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Entanglement phase transitions in non-Hermitian Floquet systems
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The competition between unitary time evolution and quantum measurements could induce phase transitions
in the entanglement characteristics of quantum many-body dynamics. In this work, we reveal such entanglement
transitions in the context of non-Hermitian Floquet systems. Focusing on noninteracting fermions in a represen-
tative bipartite lattice with balanced gain/loss and under time-periodic quenches, we uncover rich patterns of
entanglement transitions due to the interplay between driving and non-Hermitian effects. Specially, we find that
the monotonic increase of quenched hopping amplitude could flip the system between volume-law and area-law
entangled Floquet phases, yielding alternated entanglement transitions. Meanwhile, the increase of gain/loss
strength could trigger area-law to volume-law reentrant transitions in the scaling behavior of steady-state
entanglement entropy, which are abnormal and highly unexpected in nondriven systems. Connections between
entanglement transitions and parity-time-reversal (PT) transitions in Floquet spectra are further established. Our
findings not only build a foundation for exploring entanglement phase transitions in Floquet non-Hermitian
setups, but also provide efficient means to engineer and control such transitions by driving fields.
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I. INTRODUCTION

Non-Hermitian Floquet systems have attracted great inter-
est in recent years (see Ref. [1] for a review). The interplay
between periodic drivings and non-Hermitian effects were
found to generate a great variety of phases and transitions
with unique dynamical and topological features in insulat-
ing [2–18], superconducting [19–21], semimetallic [22–26],
and quasicrystalline [27,28] systems. In experiments, non-
Hermitian Floquet physics has also been explored in various
steps including photonics [29–34], acoustics [35,36], elec-
trical circuits [37,38], and ultracold atoms [39–42], yielding
potential applications in stabilizing topological states and con-
trolling material features in open systems.

Despite constant progress, the entanglement properties
of non-Hermitian Floquet matter are much less explored.
As an intriguing phenomenon of entanglement dynamics,
the measurement-induced phase transitions have garnered
increasing attention since 2018 [43–50]. It was found that
with the increase of measurement rates, the steady-state
entanglement entropy (EE) of a quantum many-body sys-
tem could undergo a volume-law to area-law transition in
its scaling behavior versus the system size, which is orig-
inated from the competition between unitary dynamics and
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projective measurements [51–53]. Recently, such entangle-
ment phase transitions have also been explored in the context
of non-Hermitian physics [54–63], where the development
of a dissipation gap and the presence of non-Hermitian skin
effects (NHSEs) were identified as typical mechanisms of
generating these transitions. As PT-symmetry breaking in the
spectrum [2] and NHSEs [12] can both be flexibly controlled
by time-periodic driving fields, much richer patterns of entan-
glement phase transitions are expected to emerge in Floquet
non-Hermitian systems compared with the static case. Fur-
thermore, the interplay between drivings and non-Hermitian
effects may lead to unique types of entanglement transitions
that are absent in nondriven situations, which have yet to be
revealed.

In this work, we address these issues by exploring entan-
glement phase transitions in non-Hermitian Floquet systems.
In Sec. II, we introduce one minimal model of non-Hermitian
Floquet system, which corresponds to a periodically quenched
Su-Schrieffer-Heeger (SSH) [64,65] model with balanced
gain and loss on different sublattices. We analytically obtain
the Floquet spectrum of our model and discover rich patterns
of PT transitions induced by driving and non-Hermitian ef-
fects. In Sec. III, we reveal diversified entanglement phase
transitions in our model and establish the entanglement phase
diagrams by investigating the scaling law of steady-state EE
versus the system size following long-time stroboscopic evo-
lutions. In Sec. IV, we summarize our results, comment on
issues related to experiments and discuss potential future
directions. The numerical method we adopted to study en-
tanglement dynamics of non-Hermitian Floquet systems is
sketched in Appendix A. Entanglement transitions in a gen-
eralized version of our model are briefly discussed in the
Appendix B.
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FIG. 1. Schematic diagram of a periodically quenched non-
Hermitian SSH (NHSSH) model. The chains in the first and second
rows denote the systems in the first and the second half of a driving
period T . � ∈ Z and t denotes time. J and J ′ are the intracell and
intercell hopping amplitudes. Balanced gain (iμ) and loss (−iμ) are
acted on the sublattices A and B. In our calculations, we introduce
real dimensionless parameters J1 ≡ JT/(2h̄), J2 ≡ J ′T/(2h̄), and
γ ≡ μT/(2h̄) for the hopping amplitudes and gain/loss strength.

II. MODEL AND FLOQUET SPECTRUM

To demonstrate the entanglement transitions in non-
Hermitian Floquet systems, we focus on a periodically
quenched SSH model with balanced gain and loss. A
schematic illustration of the model is shown in Fig. 1. The
SSH model forms a paradigmatic setup in the study of topo-
logical insulators. It owns two sublattices A and B within each
unit cell and possesses dimerized hopping amplitudes among
adjacent lattice sites. In our driving scheme, the intracell and
intercell hopping terms of the SSH model are switched on
and off alternatively within each temporal modulation period.
The gain and loss are time independent and acting locally on
the sublattices A and B, respectively. The Floquet operator
of the system, which describes its evolution over a complete
driving period is given by

Û = e−iĤ2 e−iĤ1 , (1)

where

Ĥ1 = J1

∑
n

(ĉ†
n,Aĉn,B + H.c.) + iγ

∑
n

(ĉ†
n,Aĉn,A − ĉ†

n,Bĉn,B),

(2)

Ĥ2 = J2

∑
n

(ĉ†
n,Bĉn+1,A + H.c.) + iγ

∑
n

(ĉ†
n,Aĉn,A − ĉ†

n,Bĉn,B).

(3)

Here ĉ†
n,s (ĉn,s) creates (annihilates) a fermion on the sublattice

s (= A, B) in the nth unit cell. Applying the Fourier trans-
formations ĉn,s = 1√

L

∑
k eiknĉk,s for s = A, B to the system

with L unit cells under the PBC, we can express Ĥ1 and Ĥ2

in the momentum space as Ĥ1 = ∑
k Ĉ†

k H1(k)Ĉk and Ĥ2 =∑
k Ĉ†

k H2(k)Ĉk , where Ĉ†
k ≡ (ĉ†

k,A, ĉ†
k,B),

H1(k) = J1σx + iγ σz, (4)

H2(k) = J2 cos kσx + J2 sin kσy + iγ σz. (5)

σx,y,z are Pauli matrices in their usual representations. k ∈
[−π, π ) denotes the quasimomentum. The associated Floquet
operator then reads

Û =
∑

k

Ĉ†
k U (k)Ĉk, U (k) = e−iH2(k)e−iH1(k). (6)

It is not hard to justify that the Bloch Hamiltonians H1(k)
and H2(k) both possess the PT symmetry, i.e., [PT , H1(k)] =
[PT , H2(k)] = 0, with the parity P = σx and the time rever-
sal T = K, where K takes the complex conjugate. Therefore,
the Bloch-Floquet operator U (k), when expressed in a sym-
metric time frame as

U (k) = e− i
2 H1(k)e−iH2(k)e− i

2 H1(k), (7)

also possesses the PT symmetry in the sense that

PT U (k)PT = U−1(k). (8)

The quasienergy spectrum of U (k) could thus be real in certain
parameter domains even though U (k) is not unitary. Since
U (k) and U (k) are related by a similarity transformation that
does not affect the spectrum, the original system described
by U (k) could also have a real quasienergy spectrum in the
same parameter regions as of U (k). Therefore, our periodi-
cally quenched NHSSH model holds the PT symmetry and
its quasienergy spectrum may undergo real-to-complex tran-
sitions with the increase of the gain and loss strength γ . The
Floquet spectrum of our system can be obtained by solving
the eigenvalue equation U (k)|ψ〉 = e−iE (k)|ψ〉. The resulting
quasienergy dispersions take the forms E±(k) = ±E (k), with

E (k) = arccos(cos E1 cos E2 − n1 · n2 sin E1 sin E2). (9)

Here the terms E1 =
√

J2
1 − γ 2, E2 =

√
J2

2 − γ 2, n1 =
(J1, 0, iγ )/E1, and n2 = (J2 cos k, J2 sin k, iγ )/E2. From
Eq. (9), it is not hard to verify that cos[E (k)] is always real.
Therefore, when | cos[E (k)]| < 1 for all k, the quasienergy
dispersions ±E (k) must be purely real and the system resides
in the PT-invariant regime. When | cos[E (k)]| > 1 for certain
k, the ±E (k) must be complex and the system goes into a PT-
broken phase. A PT transition in the system is then expected
to happen at cos[E (k)] = ±1, or

cos E1 cos E2 − n1 · n2 sin E1 sin E2 = ±1. (10)

Note that these are also the conditions for the two Flo-
quet bands E±(k) to touch with each other at the center
(E = 0, cos[E (k)] = 1) and boundary (E = π , cos[E (k)] =
−1) of the first quasienergy Brillouin zone (BZ) ReE ∈
(−π, π ], respectively. These touching points are second-
order Floquet exceptional points (FEPs). In the first BZ of
k, they appear at the quasimomenta ±kc that satisfy kc =
arccos[ 1

J1J2
( cos E1 cos E2−1

sin E1 sin E2
E1E2 + γ 2)] with E (kc) = 0 and kc =

arccos[ 1
J1J2

( cos E1 cos E2+1
sin E1 sin E2

E1E2 + γ 2)] with E (kc) = π , respec-
tively. Note that the FEPs emerging at the boundary of Floquet
BZ (E = π ) are unique to non-Hermitian Floquet systems.
Similar to exceptional points of static Hamiltonians [66],
FEPs could also lead to the breakdown of adiabatic predic-
tions in driven systems.

In Fig. 2, we present typical cases of the Floquet spectrum
E±(k) [Eq. (9)] for our periodically quenched NHSSH model
under PBC. We find that with the change of the hopping or
gain and loss parameter, the line quasienergy gap between
the two Floquet bands could close at either E = 0 or E = π ,
which is followed by the change of spectral compositions
(real, purely complex or partially real). We thus expect to
have both PT breaking and restoring transitions in the sys-
tem, which are clearly illustrated by the panels at different
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FIG. 2. Floquet quasienergy spectrum of the periodically quenched NHSSH model under PBC. Other system parameters are (J2, γ ) =
(0.1π, 0.5π ) for (a), (b) and (J1, J2) = (2.2π, 2π/3) for (c), (d). In (a) and (c), the blue solid and red dotted lines denote ±ReE (k)/π and
±ImE (k) vs the quasimomentum k. In (b) and (d), the blue solid and red dotted lines represent the two Floquet bands ±E on the complex
quasienergy plane.

J1 in Figs. 2(a) and 2(b). Moreover, we observe that with the
increase of γ , the Floquet spectrum does not change mono-
tonically from real to purely complex. It could instead enter an
intermediate phase with both real and complex quasienergies,
as illustrated by the case with γ = 1.3 in Figs. 2(c) and 2(d).
These rich spectral patterns, as identifiable from Fig. 2, clearly
distinguish our Floquet model from its static non-Hermitian
counterpart [59]. They also underline the alternated and reen-
trant entanglement transitions we are going to reveal in the
next section.

To further characterize the composition of Floquet spec-
trum and discriminate between the PT-invariant and PT-
broken phases, we introduce the ratio of real quasienergies
of U (k), which is defined as

R =
∫ π

−π

dk

2π
�(1 − | cos[E (k)]|). (11)

Here �(x) is the step function, which is equal to 1 (0) if
x > 0 (x < 0). It is clear that we have R = 1 (R = 0) if all
the quasienergies of U (k) are real (complex). If R ∈ (0, 1),
real and complex quasienergies coexist in the Floquet spec-
trum of U (k). A PT-breaking transition then happens when
the value of R starts to decrease from one. In Fig. 3, we
present the quasienergy spectrum [Eq. (9)] and the real-
quasienergy ratio [Eq. (11)] versus the hopping amplitude J1

and the gain/loss strength γ separately for our periodically
quenched NHSSH model. A series of alternated PT-breaking
(R = 1 → R < 1) and PT-restoring (R < 1 → R = 1) transi-
tions can be observed with the change of J1. These transitions
are accompanied by band touchings at the quasienergy zero
or π . They are further mediated by critical phases with co-
existing real and complex quasienergies (0 < R < 1) in the
Floquet spectrum. Meanwhile, we notice that with the raise
of γ from zero, the system could first undergo a PT-breaking
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FIG. 3. Floquet spectrum E [(a), (b)] and ratios of real quasiener-
gies R [(c), (d)] vs the hopping amplitude J1 and gain/loss
parameter γ under the PBC. Other system parameters are (J2, γ ) =
(0.1π, 0.5π ) for (a), (c) and (J1, J2) = (2.2π, 2π/3) for (b), (d). The
solid and dashed lines in (a) and (b) denote the real and imaginary
parts of quasienergy.

transition and its Floquet spectrum changes gradually from
partially real to purely complex. However, real quasienergies
could reappear in a region with larger γ , which is rarely
achievable with the raise of gain and loss strengths in static
non-Hermitian systems. These reentrant PT transitions and
gain/loss-induced real quasienergies are both originated from
the interplay between drivings and non-Hermitian effects.
Their notable influences on entanglement phase transitions
in our non-Hermitian Floquet system will be revealed in
Sec. III. In Fig. 4, we show the values of R versus (J1, J2)
and (J1, γ ) as two typical cases of PT phase diagrams under
the PBC. In both Figs. 4(a) and 4(b), we observe rich patterns
of PT-invariant (in dark red), PT-broken (in dark blue), and
intermediate (0 < R < 1) phases with different compositions
of the Floquet spectrum. Moreover, the change of each system
parameter could induce a series of alternated and reentrant PT
transitions in the spectrum, which is usually unavailable in
static non-Hermitian systems. Specially, we find that with the
increase of gain and loss strength γ , the spectrum could first
change gradually from real (R = 1) to purely complex (R =
0), and then going back to a mixed case (0 < R < 1) with
coexisting real and complex quasienergies [Fig. 4(b)]. This
is again unexpected in static non-Hermitian systems, where
a stronger gain and loss usually prefer a larger proportion
of complex eigenenergy in the spectrum. These observations
imply that time-periodic driving fields could not only induce
rich PT phases and transitions, but also provide a mechanism
to stabilize PT-symmetric non-Hermitian systems in stronger
dissipation regions.

In the next section, we will characterize the entanglement
nature of Floquet phases with different spectral properties in
our periodically quenched NHSSH model. The rich and alter-
nated spectrum transitions found here will be further related
to reentrant entanglement transitions in our system.

FIG. 4. Ratios of real quasienergies R [Eq. (11)] versus
(a) (J1, J2) at γ = π/2 and (b) (J1, γ ) at J2 = 2π/3 for the periodi-
cally quenched NHSSH model [Eq. (1)] under PBC. Different colors
represent different values of R, as can be read out from the color bars.

III. ENTANGLEMENT PHASE TRANSITIONS

In static non-Hermitian systems, it has been identified that
the opening of a dissipation gap along the imaginary-energy
axis could lead to a volume-law to area-law phase transition
in the EE of free fermions [59]. The non-Hermitian skin
effect constitutes another mechanism of generating such en-
tanglement phase transitions [57]. The presence of random
or quasiperiodic disorder may further collaborate with non-
Hermitian effects to generate anomalous log-law to area-law
entanglement transitions [62]. Beyond these static situations,
we will now demonstrate how entanglement phase transitions
could be induced and controlled by time-periodic drivings in
our non-Hermitian Floquet system.

We first outline the methodology of obtaining the EE and
its stroboscopic dynamics for noninteracting fermions in a
Floquet non-Hermitian lattice. Let us consider a system ini-
tialized in the state |�0〉 at time t = 0 and evolved by the
Floquet operator Û with the driving period T . The normalized
state of the system after a number of � (∈ N ) driving periods
is given by

|�(�T )〉 = Û �|�0〉√
〈�0|Û †�Û �|�0〉

. (12)

Note in passing that for a non-Hermitian Floquet system, we
usually have Û †Û 	= 1, and the resulting stroboscopic dynam-
ics is not unitary. Physically, the renormalization process in
Eq. (12) can be related to open-system dynamics dependent
on measurement outcomes, so that the quantum evolution cor-
responds to the null-jump process [57,59,67–70]. Over each
driving period, the state evolves following the Schrödinger
equation with an effective non-Hermitian Hamiltonian Ĥ =
ilnÛ . This is followed by a normalization of the wave function
without going through quantum jumps (postselection).

In the absence of gain and loss (γ = 0), the Hamiltonians
Ĥ1 and Ĥ2 of our system in the two halves of its evolution
period are both Hermitian, and the resulting Floquet dynamics
as described by Û [Eq. (1)] is strictly unitary. In this case, the
denominator of Eq. (12) is always one for a normalized |�0〉,
and there are no issues concerning the exponential growth of
amplitude of the evolving state Û �|�0〉. With finite gain and
loss (γ 	= 0), the Floquet spectrum of Û may become fully
complex or partially complex with second-order FEPs (see
Fig. 2) under PBC. In this case, the norm of the evolved state
Û �|�0〉 may become larger than one and even grow exponen-
tially before the renormalization operated in Eq. (12). Possible
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issues related to this exponential growth of state’s amplitude
can be resolved by adding to our system a time-independent
global loss term in the form of −i	

∑
n(ĉ†

n,Aĉn,A + ĉ†
n,Bĉn,B),

where the loss rate 	 > 0 can be chosen to be large enough.
In this case, the norm of the evolving state Û �|�0〉 can only
decay over time. Meanwhile, the dynamics described by our
Eq. (12) is unaffected, as the global loss terms in the numera-
tor and denominator would be canceled.

In our numerical calculations, we take the PBC and choose
the initial state as

|�0〉 =
L∏

n=1

ĉ†
n,B|∅〉. (13)

Here L is the total number of unit cells in the lattice and
|∅〉 denotes the vacuum state. The state |�0〉 in Eq. (13)
thus describes a charge density wave at half-filling, with each
sublattice B being populated by a single fermion. This initial
state is not an eigenstate of the Floquet operator Û [Eq. (1)]
or the noncommutative Hamiltonians Ĥ1,2 [Eqs. (2)–(3)]. The
system’s hopping parameters will experience sudden changes
in the middle of each driving period, and there are no slowly
varying parameters. Therefore, our system will undergo far-
from-equilibrium dynamics and reaching some steady states
after being evolved stroboscopically over multiple driving
periods. Such a process is nonadiabatic and thus could not
be captured by adiabatic predictions. Other types of pure and
nonequilibrium initial states yield consistent results concern-
ing the entanglement transitions that will be studied below.

At any stroboscopic time t = �T , the matrix elements of
single-particle correlator C(�T ) in the lattice representation
can now be expressed as

Cms,m′s′ (�T ) = 〈�(�T )|ĉ†
m,sĉm′,s′ |�(�T )〉, (14)

where m, m′ = 1, . . . , L and s, s′ = A, B denote the unit cell
and sublattice indices, respectively. Restricting the indices
m, m′ of C(�T ) to a subsystem X with l unit cells gives us
a 2l × 2l block of C(�T ). The eigenvalues of this block con-
stitute the correlation-matrix spectrum {ζ j (�T )| j = 1, . . . 2l}
of the subsystem X. Without interactions, the |�(t )〉 is a
Gaussian state and the bipartite EE can be obtained from
the spectrum of correlation matrix [71]. That is, at any given
stroboscopic time t = �T , we can find the EE between the
subsystem X and remaining part Y of the whole system as

S(t ) = −
2l∑

j=1

[ζ j ln ζ j + (1 − ζ j ) ln(1 − ζ j )]. (15)

Here we have suppressed the time dependence in ζ j for
brevity. The S(t ) thus defined corresponds to the bipartite EE
S(t ) = −Tr[ρX(t ) ln ρX(t )], where the reduced density matrix
ρX(t ) of subsystem X can be obtained by tracing out all the
degrees of freedom belonging to the remaining subsystem
Y with 2(L − l ) sites, i.e., ρX(t ) = TrY[|�(t )〉〈�(t )|]. The
numerical recipe of computing the single-particle correlation
matrix and EE for a non-Hermitian Floquet system are sum-
marized in Appendix A. We emphasize that our approach
only uses the right vector of a single wave function, instead
of biorthogonal density matrices constructed from both right
and left eigenstates. We first investigate the scaling behaviors

(a) (b)

(c)

FIG. 5. Steady-state EE S(L, l ) versus the system size L under
PBC for a equal bipartition l = L/2 and at half-filling. In (a), the
legend gives the value of J1 for each curve, with other system pa-
rameters given by (J2, γ ) = (0.1π, 0.5π ) [same as those taken in
Figs. 2(a) and 2(b)]. In (b) and (c), the legends show the value of
γ for each curve, with other system parameters given by (J1, J2) =
(2.2π, 2π/3) [same as those used in Figs. 2(c) and 2(d)].

of steady-state EE S(L, l ) vs the system size L for l = L/2
(equal bipartition), at half-filling and under PBC. For a given
L and l , S(L, l ) is obtained by averaging the stroboscopic EE
S(t ) [Eq. (15)] over a late-time domain t ∈ [�′T, �T ] with 1 �
�′ < �, where we take �′ = 800 and � = 1000 throughout our
numerical calculations. In Fig. 5, we observe two drastically
distinct scaling behaviors in S(L, L/2) at different strengths
of hopping J1 [Fig. 5(a)] and gain/loss γ [Figs. 5(b)–5(c)].
Referring to Fig. 2, we realize that whenever the Floquet
spectrum of our periodically quenched NHSSH model forms
a dissipation gap along the imaginary-quasienergy axis, the
steady-state EE becomes independent of the system size L
in Fig. 5, such that S(L, L/2) ∼ L0 and area-law scalings
are observed in associated cases. Instead, in the cases when
imaginary quasienergy gaps vanish in Fig. 2, the steady-state
EE becomes proportional to the system size L in Fig. 5,
such that volume-law entangled phases with S(L, L/2) ∼ L
are reached.

Note in passing that within the volume-law entangled
phases, the gradients of S(L, L/2) versus L reach maximal
values in PT-invariant cases with real quasienergy spectra [for
J1 = 0.85π, 1.7π in Fig. 5(a) and γ = 0.4π in Fig. 5(b)].
Meanwhile, volume-law scalings of the steady-state EE can
be observed in both PT-invariant and PT-broken phases, so
long as there are no dissipation gaps along the imaginary
quasienergy axis. These observations indicate that PT
transitions do not have one-to-one correspondences with
entanglement transitions in non-Hermitian Floquet systems.
As another notable result, the scaling behavior of S(L, L/2)
changes from area-law to volume-law when the gain and
loss strength γ raises from 0.9π to 1.3π in Fig. 5(c), which
goes beyond the situation normally expected in nondriven
systems. To further decode entanglement phase transitions
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FIG. 6. Steady-state EE S(L, l ) versus the subsystem size l under
PBC for a fixed total system size L = 320 and at half-filling. (a)–
(c) share the same legends with the corresponding panels (a)–(c) of
Fig. 5. The curves marked by the same symbol in Figs. 5 and 6 have
the same system parameters.

in our non-Hermitian Floquet setting, we present in Fig. 6
the steady-state EE S(L, l ) versus the subsystem size l with
a fixed total number of unit cells L = 320. The system is

still at half-filling and under PBC. In Figs. 6(a) and 6(c),
we observe area-law scalings S(L, l ) ∼ l0 in the steady-state
EE for the cases with finite dissipation gaps along imaginary
quasienergy axes of the Floquet spectra in Fig. 2. When
imaginary quasienergy gaps vanish in Fig. 2, we find that
the S(L, l ) in Figs. 6(a)–6(c) might be fitted by the function
g0 sin(π l/L) + g1 ln[sin(π l/L)] + g2, which is usually
expected in volume-law entangled phases. Therefore, the
scaling behaviors of steady-state EE versus the subsystem size
again suggest two possible phases with different entanglement
nature in our periodically quenched NHSSH model, which
are consistent with those observed in Fig. 5. We also notice
that the appearance of these distinct entangling phases does
not follow a monotonic sequence with the increase of either
the quenched hopping amplitude J1 or the gain and loss
strength γ .

We are now ready to demonstrate entanglement phase tran-
sitions in our system. In Figs. 7(a) and 7(b), we present the
steady-state EE S(L, l = L/2) of our periodically quenched
NHSSH model versus J1 and γ , respectively, for several
different system sizes L under the PBC and at half-filling.
Two clearly distinct regions are observed in both figures.
Referring to the spectrum information shown in Fig. 3, we
conclude that in the parameter regions with gapped Floquet
spectra along the imaginary quasienergy axis and R = 0, the
steady-state EE follows an area-law scaling S(L, L/2) ∝ L0.
Meanwhile, in the regions with R ∈ (0, 1] and gapless Floquet

(a)

(d)

FIG. 7. Reentrant entanglement transitions versus the hopping amplitude J1 [(a), (c)] and gain/loss strength γ [(b), (d)]. System parameters
are (J2, γ ) = (0.1π, 0.5π ) for (a), (c) and (J1, J2) = (2.2π, 2π/3) for (b), (d), which are the same as those chosen for the panels (a), (c) and
(b), (d) of Fig. 3, respectively. (a) and (b) show the steady-state EE S(L, l ), with l = L/2, versus J1 and γ for different lattice sizes L. (c) and
(d) show the gradients g extracted from the linear fitting S(L, L/2) ∼ gL + s0.
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spectra along the imaginary axis, the steady-state EE follows
a volume-law scaling S(L, L/2) ∝ L. Therefore, there should
be entanglement transitions between volume-law entangled
and area-law entangled phases with the change of hopping
or gain/loss strength in our Floquet system. To confirm these
entanglement transitions, we present in Figs. 7(c) and 7(d)
the gradient g of steady-state EE, as obtained from the linear
fitting S(L, L/2) ∼ gL + s0, versus J1 and γ . Multiple area-
law to volume-law (with g = 0 →> 0) and volume-law to
area-law (with g > 0 →= 0) entanglement phase transitions
are now clearly observable. Two notable features deserve to
be further emphasized.

First, with the increase of quenched intracell hopping am-
plitude J1 from zero, we find a series of alternated transitions
between volume-law entangled and area-law entangled phases
[Fig. 7(c)]. Similar patterns of alternated entanglement transi-
tions can be obtained with the variation of intercell hopping
amplitude J2 when J1 is fixed. Therefore, we could induce and
even engineer entanglement phase transitions with high flex-
ibility in non-Hermitian Floquet systems by tuning a single
control parameter, which are hardly achievable in nondriven
situations. The underlying physical picture is as follows. Since
the real part of quasienergy is a phase factor and defined
modulus 2π , two quasienergy bands of a non-Hermitian Flo-
quet system could meet with each other and separate again at
both E = 0 (center of the first quasienergy BZ) and E = π

(edge of the first quasienergy BZ). Moreover, due to the
2π -periodicity of E , the values of Floquet quasienergies E
mod 2π in general could not change monotonically with the
increase or decrease of a single system parameter. The combi-
nation of these two mechanisms then allows the Floquet bands
of our system to touch and re-separate along the ImE axis
sequentially at ReE = 0 and ReE = π . The final results are
alternated entanglement phase transitions triggered by a single
driving parameter, as observed in Fig. 7(c).

Second, with the increase of gain/loss amplitude γ , the
system could first undergo a volume-law to area-law entangle-
ment transition, which is followed by reentering a volume-law
entangled phase through another entanglement transition at
a larger γ , and finally going back to a area-law entangled
phase with the further raise of γ [Fig. 7(d)]. Here, the
non-Hermiticity-induced reentrant transition from area-law
entangled to volume-law entangled phases is abnormal and
usually not available in static non-Hermitian systems. As the
real part of quasienergy also depends on γ , the reentrant
entanglement transition observed here is due to the pres-
ence of two possible gap-closing points at E = 0 and π , the
2π periodicity of ReE and the nonmonotonous dependence
of Floquet spectrum compositions on γ . Assisted by Flo-
quet drivings, the re-emerged volume-law entangled phase
at large dissipation rates may provide us with further room
for protecting quantum information against decoherence. For
completeness, we present in Fig. 8 the gradient g extracted
from the linear fitting S(L, L/2) ∼ gL + s0 of the steady-state
EE versus L at different system parameters, which constitutes
the entanglement phase diagram of our periodically quenched
NHSSH model. A comparison between Figs. 4 and 8 yield
a nice consistency, i.e., the regions with R = 0 (fully com-
plex Floquet spectra with finite dissipation gaps along ImE )
and R > 0 (partially complex or real Floquet spectra with no

FIG. 8. Entanglement phase diagrams vs (J1, J2) and (J1, γ ).
Other system parameters are γ = 0.5π for (a) and J2 = 2π/3 for
(b). The gradient g is obtained from the linear fitting S(L, l ) ∼
gL + s0 of the steady-state EE with l = L/2 at half-filling and under
PBC. The max(g) denotes the maximum of g over the consid-
ered parameter space (J1, J2) ∈ (−3π, 3π ) × (−3π, 3π ) [(J1, γ ) ∈
(−3π, 3π ) × (−2π, 2π )] in (a) [(b)].

dissipation gaps) are associated with area-law entangled and
volume-law entangled phases, respectively. Moreover, rich
patterns of entanglement phase transitions are observable over
broad regions in the hopping and gain/loss parameter spaces.
Therefore, we conclude that the interplay between periodic
driving and non-Hermitian effects could not only generate rich
phases with different entanglement nature, but also trigger al-
ternated and reentrant entanglement transitions in examplary
non-Hermitian Floquet systems.

In Appendix B, we briefly discussed a model following a
different driving protocol, in which the intracell and intercell
hopping terms are both present within each half of the driving
period. Alternated and reentrant entanglement transitions are
also found for the system considered there, whose features are
qualitatively the same as those reported in our main text.

IV. CONCLUSION AND DISCUSSION

In this work, we applied the idea of Floquet engineering to
generate and control entanglement phase transitions in non-
Hermitian systems. By applying time-periodic quenches to the
hopping amplitudes of fermions in a prototypical SSH model
with balanced gain and loss, we found alternated and reentrant
entanglement transitions due to the combined efforts of Flo-
quet driving and non-Hermitian effects. System-size scaling
behaviors of steady-state EE were systematically analyzed
and entanglement phase diagrams were formulated for our
considered model. The alternated transitions between volume-
law and area-law entangled phases are due to driving-induced
consecutive closings and reopenings of Floquet dissipation
gaps along the imaginary quasienergy axis. The driving field
also allows the composition of Floquet spectrum (real vs com-
plex) to change nonmonotonically with the increase of gain
and loss strengths, yielding abnormal area-law to volume-law
reentrant transitions in the steady-state EE following the in-
crease of non-Hermitian effects. The alternated and reentrant
entanglement transitions found here are expected to be generic
and observable in other driven non-Hermitian systems. Our
work thus unveiled the diversity and richness of entanglement
phase transitions in non-Hermitian Floquet systems. It further
provided a flexible route to induce and control entanglement
phase transitions in open systems via periodic driving fields.
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Some remarks on the construction of our model and its
experimental relevance are in order. First, in the early work
of measurement-induced entanglement transitions [43–45], a
hybrid quantum circuit with a brick-wall structure in space
time was considered as a prototypical setup. That system
consists of a one-dimensional (1D) spin-1/2 (or qubit) chain
with nearest-neighbor gates. Every discrete time period of the
circuit has two layers. Each layer has L/2 gates, operating on
the odd links in the first layer and the even links in the second
layer (see the Fig. 1 of Ref. [43]). From the perspective of
Floquet system, the model considered in Ref. [43] may be
viewed as a spin-1/2 chain whose nearest-neighbor spin-spin
couplings are switched on and off alternatively along odd and
even bonds within each driving period. A comparison between
that hybrid quantum circuit and the model introduced in our
Sec. II suggests a clear similarity regarding the employed driv-
ing protocols. The main differences are that in our case, each
qubit is replaced by a lattice site, the coupling bewteen adja-
cent sites become staggered single-particle hopping, and the
non-Hermitian effect is formally introduced by local loss in-
stead of the projective measurements in Ref. [43]. Therefore,
upon suitable modifications, an experimental setup that could
realize the circuit models in previous studies [43–45] may
also be used to realize our model and explore entanglement
transitions therein. Besides, as discussed in Appendix B, al-
ternated and reentrant entanglement transitions can appear in
our setup even if both intracell and intercell hopping terms are
existent in each half of the driving period. The construction of
our model thus captures the essential feature of entanglement
transitions in a class of non-Hermitian Floquet system with
PT symmetry.

In current experiments, periodically quenched non-
Hermitian lattices with internal degrees of freedom can be
implemented in cold atoms and photonic systems. In cold
atoms, the SSH model and its dynamical modulations have
been realized through various different strategies [72–75]. For
example, in a momentum-space lattice of cold atoms, intracell
and intercell hopping terms can be alternatively switched on
and off within a quantum-walk scheme [76]. The periodic
quenching protocol in our Sec. II could thus be implemented.
Furthermore, local loss terms could be introduced by coupling
momentum states to an auxiliary momentum-state bath or a
different internal state that can be moved away by resonant
light [39–42,77–79]. These approaches have been utilized to
realize PT-symmetry breaking and nonreciprocal transport in
cold atoms. Meanwhile, as discussed in Sec. III, the dynamics
of our system is not affected if we only have local loss terms.
Putting together, both the driving protocol and non-Hermitian
effects of our system should be realizable via non-Hermitian
quantum walks of cold atoms in momentum-space lattices,
and our model may thus be engineered in such a setup.
In photonic systems, 1D arrays of periodically driven
resonators have been implemented to detect non-Hermitian
Floquet band structures [34]. In parallel with cold-atom
quantum walks, photonic quantum walks could also realize
alternated switching on and off of intracell and intercell
hoppings, together with non-Hermitian effects introduced
by polarization-dependent photon loss [29–33]. Photonic
setups thus provide another promising candidate for the
realization of our Floquet non-Hermitian SSH model and the

exploration of its dynamics. Putting together, our system and
its entanglement transitions may be experimentally explorable
in near-term quantum simulators.

In future work, it would be interesting to consider entan-
glement phase transitions in non-Hermitian Floquet systems
beyond one spatial dimension [80], with impurities or disor-
der, under other driving protocols, and subject to many-body
interactions. Systematic analyses regarding the critical behav-
iors of steady-state EE at entanglement transition points are
highly desired in non-Hermitian Floquet systems. The experi-
mental realization of our quenched non-Hermitian lattice and
the detection of entanglement phase transitions therein also
constitute interesting directions of future research.
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APPENDIX A: STROBOSCOPIC EE AND ITS NUMERICAL
CALCULATION

Here we outline an approach that can be used to obtain the
stroboscopic EE for our system, which follows the method
introduced in Ref. [57]. Compared with the algorithm outlined
in the Appendix B of Ref. [57], our difference is just to
choose the evolution time interval �t there as our driving
period. This adjustment allows us to find the evolved state
only stroboscopically.

In our study, the EE is obtained from a single wave function
of noninteracting particles. Following Eqs. (12) and (13), this
state vector of our system is given by |�(t )〉 = |�(�T )〉. The
density matrix of the system at any stroboscopic time t = �T
then reads

ρ(t ) = |�(t )〉〈�(t )|. (A1)

Since |�(t )〉 is a normalized right state, ρ(t ) satisfies the
general properties of a pure-state density matrix, i.e., ρ(t ) =
ρ†(t ), ρ(t ) = ρ2(t ), and Tr[ρ(t )] = 1. If we decompose our
1D system into two spatially connected segments X and Y, the
reduced density matrix of the subsystem X can be obtained
by tracing out all the degrees of freedom belonging to the
subsystem Y, i.e.,

ρX(t ) = TrY[ρ(t )]. (A2)

The von Neumann bipartite EE S(t ) between the subsystems
X and Y is defined in terms of ρX(t ) as

S(t ) = −Tr{ρX(t ) ln[ρX(t )]}. (A3)

For free lattice models, a generic connection has been
established between the bipartite EE and the spectrum of
single-particle correlator [71]. It is irrespective of whether
the state evolves following a Hermitian or a non-Hermitian
Hamiltonian, so long as we only consider normalized right
state vectors. In the lattice representation, the matrix ele-
ment of single-particle correlator for our system is given by
the Eq. (14). By diagonalizing this correlation matrix in the
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space of subsystem X, we find the set of its eigenvalues
{ζ j (�T )| j = 1, 2, . . . , 2� − 1, 2�}. Here � is the number of
unit cells belonging to the subsystem X, which has 2� sites in
total since there are two sublattices within each unit cells. Us-
ing these eigenvalues and following Ref. [71], we can obtain
the bipartite EE in terms of Eq. (15). Note in passing that our
definitions and calculations of EE do not employ biorthogonal
state vectors in different Hilbert spaces (see Refs. [81–83] for
discussions of the biorthogonal approach), making the recipe
of Ref. [71] to be applicable.

The remaining issue is to evaluate the wave function |�(t )〉
of noninteracting particles and find out the correlation matrix
element in Eq. (14) efficiently. Starting with the normalized
state |�(t )〉 [Eq. (12)] at the stroboscopic time t = �T , we
obtain the state after one more evolution period as

|�(t + T )〉 ∝ Û |�(t )〉

=
N∏

n=1

⎡
⎣ L∑

m=1

∑
s=A,B

[e−iHeffU ]msn(t )ĉ†
m,s

⎤
⎦|∅〉. (A4)

Here N counts the total number of fermions. L is the num-
ber of unit cells in the lattice. Heff is a 2L × 2L matrix of
the Floquet effective Hamiltonian Ĥeff ≡ i ln Û in the lattice
representation. The normalized state at t + T can be obtained
by performing the QR-decomposition, i.e.,

e−iHeffU = QR. (A5)

Here Q is a 2L × N matrix satisfying Q†Q = 1. R is an N ×
N upper triangular matrix. The 2L × N matrix U is isometry
and it also satisfies U†U = 1. At the time t + T , the matrix
U (t + T ) is then given by

U (t + T ) = Q. (A6)

Note in passing that the matrix U (t = 0) accounts the initial
distribution of fermions in the lattice. For the state |�0〉 in
Eq. (13), the U (t = 0) takes the explicit form

[U (0)] j, j′ = δ j,2 j′ , j, j′ = 1, . . . , N, (A7)

where we have L = N in the half-filled case. Following this
approach, we can find the U (�T ) at any stroboscopic time t =
�T . The matrix elements of single-particle correlator C(�T )
can be obtained as

Cms,m′s′ (�T ) = [U (�T )U†(�T )]m′s′,ms. (A8)

The EE can be finally extracted from the spectrum of C(�T )
according to Eq. (15) in the main text.

The approach considered here is efficient for studying the
long-time stroboscopic dynamics of EE. It is also applicable
to both clean and disordered noninteracting fermionic sys-
tems and under different boundary conditions. As reported in
the main text, our calculations of the Floquet bands and EE
give rise to consistent and physically reasonable predictions
about the spectrum and entanglement transitions in our sys-
tem. These can be observed in our Fig. 3 vs Fig. 7 (see also
Fig. 4 vs Fig. 8). Such observations offer crosschecks for the
correctness and consistency of our dynamical methodology.

FIG. 9. Floquet spectrum E [(a), (b)] and real-quasienergy ra-
tios R [(c), (d)] of Û ′ [Eq. (B4)] vs the hopping amplitude J1 and
gain/loss parameter γ under PBC. We set J10 = J20 = π/20 for all
panels. Other system parameters are (J2, γ ) = (0.1π, 0.5π ) for (a),
(c) and (J1, J2 ) = (2.2π, 2π/3) for (b), (d). The solid points and
dashed lines in (a) and (b) denote the real and imaginary parts of
quasienergy.

APPENDIX B: ANOTHER DRIVING PROTOCOL

In the main text, we studied a model whose intracell and
intercell hopping terms are separately turned on in two dif-
ferent halves of each driving period. This protocol allows
us to demonstrate the alternated and reentrant entanglement
transitions in non-Hermitian Floquet systems with transpar-

(a) (b)

(c) (d)

FIG. 10. Reentrant entanglement transitions vs the hopping am-
plitude J1 [(a), (c)] and gain/loss strength γ [(b), (d)] of Û ′

[Eq. (B4)]. We set J10 = J20 = π/20 for all panels. Other system
parameters are (J2, γ ) = (0.1π, 0.5π ) for (a), (c) and (J1, J2) =
(2.2π, 2π/3) for (b), (d). (a) and (b) show the steady-state EE
S(L, l ), with l = L/2, vs J1 and γ for different lattice sizes L.
(c) and (d) show the gradients g extracted from the linear fitting
S(L, L/2) ∼ gL + s0 of EE.
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ent theoretical and numerical analyses. In this Appendix, we
showcase that the phenomena reported in the main text are
not restricted to the piecewise quenching protocol considered
there.

As an example, we consider a situation in which both the
intracell and intercell hopping terms are present throughout
each driving period. The time-dependent Hamiltonian now
takes the form

Ĥ ′(t ) =
{

Ĥ ′
1 t ∈ [�T, �T + T/2),

Ĥ ′
2 t ∈ [�T + T/2, �T + T ),

(B1)

where Ĥ ′
1 = Ĥ1 + Ĥ10 and Ĥ ′

2 = Ĥ2 + Ĥ20. Ĥ1 and Ĥ2 are
Hamiltonians given by the Eqs. (2) and (3) in the main text.
The additional terms read

Ĥ10 = J10

∑
n

(ĉ†
n,Bĉn+1,A + H.c.), (B2)

Ĥ20 = J20

∑
n

(ĉ†
n,Aĉn,B + H.c.). (B3)

The system now possesses intracell and intercell hopping with
amplitudes J1 and J10 (J20 and J2) in the first (second) half
of each driving period. The Floquet operator of this model is
given by

Û ′ = e−iĤ ′
2 e−iĤ ′

1 . (B4)

Following the methods of Sec. II, we obtain the spectra and
real-quasienergy ratios of the system described by the Floquet
operator Û ′ [Eq. (B4)], as reported in Fig. 9. We find that
with the variation of J1, there are also alternated transitions
between real and complex Floquet spectra. Moreover, reen-
trant transitions from complex to partially real Floquet spectra
are observed with the increase of γ . The spectrum features
of our Floquet model considered in the main text can thus be
qualitatively reproduced after adding the intercell and intracell
hopping terms contained in Ĥ10 and Ĥ20.

Referring to the approaches outlined in Sec. III and
Appendix A, we obtain the steady-state EE S(L, L/2) from
the dynamics guided by Û ′ [Eq. (B4)] for different L, and
further extracting its scaling law vs L at different hopping and
non-Hermitian parameters J1 and γ [Eq. (B4)]. As shown in
Fig. 10, alternated and reentrant entanglement transitions are
clearly observed, and their features are qualitatively identical
to those presented in the Fig. 7 for our original model Û .

Therefore, we conclude that the rich and unique features of
spectrum and entanglement transitions in our non-Hermitian
Floquet system could emerge under different quenching pro-
tocols (here with either J10 = J20 = 0 or J10, J20 	= 0). It
remains an interesting issue to explore other types of Floquet
entanglement transitions under different classes of periodic
driving fields (e.g., harmonic, delta-kicking) in future studies.
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