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Field control of symmetry-broken and quantum disordered phases
in frustrated moiré bilayers with population imbalance
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We determine the ground states and excitation spectra of the paradigmatic four-flavor Heisenberg model
with nearest- and next-nearest-neighbor exchange couplings on the triangular lattice in a field controlling the
population imbalance of flavor pairs. Such a system arises in the strongly correlated limit of moiré bilayers of
transition metal dichalcogenides in an electric displacement field or in-plane magnetic field, and can be simulated
via ultracold alkaline-earth atoms. We argue that the field tunes between effective SU(4) and SU(2) symmetries in
the balanced and fully polarized limits and employ a combination of mean-field calculations, flavor-wave theory,
and exact diagonalization to analyze the intermediate, imbalanced regime. We find different symmetry-broken
phases with simultaneous spin and excitonic order depending on the field and next-nearest-neighbor coupling.
Furthermore, we demonstrate that there is a strongly fluctuating regime without long-range order that connects
candidate spin liquids of the SU(2) and SU(4) limit. The strong fluctuations are facilitated by an extensive
classical degeneracy of the model, and we argue that they are also responsible for a strong polarizability at 1/3
polarization that survives from the mean-field level to the exact spectrum.
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I. INTRODUCTION

Strong correlations and frustration in quantum systems
constitute a promising combination in the quest for useful
phases of matter. They have a high potential for the realiza-
tion of unconventional spin orders with functional magnetic
properties [1], as well as sought-after spin-liquid states with
high entanglement and fractionalized excitations [2–4]. These
phases are facilitated through a large degeneracy of the (clas-
sical) ground state (GS), which is why quantum spin models
with various sources of degeneracy are intensely studied. For
example, these include frustrated lattice geometries [5–11],
higher SU(N) symmetries [12–23], or competing nearest- and
next-to-nearest-neighbor interactions [24–37]. For their con-
trolled design and manipulation, tunable [38–40] platforms
are generally desirable, and even more so due to the fragile
nature of quantum spin liquids.

The quantum simulation of strongly correlated fermions
is established in ultracold atoms, and it was demonstrated
that alkaline-earth atoms in optical lattices realize strongly
correlated systems with a tunable number of flavors N
and SU(N)-symmetric interactions [41–50]. Moiré transition
metal dichalcogenides (TMDs) offer recent solid-state alter-
natives for the controlled study of strongly correlated electron
systems, including triangular-lattice Hubbard models [51–68].
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In particular, it is possible to form an SU(4) pseudospin out of
layer and real spin degrees of freedom in twisted AB-stacked
bilayers or three-layer hetero-structures with insulating mid-
dle layer [69]. In an experimental realization with WSe2

competing electronic states with correlated insulators at inte-
ger fillings were reported [70]. An important tuning parameter
in these experiments is given by a perpendicular electric field
which controls the layer polarization. For integer layer popu-
lations, Mott insulators are formed at strong coupling, while at
imbalanced layer populations, interlayer excitonic insulators
(EIs) can emerge [70,71]. The Zeeman effect of an in-plane
magnetic field and a population imbalance in cold-atom ex-
periments acts analogously to such a polarizing field. All
these fields detune the population of pairs of flavors against
each other. Hence, they can be used to interpolate between
effective SU(4) and SU(2) symmetric models from balanced
to full polarization. This is particularly interesting for filling
factors n = 1 or n = 3, where the SU(2) limit corresponds to
the half-filled Hubbard model (as opposed to a band insula-
tor for n = 2). Theoretically, however, the effect of layer or
population imbalance is not well studied.

In this paper, we investigate population-imbalanced AB-
stacked TMD bilayers and ultracold fermionic alkaline-earth
atoms via the SU(4) symmetric triangular-lattice Heisenberg
model in a field. We map out the phase diagram as a function
of the imbalance Pz and next-to-nearest-neighbor coupling J ′,
employing flavor-wave theory and exact diagonalization. In
previous studies of the SU(2) symmetric case, a quantum spin
liquid (of debated nature) was found between a 120◦ and a
stripe magnetic phase when J ′ is increased [27,28,30,34,35].
In the SU(4) limit, there is evidence for a transition from
a quantum liquid to four-sublattice magnetic order upon
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increasing J ′ [19,22,69,72–74]. We show that one can tune
between these two limits via an external field and determine
the different GSs and their excitations in between. We find that
the SU(2) 120◦ antiferromagnet (AFM) develops ferromag-
netic (FM) “dopants” in the minority layer and simultaneous
tripartite interlayer excitonic order when the field depopulates
the half-filled majority layer. For larger J ′, we obtain an evo-
lution from the magnetic stripe order of the SU(2) limit into
a four-sublattice state of the SU(4) limit with intermediate
AFM and excitonic stripes. Furthermore, we demonstrate that
a large part of the phase diagram is occupied by a strongly
fluctuating phase (SFP) in which quantum fluctuations prevent
any long-range order, and we argue that the SFP continuously
connects the candidate spin liquids of the SU(2) and SU(4)
limits.

II. THE MODEL

We depart from the triangular-lattice Hubbard model with
four flavors per site α = {|1〉, |2〉, |3〉, |4〉}. For concreteness,
we identify these flavors with spin ↑,↓ and layer (top, bottom)
degrees of freedom in moiré TMDs [69], i.e., |1〉 = | ↑ t〉,
|2〉 = | ↓ t〉, |3〉 = | ↑ b〉, |4〉 = | ↓ b〉. In the strong coupling
limit and at fillings n = 1, 3 electron(s) per site, the Hubbard
Hamiltonian is well captured by the Heisenberg model [75]

H =
∑

i j

Ji jS
α
β (i)Sβ

α ( j) + δ
∑

i

P̂z
i , (1)

where Sα
β = |α〉〈β| and we consider nearest-neighbor (NN)

and next-nearest-neighbor (NNN) superexchange processes
Ji j of intensity J and J ′, respectively. In addition, we add the
layer polarization P̂z = |1〉〈1| + |2〉〈2| − |3〉〈3| − |4〉〈4| so a
positive (negative) δ favors the population of the bottom (top)
layer. Without loss of generality, we will consider the case
of a positive δ. By reshuffling flavors |1〉, . . . , |4〉, it becomes
clear that the magnetic Zeeman term or a population imbal-
ance of orbitals yield the same model Hamiltonian. If δ = 0,
the Hamiltonian is SU(4) symmetric. For large δ, the system
approaches an effective SU(2) symmetry, where one layer is
completely empty and the other half filled.

For later reference, we define observables of the system
using the SU(4) generators via Ôab = ∑

αβ (σa ⊗ σb)αβSα
β ,

where a = 0, 1, 2, 3, with σ0 = I2×2 being the identity matrix
and σ(1,2,3) = σ (x,y,z) the Pauli matrices. Using this nota-
tion, the top (bottom) spin operators are given by Ŝk

t (b) =
1/2[Ô0,k + (−) Ô3,k], with k = 1, 2, 3. Interlayer processes,
which define the excitonic order parameter, are encoded by
eight operators Ôa,b with a = 1, 2 and b = 0, 1, 2, 3.

III. THE CLASSICAL GROUND STATE

We first determine the mean-field phase diagram as func-
tion of J ′ and δ and consider the role of quantum fluctuations
in the next section. In the SU(4) limit δ = 0 and for J ′ = 0,
the classical GS is extensively degenerate: any state with
different flavors on neighboring sites minimizes the energy.
A finite J ′ selects a four-sublattice GS out of this manifold
[72]. Similarly, at J ′ = 0, we expect an infinitesimal field δ

to select a three-sublattice state out of the manifold because

it possesses the maximal polarization |Pz| = 1/3 (see Fig. 1).
The three-sublattice state with |Pz| = 1/3 is still extensively
degenerate because any site of the third sublattice can be spin
up or down. When |Pz| < 1/3, the GS keeps being highly de-
generate and can be obtained starting from the three-sublattice
state by substituting, e.g., flavors 3 or 4 with flavors 2 or
1 with the constraints of always having different flavors on
neighboring sites, as shown in Fig. 1. In the SU(2) limit for
large polarization δ/J 	 1, the effective half-filled triangular
lattice possesses 120◦ antiferromagnetic order for small J ′ and
transitions to a stripe phase for J ′ > 1/8 [24,25].

To obtain the mean-field phase diagram for general δ

between these limits, we perform a product state ansatz
|�〉 = ∏

i |ψi〉i and minimize the classical energy Ecl =
〈�|H |�〉 [76]. As an ansatz, we choose a state with in-plane
spin order and homogeneous layer polarization Pz given by
|ψi〉 =

√
1+Pz

2 (|1〉 + eiQt
s·Ri |2〉) + eiQp·Ri

√
1−Pz

2 (|3〉 + eiQb
s ·Ri |4〉),

where Qp, Qb
s , and Qt

s are, respectively, the wave vectors
associated with the relative modulations of the pseudospin
(layer), bottom spin, and top spin. We choose this ansatz
|ψi〉 because it can interpolate between the limiting cases and
because it has lower energy than states with flavor-polarized
sites (see below). With this ansatz, we can show analytically
that for almost complete polarization |Pz| � 1, the GS to
order O((1 − |Pz|)2) is given by a configuration Qt

s = �

and Qb
s = Qp = K (see Appendix A). This describes FM

order of the top spin in the scarcely populated layer, and
tripartite 120◦ order of the bottom spin in the densely
populated layer, which reduces to the conventional 120◦
AFM order in the SU(2) limit. Simultaneously, we have a
four-component interlayer excitonic order parameter, where
the nonvanishing components are given by Ô1,0, Ô2,3, Ô1,1,
Ô1,2. The pairs (Ô1,0, Ô2,3) and (Ô1,1, Ô1,2) also form a 120◦
configuration. At Pz = 1/3, the tripartite �KK state with
homogeneous polarization is degenerate with the manifold of
the three-sublattice state with flavor-polarized sites. But for
increasing |Pz|, the energy of the �KK state remains minimal
O((|Pz| − 1/3)2J ), while the energy of the flavor-polarized
state rises strongly O(J ) (see right panel of Fig. 1).

Our numerical minimization confirms the analytical con-
siderations and allows us to obtain the full mean-field phase
diagram between limiting cases. In total, we find three broken-
symmetry states divided by two critical lines δc1 and δc2 (see
Fig. 2). For values of the field δ < δc1 or J ′/J > 1/8, the
energy is minimized by the wave-vector triplet Qt

s = Qb
s = M1

and Qp = M2 (and those related to this by symmetry). This
gives rise to a four-sublattice order where top and bottom spin
Ŝt,b form the same stripe arrangement in one lattice direction
given by M1, and the interlayer exciton has two components
Ô1,0 and Ô1,1, forming stripes in the other lattice directions
defined, respectively, by M2 and M3. This four-sublattice order
is reduced to stripes in the SU(2) limit for J ′ > 1/8 [24,25]
and recovers the SU(4)-symmetric case at δ = 0 [72]. When
δ > δc2 , the GS is determined by the tripartite �KK state. For
δc1 < δ < δc2 , we find a third GS with triplets of incommen-
surate wave vectors. The incommensurate order is classically
stable for J ′/J � 0.11.

For further characterization, we calculate the layer po-
larization as a function of the external field δ for different
values of the NNN exchange intensity J ′ (see Fig. 2). In
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FIG. 1. Sketch of different flavor configurations for J ′ = 0 and three values of the layer polarization. We consider the realization for the
four flavors in moiré TMDs as an example and identify |1〉 = | ↑ t〉, |2〉 = | ↓ t〉, |3〉 = | ↑ b〉, |4〉 = | ↓ b〉 for ↑/↓ spin and t(op)/b(ottom)
layer. At zero field, the energy is minimized by any configuration with unequal nearest neighbours. Left: For an infinitesimal field, such
degenerate, optimal configurations can be maintained while maximizing the energy gain from the field when |Pz| = 1/3. A possible optimal
configuration is given by a tripartite order where the A, B, C sublattices are completely polarized, respectively, with states | ↑ b〉, | ↓ b〉, and
| ↑ t〉, and where state | ↓ t〉 is excluded. Flipping | ↑ t〉 → | ↓ t〉 randomly at any site leaves the energy unchanged. Center: Possible optimal
configuration for |Pz| < 1/3 obtained from the previous tripartite order where in two sites (highlighted in green) states | ↑ b〉 or | ↓ b〉 have
been flipped into | ↓ t〉. Right: High-energy state (3J) with nonhomogeneous polarization obtained from the tripartite order by flipping at one
site (highlighted in blue) state | ↑ t〉 into | ↑ b〉.

the four-sublattice state, the polarization increases linearly as
a function of the field |Pz| = δ/[2(J + J ′)] either until full
polarization if J ′/J > 1/8 or until δ = δc1 , where it jumps
abruptly to a higher value and the order becomes tripartite
(if 0.11 � J ′/J < 1/8) or incommensurate (if J ′/J � 0.11).
In the incommensurate phase, the polarization has a non-
linear behavior for δc1 < δ < δc2 , and at δ = δc2 the system
continuously transitions into the tripartite phase. In the tri-
partite phase, the polarization increases linearly as |Pz| =
(8/27)δ/J + 1/3. We evaluate the size of the first-order jump
using Maxwell’s construction (see Fig. 2), which displays a
nonmonotonic behavior as a function of J ′. At J ′ = 0 the
polarization jumps at δ = 0+ from zero to |Pz| = 1/3. In
approaching this point, the slope of the polarization in the
incommensurate region becomes steeper with decreasing J ′

so the layer polarizability κ = dPz

dδ
diverges at J ′ = 0. Such an

instability of the incommensurate order is accompanied by the
onset of a continuous manifold of degenerate GSs for the clas-
sically forbidden values of the polarization |Pz| < 1/3 [77]. It
is characterized by Q-vector triplets defined on three curves
Qt

s(θ ), Qb
s (θ ), Qp(θ ) around � and K (K ′) in the Brillouin

zone parameterized by the angle θ as shown in Fig. 2 for the
representative case of |Pz| = 0.183.

IV. THE ROLE OF QUANTUM FLUCTUATIONS

We study the excitation spectrum and the stability of the
different phases within flavor-wave theory. Before adding
quantum fluctuations to the mean-field solution, it is useful to
introduce a unitary transformation Ui that brings |ψi〉 → |1〉,

FIG. 2. Left: Phase diagram in the plane δ vs J ′ within mean field (dashed lines δc1 and δc2 ) and including quantum fluctuations (solid lines).
We find three phases displaying long-range order which we label with the wave-vector triplet Qt

s, Qp, Qb
s + Qp (see text). The blue �-K-K ′

regime describes 120◦ spin (AFM) and exciton order (EI) with minority ferromagnetism (FM). In the turquoise M1-M2-M3 region, spin and
excitons form stripes in each layer, leading to a four-sublattice order, and in the red region, they order with incommensurate wave vectors. The
green area in the phase diagram that we named the strongly fluctuating phase (SFP) indicates the region where quantum fluctuations suppress
the order parameter �12 to zero. It connects candidate spin liquids of the SU(2) (δ/J 	 1) and SU(4) (δ = 0) limit. Vertical blue, turquoise,
and red hatches refer, respectively, to the �-K-K ′/M1-M2-M3 incommensurate orders predicted by mean-field theory that are suppressed by
quantum corrections. Center: Mean-field polarization curves as a function of the external field for different values of J ′/J . The inset shows the
Maxwell construction for J ′/J = 0.075. Dashed line is a guide to the eye for the first-order jump. Right: Ground-state degenerate manifold for
|Pz| = 0.183 < 1/3 given by three different curves made of Q-vector triplets Qt

s (green), Qb
s (blue), and Qp (red) that minimize the classical

energy. We explicitly mark three examples of triplets (Qt
s(n), Qb

s (n), Qp(n)) numbered by n = 1, 2, 3. States with Qb
s , Qp around K (circles)

and K ′ (triangles) are degenerate. Arrows denote how triplets evolve with θ , accounting for double valued Qb
s (θ + π ; K (′) ) = Qb

s (θ ; K (′) ).

023082-3



LORENZO DEL RE AND LAURA CLASSEN PHYSICAL REVIEW RESEARCH 6, 023082 (2024)

FIG. 3. Evolution of the flavor-wave spectrum plotted as a function of the crystalline momentum for different values of the layer
polarization |Pz| = 1, 0.62, 0.445, 1/3.

in the same spirit as has been done for evaluating the spin
waves of the 120º AFM [78] and the nonhomogenous quan-
tum Ising model [79]. In this new basis, the GS assumes the
form of a homogeneous fully polarized state where every site
is in the state |1〉. The Hamiltonian in the new basis reads

U H U† =
∑

i j

∑
αα′ββ ′

J (τ ) καα′ (τ )κ∗
ββ ′ (τ )Sα

β (i) Sβ ′
α′ ( j)

+ δ
∑

i

∑
αβ

P̃z
αβSα

β (i), (2)

where καβ (τ ) = 〈α|Ui U†
j |β〉, with τ = Ri − Rj , and P̃z

αβ =
〈α|Ui P̂z

i U
†
i |β〉. We rewrite the Hamiltonian in Eq. (2) as Ecl +

δH , where δH contains the quantum fluctuations in terms of
a generalized Holstein-Primakoff transformation S1

1 = M −∑
n b†

nbn, S1
m = bm

√
M − ∑

b†
nbn, and Sn

m = b†
nbm with three

bosonic operators b(†)
n , n ∈ {1, 2, 3}, and expansion in 1/M.

In the harmonic approximation, we can calculate the char-
acteristic flavor-wave spectrum for the different phases by
diagonalizing δH for various values of δ and J ′. We also
explicitly checked that the dynamical structure factors contain
the same excitations (see Appendix B 2). We first discuss the
results at J ′ = 0. In Fig. 3, we show four different spectra as
a function of the crystalline momentum for different values of
the polarization greater than 1/3. For large enough values of
δ, when the system is fully polarized |Pz| = 1, the spin waves
of the half-filled bottom layer coincide with the ones of the
monolayer 120◦ AFM [24,25,78,80]. They are gapless at k =
�, K and their energy increases linearly in the vicinity of those
points. On top of these excitations, we find two degenerate

gapped FM-like spin waves, which encode the hopping of one
electron from the bottom to the top layer. Their gap at the �

point is controlled by 2|δ − δs| for δ > δs, where δs = 9/4J is
the minimum value of the field necessary for full polarization.
For intermediate values of |Pz| lying in the interval (1/3, 1),
we have three distinct Goldstone modes at the � point, two
of which have a linear dispersion with different velocities
while the third one displays a quadratic behavior that is as-
sociated to the FM Qt

s = 0 wave vector of the top-layer spin
order. At the K point, we observe only one linear Goldstone
mode. Furthermore, the FM mode is strongly suppressed by
decreasing the polarization toward the critical value of 1/3.
At the same time, the two other branches approach each other.
At the critical point |Pz| = 1/3, we obtain two degenerate
excitations with linear Goldstone modes at the � and K points,
and the FM mode completely flattens to zero. As mentioned
before, these zero-energy excitations are already present in
the classical picture, where any spin in the minority layer
of the state with flavor-polarized sites can be flipped without
energy cost, and we observe that they survive upon inclusion
of Gaussian quantum fluctuations. They strongly affect the
system’s properties and mark the end of long-range order that
for J ′ = 0 is stable up to |Pz| = 1/3.

It is also instructive to analyze the role of quantum fluc-
tuations in the classically forbidden region of the parameter
space |Pz| < 1/3. In this region, the classical GS is highly
degenerate. However, quantum fluctuations can remove such
a high degeneracy and select particular states which become
energetically favored once quantum corrections are taken
into account, a well known phenomenon known as quan-
tum order-by-disorder [81–85]. To determine the GS, we
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FIG. 4. Top panels: Flavor-wave spectra for |Pz| = 0.183 and two different values of J ′/J = 0, 0.01. Lower left: Renormalized order
parameter as a function of J ′/J at full polarization. Lower right: Order parameter components as a function of the external field for fixed
J ′/J = 0.075. When �1α < 0 (gray shaded area in the plots), quantum fluctuations destroy the mean-field order.

calculate quantum corrections to the energy for every degen-
erate classical state by evaluating the zero-point energy of
quantum fluctuations (see Appendix B 1). We find that Qt

s
and Qb

s selected by quantum fluctuations lie, respectively, on
the �-M and K-M directions. Figure 4 displays the flavor-
wave spectrum as a function of the crystalline momentum for
Pz = −0.183. We observe that the fluctuation energy vanishes
along the �-M direction and that we have Goldstone modes at
the M point and at two incommensurate wave vectors lying,
respectively, on the M-K and K-� directions. The nodal line
in the �-M direction is again a consequence of the high
degeneracy of the classical GS and disorders the system. As
we show below, the presence and proximity of the zero modes
strongly renormalizes the order parameter and suppresses it to
zero in large parts of the phase diagram.

When J ′ is finite, the degeneracy of the classical GS is
removed everywhere in the phase diagram even in the case
of incommensurate order. Figure 4 shows the flavor-wave
spectra for J ′/J = 0.01 and |Pz| = 0.183. We find that even
small values of the NNN superexchange are enough to remove
the nodal lines appearing in the classically forbidden region
at J ′ = 0. Furthermore, we observe that the Goldstone mode
appearing at the M point for J ′ = 0 now shifts to an incom-
mensurate vector lying in the �-M direction, and that the extra
Goldstone mode appearing along � − K for J ′ = 0 acquires
a gap.

The regularization of the spectra introduced by a non-
vanishing J ′ allows us to quantify the impact of quantum

fluctuations on the order parameter and map out the phase
diagram beyond the mean-field approximation. The classical
GS in the new basis defined in Eq. (2) is given by the com-
pletely polarized state

∏
i |1〉i, with n1 = 1 and n2 = n3 =

n4 = 0, where nα = 1
V

∑
i〈Sα

α (i)〉 is the αth flavor population.
With the inclusion of quantum fluctuations, the density ma-
trix nαβ = 1

V

∑
i〈Sα

β (i)〉 acquires off-diagonal terms and has
a block-diagonal form given by a 1×1 (α, β = 1) and a 3×3
(α, β ∈ {2, 3, 4}) block (see Appendix B). Then, it is natural
to choose the basis that diagonalizes the the density matrix.
The eigenvalues are the occupation numbers of the minority
flavors that, for simplicity, we still refer to as n2, n3, and
n4, and we sort in descending order, i.e., n2 > n3 > n4. The
population of the majority flavor can be computed from the
knowledge of the renormalized minority ones via n1 = 1 −∑4

α=2 nα . In the generic case, the four occupation numbers
are nonvanishing and we can express the order parameter in
terms of three components �1α = n1 − nα with α = 2, 3, 4.
We identify the region in the phase diagram enclosed by the
contour �12 = 0 (see Fig. 2) as a SFP, where quantum fluctu-
ations are so strong that n1 does not represent the occupation
of the majority flavors anymore [86].

The lower panels of Fig. 4 show the order parameter �1α

as a function of NNN superexchange and polarization. As we
explained before, at |Pz| = 1 we have a fully polarized layer
with one fermion per site, which is equivalent to the SU(2)
Heisenberg model. In this case, the GS transitions from a 120◦
AFM to a striped phase at J ′/J = 1/8 on the mean-field level
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FIG. 5. Numerical results from Lanczos exact diagonalization. Left top: Polarization as a function of the external field. The inset displays
the inverse of the plateaux width as a function of polarization, which is an estimate of the system’s polarizability (see main text). The other
panels show the low-energy eigenspectra of the Hamiltonian belonging to different polarization sectors. Antiferromagnets form the Anderson
tower of states proportional to S2/N . Dashed lines are guide to the eyes.

[24,25]. We note that the occupation numbers n3 = n4 = 0
in the SU(2) limit, and the order parameter has only one
component, �12. It displays a cusp at the transition point
J ′/J = 1/8 and crosses zero at two different close-by points,
namely, J ′

a/J ≈ 0.1 and J ′
b/J ≈ 0.138. Between these points

Ja < J ′ < Jb, the order parameter vanishes and becomes neg-
ative. This means that the harmonic approximation cannot be
trusted anymore because quantum fluctuations are so strong
to the point of destroying the order parameter. Interestingly,
this interval is quantitatively comparable to the range of val-
ues where a spin-liquid phase was predicted by Monte Carlo
[30,34] and density matrix renormalisation group (DMRG)
[27,28] calculations.

As an example, we also show the occupation numbers as a
function of the external field at fixed J ′/J = 0.075 in Fig. 4.
For values of Pz close to complete polarization, the system
is in the �-K-K phase and we find n4 = 0, so n1 = �14 only
mildly decreases as a function of decreasing δ. At δ ∼ J , the
GS becomes incommensurate, n4 > 0 and all �1α are lowered
quite rapidly by decreasing δ crossing zero (�1α = 0) there-
after within the incommensurate phase. For smaller values of
δ, the harmonic approximation breaks down and the system
enters the strongly fluctuating regime.

We summarize the impact of quantum fluctuations in the
phase diagram in Fig. 2. We observe that the strongly fluctu-
ating regime connects the putative spin liquid phases of the
SU(4) and SU(2) limits when the layer population is varied
with δ. Similarly, for larger J ′ the four-sublattice and stripe
phases of the limiting cases are continuously connected. In
contrast, the �KK phase, which reduces to the 120◦ AFM for
full polarization, is destroyed by strong fluctuations before the
SU(4) δ = 0 limit can be reached. For small J ′/J the strongly

fluctuating regime is preempted by an incommensurate
phase.

V. EXACT SPECTRA

To gain additional insights about the underlying physics of
the exact solution, we perform Lanczos exact diagonalization
for a 12-site cluster with periodic boundary conditions defined
by the lattice vectors T1 = 4a2 − 2a1 and T2 = 2a1 + 2a2,
where a1 = (1, 0) and a2 = 1

2 (1,
√

3). In Fig. 5, we show the
polarization as a function of the external field. The finite size
allows for seven different polarization values, namely, Pz =
1, 5/6, 2/3, 1/2, 1/3, 1/6, 0. Therefore, the polarization dis-
plays seven plateaus. The width of a given plateau matches the
energy difference between the two GSs belonging to the two
different polarization sectors, i.e., �EPz = E0,Pz − E0,Pz−1/6.
In the thermodynamic limit, the layer polarizability is given
by κ = (lim�Pz→0

�EPz

�Pz
)−1. Hence, we can use the finite dif-

ference �EPz as an approximate estimate of the inverse layer
polarizability (see inset in Fig. 5). We observe that �E−1

Pz
is

strongly peaked at Pz = 1/3, where its value is one order of
magnitude larger than for the other polarizations. This is in
line with the sharpening of the slope of the polarization upon
approaching |Pz| = 1/3 in the mean-field calculation (Fig. 2).

Further insights about the tendency of the system to sta-
bilize a long-range order can be gained by studying the
low-energy sector of the energy eigenspectrum. Mean-field
theory plus quantum fluctuations suggest that the bottom
(top) layer orders antiferromagnetically (ferromagnetically)
for Pz � 1/3. We can check the tendency of the system to
form an AFM order in the bottom layer by plotting the en-
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ergy eigenvalues as a function of the total spin of the bottom
layer, i.e., S2

b = (Sx
b,tot )

2 + (Sy
b,tot )

2 + (Sz
b,tot )

2, with S(x,y,z)
b,tot =∑

i S(x,y,z)
b (i), which is a conserved quantity. In fact, the

low-energy eigenstates of AFMs form a structure known as
the Anderson tower of states: well-separated states that are
proportional to S2/N [72,87–90]. On the other hand, ferro-
magnets do not display the same behavior. Therefore, for
Pz � 1/3, we expect the spectrum to only form the Anderson
tower when the energy eigenvalues are plotted as a function of
S2

b , and not when it is plotted as a function of the total spin. In
Fig. 5, we show the energy spectra for different values of the
polarization sectors. For Pz = 1, the spectrum of the bottom
layer reproduces the one of the SU(2)-Heisenberg model [88].
At Pz = 2/3, the GS is found in the sector with Sb = 0 and
St = 1: we observe that the low-energy excited states with
St = 1 show a linear behavior as a function of Sb(Sb + 1).
However, when the spectrum is plotted as a function of the
total spin eigenvalues, the linear behavior is lost as expected.
Furthermore, the GS is found in the maximal spin sector of the
top layer, signaling the tendency towards a FM order in the top
layer. At Pz = 1/3, we start to observe a small deviation from
linear behavior of the spectrum as a function of Sb(Sb + 1).
Furthermore, we now find the GS in the minimal top-layer
spin sector, i.e., St = 0, probably suggesting that FM order is
already lost for this value of the polarization. At Pz = 1/6, we
observe a sizable deviation from linear behavior, suggesting
that at this value of the polarization, the bottom layer does
not order antiferromagnetically. Thus, the results of the exact
diagonalization provide strong indication that the GS is quan-
tum disordered for small enough polarizations.

VI. CONCLUSIONS

Motivated by realizations in cold atoms and moiré TMDs,
we carried out a theoretical study of the paradigmatic SU(4)-
Heisenberg model on the triangular lattice in the presence of
a polarizing field δ, which controls a population imbalance of
of flavor pairs. On the classical level, the model is strongly
frustrated with an extensive GS degeneracy, which we argued
can persist for finite fields up to polarizations |Pz| � 1/3.
Through a combination of variational mean-field calculations,
flavor-wave theory, and exact diagonalization, we determined
the GSs and excitation spectra for different values of the
field δ and NN coupling J ′. We mapped out a rich phase
diagram with commensurate and incommensurate long-range
orders, as well as a SFP that shows evidence for a quantum
disordered GS.

For small J ′/J and large enough δ, we found a tripartite
phase where the bottom-layer spin and the interlayer exciton
order in a 120◦ fashion while the top layer is ferromagnetically
ordered. Accordingly, its flavor-wave spectrum shows AFM
and FM excitations. For large J ′/J , we found a four-sublattice
phase for all values of δ which displays a striped configuration
for top spin, bottom spin, and excitonic order parameter. In
between these two phases, we found a small sliver of incom-
mensurate order and a large regime of a SFP where quantum
fluctuations suppress long-range order. This is mirrored by
extended zero modes in the flavor-wave spectrum for J ′ → 0.
Our ED calculations on a 12-site cluster provided supporting

evidence for a transition from an ordered to a disordered phase
between large and small values of the polarization. Further-
more, we observed a strong increase in the polarizability upon
approaching the transition.

We argued that in the case of full polarization, where the
system effectively models the SU(2)-symmetric triangular lat-
tice, the SFP can be identified as the precursor of the spin
liquid state found in DMRG and Monte Carlo calculations
[27,28,30,34,35]. Similarly, the SFP coincides with a putative
quantum liquid in the SU(4) limit δ = 0 [19,22,69]. Interest-
ingly, the two limits are continuously connected via the SFP,
making future studies on possible liquid phases in this regime
highly desirable. This could also shed new light on the debated
nature of the SU(2) quantum spin liquid.

Given the rich phase structure, spin and charge configura-
tions can be effectively manipulated via the external field. The
tunability of cold-atom and moiré systems provides an ideal
opportunity to investigate these quantum many-body phases
experimentally. The polarizing field can be readily controlled
and the NNN exchange J ′ is not expected to be very large,
so it seems possible to reach the SFP regime, in particular,
because it occupies an extended region of the phase space.
For example, the softening of the FM mode, which could be
probed by measuring the dynamic structure factor (see Ap-
pendix B 2), would yield direct evidence of approaching the
SFP. Intriguingly, a recent experiment on twisted AB-stacked
WSe2 reported evidence for paramagnetic insulators at hole
density n = 1 for zero and full polarization, and a potential
EI for intermediate polarization. While this is in accordance
with our findings, further experimental and theoretical inves-
tigations are needed to elucidate the nature of the insulating
states. Most notably, this includes the possible emergence of
Mott insulators in the associated Hubbard model.
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APPENDIX A: CLASSICAL ENERGY IN LIMITING CASES

The explicit expression for the classical energy Ecl =
〈�|H |�〉 using the product state ansatz |�〉 = ∏

i |ψi〉i with

|ψi〉 =
√

1+Pz

2 (|1〉 + eiQt
s·Ri |2〉) + eiQp·Ri

√
1−Pz

2 (|3〉 + eiQb
s ·Ri |4〉)

is given by

Ecl = EJ + EJ ′ + Eδ, (A1)

1

JN
EJ = 3

2

(
1 + P2

z

) + 1

4

3∑
τ=1

(
(1 + Pz )2 cos Qt

sτ

+ (1 − Pz )2 cos Qb
sτ + (

1 − P2
z

)[
cos Qpτ

+ cos
(
Qp + Qb

s

)
τ + cos

(
Qp − Qt

s

)
τ

+ cos
(
Qp + Qb

s − Qt
s

)
τ
])

, (A2)

1

J ′N
EJ ′ = 3

2

(
1 + P2

z

) + 1

4

3∑
ρ=1

(
(1 + Pz )2 cos Qt

sρ

+ (1 − Pz )2 cos Qb
sρ + (

1 − P2
z

)[
cos Qpρ

023082-7



LORENZO DEL RE AND LAURA CLASSEN PHYSICAL REVIEW RESEARCH 6, 023082 (2024)

+ cos
(
Qp + Qb

s

)
ρ + cos

(
Qp − Qt

s

)
ρ

+ cos
(
Qp + Qb

s − Qt
s

)
ρ
])

(A3)

1

N
Eδ = δPz, (A4)

where Pz = 〈ψ |P̂z|ψ〉, and τ (ρ) are (N)NN vectors of the
triangular lattice. Generally, the NN sums are minimized by
Qi = ±K with

∑3
τ=1 cos Kτ = −3/2, while NNN sums pre-

fer any of the three M vectors Qi = M since
∑3

ρ=1 cos Mρ =
−1 while

∑3
ρ=1 cos Kρ = 3 and

∑3
τ=1 cos Mτ = −1.

When δ is large, so Pz → −1, the leading order terms
∝ (1 − Pz )2 = O(1) of NN and NNN sums compete. They be-
come equal (EJ + EJ ′ )Qb

s =K = (EJ + EJ ′ )Qb
s =M when J ′/J =

1/8 reproducing the mean-field transition from 120◦ AFM to
stripe phase in the SU(2) case.

Thus, when we consider the case of J ′ = 0 in the Pz →
−1 limit, we obtain Qb

s = K . Then, the next-to-leading order
terms ∝ (1 − P2

z ) = O((1 + Pz )) can all be simultaneously
minimized by the configuration QP = K and Qt

s = 0, which
is the tripartite state we describe in the main text. The total
energy of this state is EJ/(NJ ) = 3(1 − 3Pz )2/8, where N is
the number of lattice sites. This becomes degenerate EJ = 0
with the manifold of three-sublattice states that have flavor-
polarized sites at Pz = 1/3. However, to slightly increase Pz �
1/3 in the latter state, an energy of order J is needed to flip one
site from top to bottom layer. In contrast, the energy cost of the
homogeneous configuration is much smaller (1 − 3Pz )2 � 1.

Considering J ′/J > 1/8 next, the leading order term fixes
Qb

s = M. It is again possible to minimize all second-order
terms O((1 + Pz )) via Qt

s = M and QP = M ′, where M and
M ′ are two inequivalent M vectors. The energy of this homo-
geneous four-sublattice state is (EJ + E ′

J )/N = 2(J + J ′)P2
z ,

which becomes degenerate with the four-sublattice states with
flavor-polarized sites in the SU(4) limit Pz → 0.

APPENDIX B: INCLUSION OF QUANTUM
FLUCTUATIONS

We shall assume that, after the unitary transformation, the
GS of Eq. (2) is very close to the fully polarized state

∏
i |1〉i.

Hence, we can use the following approximation [72,76,91] for
the operators:

S1
1 (i) ∼ M −

∑
α �=1

b†
α (i)bα (i),

S1
α (i) ∼

√
M b†

α (i), (with α �= 1),

Sα
β (i) ∼ b†

β (i)bα (i), (with α, β �= 1), (B1)

where b†
α (i) and bα (i) are creation and annihilation opera-

tors following bosonic statistics, i.e., [bα (i), b†
β ( j)] = δi jδαβ

and M is the classical expectation value of S1
1. Substituting

Eq. (B1) in Eq. (2), we have

UHU† = H0 + H1 + H2 + ..., (B2)

where Hn contains bosonic operators to the power of n.
Within the harmonic approximation we truncate the series in
Eq. (B2) to the second order. The first term in the expansion

gives back the classical energy which reads

H0 = NM2 1

2

∑
τ

J (τ )|κ11(τ )|2 + NMδP̃z
11. (B3)

It is clear from the last equation that δ must be proportional to
M to be consistent with Eq. (B1).

The second term in the expansion contains linear terms in
the bosonic fields and reads

H1 = M
3
2 N

∑
α �=1

∑
τ

J (τ )

2
(κ11κ

†
1α + κα1κ

†
11)bα (i) + H.c.

+ δN
√

M
∑
α �=1

P̃z
α1 bα (i) + H.c. (B4)

This term must vanish for stability reasons and this condition
fixes the value of δ that, after we set M = 1, reads

δ = −
∑

τ J (τ )Re κ11(τ )κ†
1α (τ )

P̃z
1α

. (B5)

It is worth noting that the quantity on the right-hand side
of Eq. (B5) does not depend on the index α for symmetry
reasons.

After setting M = 1, the quadratic term reads

H2 =
∑

i

(
−

∑
τ

J (τ )|κ11|2 − δP̃z
11

)∑
α

b†
α (i)bα (i)

+
∑
iαβ

(∑
τ

J (τ )κα1κ
†
β1 + δP̃z

αβ

)
b†

β (i)bα (i)

+
∑
iταβ

J (τ )

2
καβ κ

†
11 bα (i)b†

β (i + τ ) + H.c.

+
∑
iταβ

J (τ )

2
κα1 κ

†
1β bα (i)bβ (i + τ ) + H.c., (B6)

where we used the shorthand notation for bα (i + τ ),
which indicates the destruction operator of a boson with
flavor α at site Ri + τ . After expanding the bosonic fields
in their Fourier components bα (i) = 1√

N

∑
k eikRi bkα , we can

rewrite the quadratic Hamiltonian in momentum space as the
following:

H2 =
∑

k

∑
αβ

χαβ b†
kα

bkβ + ( fαβ (k)bkαb†
kβ

+ H.c.)

+
∑

k

∑
αβ

gαβ (k)bkαb−kβ + H.c., (B7)

where

χαβ =
∑

τ

J (τ ) κα1κ
∗
β1 + δP̃z

αβ

− δαβ

(∑
τ

J (τ ) |κ11|2 + δP̃z
11

)
,

fαβ (k) =
∑

τ

J (τ )

2
eikτ καβ κ∗

11,

gαβ (k) =
∑

τ

J (τ )

2
e−ikτ κα1 κ∗

1β. (B8)

023082-8



FIELD CONTROL OF SYMMETRY-BROKEN AND QUANTUM … PHYSICAL REVIEW RESEARCH 6, 023082 (2024)

FIG. 6. Quantum fluctuations for Pz = −0.183 which lie in the classically forbidden region. (a) Zero-point energy plotted as a function
of the polar angle θ . (b) Energy distribution on the classical contours shown in Fig. 2. (c) Spin waves spectrum plotted as a function of the
crystalline momentum.

It is useful to introduce the set of conjugate variables bkα =
1√
2
(xkα + ipkα ) and b†

kα
= 1√

2
(x−kα − ip−kα ), which obey the

canonical commutation relation [xkα, pk′α′ ] = i δαα′δk,−k′ . Af-
ter substituting these expressions in Eq. (B7), we can finally
write the Hamiltonian in the following matrix form:

H2 = 1

2

∑
k

(
pk

xk

)T [
HP(k) HPX (k)
HXP(k) HX (k)

](
p−k

x−k

)

+ C, (B9)

where pk = (pk1, pk2, pk3), xk = (xk1, xk2, xk3), with xkα and
pkα being conjugate variables obeying the commutation re-
lation [xkα, pk′β] = i δk,−k′δαβ . The Hamiltonian is a 6 × 6
matrix that has been represented in a block form in Eq. (B9),
where each block represents a 3 × 3 matrix. In particular, we
have that

HP
αβ (k) = χαβ + fαβ (k) + fαβ (−k) + gαβ (k) + gαβ (−k)

HX
αβ (k) = χαβ + fαβ (k) + fαβ (−k) − gαβ (k) − gαβ (−k)

HXP
αβ (k) = i[− fαβ (k) + fαβ (−k) + gαβ (k) − gαβ (−k)]

HPX
αβ (k) = [

HXP
βα (k)

]∗
. (B10)

The additive constant in Eq. (B9) is given by C =
−N

2

∑
α χαα . The spectrum of the quantum excitations is

given by the symplectic spectrum of the Hamiltonian in
Eq. (B9), which coincides with the eigenvalues εkα of
iJH(k), with J = −i σ y ⊗ I3×3 [92].

Within the harmonic approximation, the expression of the
density matrix is given by

nαβ =
〈(

pk

xk

)T [ |α〉〈β| i|α〉〈β|
−i|α〉〈β| |α〉〈β|

](
p−k

x−k

)〉
BZ

, (B11)

where α, β = 2, 3, 4 and the subscript BZ means that the
quantum expectation values for the different crystalline

momenta must be averaged over the Brillouin zone. The
expectation value of the majority flavors, according to
Eq. (B1), is then given by n1 = 1 − ∑4

α=2 nαα .

1. Order by disorder

Quantum fluctuations can remove the high degeneracy of
the classical GS in the regime |Pz| < 1/3 and select par-
ticular states. To investigate this quantum order-by-disorder
phenomenon [81–85], we calculate quantum corrections to the
energy for every degenerate classical state. This is done by
evaluating the zero-point energy of the quantum fluctuations
that in our case reads EZP(θ, �) = ∑

kα εkα (θ, �), where θ and
� = K, K ′ specify the incommensurate order, and then finding
its minimum as a function of the angle. In Fig. 6(a), we show
the zero-point energy as a function of the polar angle θ for
Pz = −0.183: the energy has six minima at ±π/6, ±5π/6 and
±π/2. Since EZP(θ, �) does not depend on the second index
for symmetry reasons, every minimum is doubly degenerate.
In Fig. 6(b), a color plot shows how the zero-point energy is
distributed on the same contours as the ones shown in Fig. 2.
The Q-vector triplet minimizing the energy, given by θ = π/6
and � = K , is plotted with white filled dots. Interestingly,
Qt

s and Qb
s selected by quantum fluctuations lie, respectively,

on the �-M and K-M directions. For convenience, we again
show the flavor-wave spectrum as a function of the crystalline
momentum for Pz = −0.183 in Fig. 6.

2. Dynamical structure factor

Let us define the following retarded Green’s function:

Gab(k, t ) = −i θ (t )〈0|[ξka(t ), ξ−kb]|0〉, (B12)

where we introduced the six-dimensional vector ξk =
(pk, xk ). We can express Gab(k, t ) in terms of the Green’s
function of the quasiparticles by means of a canonical trans-
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FIG. 7. Dynamic structure factor plotted in log scale for different polarization values |Pz| = 1, 0.62, 0.445, 0.36 for J ′ = 0. The ferromag-
netic spin-wave mode that flattens to zero at |Pz| = 1/3 is well visible for all values of the layer imbalance.

formation that diagonalizes the Hamiltonian in Eq. (B9) and
that preserves the canonical variables commutation relations.
This is done via a transformation Sk so S†

kJ Sk = J and
S†

kHkSk = diag(εk, εk ), where Hk is the 6×6 matrix appearing
in Eq. (B9), and εk = (εk1, εk2, εk3). Such a transformation
defines a set of new canonical coordinates, namely, ξk = ξ̃k S†

k
and ξ−k = Sk ξ̃−k . In particular, let us define the following
Hermitian matrix: J̃k = iH−1/2

k JH−1/2
k , which can be rotated

into the following diagonal form: U †
k J̃kUk = diag(εk,−εk ).

It is useful to introduce the following unitary transformation:
Rk = UkT , where T = exp(iσ xπ/4) ⊗ I3×3. Finally, we can
write the canonical transformation as the following: Sk =
H−1/2

k Rk Dk , with Dk = diag(ε1/2
k , ε

1/2
k ).

Hence, Eq. (B12) can be rewritten in the following way:

Gab(k, t ) =
∑
a′b′

[S†
k ]a′a[Sk]bb′G̃a′b′ (k, t ). (B13)

The Fourier transform of G̃, i.e.,
∫ ∞

0 G̃ab(k, t )eiωt dt is a 6×6
matrix with the following structure:

G̃(k, ω) =
(

δαβGX
α (k, ω) −δαβGXP

α (k, ω)

δαβGXP
α (k, ω) δαβGX

α (k, ω)

)
, (B14)

where α = {1, 2, 3} and the block diagonal terms are given by

GX
α (k, ω) = 1

2

(
1

ω − εkα + iη
− 1

ω + εkα + iη

)
,

GXP
α (k, ω) = i

2

(
1

ω − εkα + iη
+ 1

ω + εkα + iη

)
. (B15)

The Green’s function evaluated along the imaginary Matsub-
ara frequencies can be calculated starting from the one in
Eq. (B15) via analytic continuation, i.e., by replacing ω +
iη → iωn, with ωn = 2πn

β
.

Since, flavor-flip processes where the majority flavor |1〉
flips into the minority ones (|α〉 = |2〉, |3〉, |4〉) are encoded
by the operators S1

α , the dynamic structure factor can be
written as

C(k, ω) = − Im i
∫ ∞

0
dt e−iωt

∑
α

〈0|[Sα
1 (k, t ), S1

α (−k)
]|0〉

= − Im i
∫ ∞

0
dt e−iωt

∑
α

〈0|([xkα (t ), x−kα]

+ [pkα (t ), p−kα] + i[pkα (t ), x−kα]

− i[xkα (t ), p−kα])|0〉
= −Im Tr [(I6×6 + σ y ⊗ I3×3)G(k, ω)]. (B16)

Let us note that, since the canonical transformation Sk is
not unitary, the trace appearing in the last equation is affected
nontrivially by the weights [Sk]ab in Eq. (B13). For this reason,
it is useful to evaluate the dynamical structure factor which
measures the absorption intensity. Figure 7 shows the dynamic
structure factor for different values of the layer polarization
and for J ′ = 0. We clearly recover the flavor-wave spectrum.
In particular, we observe that the FM mode that flattens to
zero at |Pz| = 1/3 is clearly visible for all values of the
polarization. Therefore, the softening of this mode could be
used as direct experimental evidence of the high degeneracy
of the excitation spectrum which we identified as the main
mechanism leading to the suppression of LRO and the onset
of possible spin-liquid phases.
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