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Experimental superposition of a quantum evolution with its time reverse
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In the macroscopic world, time is intrinsically asymmetric, flowing in a specific direction, from past to future.
However, the same is not necessarily true for quantum systems, as some quantum processes produce valid
quantum evolutions under time reversal. Supposing that such processes can be probed in both time directions,
we can also consider quantum processes probed in a coherent superposition of forward and backward time
directions. This yields a broader class of quantum processes than the ones considered so far in the literature,
including those with indefinite causal order. In this work, we demonstrate an operation belonging to this class:
the quantum time flip. Using a photonic realisation of this operation, we apply it to a game formulated as a
discrimination task between two sets of operators. This game not only serves as a witness of an indefinite time
direction, but also allows for a computational advantage over strategies using a fixed time direction, and even
those with an indefinite causal order.
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I. INTRODUCTION

In recent years, the framework of quantum theory has been
generalized to describe agents interacting through quantum
processes with indefinite causal orders [1–3]. These processes
have been realised experimentally using photonic platforms
[4–8], thereby witnessing the implementation of causally non-
separable series of events. Remarkably, these are not the
most general processes allowed by quantum mechanics. Take,
for example, the quantum SWITCH process [2]: even though
the causal order of the constituent events is indefinite, each
operation is accessed only in a single time direction. By con-
sidering processes where the time direction of the underlying
operations is indefinite, one can go beyond the framework
of indefinite causality. Indeed, a quantum superposition of
evolutions with opposite thermodynamic arrows of time was
first proposed in [9].

Processes with an indefinite time direction can be stud-
ied by considering operations that exhibit a time symmetry;
these operations admit a change of reference frame that yields
a valid quantum evolution in which the time coordinate is
inverted. Unitary channels are an example of such opera-
tions, and in particular they admit the following time-reversal
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symmetries: for every evolution U , both the inverse U �→ U −1

and the transpose U �→ U T are valid time-reversal operations.
The presence of such a symmetry naturally excludes evo-
lutions with an arrow of time, such as the thermodynamic
processes studied in Ref. [9]

Given quantum operations that can in principle be accessed
in both time directions, we can consider coherent superposi-
tions of transformations made in the forward and backward
time directions. This amounts to a kind of process that we
will refer to as being inseparable in its time direction, an
example of which—called the quantum time flip—was re-
cently described in Ref. [10]. This process cannot be realized
within the quantum circuit model. In this work we never-
theless present a photonic implementation of the quantum
time flip by exploiting device dependent symmetries of our
experimental apparatus. A quantum state undergoing a time
evolution is encoded in the polarization degree of freedom of
a single photon, while a control qubit determining the time di-
rection is encoded in its path degree of freedom. We show that
polarization operations with waveplates naturally implement
different time directions for forward and backward propa-
gation directions through the waveplates, given the correct
Stokes-parameter convention. This results in a deterministic
time reversal, in contrast to more general approaches which
may involve multiple uses of the input operation in combina-
tion with probabilistic or nonexact methods [11–20]. We can
furthermore realize the quantum time flip deterministically by
passing the photon through the waveplates in a superposition
of the two propagation directions.

We certify the indefinite time direction by demonstrating
an information-theoretic advantage of the quantum time flip
in the context of a computational game. In this setting, the
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FIG. 1. Time reversal and the quantum time flip. (a) The forward (top) and backward (bottom) directions of the same time evolution are
shown in yellow and blue, respectively. The backward time evolution is given by some function f of the forward evolution, and decomposing
the total time evolution into steps shows that f must be order reversing. The inverse and transpose are examples of such order reversing
functions. (b) Quantum gates are often modeled as black boxes with an input and an output. In this work, we consider black boxes that can
be accessed in two different directions, producing either the forward or backward time evolution depending on in which direction the box is
accessed. Here, the backward time evolution is taken to be the transpose. (c) A control degree of freedom can be introduced to control in which
direction the black box is accessed. (d) By putting the control qubit in a coherent superposition of the two states in (c) the box is accessed in
a superposition of both directions, and the input state is propagated in a superposition of time directions. This is a realization of the quantum
time flip. (e) The quantum time flip can be applied to more than a single gate. This figure illustrates a scenario where two gates are accessed in
a superposition of orders, in which they always have the opposite time directions. As described in the main text, this use of two quantum time
flips can yield a computational advantage.

quantum time flip outperforms not only strategies that utilize
operations with a fixed time direction, but even strategies that
exploit operations with an indefinite causal order [4,21].

II. QUANTUM CIRCUITS, UNITARY TRANSPOSITION,
AND PROCESSES WITH INDEFINITE TIME DIRECTION

The standard quantum circuit formalism provides solid
grounds for quantum computing and forms the basis for
quantum complexity theory [22,23]. However, it also im-
poses limitations on how we apply quantum theory. In a
circuit, operations necessarily respect a definite causal order
and the strict notion of input and output. The existence of
time-reversal processes such as unitary transposition is for-
bidden by the standard circuit formalism when given access
to one [15,16] or even two [10] uses of an unknown unitary.
However, for practical and foundational reasons, researchers
have been designing and pursuing nonexact and probabilistic
schemes aimed towards this goal [11–19]. Remarkably, a very
recent work shows that in the qubit case, when four uses of the
input operation are available, there exists a quantum circuit to
invert arbitrary unitary operations [20].

In quantum theory, reversible operations are described by
unitary operators. Processes which reverse a composition of
such operations may be expressed by a function f satisfying

f (UV ) = f (V ) f (U ), ∀U,V, (1)

for all unitary operators U and V (see Fig. 1). Under natural
assumptions, it can be proved that, up to a unitary transfor-
mation, there are only two time-reversal functions f : unitary
transposition f (U ) = U T and unitary inversion f (U ) = U −1

[10]. For two-dimensional systems, unitary transposition and
unitary inversion are unitarily equivalent via a Pauli σY opera-
tion. This follows from the identity, U −1 = σY U T σY which
holds for all operators U ∈ SU (2). Hence, for qubits, uni-
versal unitary transposition is possible if and only if unitary
inversion is possible. This equivalence does not hold for

higher-dimensional systems, and in these cases the transpose
is singled out as the only time-reversal operator for which the
quantum time flip is defined [10]. Together with the fact that in
the Choi-matrix formalism the transpose has the interpretation
of exchanging the roles of input and output of a channel,
this motivates the choice of the transpose as time-reversal
operator for qubit systems. When focusing on a particular
physical implementation, the general aspects of the standard
quantum circuit formalism may limit our view and lead to
an apparent mismatch between theory and practice. A known
illustrative example is the universal coherent control of uni-
tary operations, where an arbitrary unitary U is applied to
the target system conditional on the state of a control qubit:
U �→ 1 ⊗ |0〉〈0|C + U ⊗ |1〉〈1|C . While it is not possible to
design a quantum circuit to perform universal control, a sim-
ple Mach-Zehnder optical interferometer can be used for this
task [24–26]. Indeed, experimental control of black box quan-
tum gates has been demonstrated [27,28]. Such experimental
implementations exploit the knowledge of the position of the
physical device performing the gate, circumventing this ap-
parent limitation imposed by the quantum circuit formalism.

Although time-reversal processes such as unitary transpo-
sition are not possible within the standard circuit formalism
when given access to one [15,16] or even two [10] uses of
an unknown unitary, in this work we implement general qubit
unitary transposition, as well as the quantum time flip process,
using a particular optical construction. Similarly to the case
of universal coherent control, we make use of knowledge
about our specific experimental apparatus to realize a black
box unitary that may be used in two different directions. As
shown in Fig. 1(b), this box implements U in the “forward”
direction, while in the “backward” direction it has the effect
of the transposed operation U T .

Moreover, in addition to “simply” reversing a quantum
evolution, we also coherently superpose the forward and back-
ward time evolutions, and in so doing perform an optical
implementation of a process with an indefinite time direction
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[10], i.e., one which cannot be described as a convex mixture
of processes in which each gate is accessed only in one time
direction. The process that we implement optically is the
quantum time flip for unitary transposition, a process which
acts on unitary operations as

U �→ U ⊗ |0〉〈0|C + U T ⊗ |1〉〈1|C . (2)

We then compose the time flip process of Eq. (2) with its
flipped version, V �→ V T ⊗ |0〉〈0|C + V ⊗ |1〉〈1|C , to obtain
a process which acts on a pair of unitary operators as

(U,V ) �→ UV T ⊗ |0〉〈0|C + U T V ⊗ |1〉〈1|C . (3)

In addition to having an indefinite time direction, the process
described in Eq. (3) cannot be described by general process
matrices with indefinite causality such as the quantum switch
[2] or the Oreshkov-Costa-Brukner (OCB) process [3]. In the
next section, we will explain how to witness this property.

III. GAME DESCRIPTION

We now describe a discrimination task, first introduced in
Ref. [10], where the quantum time flip process will be used as
a resource to increase our performance. In this game, a referee
provides the player with two black box unitaries, U and V ,
belonging to either the set M+ or M−, which are known to
respect the property

M+ :={(U,V ) : UV T = +U T V }, (4)

M− :={(U,V ) : UV T = −U T V }. (5)

The player is then challenged to determine which of the two
sets the gates were picked from, while only being allowed to
access each of the black boxes once.

As discussed in the previous section, a player able to per-
form the quantum time flip may implement the process in
Eq. (3). Consider as a strategy an initial state of the form
|ψ〉T ⊗ |+〉C , where |±〉C = |0〉C±|1〉C√

2
, |ψ〉 is an arbitrary state,

and the subscripts C and T refer to the control and target
qubits. Sending this state through the gate in Eq. (3) gives the
state[

UV T + U T V

2

]
|ψ〉T |+〉C +

[
UV T − U T V

2

]
|ψ〉T |−〉C .

(6)

Since the states |±〉 are orthogonal, a player using this strategy
can always correctly determine which set was chosen by the
referee.

In contrast, players who do not have access to indefinite
time strategies may not be able to ascertain with certainty to
which set a given pair of unitaries (U,V ) belongs. In order
to make this claim concrete, Ref. [10] considers a particular
game where the set M+ has 13 pairs of unitary operators
respecting UV T = +U T V , and M− has 8 pairs of unitary
operators respecting UV T = −U T V ; these two sets of unitary
operators are

MI
+ = {(I, I ), (I, X ), (I, Z ),

(X, I ), (X, X ), (X, Z ),

(Z, I ), (Z, X ), (Z, Z )},

MI
− = {(Y, I ), (Y, X ), (Y, Z ),

(I,Y ), (X,Y ), (Z,Y )};

MII
+ =

{(
X − Y√

2
,

X + Y√
2

)
,

(
X + Y√

2
,

X − Y√
2

)
,

(
Z − Y√

2
,

Z + Y√
2

)
,

(
Z + Y√

2
,

Z − Y√
2

)}
,

MII
− =

{(
I + iY√

2
,

I − iY√
2

)
,

(
I − iY√

2
,

I + iY√
2

)}
;

M+ = MI
+ ∪ MII

+, M− = MI
− ∪ MII

−.

Here, we consider an average case variation of the aforemen-
tioned game, which goes as follows: with uniform probability
p = 1

13+8 , the referee picks a pair of unitary operators (U,V )
from M+ or M− and lets the player make a single use of
each. We then consider the optimal success probability of
players who have access to different kinds of resources. As
indicated by Eq. (6), players who have access to the quantum
time flip can always win with unity probability. The three
other classes of strategies, shown in Fig. 2, only have access
to a single time direction, forward or backward, and convex
combinations of these strategies will be called separable in
their time direction; a detailed mathematical characterisation
of these strategies is presented in the methods. Employing
the computer-assisted proof methods of Ref. [29] we obtain
upper bounds on the maximal success probabilities for players
restricted to particular classes of strategies. The code for this
is openly available in our online repository; see Methods for
details.

The first alternative strategy we consider is one in which
the player is restricted to using U and V in parallel, and
this results in a maximal success probability that is bounded
by 88

100 � ppar � 89
100 . Next, we consider players restricted to

causally ordered strategies, whose maximal success probabil-
ity is found to be bounded by 90

100 � pcausal � 91
100 . Finally,

players given access to process matrices with indefinite
causality (also called indefinite testers [30]), but with defi-
nite time direction, have their maximal success probability
bounded by 91

100 < pi.c. � 92
100 . Unlike the task in [31], in

which causally ordered and general non-quantum-circuit-
model strategies perform equally well, this game is hence an
example of a channel discrimination task with strict hierar-
chy between four different classes of strategies. Additionally,
while the operations selected by the referee are treated as
being fully characterized in the above analysis, there are
no assumptions made about the measurements performed by
the player, and these can remain unknown. This is therefore
an example of a semi-device-independent certification of an
indefinite time direction [32,33]. This stands in contrast to
witness based approaches, previously used to certify advan-
tages in channel discrimination tasks [5], in which one needs
well characterized measurement devices in order to evaluate
the witness operator.

IV. EXPERIMENT

Our photonic implementation of the game described in the
previous section makes use of the quantum time flip strategy
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FIG. 2. Classes of game strategies. The figure depicts the different strategies for the game described in the main text and their corresponding
maximum winning probabilities p. These maximum winning probabilities are obtained through an optimization over all possible choices of the
resources shown in dark blue, and hold for pairs of unitaries (U,V ) uniformly randomly picked from the sets M+ and M−. The state ρ, for
example, is allowed to contain any number of auxiliary degrees of freedom, and analogous statements hold for the measurement M, channel E
and process W . The three strategies differ in how they are able to access the gates picked by the referee. The strategies (a)-(c) are shown here
in the forward time direction, but are also valid in the backward time direction in which both gates are transposed. Each subsequent strategy is
strictly better than the previous one, and only players who have access to a quantum time flip process can win the game with unity probability.
(a) Parallel gate order. (b) Causally ordered gate sequence. (c) Process without a definite causal order. (d) Quantum time flip.

from Eq. (6) to achieve a success probability exceeding that of
any strategy only using the gates in one time direction. To co-
herently apply the quantum time flip, we employ polarization
optics in a partially common-path interferometer, depicted in
Fig. 3, with the control and target qubits being encoded in the
path and polarization degrees of freedom of a single photon,
respectively. Our experiment makes use of two quantum time
flips, sequentially applied to the two unitaries V and U . The
resulting controlled channel is the one of Eq. (6) where the
gates UV T and U T V act on the target (polarization) qubit and
are implemented using two Simon-Mukunda polarization gad-
gets consisting of three waveplates each [34], for which the
transpose operation is obtained by reversing the propagation
direction. Such polarization gadgets generally do not realize

the transpose operation in the backward propagation direction,
but rather a related operation:

Ufw �→ Ubw = PU T
fwP†, (7)

where P is a matrix describing the change of reference frame
to the backward direction, and the subscripts indicate the
propagation direction. While it is possible to construct a gad-
get that implements the transpose by introducing time-reversal
symmetry breaking elements [36], here we instead exploit
the fact that the transpose is a basis-dependent operation.
More concretely, by adopting the convention (S1, S2, S3) ↔
(−Z,−Y,−X ) for our Stokes parameters [37] we find that
P = 1, and the polarization gadgets transform as the transpose
under counterpropagation (see Methods). Superimposing two

FIG. 3. Experimental apparatus. (a) A type-II spontaneous parametric down-conversion source generates frequency degenerate single-
photon pairs at 1546 nm in a ppKTP (periodically poled KTiOPO4) crystal (top). The signal photon is sent to a heralding detector, while
the idler photon is routed to a balanced bulk beam splitter and coupled into single-mode fiber. Blue (green) arrows indicate the photon path
corresponding to the control-qubit state |0〉C (|1〉C). A piezoelectric actuator attached to one of the fiber couplers allows for control over the
interferometric phase; pairs of HWPs/QWPs are used in combination with fiber polarization controllers for polarization compensation through
the fibers. This use of redundant polarization elements both improves and simplifies the compensation procedure [35]. After the initial beam
splitter two fiber circulators guide the photon through the V gadget. Propagating through the gadget in the “forward” direction implements the
unitary V , while propagating “backward” has the effect of applying the transposed operation relative to the “forward” direction. One of the two
paths through first the gadget therefore results in the V T being applied instead of V . Two additional circulators then route the photon through a
gadget implementing U (U T ) in the “forward” (“backward”) direction. Finally, the signal photon is sent to a fiber beam-splitter, which applies
a Hadamard gate on the path degree of freedom, and correlates the two spatial output modes with the sets M+, M−. Detection is performed by
superconducting nanowire single-photon detectors (SNSPDs) housed in a 1 K cryostat. Additional QWP/HWP pairs are used to compensate
fiber-induced polarization rotations. (b) The fiber circulators route the light from port 1 → 2, from 2 → 3, and block light entering in port 3.
The bidirectional boxes in Fig. 1 are realized using sets of three waveplates. Depending on the propagation direction, they implement either
the unitary operation U/V or U T /V T .
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propagation directions through a gadget therefore allows us
to implement the quantum time flip, with the photon path
acting as a control degree of freedom. The specific coherent
superposition of time flips in Eq. (3) is achieved through the
use of fiber optic circulators.

The optical circuit in Fig. 3 begins with a bulk beam-
splitter that initializes the control qubit into the state |+〉C =

1√
2
(|0〉C + |1〉C ), after which two fiber circulators guide the

photons through the V gadget in two different directions,
giving the joint control-target state

1√
2

(V |ψ〉T ⊗ |0〉C + V T |ψ〉T ⊗ |1〉C ). (8)

Entering the circulators from a different port, the photons
are then directed to the U gadget, which they once again
propagate through in opposite directions, transforming the
joint state to

1√
2

(U T V |ψ〉T ⊗ |0〉C + UV T |ψ〉T ⊗ |1〉C ). (9)

At the end of the optical circuit, a fiber beam-splitter ap-
plies a Hadamard gate on the control qubit, giving the state[

UV T + U T V

2

]
|ψ〉T |+〉C +

[
UV T − U T V

2

]
|ψ〉T |−〉C .

(10)

A projective measurement on the control (path) qubit in the
computational basis then reveals whether (U,V ) belong to
M+ or M−.

The partially common-path structure of the interferometer
has two distinct advantages: (1) photons in the two different
propagation directions of the interferometer hit exactly the
same spots on the waveplates, and the physical symmetries
of the gadget therefore ensure the faithful implementation
of the time flip independently of any imperfections in the
waveplates; (2) the paths traversed in both directions do not
contribute any phase noise to the interferometer, thereby sim-
plifying the phase stabilization. More specifically, only the
paths connecting the two beam splitters with the fiber circu-
lators, as well as the fibers directly between the circulators,
add phase noise to the interferometer. These fiber components,
as well as the bulk beam splitter at the interferometer input,
are housed in a thermally and acoustically insulated box. The
passive stabilization of these elements is sufficient to bring the
phase drift down to a value of approximately 10 mradmin−1.
The use of a bulk beam splitter at the input was chosen in order
to balance the losses induced by the fiber circulators through
the free-space to fiber coupling, and to give control over the
interferometer phase, through a piezoelectric actuator. This
piezo was used to reset the phase of the interferometer prior to
beginning the measurements, and was not employed for active
feedback. The fiber beam splitter at the output ensures perfect
spatial mode overlap for high interferometric visibility.

V. RESULTS

Before demonstrating the quantum time flip in the context
of the game, we first verified the ability of a polarization
gadget to implement both a unitary and its transpose si-

FIG. 4. Unitary transposition fidelity. The yellow and blue bars
indicate the fidelity, F , of the unitaries U (top) and V (bottom) from
the sets M+ (left) and M− (right), measured in the forward prop-
agation direction, with respect to the transpose of the reconstructed
unitary measured in the backward propagation direction. Taller bars
indicate a higher fidelity between the unitaries in the two propagation
directions. The average fidelity is 0.9992 ± 6.5 × 10−4, indicating
that the gadgets faithfully implement the transpose. The uncertainties
were estimated using a Monte Carlo simulation of the tomography
accounting for errors in the waveplate angles, and the superimposed
box plot indicates the spread of the reconstructed fidelities. We at-
tribute the residual errors to imperfect waveplate retardance in the
tomography, and angle differences between the setting of the for-
ward and backward unitaries, since in principle the gadgets perfectly
implement the transpose of the unitary in the forward direction.

multaneously, in the two different propagation directions of
the light. To this end, we performed quantum process to-
mography on the implemented unitaries from the sets M+
and M−, in both propagation directions. We then compared
the fidelity F = 〈|(Ufw|�〉)†U T

bw|�〉|2〉|�〉 between the recon-
structed unitaries in the forward direction, Ufw and Vfw, with
the transposed reconstructed unitaries in the backward direc-
tion, U T

bw and V T
bw (see Methods). The results of this are shown

in Fig. 4. The average fidelity is greater than 0.999, indicating
that the gadgets correctly implement the transpose. Note that
the fidelity of the transpose is independent of any errors in
the retardance of the waveplates in the gadget itself. Such im-
perfections would cause the fidelity in the implementation of a
desired unitary to drop, but would affect the forward and back-
ward directions symmetrically. The same is true for undesired
offsets in the waveplate angles; however, in the measurements
shown in Fig. 4 the unitaries in the two directions were mea-
sured in separate runs, causing them to indeed be sensitive to
waveplate angle errors, in addition to errors in the tomogra-
phy itself. Having verified the ability to implement a given
unitary and its transpose with a single black box simultane-
ously, we then realized the game discussed in the previous
sections. First, two-photon coincidence events for the differ-
ent elements of M+ and M− were collected sequentially to
reduce the time spent rotating the waveplates. Second, the
game itself was played using the collected data. In each round
the referee uniformly randomly selects a pair of channels, and
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FIG. 5. Observed relative outcome frequencies. The figure shows the observed relative frequency of answers f rel
± in the quantum flip game

for all the pairs of unitaries in the sets M+ and M−. For the gates in the set M+ (M−) the game is won when the player outputs the answer
“+” (“−”). The observed average winning frequency is 0.9945. Since the bars corresponds to the actual number of times the different outcomes
were recorded there is no associated uncertainty (see Methods).

the player outputs an answer, “+” or “−”, given by a unique
two-photon event from the corresponding measurement set.
Figure 5 shows the relative frequencies f rel

±,k = N±
k /Nk , where

N±
k is the number of times the player output the answer “±”

when the channels (Uk,Vk ) were picked, and Nk is the total
number of times these channels were selected by the referee.
It can be seen that the player outputs the correct answer with
a relative frequency higher than the indefinite tester bound of
0.92 for every setting, and by extension any strategy that is
separable in its time direction. More specifically, the average
winning frequency is found to be 0.9945, with the best and
worst case frequencies being 0.9993 and 0.9860, respectively.

The formulation of the indefinite-time-direction witness as
a game with only two outcomes, win or lose, allows for a
straightforward statistical interpretation of the results. Since
we have an upper bound pi.c. � 92

100 on the probability of suc-
cess for an indefinite tester, we can calculate the probability
P of such a player having obtained v or more victories in N
rounds:

P =
N∑

k=v

(
N

k

)
pk

i.c.(1 − pi.c.)
N−k . (11)

This probability is exactly the P value for the experimentally
implemented process not being indefinite in its time direc-
tion. Out of the N = 106 rounds played in the experiment,
v = 994 512 were won by successfully identifying the correct
set, while 5488 rounds were lost. Using a Chernoff bound
tailored for the binomial distribution, we can provide an upper
bound on the P value, given by

N∑
k=v

(
N

k

)
pk

i.c.(1 − pi.c.)
N−k � exp

[
− ND

(
v

N

∣∣∣∣
∣∣∣∣pi.c.

)]
, (12)

where exp is the exponential function and

D

(
v

N

∣∣∣∣
∣∣∣∣p

)
:= v

N
ln

(
v

N p

)
+

(
1 − v

N

)
ln

(
1 − v/N

1 − p

)
(13)

is the relative entropy. Direct calculation using pi.c. = 0.92
shows that D( v

N ||pi.c.) ≈ 0.0627, hence the P value is upper

bounded by P � e−104
, which is an extremely small number.

This rules out any explanation of the data in terms of convex
mixtures of quantum processes that access the gates in a
definite time direction. Since this is the defining characteristic
for the class of processes with an indefinite time direction, we
therefore conclude that the implemented process belongs to
this class.

VI. DISCUSSION

In this work we have demonstrated a process that is insep-
arable in its time direction. Using an optical interferometer,
we implemented a coherent superposition of arbitrary uni-
tary transformations and their time reversal. Such a process
can only be probabilistically simulated by a quantum circuit
with a definite time direction. Even agents equipped with two
copies of the gates and able to combine them in an indefinite
order cannot realize the process deterministically, unless they
are given the ability of pre- and post-selecting quantum sys-
tems [2,38–42]. It is worth noting that our implementation of
controlled unitary transposition is not in contradiction with
the no-go theorem, stating that there is no quantum circuit
that can transform an unknown quantum unitary gate to its
transpose [10,15,43]. Our implementation adopts a device that
implements a single-qubit gate U , and while this gate can
remain unknown, the physical device itself is neither arbitrary
nor unknown. Indeed, it is the particular symmetries of the
physical device that necessarily and deterministically generate
the transposed gate U T .

While time itself does not flow backward in any part of
the experimental apparatus, our demonstration highlights the
limitations of the quantum circuit model for describing the full
range of quantum information processing protocols. This is
analogous to the impossibility of perfect unitary coherent con-
trol within the quantum circuit model [10,25,28,44]. Through
a channel discrimination game, in which we outperform any
strategy with a definite time direction, we furthermore certify
that the coherent superposition of time directions yields a
process that is inseparable in its time direction.

The study of indefinite causality led to the discovery and
realization of quantum information protocols with practical
advantages [45,46], as well as a lively debate about the inter-
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pretation of these realisations [47–50]. We envision that future
studies of processes with an indefinite time direction will sim-
ilarly expand both the theoretical and experimental toolkits
and open up new avenues for quantum information process-
ing. Indeed, a recent work has shown that processes with
an indefinite time direction can show enhanced performance
in certain communication tasks [51], and the experimental
methods presented here could be used to demonstrate such
advantages. We note that an experimental demonstration of
an indefinite time direction was also presented in a parallel
and independent work [52].

In the context of future work we note that universal trans-
position of single-qubit gates is a sufficient building block for
the transposition of multiqubit gates, for instance using a Reck
decomposition [53], or through the inclusion of a reciprocal
symmetric two-qubit gate [54]. We believe that the demonstra-
tion of coherent transposition of a two-qubit unitary using the
former approach on a hyperencoded two-qubit photonic state
would be within experimental reach. Finally, the investigation
of time-reversed quantum processes also holds applications
in quantum thermodynamics. Indeed, in [10], it was shown
that the operations for which the quantum time flip produces
another valid operation are exactly those which can be written
as linear combinations of unitary channels. That is, channels
which do not decrease the entropy in either time direction.
Nevertheless, the application of superpositions of two time
directions in the context of thermodynamic work was recently
studied in [9,55]. Such superpositions could be realized using
the quantum time flip by having it act on the unitary dynamics
of the joint state-environment system.

All data used in this work are openly available [56]. The
code used to perform the computer assisted proofs is openly
available [57].
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APPENDIX A: ARBITRARY UNITARY TRANSPOSITION

The description of linear retarders depends on the conven-
tion used for the polarization states, i.e., which Pauli matrices
are associated with which Stokes parameters. The most com-
monly used convention in quantum optics is

(S1, S2, S3) ↔ (Z, X,Y ), (A1)

corresponding to the {H,V }, {+,−}, and {L, R} polarizations
being the eigenstates of Z , X , and Y respectively. Under this
convention, a linear retarder, such as a waveplate, at an angle
θ to the vertical axis, is described by the following matrix:

U (θ ) = e− i
2 θY e− i

2 rZ e
i
2 θY

=
[

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

][
ei r

2 0
0 e−i r

2

][
cos(θ ) sin(θ )

− sin(θ ) cos(θ )

]
,

(A2)

where r is the retardance of the element. Note that the matrix
U (θ ) is symmetric since

U (θ )T = (e
i
2 θY )T (e− i

2 rZ )T (e− i
2 θY )T

= e− i
2 θY e− i

2 rZ e
i
2 θY . (A3)

Propagating through such an element backward has the effect
of taking θ �→ −θ . This transformation can be written as

ZU (θ )Z = U (−θ ) (A4)

since

Ze− i
2 θY Z = e

i
2 θY . (A5)

For a general polarization gadget consisting of several lin-
ear retarders described by the unitary UG,fw in the forward
direction, we find the unitary for the backward propagation
direction, UG,bw, by transposing the order of the individual lin-
ear retarders and changing the sign of their respective angles:

UG,fw = U1(θ1) · · ·Un(θn)

�→ UG,bw = Un(−θn) · · ·U1(−θ1), (A6)

which can be written

UG,fw �→ ZU T
G,fwZ (A7)

since

Z (U1(θ1) · · ·Un(θn))T Z = ZUn(θn) · · ·U1(θ1)Z

= ZUn(θn)Z · · · ZU1(θ1)Z

= Un(−θn) · · ·U1(−θ1). (A8)

The transformation in Eq. (A7) is not useful for realizing the
transpose, since the Z gates around the unitary U T

G,fw have to
be undone to recover the transpose.

However, this problem can be overcome by picking a dif-
ferent convention for the polarization basis states, such as
(S1, S2, S3) ↔ (X,Y, Z ), which is a cyclic permutation of the
aforementioned one (corresponding to a rotation of the basis
vectors by π/3 around the vector [1 1 1]), and which is
commonly used in polarimetry. In this work, we chose the
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convention

(S1, S2, S3) ↔ (−Z,−Y,−X ). (A9)

The minus signs are necessary to preserve the handedness
of the coordinate system when exchanging X and Y . That
this convention yields the desired transformation under coun-
terpropagation can be realized by noting that the Stokes
parameters of a unitary always transform as (S1, S2, S3) �→
(S1,−S2, S3); however, for completeness we will perform the
calculation explicitly. In the convention of Eq. (A9) a linear
retarder at an angle θ is written as

U (θ ) = e
i
2 θX e

i
2 rZe− i

2 θX (A10)

and the corresponding unitary in the backward direction is

U (−θ ) = e− i
2 θX e

i
2 rZ e

i
2 θX

= (e
i
2 θX e

i
2 rZ e− i

2 θX )T

= U (θ )T . (A11)

It then follows that a general waveplate gadget also transforms
as the transpose:

UG,fw = U1(θ1) · · ·Un(θn)

�→ UG,bw = Un(−θn) · · ·U1(−θ1)

= (U1(θ1) · · ·Un(θn))T

= U T
G,fw. (A12)

One could alternatively get around the problem with
Eq. (A7) by introducing two more polarization gadgets imple-
menting Z operators on either side of the gadget in Eq. (A7),
and making sure that these additional gadgets only act on
one propagation direction, for example by physically dis-
placing the beam paths of the two propagation directions,
so that the gadgets act on different spatial modes in the dif-
ferent propagation directions. This would, however, change
the interpretation of the experiment with respect to the im-
plementation in the main text, since the transformations in
the two propagation directions would no longer be related
by a physical symmetry. Instead they would depend on the
transformations realised by the additional gadgets.

APPENDIX B: OBTAINING UPPER BOUNDS
FOR DIFFERENT CLASSES OF STRATEGIES

We now detail how to obtain an upper bound on the win-
ning probability of the game described in the main text. Let N
be the total number of pairs of unitary operators contained
in the set M+ and M−. Following a uniform distribution,
i.e., with probably 1/N , the referee picks a pair of unitary
operators (Ui,Vi ). The player should then employ a quantum
strategy to guess whether (Ui,Vi ) belongs to M+ or M−.
Let p( ± |(Ui,Vi )) be the probability that the player guesses
(Ui,Vi ) ∈ M±. The probability of such player winning the

game is then given by

p = 1

N

( ∑
(Ui,Vi )∈M+

p(+|(Ui,Vi )) +
∑

(Ui,Vi )∈M−

p(−|(Ui,Vi ))

)
.

(B1)

For the qubit scenario considered here, we can analyze the
case where unitary gates act backward by simply considering
the case where all involved unitary operators are transposed.
This is true because, as discussed earlier, there are only two
antihomomorphisms from SU (d ) to SU (d ), and, for any
U ∈ SU (2), we have that U −1 = σY U T σY . More explicitly,
the winning probability for players using the unitary gates
backward is given by

p = 1

N

( ∑
(Ui,Vi )∈M+

p
( + ∣∣(U T

i ,V T
i

))

+
∑

(U T
i ,V T

i )∈M−

p
(− ∣∣(U T

i ,V T
i

)))
. (B2)

Also, as we show more explicitly later, since the success
probability is linear function of the strategies, convex com-
binations of forward and backward strategies cannot increase
the maximal success probability. Hence it is enough to analyze
the forward and backward cases.

When the player is restricted to parallel strategies, the most
general approach consists of preparing a quantum state ρ,
sending part of this state to the operators Ui and Vi, and then
performing a quantum measurement with outcomes labeled as
+ or −, that is,

ppar(±|(Ui,Vi )) = tr [M± ((Ui ⊗ Vi ⊗ 1)ρ(U †
i ⊗ V †

i ⊗ 1))],
(B3)

where M+, M− � 0 are the positive operator-valued measure
(POVM) operators associated to the outcomes + and −; see
Fig. 2 in the main text for a pictorial illustration.

Parallel strategies may be analyzed in the (parallel) tester
formalism [29,59], also known as process POVM [60]. Let
us label the linear spaces corresponding to the input and
output spaces as HI and HO respectively. We can then write
Ui ⊗ Vi : HI → HO with HI

∼= HO
∼= C2 ⊗ C2. In the tester

formalism, operations are viewed as states and Eq. (B3) may
be written as the generalized Born’s rule. More formally, we
have that

ppar(±|(Ui,Vi )) = tr [T± |Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi|], (B4)

where 1T+, T− ∈ L(HI ⊗ HO) are tester elements and
|Ui ⊗ Vi〉〉 ∈(HI ⊗ HO) is the Choi vector of Ui ⊗ Vi defined
as

|Ui ⊗ Vi〉〉 :=
∑

l

|l〉 ⊗ (Ui ⊗ Vi|l〉), (B5)

where {|l〉} is the computational basis for HI . The operators
T+ and T− are parallel testers when T+, T− � 0, and their sum

1Here L(HI ⊗ HO ) denotes the set of linear operators from HI ⊗
HO (linear endomorphisms).
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respects

T+ + T− = σI ⊗ 1O, (B6)

where σ ∈ L(HI ) is a quantum state. As shown in
Refs. [29,59,60], all parallel strategies as in Eq. (B3) can be
represented by testers such as those in Eq. (B4), and vice
versa. Hence, when optimizing over all possible strategies,
instead of considering all possible states ρ and measurements
M± as in Eq. (B3), we may optimize over all valid testers T±
as in Eq. (B4).

One advantage of using the tester formalism, is that the
maximal probability of winning the discrimination game can
be written in terms of a semidefinite program (SDP) via the
following optimization problem:

max
1

N

[ ∑
(Ui,Vi )∈M+

tr(T+ |Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi| )

+
∑

(Ui,Vi )∈M−

tr(T− |Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi|)
]

(B7)

s.t.: T+, T− � 0, (B8)

T+ + T− = σI ⊗ 1O, (B9)

tr(σ ) = 1. (B10)

Following the steps of Ref. [29], the dual problem is given by

min tr(C)/dI (B11)

s.t.:
1

N

∑
(Ui,Vi )∈M+

|Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi| � C, (B12)

1

N

∑
(Ui,Vi )∈M−

|Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi| � C, (B13)

tr
O

(C) = tr
IO

(C)
1I

dI
, (B14)

where dI is the dimension of HI (for our particular problem,
dI = 4). By the definition of dual problem, if we find a linear
operator C satisfying the feasibility constraints of inequality
(B12), inequality (B13), and Eq. (B14), the quantity tr(C)/dI

is an upper bound on the maximal success probability. In order
to obtain a computer-assisted-proof upper bound with fraction
of integers, we use standard and efficient floating-point arith-
metic algorithms to solve the SDP, obtain an operator C which
satisfies the constraints of the dual problem, and truncate it in
such a way that the feasibility constraints are still satisfied.
We refer to our online repository [57] for an implementation
of this procedure and to Ref. [29] for a detailed explanation
on how to perform the truncation step.

When the player is restricted to causal strategies (also
referred to as sequential strategies), the most general approach
consists of preparing a quantum state ρ, sending part of this
state to the operators Ui (or to Vi), applying a quantum chan-
nel E , then performing the operation Vi (or Ui), and finally
performing a quantum measurement with outcomes labeled

as + or −, that is,

pseq(±|(Ui,Vi ))

= tr[M± (Vi ⊗ 1)E (Ui ⊗ 1 ρ U †
i ⊗ 1)(V †

i ⊗ 1)]. (B15)

Using the concept of sequential testers [29,59], we can also
write the problem of finding the optimal causal strategy as
an SDP. Since there is a notion of causal order, we label
the input and output spaces of the first operation as HI1 and
HO1 respectively. Analogously, we use HI2 and HO2 for the
second operations. If the player uses the operation Ui first and
Vi second, we have that Ui : HI1 → HO1 and Vi : HI2 → HO2 .
Following Ref. [29], the primal and dual problems for causal
strategies are respectively given by

max
1

N

[ ∑
(Ui,Vi )∈M+

tr(T+ |Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi|)

+
∑

(Ui,Vi )∈M−

tr(T− |Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi|)
]

(B16)

s.t.: T+, T− � 0, (B17)

T+ + T− = WI1O1I2 ⊗ 1O2 , (B18)

tr
I2

(WI1O1I2 ) = σI1 ⊗ 1O1 , (B19)

tr(σ ) = 1 (B20)

and

min tr(C)/dI (B21)

s.t.:
1

N

∑
(Ui,Vi )∈M+

|Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi| � C, (B22)

1

N

∑
(Ui,Vi )∈M−

|Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi| � C, (B23)

tr
O2

(C) = tr
I2O2

(C) ⊗ 1I2

dI2

, (B24)

tr
O1I2O2

(C) = tr
I1O1I2O2

(C)
1I1

dI1

. (B25)

Another sequential strategy would be to use Vi before Ui. For
this case, the semidefinite program is then exactly the same as
the one before, but we exchange the roles of Vi and Ui. Our
methods show that when Ui precedes Vi the success probabil-
ity is bounded by 90

100 � pUV � 91
100 , and when Vi precedes Ui

the success probability is bounded by 90
100 � pVU � 91

100 . Since
the two bounds coincide, we have 90

100 � pcausal � 91
100 .

When the player is restricted to general quantum strategies
without a definite causal order, the strategies are described by
means of an indefinite tester [30], which consists of positive
semidefinite operators that add up to a process matrix [3],
that is T+ + T− = W , where W is a bipartite process matrix.
Following Ref. [29], and defining the trace-and-replace maps
as iX := tri(X ) ⊗ 1i, the primal and the dual problem are
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respectively given by

max
1

N

[ ∑
(Ui,Vi )∈M+

tr(T+ |Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi|)

+
∑

(Ui,Vi )∈M−

tr(T− |Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi|)
]

(B26)

s.t.: T+, T− � 0, (B27)

T+ + T− = W, (B28)

I2O2W =O1I2O2 W, (B29)

I1O1W =O2I1O1 W, (B30)

W =O1 W +O2 W −O1O2 W, (B31)

tr(W ) = tr(1O1O2 ) (B32)

and

min tr(C)/dI (B33)

s.t.:
1

N

∑
(Ui,Vi )∈M+

|Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi| � C, (B34)

1

N

∑
(Ui,Vi )∈M−

|Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi| �,C (B35)

O1C =I1O1 C, (B36)

O2C =I2O2 C. (B37)

APPENDIX C: DATA ANALYSIS

As described in the main text, the game was played by
having the referee pick pairs of unitaries from the sets M± in
a uniformly random way in every round. The player’s outcome
was determined by the first unused photon detection event in
the event list corresponding to that choice of unitary by the
referee. More concretely, let O j,k

± be the kth element in the
time-ordered list of detection events O j

± for the implemented
pair of unitaries M j

±. Then the outcome of the nth round of the
game, in which the referee picked the pair of unitaries M j

± for
the kth time, is O j,k

± .
During the course of this game the player outputs the an-

swer “+” (“−”) a total of N+
j (N−

j ) times in the Nj rounds that
the referee selects the pair of channels (Uj,Vj ). The relative
frequencies with which the player outputs these answers can
be written as

f rel
+, j = N+

j

N j
, f rel

−, j = N−
j

N j
. (C1)

These observed relative frequencies are shown in Fig. 5 in the
main text. The values of these observed relative frequencies
do not by themselves have an associated uncertainty, and
are purely observed quantities. In many single-photon exper-
iments, quantities such as these are interpreted as empirical
estimates of underlying probabilities, and such estimates do
carry uncertainties. Even in perfect experimental realisations,

finite counting statistics would introduce Poissonian noise in
this type of estimation. However, the statistical method we use
to determine the confidence in our conclusion—the calcula-
tion of the P value—allows us to make statements about the
underlying probability distribution without directly estimating
it. Specifically, that its expectation value exceeds the bound
imposed on the winning probability of any strategy with a
definite time direction.

In order to filter out background events resulting from
various back-reflections in the experimental setup, as well as
detector dark counts, twofold coincidence events between the
signal and idler photons were used to time filter the detection
events.

The superconducting nanowire detectors used in the exper-
iment have a slight polarization dependence in their detection
efficiency, and due to the different pairs of unitaries generating
different target qubit states the event rates for different imple-
mented unitaries varied. This difference in efficiency was not
necessary to account for, because the number of events for
each pair of unitaries was truncated, in reverse chronological
order, to match the setting with the fewest events. To find the
numbers of rounds won and lost, the data were sampled once,
drawing 106 different samples from unique, chronologically
ordered (for each setting) detection events. The exact numbers
of won and lost rounds in this sampling were 994 512 won and
5488 lost.

A detection efficiency imbalance is also present in the two
output ports of the interferometer, corresponding to the two
different measurement outcomes of the control qubit. This
efficiency difference could quite easily be characterized and
corrected for; however, such actions are equivalent to clas-
sical post-processing and is captured by the indefinite tester.
Imbalanced detection efficiency could therefore not lead to a
violation of the bound, and is not necessary to correct for since
the data already violates the bound. This is a different way of
stating the semi-device-independence of our methods.

The measurement of the fidelity between the unitary imple-
mented in one direction and the transpose of the unitary in the
other direction was performed with coherent light. To estimate
the fidelity, the two unitaries were first fitted to the data using
a maximum likelihood estimation and then the fidelity was
calculated by evaluating the following average:

F = 〈|(Ufw|�〉)†U T
bw|�〉|2〉|�〉, (C2)

taken over 1000 Haar-random states |�〉. This was done in
every step of a Monte Carlo simulation to estimate the mea-
surement uncertainties induced by the waveplate errors.

APPENDIX D: SEMI-DEVICE-INDEPENDENCE
OF DEMONSTRATION

In this section we will elaborate on what is meant by
our certification methods being semi-device-independent. Our
usage of this term is consistent with the notion of semi-device-
independence introduced in [32]. That our demonstration is
semi-device-independent means that the measurement that the
player performs does not have to be characterized. Equiva-
lently, the player does not have to trust that their measurement
device implements a specific measurement. It is a statement
about the required assumptions on the measurement.
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The basis for the claim that our demonstration is semi-
device-independent lies in the fact that the derivation of the
bounds for the strategies depicted in Figs. 2(a)–2(c) in the
main text included an optimization over all possible binary
measurements the player could perform. This means that there
is no measurement that a player using these strategies could
perform that would allow them to violate the bounds we
derived. Hence, a violation of these bounds has the same
interpretation regardless of what measurements the player
performed.

It is worth noting that semi-device-independence does not
imply that the ability of the player to violate the bounds is
independent of the measurement they perform. Indeed, mea-
surement imperfections can reduce the winning rate of the
player. This can cause them to fail to certify that they employ
a certain strategy, even if they do in fact employ that strategy.

A concrete consequence of the semi-device-independence
is that imperfections in the measurement do not need to
be accounted for, and the measurement itself does not need
to be modeled in the data analysis. This is in contrast to
device-dependent methods, which rely on well characterised

measurements to draw conclusions about the observed re-
sults. A device-dependent verification method that frequently
appears in experimental quantum information science is the
witness operator, for example entanglement witnesses or
causal witnesses. Such witness operators can also be con-
structed for the task described in the main text. A witness
operator Ŝ can be used to certify a certain statement about
a quantum system or process by experimentally evaluating its
expectation value, and confirming that it satisfies some bound:

〈Ŝ〉 < B. (D1)

Empirically evaluating 〈Ŝ〉 requires the witness operator to be
decomposed in terms of experimentally measurable observ-
ables, and the expectation values of these observables to be
estimated. Imperfections in the measurement devices induce
uncertainties in these estimates, which in turn propagate as
uncertainties into the expectation value of the witness opera-
tor. A statistically significant violation of the inequality (D1)
therefore requires well characterized measurement devices.
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