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Elastic energy driven multivariant selection in martensites via quantum annealing
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We demonstrate the use of quantum annealing for the selection of multiple martensite variants in a microstruc-
ture with long-range coherency stresses and external mechanical load. The general approach is illustrated for
martensites with four different variants based on the minimization of the linear elastic energy. The equilibrium
variant distribution is then analyzed under application of tensile and shear strains and for different values of
the considered shear and tetragonal contributions of the different martensite variants. The interface orientations
between different domains of variants can be explained using the perspective of the elastic energy anisotropy
for regular stripe patterns. For random grain orientations, the response to an external elastic strain is weaker and
variant changes can be interpreted based on the rotated eigenstrain tensor.
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I. INTRODUCTION

The formation of microstructures is critical for many ap-
plications, as it strongly impacts the properties of materials.
In many cases, simulation approaches can nowadays be used
to support experimental investigations related to the under-
standing and prediction of microstructures. Among these
approaches, the phase field approach plays a central role,
as it is able to predict the temporal evolution of nonequi-
librium microstructures [1–5]. To this end, continuous order
parameter fields are used to discriminate between different
phases, grains, and, in particular, martensite variants, and
in this way phase transformation kinetics can be simulated.
Contrary to this approach, we recently presented an approach
which complements the phase field picture in the sense that
it separates discrete from continuous degrees of freedom [6].
Specific applications are stress- or strain-driven transforma-
tions in shape memory alloys or martensitic transformations
in general. There, we assumed for simplicity that a grain can
be in one out of two martensite variant states, which differ
by their eigenstrain, i.e., their stress-free configuration. By
application of external stresses and the presence of internal
stresses, the grains can flip between the two variants, and
these transitions are driven by a reduction of the overall elastic
energy.

The prediction of martensite formation and variant se-
lection has been widely discussed in the literature, see,
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e.g., Ref. [7]. In this context, the concept of a lattice
correspondence between austenite and martensite gained at-
tention, resulting, e.g., in the well-known Kurdjumov-Sachs
or Nishiyama-Wasserman orientation relationships. From a
micromechanical perspective, the strain energy minimization
led to an important development, which is the phenomeno-
logical theory of martensite crystallography [8,9], which is to
a large extent in agreement with experimental observations.
These descriptions are different but related to global energetic
considerations, which use the overall energy of the system to
predict the formation of microstructures.

In the present paper, we focus on the long-ranged elas-
tic effects, which result from mismatches between different
martensite variants. They lead to elastic misfits, which in-
duce interactions not only between neighboring phases and
grains but also depend on and influence the entire microstruc-
ture. As discussed in Ref. [6], the proper minimization of
the elastic energy requires keeping all these interactions, as
an artificial cutoff leads to improper predictions of variant
selections. However, this global perspective introduces an
additional degree of complexity to the overall problem, as
now a huge space of microstructural configurations needs to
be considered. For example, for a microstructure consisting
of N grains and two martensite variants, we therefore have
altogether 2N combinations, and the energy needs to be de-
termined for each of them to find the global ground state,
which corresponds to the (low temperature) thermodynamic
equilibrium. It is obvious that this configuration space is al-
ready too large for moderate grain size numbers, and therefore
not only a brute force energy minimization but also the use
of heuristic approaches like simulated annealing are limited
and require large amounts of computing times. If we consider,
e.g., a system consisting of just N = 20 grains, the number of
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configurations is 2N � O(106); for a typical FFT calculation in
2D with sufficient accuracy, the single core runtime on current
processors is of the order of one minute. This implies that
scanning all configurations to determine the global energetic
minimum requires about 17 000 core hours of computing
time. The question, which arises also generally in the context
of materials science, is how this optimization problem can be
solved efficiently via quantum computing.

A general quantum computer with a sufficient number
of qubits is not available yet, but quantum annealing (QA)
technology [10–14] with several thousands of qubits and cou-
plers is available. In contrast to general-purpose quantum
computers, only specific classes of problems can be han-
dled via QA, i.e., binary quadratic optimization problems
[15]. The basic concept of QA is the initialization of its
qubits in well-defined Hamiltonians, whose ground state is
unique and known [16]. This Hamiltonian is then changed
adiabatically under the operation at cryogenic temperatures
to the desired, final problem Hamiltonian, ideally staying in
the ground state throughout this transformation [16,17] and
therefore enabling efficient global energy minimizations. The
application of QA in materials science is still rare, however,
a few publications have focused on sampling techniques via
QA [18–24], phase transitions in the transverse field Ising
model [25], critical phenomena in frustrated magnetic systems
[26], energy calculations of defective graphene structures
[27], and the automated design of metamaterials [28]. Instead,
the focus of actual research concerning QA rather lies on
performance tests and benchmarking of QA against conven-
tional approaches [29–32]. Among them is the discovery that
QA can be superior to conventional simulated annealing, as
quantum (multiqubit) tunneling can be a more efficient path
to the ground state than thermal excitations [33,34].

In our previous publication [6], we succeeded in mapping
the martensite problem to a quantum annealer formulation,
i.e., a binary quadratic model expressed through an Ising
model or, equivalently, in terms of a quadratic unconstrained
binary optimization [15], which allows us to find the true
ground-state configurations even for many thousand grains in
an extremely short time [6]. This approach builds upon earlier
works in Refs. [35–38]. Although this conceptual progress
demonstrates well the benefits of QA for materials science
modeling, the chosen example was limited, in particular, by
the restriction to just two variants, whereas, e.g., typical shape
memory alloys or martensites in steel possess many more
variants [39–42]. In the present paper, we demonstrate how
the approach can be generalized to multivariant martensites
and show how the resulting variant distributions are influenced
by different tensile strains and random grain rotations.

II. METHODS

The overall concept of the investigations is that we as-
sume that in a microstructure, as depicted, e.g., in Fig. 2,
each (martensite) grain is allowed to select between different
variants, such that the overall elastic energy is minimized in
equilibrium. As the grains are coherently connected to each
other, a variant flip as sketched in Fig. 1 leads possibly to an
energetically unfavorable distortion of the surrounding grains,

FIG. 1. Visualization of the variants used in the present paper.
Spin s1 corresponds to the shear deformation, s2 to the tetragonal
deformation, see Eq. (14).

and therefore the discrete optimization of the variants is a
nontrivial problem.

To achieve a description in the framework of continuum
elasticity, we consider eigenstrain (stress-free strain) expres-
sions of the form

ε
(0)
i j (r) =

N∑
n=1

θn(r)
K∑

k=1

sνε
(0,n,k)
i j . (1)

Here, the function θn(r) is equal to one inside grain n and
vanishes everywhere else. The eigenstrain in each grain with
index n can be a superposition using K spin variables sν =
sn,k = ±1 with the total number of spins Nν = N · K , which
weight eigenstrain tensor components ε

(0,n,k)
i j . Therefore, alto-

gether we have 2K martensite variants in each grain by suitable
selection of the parameters ε

(0,n,k)
i j .

To determine the thermodynamic equilibrium state (mini-
mum elastic energy), first the elastic problem has to be solved
for a given eigenstrain. This can be expressed through the
minimization of the elastic energy with respect to the dis-
placement field ui in combination with suitable mechanical
boundary conditions. In the case of isotropic linear elastic-
ity with phase and variant independent Lamé coefficient and
shear modulus, the elastic energy functional reads

Eel =
∫

V

(
1

2
λ
(
εkk − ε0

kk

)2 + μ
(
εik − ε0

ik

)2
)

dV, (2)

with the system volume V and the strain tensor εik = 1
2 (∂iuk +

∂kui ). In the above expression, the Einstein sum convention is
used.

Contrary to the optimization of the displacement and strain
fields as continuous variables, the variant selection becomes
a discrete problem on top of the preceding step. Following
the Fourier transformation approach outlined in Ref. [6], we
can calculate the elastic energy E ({sν}) of the microstructure
for a given spin configuration {sν}. We note that the approach
does not necessarily require us to use Fourier transformation
methods but, e.g., finite element methods can also be used,

023076-2



ELASTIC ENERGY DRIVEN MULTIVARIANT SELECTION … PHYSICAL REVIEW RESEARCH 6, 023076 (2024)

provided that the elastic interactions can be computed with
sufficient accuracy, as discussed in Ref. [6].

As the expression for the elastic energy is quadratic in the
framework of the linear theory of elasticity, the final expres-
sion for the elastic energy can be expressed as

E ({sν}) = E0 +
Nν∑

ν=1

H̃νsν +
Nν∑

ν,η=1

J̃νηsνsη, (3)

with a quadratic, symmetric matrix J̃νη. The coefficients
E0, H̃ν , and J̃νη can be expressed directly in terms of the
Fourier transformation solution or, alternatively, be calculated
using any elastic solver, which delivers the total elastic energy
E ({sν}) for a given spin configuration {sν}. We note that the
above form of the energy holds for arbitrary values of the spin
variables and does not apply only to the special case sν = ±1.
Therefore, we directly obtain

E0 = E ({sν ≡ 0}), (4)

where all spins have the value 0, which we also denote as the
austenite reference state. Next, we perform calculations where
all spins but one vanish, and the selected one has either the
value +1 or −1. From that, we get

E ({si = ±1, all others 0}) = E0 ± H̃i + J̃ii. (5)

Therefore, we can extract the diagonal element for the self-
interactions as

J̃ii = 1
2 [E ({si = +1, all others 0})

+ E ({si = −1, all others 0} − 2E0] (6)

and, consequently,

H̃i = 1
2 [E ({si = +1, all others 0})

− E ({si = −1, all others 0})]. (7)

Finally, to calculate the interaction coefficients J̃i j for i �= j,
we perform elastic calculations with two nonvanishing spins
si = s j = 1. With

E ({si = s j = 1, others 0})

= E0 + H̃i + H̃j + 2J̃i j + J̃ii + J̃ j j, (8)

where we can directly calculate J̃i j using the expressions
obtained above,

2J̃i j = E ({si = s j = +1, all others 0})

− E ({si = +1, all others 0})

− E ({s j = +1, all others 0}) + E0. (9)

For zero stress boundary conditions, we get for the eigenstrain
of type (1) the simplifications E0 = 0 and H̃i = 0 for all i.

For the use of the quantum annealer, we restrict the al-
lowed spin values to sν = ±1 and we also have to rewrite
the expression (3) in a slightly different way, which excludes,
in particular, self-interactions of the type sisi. The classical
Hamiltonian reads

H = H0 +
Nν∑
i=1

Hisi +
Nν∑
i=1

Nν∑
j=i+1

Ji jsis j, (10)

where the offset H0 only affects the energy value but not the
spin configuration minimizing the energy, and therefore it can
be dropped for the desired Ising type of the QA problem
Hamiltonian. Physically, it corresponds to the elastic energy
of an austenitic microstructure as reference state; see Fig. 1.
Comparison with the expression (3) above gives

H0 = E0 +
Nν∑
i=1

J̃ii, (11)

Hi = H̃i, (12)

Ji j = 2J̃i j for i < j. (13)

This general formulation has the advantage that it decou-
ples the approach for setting up the Ising coefficients for
the annealer from the specific linear elastic energy solver.
Nevertheless, one has to keep in mind that the formulation (3)
relies on the assumption of equal elastic constants in all phases
and variants and coherent boundary conditions. However, it
is valid also in situation beyond the original work [6], where
we used only a single spin to discriminate between the two
martensite variants in each grain. Here, the same approach
also applies for multiple variants using several spins per grain.

On the quantum annealer level, the determined Ising co-
efficients are used to define an energy landscape, where
superconducting loops with clockwise or anticlockwise cir-
culating currents define qubits with different spin states [16].
These superconducting loops interact with external flux bi-
ases, which allow us to control the energy difference and
barrier height of the constructed energy landscape [16]. The
starting point of the annealing process is the initialization
of the system in the ground state of a known Hamiltonian
HD ∼ −∑

i σ
x
i , where σi denotes the Pauli matrices, i.e., cor-

responding to a strong transverse magnetic field [17,43]. This
Hamiltonian is turned during the annealing into the desired
Ising model (10) for which an energetic minimum is sought,
min{si=±1}Hp [15]. The Hamiltonians HD and Hp do not com-
mute [15], and the time taken by the initial Hamiltonian to
reach the low-energy state is sufficiently large to establish
the validity of the adiabatic theorem of quantum mechanics
[44], which postulates that a system stays in its eigenstate
during adiabatic changes. In contrast to classical approaches,
further quantum mechanical principles like tunneling to leave
metastable regions and the usage of entangled states inside
QA processors (QPU) are employed [45]. Especially, if en-
ergetically close low-energy states exist, the QA process
does not always determine the true ground state, therefore a
suitable number of repetitions is performed and the lowest
detected energy is chosen. Additionally, for larger systems,
hybrid QA utilizes classical algorithms and the interplay with
QA to address areas with high computational demands using
a QPU coprocessor working with generic parameters for up
to 11 616 spin variables on the D-Wave Advantage system
[46–48].

III. RESULTS

To illustrate the workflow, we consider a case with four
variants per grain, i.e., two spins per grain. Similar to the pre-
vious work [6], we use specific cases of shear and tetragonal
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distortions, which are now combined and lead to eigenstrains

ε
(0,n)
i j = sn,1

⎛
⎝ 0 ε0 0

ε0 0 0
0 0 0

⎞
⎠ + sn,2

⎛
⎝ε1 0 0

0 −ε1 0
0 0 ε1

⎞
⎠, (14)

where n numerates the grains. For the first application, we
assume that the individual tensors of the shear (involving the
strain parameter ε0) and tetragonal deformations (associated
with ε1) are the same in all grains; later we will also discuss
the case of grain rotations, where the tensors differ from
grain to grain. Figure 1 visualizes the different strain variants
and illustrates the color codings used for the following plots.
The grain structure is generated using a Voronoi tesselation
in two dimensions, and we assume plane strain conditions,
using isotropic linear theory of elasticity with periodic bound-
ary conditions. According to the above approach, first the
self-energies related to each spin are calculated, followed
by a computation of spin-spin interactions, from which the
Ising vector components Hn and interaction parameters Ji j are
extracted.

Apart from the self-generated internal stresses due to the
different variants, a homogeneous external (average) strain
field 〈εi j〉 can also be superimposed, which leads to an ad-
ditional contribution to the magnetic field vector Hn, which
couples the external strain 〈εi j〉 to the k = 0 mode of the
Fourier transform of the eigenstrain tensor. This means that
a change of the external strain leaves the coupling constants
Ji j invariant and only modifies a contribution to Hn, which
can be treated analytically, therefore minimizing the compu-
tational cost for repeated calculations with different external
boundary conditions. Figure 2 shows a sequence of equilib-
rium microstructures and their response to a tensile strain in
the horizontal (x) direction for ε1 = ε0. Here, the computer-
generated, random 2D microstructure consists of 200 grains.
Each grain selects its optimum variant state (sn,1, sn,2) to
minimize the total energy. In Fig. 2(a), the fixed external
strain vanishes, which implies that in the ground state the
volume fractions of the blue and green (respectively, red and
grey) variants should be close to each other, as then the pos-
itive and negative contributions to the shear and tetragonal
(eigen)strain cancel each other to minimize the elastic energy.
The arrangement of the differently colored patches is then a
result of the mutual spin-spin interactions. We can observe
in Fig. 2(a) a structure of horizontal stripes with alternating
layers of shear strain (blue-grey and red-green). Such stripes
with (100) orientation have already been discussed in Ref. [6],
as the formation of these structures minimizes the overall
shear deformation. Additionally, tilted stripe pairs red-blue
and and green-grey correspond to the same tetragonal strain
and annihilating shear strain, similar to the patterns for pure
tetragonal eigenstrain discussed in Ref. [6].

The patterns formed by several variants can be better
understood by analyzing the elastic anisotropy of the transfor-
mation. Specifically, the normal to the interface between two
variants must be close to a direction that minimizes the elastic
kernel of the transformation from one variant to the neighbor-
ing one. This can be demonstrated for platelike domains [49]
but is also very commonly observed in complex microstruc-
tures whose anisotropy is of elastic origin, such as cuboidal

FIG. 2. Equilibrium variant distribution with uniform grain
orientation. The microstructure consist of 200 grains and a ten-
sile strain is applied in horizontal (x) direction. The tensile
strain is (a) 〈εxx〉/ε1 = 0, (b) 〈εxx〉/ε1 = 0.25, (c) 〈εxx〉/ε1 = 0.5,
(d) 〈εxx〉/ε1 = 0.75, (e) 〈εxx〉/ε1 = 1.0, and (f) 〈εxx〉/ε1 = 1.5. In all
figures, ε0 = ε1 and the Poisson ratio is chosen as ν = 1/4 (i.e.,
λ = μ).

microstructures in superalloys [50], Widmanstätten structures
[51], or chessboard structures in Co-Pt alloys [52]. The elastic
kernel can be obtained analytically in Fourier space [49] or
can be calculated in real space, using a regular stripe pattern
of both variants. Indeed, in this geometry, only Fourier modes
perpendicular to the stripes remain, and the elastic energy is
proportional to the elastic kernel. In the following, the orien-
tation dependence of the pattern is analyzed by considering
successively each pair of variants. We assume fixed vanishing
average strain and equal volume fractions of the two involved
variants. The angular dependence of relevant combinations
of stripe pairs is shown in Fig. 3. In these pole figures, the
angle 0◦ corresponds to vertical stripes, and positive angles to
anticlockwise rotations of the pattern. From this figure, one
can conclude that both green-grey and red-blue interfaces are
preferred either at 0◦ or 90◦, and this is in agreement with the
observed interface orientation between these variant pairs in
Fig. 2(a).
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FIG. 3. Orientation dependence of the normalized elastic energy for equal volume fraction stripes consisting of pairs of variants for 〈εi j〉 =
0 and ε1 = ε0.

Both green-red and grey-blue pairs have preferred orienta-
tions around ±38◦. Due to constraints of the chosen system
sizes and the used periodic boundary conditions, typically
deviations from the analytical prediction for infinite system
sizes are expected, as discussed in detail in Ref. [6]. In

the equilibrium microstructure in Fig. 2(a), we indeed find
inclined interfaces between green-red and grey-blue pairs,
which are in line with the theoretical expectation.

Finally, green-blue and red-grey interfaces show a very
pronounced anisotropy with a strong cusp at either 17◦ and
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FIG. 4. 2 × 2 supercell representation of Fig. 2 to emphasize the microstructure patterns. The dashed yellow lines mark the boundaries or
the simulation with periodic boundary conditions. In all figures, ε1 = ε0 and ν = 1/4.

−62◦ (green-blue) or 62◦ and −17◦ (red-grey). Due to this
strong orientation dependence, these interfaces either have
to appear at these preferred angles or they are strongly
suppressed. In fact, the corresponding interface lengths in
Fig. 2(a) are much shorter than the other interfaces.

We note for the subsequent panels of Fig. 2 that the
elaborated anisotropy of the interactions is not affected by
a homogeneous external strain, and therefore the polar plots
in Fig. 3 also remain valid in these cases. In these pictures,
the applied tensile external strain in the horizontal direction
is incrementally increased. This favors the variants with a
positive tetragonal spin value, and consequently the fraction
of green and grey grains increases. They form more and more
pronounced bands in the (100) directions, as explained above,
partly interrupted by disappearing inclined red-blue bands
with unfavorable tetragonal strain contribution. Finally, only
grains with sn,2 = +1 remain, and the volume fractions with
positive and negative shear are essentially the same, as much
as the irregular grain sizes permit.

It is useful to emphasize the periodicity of the patterns
by looking at a 2 × 2 supercell of the simulation domain,
as shown in Fig. 4. The first striking observation is that the
pattern in Fig. 4(c) for 〈εxx〉/ε0 = 0.5 differs significantly
from the other cases. These latter cases show both horizontal
and tilted stripes, as analyzed above. There, grey-green and
red-blue interfaces appear at 0◦ or 90◦, and green-blue as well

as red-grey interfaces play at most a minor role, as discussed
above. The red-green and grey-blue interfaces are roughly
at ±45◦ as a compromise between the preferred analytical
predictions for infinite systems and the constraints by the
periodic boundary conditions.

The special case 〈εxx〉/ε0 = 0.5 shows a remarkable
topological change, as now interfaces between green-blue,
green-red, grey-blue, and grey-red appear, whereas the previ-
ously important red-blue and green-grey interfaces are absent.
Moreover, the newly appearing interfaces are at their preferred
orientations. For example, the marked 24◦ angle inside the red
lozenge is the difference between the 62◦ minimum energy
orientation for the red-grey interface and the 38◦ orientation
for the red-green pattern. This leads to the geometry sketched
in Fig. 4(c), from which the overall periodic pattern is con-
structed. According to the equilibrium angles, this demands
that the joint volume fraction of the diamond-shaped green
and grey domains is sin(80◦)/[sin(24◦) + sin(80◦)] ≈ 0.7,
and therefore this exceptional pattern is only observed close
to a specific external strain value. We note that this chessboard
structure is very similar to the one observed in Co-Pt and
(CuAu)1−x-Ptx systems [52]. However, the symmetry is lower
in the present case because the green and grey regions are not
tetragonal.

The same microstructure as in Fig. 2 is subjected to a
shear strain 〈εxy〉 in the (110) direction, and the results of
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FIG. 5. Equilibrium variant distribution with uniform grain orientation. The microstructure consist of 200 grains and an average shear
strain 〈εxy〉 is applied. The strain is (a) 〈εxy〉/ε0 = 0, (b) 〈εxy〉/ε0 = 0.25, (c) 〈εxy〉/ε0 = 0.5, (d) 〈εxy〉/ε0 = 0.75, (e) 〈εxy〉/ε0 = 1.0, and (f)
〈εxy〉/ε0 = 1.5. In all figures, ε0 = ε1, and the chosen Poisson ratio is ν = 1/4 (i.e., λ = μ).

the energy minimization are shown in Fig. 5. The starting
configuration without external strain Fig. 5(a)] is therefore
identical to Fig. 2(a). An increase of the shear strain favors
variants with positive sn,1, as they accommodate the given
external strain to a large amount. Therefore, for large posi-
tive shear strain 〈εxy〉/ε0 values, only grey and blue patches
remain. As they differ by the tetragonal eigenstrain only, they
align as inclined bands to minimize the total elastic energy,
as discussed in detail in Ref. [6]. In particular, grey-green and
red-blue interfaces are at 0◦ or 90◦, as predicted in Fig. 3.
Similarly, blue-green and red-grey interfaces have orientations
close to the expected ones (±17◦,±62◦). For blue-grey and
red-green interfaces, the periodicity constraint enforces orien-
tations close to 45◦.

An interesting case is the three-variant configuration in
Fig. 5(d) (apart from a negligible fraction of the red variant).
A 2 × 2 supercell of the equilibrium microstructure is shown
in Fig. 6. The overall 45◦ alignment is imposed by periodic
boundary conditions. The green domain slightly changes the
orientation of the blue-grey interfaces so that they are rotated
closer to the optimal orientation 90◦ − 38◦ = 52◦. This con-
figuration would not be favorable at −45◦ (instead of the 45◦)
because the blue-grey interfaces would be rotated away from
the optimal orientation. Instead, for −45◦, red domains appear
in the blue platelets [see Fig. 5(e)].

For the present four-variant setup, the response of the mi-
crostructure does not only depend on the ratio 〈εi j〉/ε0 but

FIG. 6. 2 × 2 supercell of the simulation domain for external
shear 〈εxy〉/ε0 = 0.75 from Fig. 5(d) with ε1 = ε0. Apart from a
negligible amount of the red variant, three phases are present here.
The sketch shows the geometrical explanation of the equilibrium
pattern.
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FIG. 7. Equilibrium variant distribution with uniform grain orientation for 〈εi j〉 = 0. The microstructure consist of 200 grains and the
dimensionless parameter ε1/ε0 is varied. The ratios are (a) ε1/ε0 = 0.2, (b) ε1/ε0 = 1, and (c) ε1/ε0 = 5. In all figures, the chosen Poisson
ratio is ν = 1/4 (i.e., λ = μ).

also on the relative relevance of shear and tetragonal defor-
mations, as expressed through the dimensionless parameter
ε1/ε0. Whereas in the above investigations we have fixed
this ratio to ε1/ε0 = 1, Fig. 7 shows the influence of this
parameter for fixed external strain. Here, we note that a change
of ε0 → aε0 and ε1 → bε1 does not require us to repeat the
entire computations for the interaction parameters Ji j and the
external magnetic field Hi. Instead, it follows from the theory
of linear elasticity that the coupling constants Ji j are quadratic
in the rescaling factors a, b and Hi scales linearly with them. In
detail, for a spin pair (i, j), where both of them refer to shear
transformations, the coupling constants are rescaled accord-
ing to Ji j → a2Ji j , and similarly for two tetragonal spins as
Ji j → b2Ji j . For mixed interactions between a tetragonal and
shear degree of freedom, the rescaling obeys Ji j → abJi j . The
magnetic terms Hn scale linearly with either a or b, depending
on the spin type.

The starting case (center panel in Fig. 7) is again the al-
ready discussed reference situation with ε1 = ε0. In all three
pictures, the boundary conditions are fixed to vanishing av-
erage strain, 〈εi j〉 = 0. The right panel shows the equilibrium
microstructure for ε1/ε0 = 5, which means that the weight of
the tetragonal deformations is significantly larger than that of
the shear. Here, the variants select essentially diagonal bands,
as discussed in Ref. [6], in order to match the periodic bound-
ary conditions. The blue and green variants have canceling
tetragonal and shear eigenstrains, such that for equal volume
fractions the zero strain boundary conditions are met best. We
can also expect that the opposite color pair (red-grey) can lead
to an energetically equivalent solution, and therefore a weak,
locally noisy pattern, which mixes these two configurations,
may appear. We expect this effect to be more pronounced
in larger systems. One may expect that the opposite case
with ε1/ε0 = 0.2, which is dominated by the shear eigen-
strain, should similarly lead to bands with alternating shear
in the 〈100〉 direction, as discussed for the two-variant case
in Ref. [6]. However, as can be seen from the left panel of
Fig. 7, this is not the case. Instead, each horizontal stripe
consists of blue and grey (or red and green) patches, which
share the same shear eigenstrain but have opposite tetragonal

strain. The reason for this assymetry—as compared to the
tetragonal dominated case discussed above—is that a small,
but nonvanishing tetragonal eigenstrain also leads to a tan-
gential mismatch strain at the interfaces between the 〈100〉
bands. Therefore, a purely blue horizontal band would lead
to a contraction in the tangential direction, whereas the com-
pensating green horizontal band would expand in the same
direction, hence leading to large mismatch coherency stresses.
Therefore, it is energetically favorable to generate 〈100〉 struc-
tures with an additional zigzag substructure, such that all four
variants are present with equal volume fraction and only the
irregularity of the microstructure adds some minor noise.

It is again instructive to look at the angular dependence
of the elastic energy for infinite stripe patterns (again for
zero mean strain boundary conditions), as it depends on the
ratio ε1/ε0, see Fig. 8. Here, one can clearly see that the
interaction becomes very anisotropic for green-grey inter-
faces at low ratios ε1/ε0 and essentially isotropic at high
values, with minimum energetic cost at 0◦ and 90◦. For the
green-red interfaces, the trend is opposite. Green-red (and
similarly grey-blue) interfaces have preferred interface orien-
tations ±38◦. The green-blue and similarly grey-red interfaces
have the strongest dependence on ε1/ε0 and, therefore, the
overall energy minimization clearly favors the optimal orien-
tations for these interfaces. From this perspective, Fig. 7(a)
is particularly interesting, and its zigzag structure becomes
obvious in the 2 × 2 supercell representation in Fig. 9. The
white lines emphasize the structure and illustrate that for this
microstructure all interface orientations are optimal and not
affected by periodicity constraints. The last example con-
cerns a case where the grains are oriented randomly, i.e.,
rotated around the [001] axis, as depicted in the left panel
of Fig. 10. Like in the previous publication [6], the response
to a uniaxial strain 〈εxx〉 is less pronounced than in the cases
with uniform grain orientation above. The center panel shows
the equilibrium microstructure for vanishing mean strain,
whereas the right panel is for a rather high tensile strain
〈εxx〉/ε1 = 2.5.

For a clockwise rotation of a grain by an angle α around the
[001] axis, the relevant components of the eigenstrain tensor
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FIG. 8. Polar representation of the orientation dependence of the elastic energy (scaled to the maximum value) for mismatching pairs of
variants. The calculations are for fixed strain boundary conditions 〈εi j〉 = 0.

become

ε (0)′
xx = cos2 α ε (0)

xx + 2 cos α sin α ε (0)
xy + sin2 α ε (0)

yy , (15)

ε (0)′
xy = − sin α cos α ε (0)

xx + (cos2 α − sin2 α) ε (0)
xy

+ sin α cos α ε (0)
yy , (16)

ε (0)′
yy = sin2 α ε (0)

xx − 2 cos α sin α ε (0)
xy + cos2 α ε (0)

yy . (17)

Therefore, for the chosen example, a rotation by π/4 converts
the tetragonal deformation to a shear transformation (and vice
versa), apart from the eigenstrain contribution in the z direc-
tion, which only affects the energetic cost but not the strain
distribution. Therefore, we expect for a tensile load in the

[100] direction, that grains with orientation close to 0 or π (the
response is π -periodic), have a tetragonal spin preferentially
being in state +1; for a rotation near 90◦, the tetragonal
contribution prefers the s = −1 state. For both of these ori-
entations (and nearby values), the shear contributions are
indifferent, as they have only a vanishing or small contribution
ε (0)′

xx , which is sensitive to the tensile strain. As explained
above, for rotations by approximately π/4 (or 3π/4), the role
of shear and tetragonal deformations is exchanged, but the
original tetragonal transformation has an energy penalty due
to the contribution in the z direction for the used plane strain
setup.

For some selected grains in Fig. 10, the change of the
variant states is discussed in the following. Grain 1 has an
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FIG. 9. 2 × 2 supercell of the periodic solution Fig. 7(a) with
ε1/ε0 = 0.2. The structure’s geometry is sketched and highlights the
interface orientations between the variants.

orientation close to 0 (or π ). In the zero strain state, it is
marked in red, hence the shear spin equals −1 and the tetrago-
nal component is also −1. Under stronger tensile load it turns
grey, hence both spins flipped their sign, leading to a stronger
alignment with the external field. Grain 2 has an orientation
close to 90◦, is originally red (shear: −1, tetragonal −1) and
becomes blue in the right panel. In this case, the dominant
effect is to have negative tetragonal spin values, as discussed
above. Finally, for grain 3, which has a mixed orientation,
we effectively have a transition from blue to grey, where
the positive shear spin is relevant due to the orientation near
π/4, whereas the flipping tetragonal spin component is less
relevant.

IV. CONCLUSIONS

From a materials science perspective, quantum quantum is
only starting to influence the opportunities and methodologies
of modeling approaches. It can be expected that, in the future,
general purpose quantum computing will have the potential to
strongly accelerate materials science related simulations and
to enable completely different possibilities. To our knowledge,
sufficiently large quantum computers are not yet available,
and also suitable algorithms have not yet been developed.
Nevertheless, QA, as a specific type of adiabatic quantum
computing, is already commercially available with large num-
bers of qubits today. The type of problems which can be
addressed is limited, as it is required to map the materials
science related problem of interest to the minimization of an
Ising Hamiltonian.

In the present paper, we have demonstrated that the se-
lection of multiple martensite variants can be mapped to an
Ising problem for specific conditions and have demonstrated
how the energy minimization can be performed efficiently via
QA. The superiority of QA compared to classical comput-
ing has been demonstrated in our previous publication [6].
The multiplicity of the domains together with the long-range,
anisotropic, and shape-dependant character of the elastic
interactions make the determination of the ground state a
particularly difficult problem, and therefore QA opens com-
pletely different possibilities. The central result of the present
publication is the generalization to multivariant systems and
the analysis of the arising microstructures. Also, we demon-
strate how the proper coefficients of the Ising model can be
obtained from general linear elastic calculations.

To illustrate the approach, we use a four variant per grain
case, where each grain is represented by two Ising spins. We
use a linear combination of shear and tetragonal deformations
to demonstrate the methodology. As a result, the equilibrium
microstructure depends on the applied external strains (or
stresses), as well as on the strength of the distortions induced
by the different variants. The observed patterns can largely
be explained by computations of the anisotropy of lami-
nar arrangements of the different variants, showing that the

FIG. 10. Equilibrium variant distribution with random grain orientation. (a) Grain orientation map corresponding to the microstructure.
The grain rotation angle in the color bar is given in radian (modulo π due to symmetry). The rotation axis is along the [001] direction. The
microstructure consists of 200 grains and tensile strain in horizontal direction is (b) 〈εxx〉/ε1 = 0 and (c) 〈εxx〉/ε1 = 2.5. In all panels, ε0 = ε1,
and the chosen Poisson ratio is ν = 1/4 (i.e., λ = μ). The grains have a random orientation based on a uniform distribution.
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mismatch of neighboring domains dominates the overall elas-
tic energy.

From a fundamental perspective, it is important to demon-
strate whether QA is superior to classical global minimization
strategies such as simulated annealing. The present example
of long-range elastic interactions between misfitting marten-
site variants falls into the class of random spin glass models,
and therefore it is plausible that—at least for small sys-
tem sizes—the minimization directly benefits from multiqubit
tunneling [33,34]. From the perspective of the investigated
application, suitable scenarios to study this effect could be
constructed through specific arrangements of grains such that
the underlying energy landscape has controlled false min-
ima, similar to Ref. [34]. However, from a materials science
perspective, large numbers of grains are usually more repre-
sentative and desirable, and therefore it is less likely that the
tunneling advantage can be detected in a straightforward way
in the investigated examples. Moreover, beyond the order of
100 grains, the use of hybrid approaches is currently required
and used in the present paper, which changes the mini-
mization dynamics. The results indicate that the ground-state
microstructural configuration is not always found, therefore
requiring repeated simulations, but, in general, the observed

structures and interfaces are in agreement with the expected
true minimum energy interface orientations, as demonstrated
in this paper.

For many applications in science, the formation of mi-
crostructures is critical and efficient simulation approaches
to support experimental findings are highly desired. Our
developed QA approach presents an efficient technological
opportunity for the determination of equilibrium microstruc-
tures with long-range elastic interactions, where multiple
martensite variants need to be considered.
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L. Kunčická, J.-S. Micha, K. Liogas, O. V. Magdysyuk, I.
Szurman, and A. M. Korsunsky, Grain structure engineering
of NiTi shape memory alloys by intensive plastic deformation,
ACS Appl. Mater. Interfaces 14, 31396 (2022).

[41] L. Mañosa and A. Planes, Mechanocaloric effects in shape
memory alloys, Philos. Trans. R. Soc. A 374, 20150310
(2016).

[42] K. Otsuka and X. Ren, Physical metallurgy of Ti-Ni-based
shape memory alloys, Prog. Mater. Sci. 50, 511 (2005).

[43] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D.
Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Defining
and detecting quantum speedup, Science 345, 420 (2014).

[44] A. Lucas, Ising formulations of many NP problems, Front.
Phys. 2, 5 (2014).

[45] T. Lanting, A. J. Przybysz, A. Y. Smirnov, F. M. Spedalieri,
M. H. Amin, A. J. Berkley, R. Harris, F. Altomare, S. Boixo,
P. Bunyk, N. Dickson, C. Enderud, J. P. Hilton, E. Hoskinson,
M. W. Johnson, E. Ladizinsky, N. Ladizinsky, R. Neufeld,
T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva,
S. Uchaikin, A. B. Wilson, and G. Rose, Entanglement in
a quantum annealing processor, Phys. Rev. X 4, 021041
(2014).

[46] J. Raymond, R. Stevanovic, W. Bernoudy, K. Boothby, C. C.
McGeoch, A. J. Berkley, P. Farré, and A. D. King, Hybrid quan-
tum annealing for larger-than-QPU lattice-structured problems,
ACM Trans. Quantum Comput. 4, 1 (2023).

[47] J. J. Berwald, The mathematics of quantum-enabled applica-
tions on the d-wave quantum computer, Not. Am. Math. Soc.
66, 832 (2019).

[48] D-Wave Leap quantum cloud service, https://cloud.dwavesys.
com.

[49] A. G. Khachaturyan, Theory of Structural Transformations in
Solids (Dover Publications, Inc., Mineola, New York, 2008).

[50] Y. Wang, D. Banerjee, C. C. Su, and A. G. Khachaturyan, Field
kinetic model and computer simulation of precipitation of L12

ordered intermetallics from f.c.c. solid solution, Acta Mater. 46,
2983 (1998).

[51] H. Lebbad, B. Appolaire, Y. Le Bouar, and A. Finel, Insights
into the selection mechanism of Widmanstätten growth by
phase-field calculations, Acta Mater. 217, 117148 (2021).

[52] Y. Le Bouar, A. Loiseau, and A. G. Khachaturyan, Origin of
chessboard-like structures in decomposing alloys. Theoretical
model and computer simulation, Acta Mater. 46, 2777 (1998).

[53] https://www.fz-juelich.de/ias/jsc.

023076-12

https://doi.org/10.1103/PhysRevA.100.030303
https://doi.org/10.7566/JPSJ.88.061004
https://doi.org/10.7566/JPSJ.89.025002
https://doi.org/10.1126/science.aat2025
https://doi.org/10.1103/PRXQuantum.1.020320
https://doi.org/10.1063/5.0151346
https://doi.org/10.1103/PhysRevResearch.2.013319
https://doi.org/10.1145/3459606
https://www.osti.gov/biblio/1459086
https://doi.org/10.1038/s41467-022-29887-0
https://doi.org/10.1038/s41586-023-05867-2
https://doi.org/10.1140/epjst/e2015-02339-y
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1088/0953-8984/20/30/304213
https://doi.org/10.1103/PhysRevLett.67.3630
https://doi.org/10.1088/0031-8949/1992/T42/034
https://doi.org/10.4028/www.scientific.net/SSP.172-174.1078
https://doi.org/10.1016/j.matdes.2020.108622
https://doi.org/10.1021/acsami.2c05939
https://doi.org/10.1098/rsta.2015.0310
https://doi.org/10.1016/j.pmatsci.2004.10.001
https://doi.org/10.1126/science.1252319
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1103/PhysRevX.4.021041
https://doi.org/10.1145/3579368
https://doi.org/10.1090/noti1893
https://cloud.dwavesys.com
https://doi.org/10.1016/S1359-6454(98)00015-9
https://doi.org/10.1016/j.actamat.2021.117148
https://doi.org/10.1016/S1359-6454(97)00455-2
https://www.fz-juelich.de/ias/jsc

