round of
the QP subproblem and is utilized to compute the subsequent
Newton step, dx1. This process is repeated iteratively, updat-
ing the parameter set as [xk+1, λk+1, σk+1]T = [xk, λk, σk]T +
dxk , until the parent problem converges. Finally, the resulting
xk values that minimize f (x) are obtained, providing the solu-
tion to the optimization problem.

In our case, the target function f (x) is the error probability
[Eq. (1)], while the constraint g(x) is defined by the normal-
ization condition, Eq. (6), and the finite mean photon number
of probe states, Eq. (7). Due to computational limitations, the
dimension of the calculated density matrix is restricted to 8,
spanning from the vacuum state |0〉 to the number state |7〉. By
evaluating the algorithm with these equations and conditions,
we can determine the optimal probe states under arbitrary
detection conditions.
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