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We introduce a model-independent method for the efficient simulation of low-entropy systems, whose
dynamics can be accurately described with a limited number of states. Our method leverages the time-dependent
variational principle to efficiently integrate the Lindblad master equation, dynamically identifying and modifying
the low-rank basis over which we decompose the system’s evolution. By dynamically adapting the dimension of
this basis, and thus the rank of the density matrix, our method maintains optimal representation of the system
state, offering a substantial computational advantage over existing adaptive low-rank schemes in terms of both
computational time and memory requirements. We demonstrate the efficacy of our method through extensive
benchmarks on a variety of model systems, with a particular emphasis on multiqubit bosonic codes, a promising
candidate for fault-tolerant quantum hardware. Our results highlight the method’s versatility and efficiency,
making it applicable to a wide range of systems characterized by arbitrary degrees of entanglement and moderate
entropy throughout their dynamics. We provide an implementation of the method as a Julia package, making it
readily available to use.
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I. INTRODUCTION

In the path towards scalable and reliable quantum hardware
[1–8], the loss of quantum coherence due to interactions with
an external environment presents a crucial limitation. While
environmental interactions are often known for introducing
noise and hindering quantum effects, under careful control,
they can also serve as a resource, often harbouring surprising
benefits not found in equilibrium systems. These features
have long been exploited for various applications, including
the preparation and stabilization of quantum states [9–11],
protocols for quantum error correction and suppression [5,12–
20], enhancement of metrological protocols [21–23], and the
stabilization and control of entangled, topological, and local-
ized phases [24–28].

Understanding the impact of both incoherent and coherent
relaxation processes on quantum systems is therefore crucial
for the progress of quantum technologies. Consequently, the
development of fast and scalable methods for their classical
simulation is equally important. The exact numerical simula-
tion of many-body quantum systems, however, suffers from
the curse of dimensionality, namely the exponential growth
of computational resources, scaling as dN , required to simu-
late the dynamics of a system with N identical modes, each
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with d possible states. As a result, simulating even moder-
ately large quantum systems becomes rapidly an intractable
problem [29].

When a system is not isolated, but couples to the degrees
of freedom of an external environment, the two become en-
tangled. The system’s state is then represented by a Hermitian
positive semidefinite operator, the density matrix, resulting
from tracing out the environmental degrees of freedom. Un-
der the assumption of a memoryless environment, the time
evolution of the density matrix is governed by the Lindblad
master equation [30–32] which has found application in a
very broad range of physical settings [33]. In this context,
the curse of dimensionality becomes even more daunting,
with computational requirements scaling as d2N . Different
approaches for mitigating the complexity of the task exist
[34], each one compromising on the degree of accuracy with
which different features of the statistical ensemble can be cap-
tured. Among these, Monte Carlo quantum trajectory methods
[35,36], phase-space methods [37,38], semiclassical approxi-
mations [39,40], tensor network techniques [34,41–47], and
variational approaches [48–55] possibly coupled with Monte
Carlo sampling and neural network techniques [56–62], stand
out.

In recent years, another class of methods know as ensem-
ble truncation methods has emerged as a powerful tool for
simulating isolated [63–67] and dissipative quantum systems
[68–71]. This approach is based on the realization that many
quantum systems, particularly those with low entropy, can be
effectively represented by a density matrix of significantly
lower rank than what the whole Hilbert space would require.
This reduction is achieved by focusing on a subset of states
that capture the essential structure of the statistical ensem-
ble characterizing the mixed quantum state, thereby reducing
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computational complexity while maintaining accuracy. The
low-rank (LR) hypothesis applies to many systems of physical
interest. Among these are systems weakly coupled to the
environment or systems initialized in a pure, i.e., zero-entropy
state, in the early stage of their dynamics. Modern quantum-
computing platforms, designed to minimize dissipation and
noise, often fall in either of the above instances.

A considerable challenge remains, however, determining
how the LR states should evolve to optimally represent the
density matrix along the time evolution and in particular how
the dimension of the LR subspace should vary to accom-
modate changes of the entropy over time. Building on this
premise, this paper introduces a method encapsulating the
most relevant features of the ensemble truncation schemes
within the robust framework of the time-dependent variational
principle (TDVP) developed for open quantum systems in
Refs. [48,72–74]. Indeed, our method, which we deem the
LR-TDVP method, effectively integrates the benefits of both
approaches. On the one side, it leverages the dynamical trun-
cation method’s ability to efficiently represent quantum states
with minimal information loss while dynamically adjusting
the dimension of the variational basis to adapt to changes in
the system’s entropy. On the other, it takes advantage of the
variational principle to dynamically modify the LR basis to
ensure the optimal fidelity of the evolution.

A remark is in order. The reduced number of states that LR
methods use to approximate the statistical mixture limits the
amount of mixedness or entropy we can efficiently account
for. On the other hand, taking an exact representation of the
variational states allows us to describe arbitrarily entangled
or correlated states entering the statistical mixture. In this
respect, LR methods are the natural complement of techniques
based on, e.g., tensor-network representations [75–79], which
are inherently limited in the amount of quantum correla-
tions they can encode but can represent arbitrary amounts of
mixedness.

This combination of constraints is often satisfied by mod-
ern quantum hardware. By addressing the challenges faced in
the NISQ era, our method offers a significant advancement in
the simulation of complex quantum systems, paving the way
for new discoveries and applications in quantum computing
and simulation.

Our method is designed to be universally applicable, in-
dependent of specific system characteristics such as spatial
symmetries, particle statistics, geometry of the space, or
topology of the interactions. To facilitate its use and integra-
tion into various research workflows, we have incorporated
into the QuantumToolbox library [80], a Julia-based [81]
quantum physics toolkit. The library, along with our method,
is readily accessible and examples showcasing its use for the
creation of some of the figures of the paper can be found at
the repository listed in Ref. [82].

II. THE LOW-RANK TDVP

Let us consider an open quantum system whose dynamics
is described by the Lindblad master equation,

∂ρ̂

∂t
= L(ρ̂) = −i[Ĥ,ρ̂] +

D∑
σ=1

D[�̂σ ]ρ̂, (1)

where ρ̂ ≡ ρ(t ) (for brevity) is the system density matrix at
time t , L is the Liouvillian superoperator, and we take h̄ = 1.
While the coherent part of the dynamics is described by the
Hamiltonian Ĥ acting on a Hilbert space H of dimension NH,
the incoherent evolution is described by the dissipator,

D[�̂]ρ̂ = �̂ρ̂ �̂† − 1
2 {�̂†�̂, ρ̂}, (2)

which formalizes the action of the jump operator �̂ on the
system.

The exact numerical simulation of this dynamics is gen-
erally computationally challenging due to the exponential
scaling of the required resources, growing as the square of
the Hilbert space dimension. The focus of our work is, how-
ever, on low-entropy systems, whose dynamics is known to
be well captured, at all times, by a limited number of states
{|ϕk (t )〉 ; k = 1, . . . , M} with M � NH. These states span the
low-rank subspace HM ⊆ H which is assumed to encapsulate
the essential structure of the statistical ensemble throughout
the dynamics. In recent years, various heuristic algorithms
have been developed that effectively truncate the density ma-
trix ρ̂ to a rank-M matrix, significantly smaller than what
the whole Hilbert space would require. Such methods are
collectively known as ensemble truncation methods [68–71].
Fundamental to these methods is their ability to dynamically
adjust the truncation rank M = M(t ) at each time step, adapt-
ing to an entropy landscape that varies over time. However, a
rigorous and systematic approach for selecting and adapting
the low-rank basis states remains a challenge.

Concurrently, variational methods have emerged as a ver-
satile tool for circumventing the exponential space problem
by considering trial states from a physically motivated, small
subset of the exponentially large Hilbert space [48]. In these
methods, the density matrix ρ̂(t ) = ρ̂[θ(t )] is expressed in
terms of a set of variational parameters θ(t ) which evolve
in time to guarantee, within the expressiveness of the ansatz,
the optimal approximation of the evolution generated by the
action of L on ρ̂(t ).

In this work, we introduce the low-rank TDVP algorithm
where the benefits of both classes of methods are united. By
employing the McLachlan TDVP we rigorously estimate the
optimal subspace HM(t ) over which to decompose the evolu-
tion at each time step (Sec. II A). Additionally, we develop
schemes to dynamically adjust the dimension of this subspace
in response to changes in the system’s entropy (Sec. II B). De-
ferring a detailed analysis of the ensemble truncation methods
to Appendix C, we last compare our variational method to the
heuristic algorithms established in Refs. [68–70] (Sec. II C).
The main features of this method are summarized in Fig. 1.

A. Variational equations of motion

The most general variational parametrization of an arbi-
trary statistical ensemble can be expressed as:

ρ̂(t ) =
M(t )∑
i, j=1

Bi j (t )|ϕi(t )〉〈ϕ j (t )|, (3)

with Bi j (t ) being time dependent, Hermitian coefficients
[Bi j (t ) = Bji(t )∗]. This formulation confines the dynamics
to the variational manifold spanned by the states {|ϕk (t )〉 ;
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(a) (b)

FIG. 1. Illustrative overview of the LR-TDVP method. (a) Top: Pictorial representation of the density matrix ρ(t ) (depicted in red) at a
generic time t during the dynamics. The variational manifold selectively encompasses a specific region of the Hilbert space, capturing the
predominant components of the statistical ensemble at time t . Bottom: Illustration of how memory efficiency is achieved by decomposing the
NH × NH density matrix into smaller NH × M and M × M matrices. (b) Schematic representation of the dynamic adjustment of the variational
manifold’s dimension. Both the manifold and the rank of the truncated density matrix are dynamically modified to maintain a consistent level
of accuracy, adapting to changes in the system’s entropy. This adjustment reflects the principle that highly entropic systems necessitate a larger
number of states for accurate representation, whereas low-entropy ensembles can be effectively described with fewer states.

k = 1, . . . , M(t )} whose number we adapt in time to accom-
modate changes in the system’s entropy. Throughout the paper
we will refer to |ϕk (t )〉 as the variational or low-rank states
and to M(t ) as the rank of ρ̂.

Importantly, the variational method ensures a dynamical
adjustment of the variational states, guaranteeing the optimal
set of states is selected at all times to best approximate the
evolution under L. To enable this dynamic adjustment, the
variational states themselves must be parametrized. In our ap-
proach, we adopt a full linear parametrization, decomposing
|ϕk〉 on the computational basis {|eα〉}α=1,...,NH as

|ϕk (t )〉 =
NH∑
α=1

zα,k (t )|eα〉. (4)

For clarity, and where this does not lead to confusion, we
will omit the time argument in subsequent discussions. While
the present work focuses on a full linear parametrization of
the variational states, alternative parametrizations relying on
tensor networks or neural network architectures are indeed
possible and will be subject of future investigation.

The dynamical problem outlined in Eq. (1) can now be
reformulated into a set of equations of motion (EOM) for
the variational parameters, comprising the population matrix
B = [Bi j] and the coefficient matrix z = [zαk]. To derive these
EOM, we apply the McLachlan variational principle, with the
additional constraint of trace preservation:

δ

[∥∥∥∥
(

d

dt
− L

)
ρ̂

∥∥∥∥
2

+ λ
d

dt
Tr{ρ̂ + ρ̂†}

]
= 0. (5)

Note that in this notation, the time derivative of the den-
sity matrix ˙̂ρ = d ρ̂/dt is intended with respect to the

variational parameters, i.e., ˙̂ρ = ∇θρ̂(θ) · θ̇. Here λ is the
Lagrange multiplier associated to the trace-preservation con-
straint dTr{ρ̂ + ρ̂†}/dt = 0. This constraint was chosen, over
the more obvious choice dTr{ρ̂}/dt = 0, to preserve symme-
try under complex conjugation. The norm ‖ĉ‖ ≡ Tr{ĉ†ĉ} is
the Frobenius or Hilbert-Schmidt norm.

While Eq. (5) is general in scope, substituting Eq. (3) for ρ̂

yields the EOM specific for the chosen ansatz (details on the
derivation are provided in Appendix A):

Ḃ =
(

S−1L − Tr{S−1L}
M

1

)
S−1

ż = (L̃ − zS−1L)S−1B−1,

(6)

where L̃ = L(ρ̂)z, L = z†L̃, S = z†z, while S−1 and B−1 de-
note the inverse matrices of S and B, respectively. Since both
S and B may be singular, their inverse is often ill defined.
To overcome this problem, throughout the paper we adopt a
smooth regularization criterion based on the singular value
decomposition of the two matrices, as proposed in Ref. [83]
(details in Appendix B).

The dynamics of the system can now be obtained by
numerical integration of Eq. (6) which we perform using
high-order adaptive-time-step solvers. Each time step requires
the calculation of B−1 and of L̃. The first we perform using
singular value decomposition, while the second only requires
matrix multiplications, the most extensive being between
(extremely sparse) NH × NH and (dense) NH × M matri-
ces. Notably, since for a linear parametrization Ṡ = 0 (see
Appendix A), the computation of S−1 incurs no additional
computational cost after its initial calculation at the beginning
of the process.
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As previously anticipated, within each integration step, if
M � NH (LR hypothesis), then both the speed and storage
requirements for the calculation are dramatically improved.
For additional information on the computational costs and
procedures, we refer readers to Appendix B.

B. Dynamical rank update

A critical aspect of any LR approach is its capability to
dynamically adjust the dimension of the LR basis through-
out the system’s evolution [M = M(t )]. This adaptability is
essential for accommodating changes in the system’s entropy
over time. In the ensemble truncation methods [68–70], this
update is achieved by truncating the full-rank density matrix
ρ̂(t + dt ) at each time step with the goal of keeping a con-
trol quantity, namely the truncation error εM = 1 −∑M

j=1 p j ,
below a predefined threshold εmax. In this section we detail
schemes for efficiently implementing a dynamic update of the
dimension of the variational basis in our approach.

1. Basis inflation

Let us first consider the basis inflation problem, where
the system’s entropy increases over time. An example of a
system presenting this behavior is developed in Sec. III A.
To start, we posit the existence of a control quantity χ (t )
that accurately reflects the solution’s accuracy and that can
be efficiently computed at each time step. Various options for
χ will be discussed below. This quantity is monitored through
a callback mechanism, continuously evaluated against a pre-
defined upper bound of εmax. Initially zero at t = 0, χ grows
with the system’s entropy and, hence, over time. Let t∗ denote
the time when χ (t∗) = εmax. At this time, the rank is incre-
mentally increased from M to M + 1 through the addition
of a new state |ϕM+1〉 to the LR basis. The population and
coherences associated with this new state are initially van-
ishing [Bj,M+1 = (BM+1, j )∗ = 0 ] to ensure continuity in the
solution. The variational principle ensures that the solution
can be made independent of the specific choice of |ϕM+1〉.
This independence, within the specified tolerance, is guaran-
teed if the state is added at a time prior to t∗, ensuring that
|ϕM+1〉(t∗) satisfies the TDVP at that time. To achieve this, we
implement periodic checkpoints at intervals of �t . Each time
a threshold crossing is registered, the integration is restarted
with an enlarged basis from the nearest checkpoint before
the crossing. This approach also ensures that the bound on
χ remains strict, as the response in χ may not be immediate
following the basis inflation. However, we observe that in
most situations of interest, an instantaneous basis inflation
(�t = 0) does not significantly compromise the solution’s
accuracy, suggesting that the variational adjustment of |ϕM+1〉
is almost instantaneous. This is illustrated in Fig. 2, where we
display χ (t ) for both �t = 0 and �t = 0.2. As shown in the
inset, the trace-distance

D
(
Â, B̂

) = 1
2 Tr
{√

(Â − B̂)†(Â − B̂)
}
, (7)

evaluated between the exact and approximated solutions re-
mains virtually unchanged when choosing �t = 0.

FIG. 2. Time evolution of the approximate variational error,
χ (t ), as defined in Eq. (10). The upper bound for χ is set at
εmax = 10−4, which strictly applies for �t > 0. The inset displays the
distance between the true solution and the truncated one as obtained
from Eq. (7). The physical model underlying this example is the
XYZ Heisenberg model (detailed in Sec. III A) with N = 9 spins
and Jy = 1. The values of all remaining physical parameters [see
Eqs. (11) and (12)] are the same as those used in Fig. 4.

2. Basis deflation

For the basis deflation problem, we adopt a similar ap-
proach to that used for basis inflation. Consider a case where
the system’s entropy, after peaking, gradually diminishes as
the system approaches the stationary state. An example of
such dynamics is discussed in Sec. III C. In this context, to
enhance efficiency, it is desirable to reduce the dimension
of ĤM(t ) when χ falls below a lower threshold εmin. Upon
crossing this threshold, the rank is incrementally decreased
from M to M − 1 by removing a state from the LR basis. A
proper selection of which state to remove from the basis is
critical for the success of the deflation protocol. Intuitively,
we should eliminate the state contributing the least to the
dynamics, potentially the one with the lowest occupancy. This
approach has two primary limitations. First, it is basis depen-
dent; small diagonal elements in one basis may not be so small
in another, potentially leading us to overlook an optimal lower
rank basis. Second, eliminating the state with the lowest occu-
pancy also removes all correlations between the selected state
and other states with larger occupancy, impacting the accuracy
of the solution. Although the magnitude of such correlations
is constrained by the positivity and trace constraints on ρ̂

(i.e., |ρi j | � √
ρii

√
ρ j j), the resultant errors, albeit small, may

accumulate over time.
To mitigate these issues, we first transition to the diagonal

basis by diagonalizing ρ̂(t ) as

ρ̂(t ) =
M∑

j=1

p j |η j〉〈η j |, (8)

with p1 � p2 � . . . � pM . Subsequently, we remove the Mth
state from the basis but maintain the equivalent diagonal
representation of the LR basis, resulting in z(t + dt ) =
(|η1〉, . . . , |ηM−1〉) and B(t + dt ) = diag(p1, . . . , pM−1).
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Importantly, the Schur-Horn theorem [84] assures that the
smallest diagonal element of ρ̂(t ) in any basis will exceed its
smallest eigenvalue, effectively resolving the first limitation.
Moreover, transitioning to a diagonal basis allows for the
inclusion of previously neglected correlations into the new
variational states, thereby overcoming the second limitation.

Efficient diagonalization of ρ̂(t ) is feasible by recognizing
that ρ̂(t ) can be expressed as ρ̂ = ĈĈ†, where Ĉ = z

√
B. As

discussed in Refs. [68–70], this matrix shares the same nonva-
nishing eigenvalues pj as the small M × M matrix σ̂ = Ĉ†Ĉ.
The eigenvectors of these two matrices are related through Ĉ.
It is important to note that, unlike the basis inflation case, fail-
ing to reduce the rank in the deflation scenario does not lead to
a less-accurate solution. Quite the contrary, the solution will
be more accurate, albeit at a higher computational cost.

3. Control quantities

We now provide a set of possible choices for χ . Given
the variational parametrization of the LR states, the natural
control quantity for our method is the distance between the
true evolution and the variational evolution of the trial state,
calculated as [48]

χ = || ˙̂ρ − L(ρ̂ )||. (9)

We recall once more that in this notation ˙̂ρ = ∇θρ̂(θ) · θ̇
where θ = (z, B) (see Appendix A for details). The only linear
algebra operations involved in the computation of Eq. (9)
are matrix multiplications, the largest of which between
extremely sparse NH × NH matrices and dense NH × M ma-
trices. The number of matrix multiplications to be computed
scales as D2, the square of the number of jump operators.

A more efficient choice, which comes at no additional
computational cost, is

χ = Tr{S−1L} = Tr{PL(ρ̂ )}, (10)

where P = zS−1z† is the projector on the LR manifold. We
adopted this choice for all simulations in the paper. Although
Tr{L(ρ̂)} = 0 for any physical density matrix ρ̂ and Liouvil-
lian L, Tr{PL(ρ̂)} can be nonzero as a result of projecting
over an incomplete basis [74,85]. Indeed, Tr{PL(ρ̂ )} is only
vanishing when ρ̂ is entirely contained in the LR manifold.
Assuming the latter to be constructed around the initial state
of the simulation, Tr{PL(ρ̂)} vanishes at t = 0, and in an ideal
evolution would remain so throughout the dynamics. Its de-
parture from zero quantifies leakage outside of the variational
manifold, and as such, it is a good indicator of the solution’s
accuracy in real time. This choice for χ is closely related to
the truncation error εM of Ref. [68], as can be seen from the
perturbative expansion carried out in Appendix C.

The last criterion we propose takes χ = pM/p1 where the
probabilities pi follow from the diagonalization of ρ̂(t ) ac-
cording to Eq. (8).

Figure 3 confirms that all three choices of χ proposed
above are well-suited control parameters. Here we display,
as a function of the error threshold εmax, the rank M of the
approximated steady-state solution and the associated trace-
distance from the full simulation [cf. Eq. (7)]. As expected, the
rank M of the approximate solution increases the lower we set

FIG. 3. Variation of the rank M and of the trace-distance D
(between the true and approximated steady-state solutions) with the
threshold εmax. We present results for all the choices of control
parameter χ discussed in the text. The underlying physical model
is the XYZ Heisenberg model with N = 6 spins and Jy = 1. The
remaining physical parameters take the same values as in Fig. 4.

the error tolerance εmax, while the trace-distance D from the
exact result steadily decreases.

C. Comparison with ensemble truncation methods

In this section, we outline the significant computational ad-
vantages that the LR-TDVP method offers over the ensemble
truncation schemes discussed in Refs. [68–70]:

(1) Ensemble truncation methods execute linear algebra
operations on NH × M(D + 1) matrices, leading to larger
computational and storage demands than those required by
our variational LR density matrix approach, which only re-
quires storing matrices of size at most NH × M.

(2) Ensemble truncation methods rely on a Kraus repre-
sentation of the Liouvillian map. The operators decomposing
this map are proportional to

√
dt , thereby restricting these

methods to the explicit Euler first-order integration scheme.
In Ref. [68], this difficulty is partially lifted by replacing the
Kraus operator K̂0 with the full time-evolution operator K̂0 =
exp(−iHeffdt ) and using a high-order integration scheme for
its application. The contribution of the other Kraus operators
to the dynamics is, however, still limited to an explicit first
order in time Euler scheme. Conversely, our method allows
integrating the EOM with a high-order adaptive-time-step
solver. This approach not only significantly enhances the ef-
ficiency of our method but also offers greater accuracy and
flexibility compared to the aforementioned schemes.

(3) Checks for basis inflation and deflation can be carried
out at no additional costs to the simulation of our dynamics
so that the additional diagonalization of an M × M matrix is
only necessary when the deflation criterion is triggered. This
is not the case in ensemble truncation methods which, for
this purpose, require the diagonalization of an M(D + 1) ×
M(D + 1) matrix at every time step.

(4) Unlike ensemble truncation methods, where the se-
lection of states to retain in the dynamics is heuristic in
nature, our method’s selection process is grounded in the
time-dependent variational principle ensuring the adoption of
the optimal LR basis at each time step.
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III. NUMERICAL SIMULATIONS

In this section, we outline the significant computational ad-
vantages that our variational method offers over the ensemble
truncation schemes discussed in Refs. [68–70] and demon-
strate its applicability in a broad range of physical models.

Although a key strength of our method lies in its ability to
capture the entire Liouvillian dynamics, we begin our analysis
focusing on systems for which the relevant physics occurs
in the steady state. Here we leverage our method only to
reach stationarity, disregarding the remainder of the dynam-
ics. In doing so, we showcase the method’s effectiveness in
analyzing steady-state phenomena in low-entropy systems.
In Sec. III A, we investigate the dissipative phase transition
in the anisotropic XYZ Heisenberg model. In Sec. III B, we
apply our method to bosonic models, specifically to the study
of the steady state of the bosonic simulator of the triangular
antiferromagnetic Ising model. This exploration underscores
the versatility and general-purposefulness of our approach.

We proceed to showcase the algorithm’s capability to ac-
curately capture the full Liouvillian dynamics, particularly in
scenarios with nonmonotonous entropy profiles. In Sec. III C
we provide insight into the mechanisms of basis inflation
and deflation by studying the dynamics of the transverse-
field Ising model in the presence of weak magnetic fields for
which the system is known to be low rank. In Sec. III D, we
address the timely problem of simulating the full dynamics
of bias-preserving gates in dissipative cat qubit architectures
displaying once again the advantage of a LR approximation.

A. Dissipative Heisenberg XYZ model

We consider a two-dimensional lattice consisting of N
spin-1/2 particles governed by the Heisenberg XYZ Hamil-
tonian:

Ĥ =
∑
〈i, j〉

Jxσ̂
x
i σ̂ x

j + Jyσ̂
y
i σ̂

y
j + Jzσ̂

z
i σ̂ z

j + hz

∑
j

σ̂ z
j , (11)

where σ̂ α
i (α = x, y, z) are the Pauli operators acting on the

ith spin of the lattice. The incoherent relaxation of each spin
is described by the dissipator of σ̂−

j = (σ̂ x
j − iσ̂ y

j )/2, leading
to the master equation:

∂ρ̂

∂t
= Lρ̂ = −i[Ĥ, ρ̂] + γ

N∑
j=1

D[σ̂−
j ]ρ̂. (12)

This equation exhibits a Z2 symmetry, as evidenced by its
invariance under the transformation σ̂

x,y
j → −σ̂

x,y
j ∀ j. In the

thermodynamic limit, the steady state of the system bearing
this symmetry is the fully aligned spin-down state |↓〉⊗N . This
state is characterized by having zero magnetization in the xy
plane, a defining feature of the so-called paramagnetic phase.

In the presence of anisotropic coupling in the xy plane
(Jx �= Jy), and in the absence of any external field, however,
relaxation and Hamiltonian processes compete with one an-
other. This competition has been shown to induce a dissipative
phase transition [39,86–99] spontaneously breaking the Z2

symmetry of the steady state and giving rise, in the thermody-
namic limit, to an ordered phase with a nonvanishing in-plane
magnetization, the so-called ferromagnetic phase [39,96,100–
102].

In accordance with the conventions established in the rel-
evant literature, all simulations of this model are performed
fixing Jx = 0.9, Jz = γ = 1, and hz = 0. In this section we
vary Jy between 0.9 and 1.1 to investigate the transition from
the paramagnetic to the ferromagnetic phase. Observing the
transition in a fully quantum model that retains all correla-
tions in the system is challenging. Indeed, the steady-state
magnetization

My = 〈M̂y〉ss = 1

N

∑
j

〈
σ̂

y
j

〉
ss (13)

along the y direction, used as an order parameter in cluster
mean-field studies [39], is always zero in the full model.
Similarly, the homogeneous steady-state structure factor

Sxx = 1

N (N − 1)

∑
i �= j

〈
σ̂ x

i σ̂ x
j

〉
ss, (14)

which, in a Gutzwiller approximation is zero in the para-
magnetic phase and acquires a positive value only in the
ferromagnetic one [101], is not a good order parameter when
correlations between different sites are included. Alternatives
have been proposed, specifically, the angle-averaged mag-
netic susceptibility [100] and the trace-distance susceptibility
[103]. The latter relies on the distance between steady-state
matrices evaluated at infinitesimally close values of Jy and
is thus too sensitive to any form of noise to be of use in
approximated solutions. The former, however, would be well
suited for our approximation. Its computation is, however,
quite cumbersome, as it requires assessing the linear response
of the system to small perturbations. Here, we thus prefer to
present as an indicator of the transition the variation in Jy of

�My =
√〈

M̂2
y

〉 =
√√√√ 1

N2

∑
i, j

〈
σ̂

y
i σ̂

y
j

〉
, (15)

that is, the square root of the steady-state expectation value of
the variance of M̂y. This is a good indicator of the long-range
correlations developing in the array across the transition, and
its derivative ∂�My/∂Jy in Jy is a clear signature of critical
behavior. We display this quantity in Fig. 4 for increasingly
larger system sizes. A finite-size analysis in the linear lattice
length L = √

N of the position of the maximum variance
derivative yields an estimate of Jc = 1.06 ± 0.03, consistent
with the results obtained in Ref. [100]. The maxima of the
curves themselves follow a power-law growth in L with crit-
ical exponent κ = 0.92 ± 0.08. While the majority of the
calculations were performed on Intel Xeon Platinum 8360Y
CPUs, the most computationally intensive ones were executed
on NVIDIA V100 GPUs.

To demonstrate the increasingly mixed character of the
steady-state density matrix ρ̂ss, we display in Fig. 5 the steady-
state von Neumann entropy

S = −Tr{ρ̂ss ln(ρ̂ss)}, (16)

and its derivative ∂S/∂Jy as a function of Jy. As expected,
we find that in proximity of the critical point, the entropy
sharply rises with a slope that increases with the system size.
Concurrently, ∂S/∂Jy shows a peaked structure which be-
comes increasingly more pronounced as we move towards the
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FIG. 4. Derivative in Jy of the variance �My of the magnetization
along the y axis for systems with different numbers of spins: N = 4
(2 × 2 lattice), N = 6 (3 × 2), N = 9 (3 × 3), N = 12 (4 × 3), N =
16 (4 × 4), and N = 20 (5 × 4). Parameters: Jx = 0.9, Jz = γ = 1,
and hx = 0. For N < 16, where simulations are less demanding, we
set εmax = 10−5. For N � 16, we set εmax = 10−4.

thermodynamic limit. By fitting the maximum entropy deriva-
tive with a power law in L [i.e., max(∂S/∂Jy) ∝ Lλ], we get
an estimate for the critical exponent of λ = 1.6 ± 0.1, again
consistent with the state-of-the-art results found in Ref. [100]
via the corner space method.

The system’s steady state is obtained by numerically inte-
grating Eq. (6) for a time γ t = 15 long enough for the system
to reach stationarity. In all simulations, the rank is dynam-

(a)

(b)

FIG. 5. Von Neumann entropy S and its derivative ∂S/∂Jy as
a function of the coupling parameter Jy for lattices with different
numbers of spins N (legend in Fig. 4). The inset displays the maxi-
mum value of the derivative as a function of the linear lattice length
L = √

N . The solid line is a power-law fit of the finite-size scaling.
We use the same physical parameters as in Fig. 4.

FIG. 6. Rank M of the steady state of the system as a function
of the coupling strength Jy. For small values of Jy, i.e., small values
of S, the rank of the system remains fixed at the initial preset value of
N + 1. The rank increases with the entropy of the system according
to the discussion in Sec. II B. We use the same physical parameters
as in Fig. 4.

ically increased starting from an initial choice of M(0) =
N + 1. As the initial state of the dynamics we take the pure
state |ψ (0)〉 = |↓〉⊗N setting to zero the population of the re-
maining N states making up the initial variational basis. These
states are chosen as those with minimal Hamming distance
from |ψ (0)〉.

As S increases, additional states are required to accurately
describe ρ̂ss, thereby progressively reducing the computa-
tional advantage introduced by a LR ansatz. Given that S
increases monotonically in Jy, the advantage introduced by
our method is largest in proximity of the paramagnetic phase,
where the entropy remains small. This is corroborated by
Fig. 6, where we display M(γ t = 15) as a function of Jy.
Indeed, for highly entropic configurations [cf. Fig. 5(a)] M →
2N , i.e., the LR simulation becomes equivalent to the full
solution of the master equation.

As a figure of merit for the method’s computational
performance we take the memory footprint of steady-state
simulations similar to those performed above. The free pa-
rameters in this analysis are as follows:

(i) The number of spins N , which uniquely determines the
Hilbert space dimension.

(ii) The coupling strength Jy, which uniquely determines
the system’s configuration. Recall that all other physical pa-
rameters have been fixed.

(iii) The dimension M of the LR space. This can be fixed at
the start, as we will do in what follows, or varied dynamically,
in which case the free parameter becomes the threshold εmax.

For a synthetic two-dimensional representation of the
results—memory footprint against Hilbert space dimension—
as depicted in Fig. 7, both Jy and M need to be fixed. We fix
Jy = 0.98 and select M, for each value of N , so as to ensure
that the relative error in the estimation of Mz remains within a
0.1% margin from the actual solution. The distance between
the LR estimate and the true value of Mz for different lattice
sizes is shown in the inset to Fig. 7. While for N < 16 the
true value of Mz is obtained via numerical integration of the
full master equation, for N = 16 we resort to the Monte Carlo
trajectory method, averaging over 104 trajectories. The results,
as illustrated in Fig. 7, highlight the significant computational
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FIG. 7. Memory allocations as a function of number of simu-
lated spins N for the full simulation and the LR-TDVP one. We
set the value of Jy = 0.98. For each value of N , we choose the
rank M ensuring the relative error on the magnetization Mz to be
smaller than 0.1%, namely err(Mz ) = |M full

z − MLR
z |/|M full

z | � 10−3.
The inset shows the behavior of err(Mz ) as a function of M. The
color scheme in the inset is the same as in Fig. 4, as are all physical
parameters aside from Jy.

advantages of our approach. The LR-TDVP method not only
accurately captures all the critical features of the XYZ model
but also demonstrates improved efficiency in terms of mem-
ory usage and computation time compared to both the full
solution and the dynamical truncation schemes referenced in
Refs. [68–70].

In concluding this section, it is important to stress that our
method is inherently dynamic in nature. As such, it is not ex-
pected to always outperform methods specifically tailored for
solving steady-state problems. For instance, when compared
to the corner space renormalization method, which serves as
our reference, the LR-TDVP does not surpass it in terms of the
system sizes that can be explored. The corner space method,
based on spatial block decimation, is indeed very effective for
systems with spatial translational invariance.

One of the key advantages of the LR-TDVP method over
the corner space approach, however, is its generality and
applicability to a broader range of low-entropy systems, not
limited to those characterized by translational invariance. Ad-
ditionally, this method offers more precise control over error
estimation and convergence in the rank. In contrast, the corner
space method’s truncation at any decimation level introduces
errors that, while locally controllable, can accumulate and
propagate through different decimation steps, affecting the
overall accuracy. This often necessitates running multiple
simulations with varying truncation combinations to ensure
convergence—a requirement not present in our algorithm.

Furthermore, the merging process in the corner space
method is not unique and can lead to artificially slow
timescales, potentially affecting performance. The fixed but
nonunique choice of basis in the corner space method depends
on the initial lattice for decimation, meaning that missing a
crucial state in the system can lead to erroneous or artificially
slow simulations. Conversely, our algorithm allows for a more
precise final result, even if part of the dynamics might be ini-
tially missed. Error control is much more straightforward and

can be dynamically adjusted by expanding the LR dimension.
This flexibility offers a distinct advantage in terms of precision
and control over the simulation process.

In summary, while the LR-TDVP method may not always
surpass specialized steady-state solvers in terms of system
size exploration, it compensates with its generality, error
control, and adaptability. This makes it a valuable tool for
studying a wide range of low-entropy quantum systems, in-
cluding those with nonuniform interactions where methods
like the corner space renormalization may not be applicable.

B. Frustrated antiferromagnetism
in quadratically driven QED cavities

We consider an array of N = 2, 3 coupled dissipative
quadratically driven QED nonlinear cavities: a bosonic model
known to be a valid quantum simulator of the the triangular
antiferromagnetic Ising model [99,104–106]. The Hamilto-
nian of the model reads

Ĥ =
N∑

j=1

−�â†
j â j + U

2
â†2

j â2
j + G

2
â†2

j + G∗

2
â2

j

−
∑
j �= j′

J

2
(â†

j â j′ + â†
j′ â j ), (17)

where U is the Kerr nonlinearity, G the two-photon driving
field amplitude, � the resonators’ detuning frequency, and
J the hopping coefficient. We include single- and two-body
losses with rates γ and η, respectively, so that the system
evolves according to the Lindblad master equation,

∂ρ̂

∂t
= Lρ̂ = −i[Ĥ, ρ̂] +

∑
j

(
γD[â j] + ηD

[
â2

j

])
ρ̂. (18)

In the limit of a strong driving field, the photons in each
cavity form a coherent state with phase α or −α. While a
positive hopping coefficient J > 0 favors the formation of
a statistical mixture of two equiprobable separable coherent
states [107] |�±〉 =∏ j |±α〉 j , a negative one J < 0 favors
the emergence of states |�±〉 = |±α,∓α,±α,∓α, . . .〉 with
an antisymmetric alignment of phases. The two limits map
directly onto the ferromagnetic and antiferromagnetic con-
figuration of the effective spin model via the transformation
|α〉 → |↑〉 and |−α〉 → |↓〉.

Following Ref. [105], we investigate the effective antiferro-
magnetic spin model by studying the steady-state properties of
the photonic system for varying values of G. Specifically, we
focus on the steady-state values of the first-order coherence
correlation function,

g(1)
1,2 = 〈â†

1â2〉
/〈â†

1â1〉, (19)

and of the von Neumann entropy S defined in Eq. (16). Our
results, displayed in Fig. 8, are consistent with the findings
in Ref. [105]. Indeed, as expected for an antiferromagnetic
coupling, the correlation g(1)

1,2 for N = 2 is negative and, for
increasing values of G, converges to the asymptotic value
g(1)

1,2 = −1. Concurrently, the entropy increases from S(G =
0) = 0 to S(G � γ ) = ln(2), consistently with the double
degeneracy of the ground-state manifold of the equivalent spin
model.
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(a)

(b)

FIG. 8. The first-order correlation function g(1)
1,2 (a) and the von

Neumann entropy S (b) as a function of the amplitude of the two-
photon driving G for the systems with N = 2, 3 cavities. Dashed gray
lines are used to display the expected plateaux values of the differ-
ent quantities in the limit of large driving. Parameters: γ = η = 1,
U = 10, and � = J = −10.

For an odd number of sites, the presence of geometrical
frustration in the system hinders the emergence of |�±〉 states
in the open system delaying to larger values of G the onset
of the antiferromagnetic signatures. The effects of frustrations
are visible for N = 3 in the nonmonotonous behavior of S as a
function of G and in its asymptotic value of S = ln(6). Indeed,
the latter is consistent with the existence of six possible spin
configurations, emerging as a result of frustration and mini-
mizing the energy of the equivalent spin model.

We obtained all results by numerically integrating Eq. (6)
over a time interval sufficiently long to allow the system
to reach the steady state. The Hilbert space of the N cav-
ities is obtained as the N-fold tensor product of truncated
single-boson Fock spaces. For numerical convenience, we
adjusted the truncation dimension according to the prescrip-
tion Ncut (G) = max{10 , 5G/W }, where W =

√
U 2 + η2. For

N = 2, a LR subspace of dimension M = (Mpm )N with
Mpm = 2 (number of states per mode) accurately captures the
relevant physics, as evidenced by the indistinguishable results
obtained for Mpm = 3. For N = 3, a larger LR space is neces-
sary. We present results for Mpm = 2, 3, 4, 5. Convergence is
observed for Mpm � 3.

Direct numerical integration of Eq. (18) for determining
the steady state of the system quickly becomes impractical,
as highlighted by the extensive efforts in Ref. [105]. In that
approach, the steady state is computed by numerically solving
∂t ρ̂ = 0, a linear system of up to 108 equations. In contrast,
our method demonstrates significant potential by efficiently
computing the steady state by integration of Eq. (18) but
retaining only a small number of optimal states. This approach
not only reduces computational complexity but also maintains

accuracy, showcasing the advantages of our method in han-
dling large-scale quantum systems.

C. Transverse-field Ising model

In this section, we demonstrate our algorithm’s ability
to accurately capture the full dynamics of a system while
efficiently adapting to an entropy profile that does not mono-
tonically increase over time. Specifically, we examine a
scenario where the entropy initially rises, reaches a peak at
tmax with a maximum value Smax, and then decreases towards
a steady-state value Sss < Smax.

This behavior is exemplified in the transverse-field Ising
model [Jx = Jy = 0, Jz = γ = 1, and hx > 0 in Eqs. (11) and
(12)] which is characterized by a dynamics that, under specific
initial conditions, remains LR at all times. Indeed, for suffi-
ciently small values of hx in (11), the steady state of the model
closely resembles that at hx = 0, which reads |ψ0〉 = |↓〉⊗N .
Consequently, an evolution under small hx starting from the
latter state exhibits the desired entropy profile while remain-
ing amenable to a LR representation. In contrast, an evolution
starting from the state |↑〉⊗N would saturate the rank, render-
ing the LR ansatz an inefficient choice.

In Fig. 9(a), we display the time evolution of the structure
factor �My as defined in Eq. (15). We remark the perfect
agreement between the LR and full simulations.

Figure 9(b) depicts the desired evolution of the system’s
entropy and highlights the dynamic adaptation of the rank
M(t ) to its changes throughout the simulation. Specifically,
M(t ) initially increases, in parallel with S, to maintain the
accuracy threshold set by εmax. However, for t > tmax, as S
decreases, M is automatically reduced, thereby enhancing
computational efficiency.

In Fig. 9(c), we display the variational error χ , as defined
in Eq. (10), which serves as a measure of the error performed
at time t . As expected, the automatic adaptation of M ensures
that εmin < χ (t ) < εmax. In contrast, when the rank is fixed
to either Mmax = maxt [M(t )] or Mmin = mint [M(t )], there
exist regions where χ (t ) falls below εmin or exceeds εmax,
respectively.

D. Cat qubit gates

In this section we apply a LR ansatz on dissipative cat
qubit architectures [19,20,108–115], taking full advantage of
the potentialities of our method to simulate bias-preserving
logical operations [111,114,116,117].

1. Definition of dissipative cat qubits

Schrödinger cat qubits [19,111–115,118–126] encode in-
formation as a symmetric pattern in phase space, specifically,
within the subspace {|C+

α 〉, |C−
α 〉} spanned by cat states of

opposite parity [111,116], where

|C±
α 〉 = |α〉 ± |−α〉

2
√

1 ± e−2|α|2
, (20)
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(a)

(b)

(c)

FIG. 9. Example of low-rank dynamics in the transverse-field
Ising model. (a) Time evolution of the standard deviation �My of
the spin correlation along y. (b) Evolution of the system’s entropy
S (left axis) and of the adaptive rank M(t ) (right axis). The dashed
blue line indicates the true steady-state value of S. (c) Evolution of
the approximated variational error χ [Eq. (10)] for different choices
of the rank, both changing and static in time. The shaded blue
region marks the interval εmin < χ < εmax. Parameters: Jx = Jy = 0,
Jz = γ = 1, hx = 0.75, N = 6, εmin = 10−5, εmax = 10−3, Mmin =
M(0) = 6, Mmax = 12, and Mss = M(γ t = 50) = 9.

and â|α〉 = α|α〉 [107,127]. Within this manifold, the prevail-
ing convention defines the logical states as

|0〉 = 1√
2

(|C+
α 〉 + |C−

α 〉) ≈ |+α〉 + Oe−2|α|2

|1〉 = 1√
2

(|C+
α 〉 − |C−

α 〉) ≈ |−α〉 + Oe−2|α|2 ,
(21)

so that |±〉 = (|0〉 ± |1〉)/
√

2 = |C±
α 〉. In what follows we will

assume α ∈ R.
Generating and stabilizing this manifold is far from trivial,

as it requires engineering parity-preserving processes involv-
ing exclusively the pairwise exchange of photons between
the system and its environment [111,114,116,117]. In dissi-
pative cat qubits, for instance, this manifold coincides with
the four-degenerate steady-state manifold of the dissipator
L0 = κ2D[â2 − α2], modeling engineered two-photon drive
and dissipation processes [16,19,20,109–111,128]. Indeed,
because of the underlying strong Z2 symmetry of the Liou-
villian, the right kernel of L0 is [16,113,129,130]

As(H) = lim
t→∞ eL0t Op(H) = Span

({∣∣Cμ
α

〉〈
Cν

α

∣∣}
μ,ν=±

)
, (22)

so that, for any choice of ρ̂0,

ρ̂ss = lim
t→∞ eL0t ρ̂0 =

∑
μ,ν=±

cμ,ν

∣∣Cμ
α

〉〈
Cν

α

∣∣. (23)

The coefficients cμ,ν encode the quantum information and are
defined as

cμ,ν = Tr{Ĵ†
μ,νρ̂0}, (24)

where the operators Ĵμ,ν , spanning the left kernel of L0, are
defined as [111,130]

Ĵ++ =
∞∑

n=0

|2n〉〈2n|,

Ĵ−− =
∞∑

n=0

|2n + 1〉〈2n + 1|,

Ĵ+− = Ĵ†
−+ = Aα

∑
q

aqĴ (q)
+−.

(25)

Here

Aα =
√

2α2

sinh(2α2)
, aq = (−1)q

2q + 1
Iq(α2),

Ĵ (q)
+− =

⎧⎪⎪⎨
⎪⎪⎩

(â†â − 1)!!

(â†â + 2q)!!
Ĵ++ â2q+1 (q � 0)

Ĵ++ (â†)2|q|−1 (â†â)!!

(â†â + 2|q| − 1)!!
(q < 0)

, (26)

where Iq(·) is the modified Bessel function of the first kind and
n!! = n · (n − 2)!! is the double factorial, applied element-
wise to all diagonal operators.

The two-photon drive and dissipation processes modelled
by L0 have been realized, for example, on superconducting
circuit platforms. In these platforms, the dominant source of
errors comes from single photon loss processes, modeled by
the dissipator κ1D[â] with κ1/κ2 � 1. These processes hinder
the code’s ability to encode quantum information as well as
the performance of logical gates [4,124,128].

2. Z, ZZ, and ZZZ gates

Let us consider the application of Z rotations of an angle π

over N = 1, 2, 3 cat qubits. For a single qubit, these rotations
are equivalent to the application of a logical Pauli σ̂ z operator,
which introduces a phase of (−1) on the logical |1〉 state
[131]. In the cat basis, this amounts to exchanging |C+

α 〉 and
|C−

α 〉. Similarly, in multiqubit systems, these rotations corre-
spond to a unitary transformation changing the tensor product
|C±

α 〉 . . . |C±
α 〉 into |C∓

α 〉 . . . |C∓
α 〉.

Logical Z operations can be approximately implemented
by evolving the system for a time T under the Liouvillian L =
L0 + L1 given by [111,112,124,125,128]:

L0 =
N∑

i=1

κ2D
[
â2

i − α2
i

]
,

L1ρ̂ = −i[ĤZ , ρ̂] +
N∑

i=1

κ1D[âi]ρ̂. (27)
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Here L1 encompasses both the unwanted single body losses
that compromise the accuracy of gate operations, and the ideal
Hamiltonian evolution responsible for the rotation. Specifi-
cally, the Hamiltonian ĤZ is defined as [123,132]:

ĤZ =

⎧⎪⎨
⎪⎩

εZ (â1 + â†
1) (N = 1)

εZZ (â1â†
2 + â†

1â2) (N = 2)

εZZZ (â1â2â†
3 + â†

1â†
2â3) (N = 3)

(28)

with

εZ = π

4αT
, εZZ = π

4α2T
, εZZZ = π

4α3T
. (29)

If we initialize each qubit in the |+〉 state then, ideally,
after a time T , all qubits should be in the |−〉 state, for which
〈−|Ĵ++|−〉 = 0. Therefore, we can use

PZ =
〈

N⊗
i=1

Ĵ++

〉∣∣∣∣∣
t=T

(30)

as a measure of the phase-flip error probability during the
Z rotation. Figure 10(a) displays PZ as a function of α2.
Simulations were conducted in a truncated Fock space with
dimension Ncut (α) = max{20 , �4.5α2�}, ensuring the conver-
gence of each data point. Notably, the L simulations, executed
with Mpm = 3 states per mode, overlay perfectly with the re-
sults obtained from the full evolution. Simulations for N = 3
were restricted to α2 < 5 because of prohibitively large mem-
ory requirements.

Conversely, since any rotation leaves the states lying on
the rotation axis unchanged, if we initialize each qubit in
|0〉 ≈ |α〉, we expect to find them in that exact same state after
evolving under L for a time T . As a quantifier of the bit-flip
error rate affecting the system we can therefore take

PX = 1 −
〈

N⊗
i=1

sgn(x̂)

〉∣∣∣∣∣
t=T

, (31)

where x̂ = â + â† and sgn(x̂) ≈ Ĵ+−. In Fig. 10(b) we dis-
play PX as a function of α2. Noticeably, our model is able
to accurately capture PX even up to the very small error
probabilities associated with its exponential suppression in
α2 [19,111,113,114]. The suppression coefficients ζ extracted
from an exponential fit of the exact simulations are ζ =
2.13 ± 0.01, 2.13 ± 0.01, and 2.16 ± 0.03, respectively, for
N = 1, 2, 3. The same fit on the LR data yields ζ = 2.13 ±
0.01, 2.14 ± 0.01, and 2.14 ± 0.02. These estimates are in
agreement with each other and with the theoretical expecta-
tion [123]. As we show in the inset of Fig. 10(b), the entropy
S of the target state at time T decreases with the number
of photons in the system. This entails that progressively less
states are necessary to capture the dynamics. To avoid over-
representation in our LR ansatz we thus reduce Mpm (number
of states per mode included in the simulation) with the photon
number. Specifically, we obtain good agreement with the full
solution by taking Mpm = 1 for α2 > 6.

IV. CONCLUSIONS

We introduce a model-independent method designed for
the efficient simulation of the dynamics of low-entropy

(a)

(b)

FIG. 10. Error probabilities of N-qubit Z gates, with N = 1, 2, 3.
(a) Phase-flip error probability PZ [Eq. (30)] as a function of the
photon number α2. We display as a dashed gray line the analyti-
cal approximation PZ ≈ κ1T α2 + ε2

Z T/α2 (for N = 1) provided in
Ref. [123]. (b) Bit-flip error probability PX [Eq. (31)] as a function of
the photon number α2. To improve visualization, as the curves would
largely overlap, we multiply each curve by a different constant,
effectively shifting them vertically on the plot. The constants are
R = 102, 1, 10−2 for N = 1, 2, 3, respectively. Full lines are used to
display the exponential fit of the LR data. Because of computational
constraints, the exact simulations for N = 3 were only possible up to
α2 = 5. The inset shows the von Neumann entropy S at time T as a
function of α2 for N = 1. In both panels, the results obtained from
the L simulations (squares) are in agreement with the full solution
(yellow crosses). Parameters: κ2 = 1, κ1 = 1/1000, and εZ = εZZ =
εZZZ = 1/20.

systems. Recognizing that such evolution can be accurately
captured by a limited number of states, our method builds
on and advances the previously established ensemble trun-
cation schemes [68–71], integrating their key features within
the framework of the time-dependent variational principle re-
cently developed for open quantum systems [48,72–74]. Our
approach enhances previous ensemble truncation methods by
offering a rigorous and systematic protocol for defining and
dynamically modifying the low-rank basis. Furthermore, it
extends prior variational descriptions of dissipative systems
by introducing a computationally efficient protocol for adapt-
ing the size of the variational manifold, thereby dynamically
adjusting the rank of the density matrix throughout the sim-
ulation. This dynamic adaptation ensures that the low-rank
subspace of the Hilbert space optimally represents the sys-
tem’s state at all times.

We have conducted extensive benchmarking of our method
across various model systems that have garnered significant
attention in recent decades. Particularly noteworthy is its ap-
plication to multiqubit bosonic codes [19,111–115,118–126],
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which are emerging as promising candidates for fault-tolerant
quantum hardware.

To ensure easy integration into diverse research work-
flows, we have implemented our method in Julia [81] and
incorporated it into the QuantumToolbox library [80,82], a
comprehensive toolkit for quantum system simulation.

Looking ahead, potential extensions of our work include
the incorporation of efficient variational representations of the
low-rank space, such as tensor-network [47,133] or neural
quantum states [134]. These advancements could enable the
simulation of larger-scale systems. Additionally, our varia-
tional approach could be adapted to the simulation of the mas-
ter equation of non-Markovian open quantum systems, such
as the Bloch-Redfield master equation and subsequent evo-
lutions [135]. A non-Markovian description of the dynamics
is necessary in many scenarios of increasing importance for
quantum technologies, where the Markovian and secular ap-
proximations leading to the Lindblad form [136] break down.
Last, a digital version of our method could approximate the
simulation of noisy quantum computing hardware, potentially
enhancing error-mitigation protocols that rely on estimating
hardware-specific noisy quantum channels [137–139].
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APPENDIX A: DERIVATION OF EQ. (6)

Given the generic parametrization ρ̂(t ) = ρ̂[θ(t )], the
EOM for the parameters θ that at each time best approximate
the action of L on ρ̂ are obtained by minimizing the Frobenius
distance between the variational evolution and the physical
one. This is ensured by requiring the variation of this quantity
to vanish, that is, by imposing

δ

∥∥∥∥
(

d

dt
− L

)
ρ̂

∥∥∥∥
2

= 0. (A1)

Note that in this notation the time derivative d/dt is intended
with respect to the variational parameters, i.e.,

˙̂ρ = d ρ̂

dt
= ∇θρ̂(θ) · θ̇ =

∑
j

∂ρ̂

∂θ j
θ̇ j . (A2)

With this definition, Eq. (A1) can be rewritten as (see Ref. [48]
for the full derivation)

0 = δ{Tr{[ ˙̂ρ − L(ρ̂)]†[ ˙̂ρ − L(ρ̂ )}]}

= Tr

⎧⎨
⎩
(

∂ρ̂

∂θi

)†
⎡
⎣∑

j

∂ρ̂

∂θ j
θ̇ j − L(ρ̂)

⎤
⎦
⎫⎬
⎭δθ̇

∗
i + H.c., (A3)

so that

Tr

{(
∂ρ̂

∂θi

)†

[ ˙̂ρ − L(ρ̂ )]

}
= 0 (A4)

for all choices of i. This is equivalent to the Dirac and Frenkel
variational principle, where the projection of the stochastic
evolution onto the tangent subspace {∂ρ̂/∂θi}i is made to
vanish.

Equation (5) results from incorporating the Lagrange mul-
tiplier λ into Eq. (A1), thereby embedding trace preservation
directly into the EOM. Analogous calculations as those pre-
sented above lead from Eq. (5) to

0 = Tr

⎧⎨
⎩
(

∂ρ̂

∂θi

)†
⎡
⎣∑

j

∂ρ̂

∂θ j
θ̇ j − L(ρ̂ ) + λ1

⎤
⎦δθ̇

∗
i + H.c.

⎫⎬
⎭,

(A5)

where choosing the constraint d
dt Tr{ρ̂ + ρ̂†}, over the more

obvious choice d
dt Tr{ρ̂}, preserves the symmetry under com-

plex conjugation found in Eq. (A3). Because of this, Eq. (A5)
unambiguously results in

Tr

{(
∂ρ̂

∂θi

)†

[ ˙̂ρ − L(ρ̂ ) + λ1]

}
= 0 (A6)

for all choices of i.
Consider now the specific LR ansatz in Eq. (3), for which

the variational parameters are the populations Bi j and the
coefficients zαk . For the populations Bi j , Eq. (A6) amounts to

0 = Tr

{(
∂ρ̂

∂Bi j

)†

[ ˙̂ρ − L(ρ̂ ) + λ1]

}

= 〈ϕi| ˙̂ρ − L(ρ̂ ) + λ1|ϕ j〉
= 〈ϕi| ˙̂ρ − L(ρ̂ )|ϕ j〉 + λSi j (A7)

= (SḂS + τBS + SBτ† − L)i j + λSi j,

where the last equality follows from substituting

˙̂ρ =
∑
l,m

Ḃlm|ϕl〉〈ϕm| + Blm|ϕ̇l〉〈ϕm| + Blm|ϕl〉〈ϕ̇m|, (A8)

as detailed in the calculations in Ref. [74]. Upon isolating Ḃ
in Eq. (A7), we get

Ḃ = S−1LS−1 − (S−1τB + Bτ†S−1) − λS−1, (A9)

where τ = z†ż and, as explained in the main text, S−1 and B−1

are the pseudoinverse matrices of respectively S and B. The
value of λ is determined by the constraint

0 = d

dt
Tr{ρ̂} = Tr{ḂS + (τ + τ†)B}

= Tr{S−1L − λ}, (A10)

from which λ = Tr{S−1L}/Tr{1} = Tr{S−1L}/M.
Equation (A9) is general and holds for any analytical

parametrization of the LR states. The variational equation for
the coefficients zαk as presented in Eq. (A6), on the other
hand, is explicitly dependent on the choice of parametrization.
For the full parametrization in Eq. (4), in particular, it can be
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similarly reformulated as

0 = Tr

{(
∂ρ̂

∂z∗
αk

)†

[ ˙̂ρ − L(ρ̂ ) + λ1]

}

=
∑
j,β

〈eα| ˙̂ρ − L(ρ̂ ) + λ1|eβ〉Bjkzβ j

=
∑
j,β

Bjkzα j〈eα| ˙̂ρ − L(ρ̂ )|eβ〉 + λ(zB)αk

= [zḂSB + żBSB + zBż†zB − (L − λ1) zB]αk,

(A11)

where the last equality follows once again from Eq. (A8).
Multiplying by B−1 on the right, and substituting Eq. (A9)
for Ḃ, we find that

(1 − P) żBS = (L̃ − zS−1L), (A12)

where P = zS−1z† is the projector on the LR manifold. Since
by definition Pż = 0, the latter reduces to

ż = (L̃ − zS−1L) S−1B−1. (A13)

A few comments on the full parametrization are now in
order. First, it is evident from Eq. (A13) that τ = z†ż = 0,
which consequently reduces Eq. (A9) to the form presented
in Eq. (6). Second, although Ref. [74] showed that using
a Lagrange multiplier method to enforce both energy and
trace preservation does not, in general, result in the uni-
tary evolution expected for an isolated system; any linear
parametrization as the one in Eq. (4) is exempt from this
problem.

APPENDIX B: COMPUTATIONAL DETAILS

The integration of the evolution problem presented in
Eq. (6) relies exclusively on linear algebra operations involv-
ing matrices of dimensions NH × M (z and L̃) and/or M × M
(S, L, and B), where M � N . This disparity in dimensions
allows for efficient execution of these operations, given the
relatively smaller size of at least one dimension of each
matrix. The bulk of the computational effort is dedicated to
calculating the matrix L̃, defined as:

L̃ = L(ρ)z =
[
−i(Ĥ eff ρ̂ − ρ̂Ĥ

†
eff ) +

D∑
σ=1

�̂σ ρ̂ �†
σ

]
z

= −i(Ĥ effzB)S + iz[(Ĥ effzB)†z] +
D∑

σ=1

(�̂σ z)B[(�̂σ z)†z].

(B1)

By following the order of operations as indicated by
the parentheses in the equation, the computation of L̃
involves matrix-matrix multiplications between M × M ma-
trices, NH × M and M × M matrices, as well as between
extremely sparse NH × NH and dense NH × M matrices. This
approach ensures that no dense NH × NH matrix is ever stored
in memory or involved in any multiplication. The process is
optimized for efficiency, leveraging the reduced dimension-
ality to minimize the computational load, and free from the
diagonalization of large matrices required in Refs. [68–70].

FIG. 11. Number of integration steps in of the adaptive integrator
as a function of time. We simulate the evolution of the XYZ model
with N = 9 spins and Jy = 1. The remaining physical parameters are
set to the values discussed in Sec. III A. We evolve while dynamically
adjusting the rank with a threshold of εmax = 10−4. The regulariza-
tion parameters are atol = 10−6 and rtol = 10−5.

The integration of Eq. (6) does, however, necessitate the
calculation of the inverse matrices of S and B. Since these
matrices may be singular, their inverse is often ill defined.
In order to progress, regularization schemes are typically
employed. A common approach involves adding a small di-
agonal contribution to the matrices to mitigate the impact
of small eigenvalues. Yet, we have found that the effect of
such an addition is not well controlled during time evolu-
tion, particularly when using an adaptive integrator. Similar
observations were reported in Ref. [83]. Taking inspiration
from this work, we adopt a regularization scheme based on
the singular value decomposition of S = U�V †, where � =
diag(σ 2

1 , . . . , σ 2
M ). Specifically, we define the pseudoinverse

of S as S−1 = V�+U†, where

�+
μν = f

(
σ 2

μ

)
σ 2

μ

δμν with f
(
σ 2
) = 1

1 + ( λ2

σ 2

)6 . (B2)

We do the same for B. The value of λ in chosen adaptively at
each iteration according to

λ2 = λ2(σ 2
1 , . . . , σ 2

M

) = max
[
atol , rtol × max

μ

(
σ 2

μ

)]
.

(B3)

Throughout the paper we set atol = 10−6. Note that the
Moore-Penrose pseudoinverse corresponds to choosing the
discontinuous function f (σ 2) = θ (σ 2 − λ2). In line with the
results from Ref. [83], we find that opting for a smooth
functional form for f (σ 2) significantly enhances the stability
and efficiency of the adaptive time stepping in the integration
routine. This improvement is illustrated in Fig. 11, where we
plot the number of integration steps required as a function of
time.

APPENDIX C: THE LOW-RANK DYNAMICAL
TRUNCATION SCHEME

We review here the ensemble truncation methods (or
low-rank dynamical truncation schemes) introduced in
Refs. [68–70]. The starting assumption is that, at time t , the
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system is described by a LR density matrix in diagonal form,

ρ̂(t ) =
M(t )∑
j=1

p j |ϕ j〉〈ϕ j | , (C1)

where 〈ϕ j |ϕk〉 = δ jk and M(t ) ≡ M for notational clarity. The
evolved state ρ̂(t + dt ) can be written in terms of the Kraus
operators as

ρ̂(t + dt ) =
D∑

j=0

K̂j ρ̂(t )K̂†
j + Odt2 , (C2)

where

K̂0 = 1 − iĤ effdt, Ĥ eff = Ĥ − i

2

D∑
σ=1

�̂†
σ �̂σ , (C3)

and

K̂σ = �̂σ

√
dt for σ = 1, . . . , D. (C4)

Both ρ̂(t ) = CC† and ρ̂(t + dt ) = TT † are then conve-
niently rewritten in terms of

C = [
√

p jzα j] with dim(C) = NH × M,

T = [〈eα|K̂σ |ϕk〉 ] with dim(T ) = NH × M(D + 1),

(C5)

where σ = 0, . . . , D, k = 1, . . . , M, and l = Mσ + k.
The dynamical truncation scheme consists, at each time

step, in (i) computing the matrix T , (ii) diagonalizing ρ̂(t +
dt ), and (iii) truncating the subspace by retaining only the
eigenstates with the largest eigenvalues p̃ j . This last step
determines the new rank M(t + dt ), according to the criterion,

εM(t+dt ) ≡
⎡
⎣1 −

M(t+dt )∑
j=1

p̃ j

⎤
⎦ � εmax � 1, (C6)

where εmax is the upper bound discussed in Sec. II B. The new
truncated density matrix reads

ρ̂(t + dt ) =
M(t+dt )∑

j=1

p̃ j |ϕ̃ j〉〈ϕ̃ j | , (C7)

with |ϕ̃ j〉 the first M(t + dt ) eigenvectors of TT † with the
largest eigenvalues. The apparent difficulty in diagonalizing
the NH × NH density matrix TT † is avoided by noticing that
the M × M matrix T †T has the same nonvanishing eigen-
values as its adjoint with the associated eigenvectors being
linearly related through T .

1. First-order equivalence of the two schemes

In this section we set out to prove the equivalence, to
first order in perturbation theory, between the schemes in
Refs. [68–70] and the present LR-TDVP method summarized
by the EOM (6). To do so we make the following two assump-
tions. First, we assume that at time t the system density matrix

ρ̂(t ) is in its diagonal spectral form (C1), that is,

B = diag (p1, . . . , pM ),

B−1 = diag

(
1

p1
, . . . ,

1

pM

)
, (C8)

S = S−1 = 1.

Second, we assume the rank M of ρ̂(t ) to be unchanged at
time t + dt . Within these assumptions, the variational Eq. (6)
can be cast in the compact form

Ḃ = L, (C9)

|ϕ̇ j〉 = [1 − P]L(ρ̂)

p j
|ϕ j〉. (C10)

Note that since the dynamical truncation scheme does not en-
force trace preservation, in this section neither do we. Indeed,
Eq. (C9) does not include the additional term −1Tr{L}/M
enforcing trace preservation in Eq. (6). The proof now consists
in showing that the diagonal matrix (C7) produced by the
dynamical truncation scheme coincides with that generated by
Eqs. (C9) and (C10) to leading order in dt . To complete the
proof, we express the density operator ρ̂(t + dt ) to leading
order in dt as

ρ̂(t + dt ) =
M∑

j=1

p j |ϕ j〉〈ϕ j | + L[ρ̂(t )]dt

=
M∑

j=1

p j |ϕ j〉〈ϕ j | +
NH∑

j,k=1

L jk|ϕ j〉〈ϕk|dt , (C11)

where we have completed the orthogonal basis of the
full Hilbert space by introducing a set of orthogonal vec-
tors {|ϕ j〉, j = M + 1, . . . , NH}. The dynamical truncation
scheme is achieved by diagonalizing the matrix ρ̂(t + dt )
in Eq. (C11). The first term in Eq. (C11) is diagonal in the
LR subspace HM and thus has nonzero diagonal elements p j

for j = 1, . . . , M only. The second term is nondiagonal and
small. The eigenvalue perturbation theory, therefore, achieves
the diagonalization to leading order in dt . According to per-
turbation theory, the new eigenvalues and eigenvectors are
expressed as

p̃ j = p j + L j jdt , (C12)

|ϕ̃ j〉 = |ϕ j〉 +
1,M∑
k �= j

|ϕk〉 Lk j

p j − pk
dt (C13)

+
⎛
⎝ N∑

k=M+1

|ϕk〉〈ϕk|
⎞
⎠L(ρ̂ )|ϕ j〉

p j
dt , (C14)

where we have distinguished the terms with j = 1, . . . , M
from the other terms in the sum over states orthogonal
to the LR subspace. Notice that in the last term of
Eq. (C13) the sum over the projectors |ϕk〉〈ϕk| factors out, as
in the unperturbed matrix pk = 0 for k > M. Using that
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1 − P =∑NH
k=M+1 |ϕk〉〈ϕk|, we immediately identify

Eq. (C10) with the last term on the right-hand side of
Eq. (C13). The remaining terms in Eq. (C13), together with
Eq. (C12), are the perturbation-theory expansion of the
M × M matrix in Eq. (C11). This concludes the proof.

The relation between the truncation error εM in Eq. (C6)
and the approximated variational error in Eq. (10) is also made

clear from the first-order perturbative expansion. Indeed, if∑
j p j = 1, then

εM = 1 −
∑

j

p̃ j = −Tr{L}dt ∝ Tr{PL(ρ̂)} = χ , (C15)

where we made use of the fact that S−1 = 1 for an orthonor-
mal basis.
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