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We study Floquet systems with translationally invariant nearest-neighbor two-site gates. Depending on the

order in which the gates are applied on an N-site system with periodic boundary conditions, there are factorially
many different circuit configurations. We prove that there are only N — 1 different spectrally equivalent classes,
which can be viewed either as a generalization of the brick wall or of the staircase configuration. Every class,
characterized by two integers, has a nontrivial space-time symmetry with important implications for the level-
spacing distribution—a standard indicator of quantum chaos. Namely, in order to study chaoticity one should
not look at eigenphases of the Floquet propagator itself, but rather at the spectrum of an appropriate root of the

propagator.
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I. INTRODUCTION

Chaoticity and integrability are important theoretical no-
tions. Integrability can allow for analytical results, while
chaotic systems, in spite of unpredictability of trajectories,
adhere to statistical laws. So-called toy models—the sim-
plest models with a given property—play an important role.
Classical single-particle H in one dimension (1D) is always
integrable; one needs at least a 3D phase space for chaos to
be possible. This can also be achieved already in 1D [1] by
a time-dependent H(¢), the simplest case being a “kicked”
system of form H(t) = ”77 + V(q)td.(t), where §.(¢) is a train
of delta functions. A canonical example is the standard map
[2]. Similar logic of taking a Floquet propagator (map) works
for quantum systems as well. For instance, one can exemplify
single-particle quantum chaos with a kicked top [3,4]. Going
to many-body quantum systems a plethora of possibilities
opens up, one choice being a Floquet propagator that is a
product of two simpler propagators, e.g., Ref. [5]. In light of
experimental advances in noisy quantum simulations [6—8] it
pays off to consider systems where the basic building block
is a nearest-neighbor gate rather than the local Hamiltonian
(applying two-site gates is also simpler in classical numerical
simulations [9]).

We therefore focus on circuits where a one-unit-of-time
Floquet propagator F' is composed of applying the same two-
site unitary gate V on all nearest-neighbor pairs of qubits in
1D—we call such systems simple circuits. Simple circuits
have translational and temporal invariance, and, depending on
the chosen gate V, span all dynamical regimes from integra-
bility to chaos. Needles to say, such simple circuits have been
extensively studied, a non-exhaustive list of only few of recent
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papers includes Refs. [10-20]. We show that any such circuit
has a very simple form: it is a product of a local two-site
transformation and a free propagation (translation), and that
there are only N — 1 spectrally inequivalent classes.

There are many indicators of quantum chaos with perhaps
the most frequently used one being the so-called level-spacing
distribution (LSD) P(s) of nearest-neighbor eigenenergy spac-
ing s [3]. According to the quantum chaos conjecture [21]
Hamiltonian systems with a chaotic classical limit are ex-
pected to display P(s) given by the random matrix theory
(RMT) [22]. RMT LSD has also been observed in nonin-
tegrable generic systems without a classical limit, of which
simple circuits are an example, where it is sometimes even
taken as a defining property of quantum chaos [23]. For
Floquet systems checking for quantum chaos via P(s) is
even simpler: writing eigenvalues of F as e'®’ the density of
eigenphases ¢; should be uniform and therefore taking for
s = (¢j41 — ¢;,)N /27, where N is the Hilbert space dimen-
sion, there is no need for the unfolding that is required when
studying spectra of H [3]. It is therefore rather surprising
that, while there are hundreds of papers using P(s) to study
chaoticity in many-body Hamiltonian systems, there are es-
sentially none studying LSD in simple (same-gate) quantum
circuits (exceptions are recent Refs. [24,25]). The reason is
that, surprisingly, LSD for chaotic simple circuits seemingly
does not adhere to the RMT expectation. In our paper we will
show that the reason behind it is a space-time symmetry that
all such circuits posses.

Let us demonstrate that by a simple generalized brick-wall
(BW) circuit with three layers (Fig. 1 inset), where we trans-
late each two-site gate by three sites (instead of two as in BW).
For periodic boundary conditions and N divisible by three
the Floquet propagator can be written as F = f5 f3 f;, where
fi= gi ?)_l Vit3k, j+3k+1 is one layer beginning at site j and
V;,; denotes the unitary two-site gate V acting on qubits 7 and
Jj- Indices are taken modulo N, with sites j = 1, ..., N. Tak-
ing a two-qubit gate V to be some fixed generic unitary, and
therefore having a system that should be quantum chaotic, we
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FIG. 1. A chaotic three-layer BW circuit (inset) and the eigen-
phases level-spacing distribution P(s). Eigenphases of the propagator
F (blue) do not follow the RMT expectation, while after resolving
the space-time symmetry the eigenphases of the root F = (S°F)!/?
(purple) do agree with the CUE RMT (green curve). Red curve is
the theory for a direct sum of three CUE matrices [see Eq. (9) and
Appendix B]. Data is for N = 12 in the eigenspace with momentum
0, and Haar random gate V.

can see in Fig. 1 that, after resolving the obvious translational
symmetry, the LSD of F is far from the expected RMT result
for a circular unitary ensemble (CUE) [3]. If anything, it is
closer to a Poisson statistics typical of integrable systems, as
if there would be some unresolved symmetry [26].

Indeed, each layer f;, and thereby also F, is invariant
under translation by three sites, S -3 fiS 3= fj» where § is the
translation operator by one site to the left,

Vierje1 = STV 8. ey

We can also easily see (Fig. 1) that translating F by two sites is
the same as a shift in time by one layer. Denoting propagator
from time #; to #, by F (¢, 1), e.g., F = F(0, 1), the three-
layer BW circuits has a space-time symmetry S~2F (0, 1)S? =
F(1/3,4/3) (application of each gate advances time by 1/N).
This symmetry is also reflected in the structure of F, which
can be written as F = S f1S*S72£S2fi =S579(52f) =
S0F3. We now see where the crux of the problem lies. Since
F as well as f; have translational symmetry by three sites the
momentum k labeling eigenvalues of S* (also referred to as
the quasimomentum, since it takes a discrete set of values)
is a good quantum number. In each momentum eigenspace
§7% is just an overall phase, and therefore F is, up to this
irrelevant phase, equal to the third power of F' = S%f|. The
quantum chaos conjecture should therefore be applied to F
rather than to F. Doing that one recovers perfect agreement
with the RMT (Fig. 1). It also tells us that, provided F and
therefore the circuit is “chaotic”, the LSD of F will be equal
to that of the third power of a CUE matrix, which is equal to
a direct sum of three independent CUE matrices, Eq. (9).

The above example is just one possible simple circuit—in
our classification it is of type (g, 7) = (3, 2). We shall classify
symmetries of all possible simple quantum circuits, showing
that all posses an appropriate space-time symmetry. Space-
time symmetries have been discussed before in the solid-state
physics context and time-periodic H(¢) [27-29]. An important
offshoot will be expressing F essentially as a power of simpler
matrix F, meaning that in order to probe dynamic (chaotic)

properties one needs to study £ and not F. Expressions of
that form have appeared before for special cases of the BW
circuit in Ref. [30] [class (2,1)], and for » = 1 in Ref. [25],
see also Ref. [24] for preliminary results.

II. CLASSIFICATION OF SIMPLE CIRCUITS

Having an N-site 1D system with periodic boundary con-
ditions there are N nearest-neighbor gates V; ;i that can
be ordered in N! different ways (configurations) to make a
one-step propagator [31]. However, it is clear that many of
those configurations have equal F since two-site gates acting
on nonoverlapping nearest-neighbor sites commute. Further-
more, a lot of configurations lead to the same spectra, for
instance, under cyclic permutations of gates spectra do not
change [32]. Because we want to study spectra of F we will
call two circuits equivalent if they have the same spectrum. It
is clear that there are much less than N! non-equivalent simple
circuit classes. For open boundary conditions there is in fact
just one class [32].

For periodic boundary conditions this is not the case. One
can show (see Appendix, Theorem 2) that there are (N — 1)
different equivalence classes. A canonical representative cir-
cuit of a given equivalence class follows a similar logic as
the three-layer BW example in the Introduction: A canoni-
cal circuit is characterized by two integers g and r, where
the first layer of gates f; is made by repeatedly translating
Vi by g sites (¢ = 3 in the example), whereas r determines
the shift of the second layer with respect to the first one
(r = 2 in the example). The following theorem embodies the
precise statement.

Theorem 1. Any simple qubit circuit on N sites with peri-
odic boundary conditions is equivalent to exactly one of the
N — 1 canonical simple qubit circuits having Floquet propa-
gator

Fpr =571 (S (ST )M7)1, )

where ¢ is larger than 1 and divides N, and g and r are
coprime,

2<g<N, gcdg,N)=gq,

I<r<g, gedg.r)=1, 3

where gcd denotes the greatest common divisor.

The proof can be found in Appendix C. While it is not
constructive in the sense of providing an explicit procedure
of transforming a given F to its canonical form F ,, the trans-
formation is in practice easily achieved by hand for small N,
or one can in linear time calculate the invariant p introduced in
Lemma 1 in Appendix C, thereby obtaining the correct (g, r).
The integer invariant p is defined for an alternative simple
circuit representative of a given class, and characterizes the
circuit as a concatenation of two staircase sections with op-
posite chirality (Fig. 5 in Appendix), the length of the second
being p.

The canonical form of F,, in Eq. (2) has a simple geo-
metric interpretation: the term in the inner bracket is a single
layer f; that is composed of N/q gates, which is then with
appropriate shifts repeated in altogether g layers, explicitly
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TABLE L. Listof (N — 1) allowed shift parameters (g, ) for few
small NV, classifying all possible spectrally equivalent N qubit circuits
with periodic boundary conditions.

Allowed (g, r)

N Generalized S Generalized BW

6 (6,1),(6,5) 2,1),(3,1),(3,2)

7 (7,1),(7,2),(7,3),(7,4),(7,5),(7,6)

8 (8,1),(8,3),(8,5),(8,7) 2,1),(4,1),4,3)

9 (9,1),(9,2),(9,4),(9,5),(9,7),(9,8) (3,1),(3,2)

10 (10,1),(10,3),(10,7),(10,9) 2,1),(5,1),(5,2),(5,3),(5,4)

written as
g—1N/q—1

Fr =T TT Visirsigasirsia @

j=0 i=0

The (N — 1) classes described in Theorem 1 account for all
possible circuits of which the standard brick wall with (2,1),
and the staircase [32-34] (also called convolutional codes
[35,36]) with (N, 1) are just two cases. The allowed values
of (g, r) for few small N are listed in Table I, while their
pictures are shown for N = 6 in Fig. 2, and for N = 10 in
Fig. 4 in Appendix. Note that while the allowed set of (g, )
for a given N depends on the factors of N, the allowed N's for
a given (q, r) are simpler: taking any coprime g > r a circuit
is possible for all NV that are multiples of g.

The set of allowed (g, r) naturally splits into two cate-
gories. Because ¢ divides N, with the maximal value being N,
one group is composed of the largest possible ¢ = N, while
the other has smaller 2 < g < N/2. Group (i) are generalized
S circuits with ¢ = N. Because the translation by N is equiva-
lent to the identity this group could be equivalently described
by (N, r) = (r, 0), that is, by a single integer  that gives the
shift of the next gate. As r is coprime with N all nearest-
neighbor gates are obtained by just this translation modulo
N. Group (ii) can be viewed as generalized BW circuits and
needs two integers. Because ¢ divides N, translation by g
alone does not generate all nearest-neighbor gates and one
needs subsequent layers characterized by r. Altogether one
has a g-layer BW circuit, each layer consisting of N/q gates.
For a generic gate V the spectra of all (N — 1) propagators
F, , are different. If V would be symmetric with respect to
the exchange of the two qubits the circuits with (g, r) and

(q,q — r) would have the same spectra (spatial reflection
symmetry), and therefore one would have only L%J different
spectral classes [32]. Theorem 1 also shows that for prime
N only generalized S circuits exist. For odd N there are no
standard BW circuits having (2,1), but there are generalized
BW circuits with ¢ > 2 (see Table I). It is interesting to note
that circuits with more complex multisite update rules have
been used before, for instance the (3,1) case [37] as well
as (4,1) has been used to construct integrable models [38]
(although with a three-site transformation). One interesting
question is possible integrability of different canonical con-
figurations for specific V. While for smaller N < 10 possible
circuits are straightforward generalizations of the S or BW
configurations with left or right chirality, for larger N less
intuitive circuits are also possible. For instance, for N = 10
one can have (5,2) (see Fig. 4) that can be further compressed
in time direction (e.g., all gates in the first two layers fj
and f; commute), reducing the number of noncommuting
layers from g = 5 to just 3. Each of those compressed layers
has two idle qubits (that are not acted upon), such that the
compressed circuit Fy, has two separate diagonally slanted
lines of idle qubits, each of width 1. Integers (g, r) therefore
also determine the filling fraction, i.e., the number and the
pattern of idle qubits in maximally compressed Fq”, (see Ap-
pendix A). The only circuit with no idle qubits is the standard
BW with (2,1).

II1. SPACE-TIME SYMMETRIES

In order to understand space-time symmetries of any sim-
ple circuit it suffices to study the canonical equivalence class
representatives F;, . Denoting the inner term in Eq. (2) by Fq,,,
calling it a root of F ,,

For =58 SVi)V =51, (5)
where f| = QZ%_I S—kay, ,8%, we can write Eq. (2) as

Fq,r = S_qr(ﬁ'q,r)q~ (6)

Equation (6) appeared in Ref. [30] in the open-systems con-
text for the special case of a BW circuit with (2,1). The root
connection is especially simple for the generalized S case: for
q = N the translation $7 is identity, resulting in Fq,r =SVia
and F, , = (S"Vio)V.

The root has a translational symmetry by ¢ sites

S™IF, 81 =F,,. 7)

r

FIG. 2. Any same-gate nearest-neighbor circuit is spectrally equivalent to one of the canonical circuits F}, . shown here for N = 6, see also
Table I. Dashed rectangles denote f;, one layer occurring in the root F’q,, in Eq. (5). Circuits (a), (b), and (c) are generalized BW while (d) and
(e) are generalized S. Circuits (b) and (c), as well as (d) and (e), are chiral pairs.
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FIG. 3. Level-spacing distribution P(s) of eigenphases of F;, [Eq. (2)] in blue are not chaotic and are equal to a direct sum of ¢ CUE
matrices (red curve, Appendix B), while the LSD of the eigenphases of root F;, , [Eq. (5), violet] agrees with the CUE RMT prediction (green
curve). For ¢ # N we show data from the momentum eigenspace of S? with k = 0, and averaging is done over 10 — 50 circuits each having

an independent two-site Haar random gate V.

This is trivially true if ¢ = N, otherwise the translated root
is equal to §” ]_[gi%_l §—k+Day, ,§*+Dawhere, since all the
gates in the product commute, we can relabel the index k +
1 =k, yielding S" 2{/:(1()—1 S~*av, ,8¥4 = F, ,. Because F,,
is a power of £, , multiplied by some power of %, F, , also
has translational symmetry by g sites.

Furthermore, F; , also has a space-time symmetry when
translating by r sites

_rFq,r(O’ I)Sr = Fq,r(l/q’ 1+ 1/‘1) (8)

This can be easily seen by rewriting the left-hand side (LHS)
of Eq. (8) as S~ (S"S7"(S9V,,)¥/48")4, which then equals
to S‘q’(S’(SqVH,,zH)N/q )4. The final expression can be un-
derstood as a circuit beginning with the second layer, thus
justifying the equality to the right-hand side (RHS) of Eq. (8).
Equation (8) appeared in Ref. [25] for the special case of
r =1, along with a figure showing numerically computed
LSDof F,, forg=2,r = 1.

IV. LEVEL-SPACING STATISTICS

An immediate application of the above results is in quan-
tum chaos for the statistics of spacings of closest eigenphases
of F. Looking at the root connection in Eq. (6) and the fact that

S§? commutes with all terms, one can focus on a given com-
mon momentum eigenspace of S9 with eigenvalues e>7*4/N
ke{0,1,...,N/q — 1}. There S77" is just an overall phase
factor e=>"4k"/N Therefore F, , is up to this phase equal to an
appropriate power of £ .

The eigenphases of Fj , are therefore simple gth multiples
of eigenphases of F, . modulo 27 (and adding the momentum
phase factor). For high ¢ such an operation will results in
an uncorrelated Poisson statistics of eigenphases of F;, . [39],
i.e., an exponential distribution of P(s), and to infer possi-
ble quantum chaos one should not look at the eigenphases
of F, ,. Rather, if the circuit is quantum chaotic one would
expect that the spectral statistics of the root F,, (5) will
adhere to the RMT theory. In particular, if the two-site gate
V does not have any anti-unitary (time-reversal) symmetry,
which is the case for our numerics where V is randomly
picked according to the Haar measure, the appropriate en-
semble for F“q,r is the CUE (i.e., the u~nitary Haar measure).
We can see in Fig. 3 that the LSD of F, , indeed agrees with
CUE Wigner surmise P(s) = 3252¢~"4/" for all canonical
classes.

If one is on the other hand interested in the eigenphases
of F,, one has to take into account the nontrivial mod-
ulo 27 operation. The theorem by Rains [40] tells us what

q=5r=4p=2_8

gy LIt RS i i

q=10,r=1,p=1

q=10,7=3,p=7

%
I

FIG. 4. All allowed F,, , defined in Eq. (2) for N =
see discussion in Sec. 2 of Appendix C.

SRR barflins

10. The parameter p of the equivalent F,, [Eq. (C7)] is also included. Here C(F,

q=10,7=9,p=9

q=10,r="7p=3

%
T

) =Ds
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is the distribution of eigenvalues of a power of a matrix
from the unitary Haar measure. For M € Uy, where Uy,
denotes the Haar distribution of N x A unitary matrices,
the eigenvalues of its power M7 are a union of ¢ indepen-
dent eigenvalue sets distributed according to U, of smaller
matrices,

g—1
2~ {J (o).

j=0

€))

o]

q

for any g < N, [e] denotes the ceiling function, and A(U )
is the distribution of eigenvalues of Haar-random unitary ma-
trices of size N. Note that N = Z;’;(])J\/j, and therefore,
as far as the eigenvalue distribution is concerned, it is as if
M9 would have a block diagonal structure with blocks of
smaller CUE matrices. In our case of large N and small
g < N all dimensions in the union are approximately equal
to N; &~ N'/q, which means that the level-spacing distribution
in each eigenspace of 7 of size N’ ~ 2¥g/N of F,, behaves
in the same way as if it had another unitary symmetry with
q distinct sectors [26]. Theoretical LSD in such a case of a
sum of g independent spectra is known and has been studied
long time ago [41], see also Appendix B (or Appendix A in
Ref. [22]). We can see in Fig. 3 that this theory agrees with
numerical LSD for F; , [42].

V. DISCUSSION

We have classified all different quantum circuits in one
dimension with periodic boundary conditions and transla-
tionally invariant nearest-neighbor two-site gates. There are
(N — 1) different spectral classes, being generalizations of
the familiar brick-wall and the staircase configurations. Each
class can be characterized by two integers (g, r), such that
the Floquet propagator is essentially a gth power of F = S" f,
where for generalized S circuits one has f; = V; ,, while for
generalized BW circuits f; is one layer of gates. We have
therefore come full circle: similarly as in classical single-
particle kicked models where one interchangeably applies a
simple map in real space [e.g., potential V(g)] and a simple
map in momentum space (e.g., free evolution), any quantum
many-body translationally invariant Floquet system has the
same basic structure. The elementary building block F is a
product of simple local transformation, like V) », and of “free
evolution” described by the translation operator S (that is
diagonal in the Fourier basis).

We have explicitly shown how that affects the level-
spacing statistics of simple circuit Floquet systems—to
detect quantum chaos one must look at the spectrum of
the gth root F of the propagator. Effects of the underly-
ing space-time symmetry on other quantifiers of quantum
chaos remain to be explored. Reducing all circuits to just
few canonical classes makes it possible to study chaoticity
for different (g, r); are some configurations more chaotic
than others, does that depend on the filling fraction (see
Appendix A)? While we focused on systems without any
symmetry, i.e., the unitary case, orthogonal and symplectic
cases can be treated along the same lines. Generaliz-
ing classification to more than one dimension is also an
open problem.
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APPENDIX A: CANONICAL CIRCUITS

In the main text in Fig. 2 we have shown canonical circuits
F, , for N = 6. Here we show in Fig. 4 all nine canonical F, ,
for N = 10, where a variety of configurations is richer. We can
for instance notice that even though circuits are constructed as
a g-layered circuit in some cases consecutive layers commute
and can therefore be compressed, thus reducing the number
of layers. For N = 10 this is the case for (¢, r) = (5, 2) and
its chiral pair (5,3). For (5,2) the first two layers f; and f3
commute and can be compressed to a single layer; likewise for
the next two layers. Therefore in the compressed form (Fs »)?
consists of only five layers instead of 10. In this compressed
form there are still two idle qubits in each layer on which no
gate acts. One can say that the filling fraction of gates for the
circuit (5,2) is 8/10, i.e., 20% of qubits is idle. The class (5,1)
on the other hand cannot be compressed any further and has
the filling fraction of only 4/10. The only circuit with filling
fraction 1 is the standard BW with (2,1).

APPENDIX B: LEVEL-SPACING DISTRIBUTION
OF A DIRECT SUM OF INDEPENDENT RMT MATRICES

The general formula for the LSD of a direct sum of inde-
pendent RMT matrices of arbitrary dimensions was derived
in Ref. [41]. The matrices in the union in the theorem by
Rains [40], Eq. (9), are approximately of equal dimensions
in the large N limit, which is why we use the formula for
the direct sum of equally dimensional matrices throughout
this paper.

For the LSD P(s) of an RMT ensemble we define

R(y) = / P(x + y)dx, (B1)
0

[0¢]
Do) = [ aPtc-t v, (B2)
0
where R(y) is nothing but 1 minus the cumulative distribution
of P. The LSD for a direct sum of m independent equally
dimensional matrices from the same RMT ensemble is then

2
Pu(s) = D'"(S/m)[l p/m . <1 - %)gz((z’;ﬂ
(B3)

m D(s/m)

In figures in the paper, we plot P, (s) obtained by using the
Wigner surmise for P(s), which is of acceptable accuracy
for our application. For better approximations of P(s) see
Ref. [46].

APPENDIX C: PROOF OF THEOREM 1
FROM THE MAIN TEXT

In this Appendix, we set to prove Theorem 1, the main
result of this paper. The proof is divided into subsections
containing more theorems and lemmas. First, we introduce
another canonical configuration in Sec. 1, which can be
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geometrically interpreted as a concatenation of two staircase
circuits with opposite chiralities. It is useful for determining
that the number of non-equivalent circuits is (N — 1) and later
used in the proof of Theorem 1. After that in Sec. 2, we intro-
duce the quantity C(F') invariant for equivalent circuits and
state its important properties. This invariant is crucial in later
proofs but is also useful on its own to efficiently determine
the canonical form of a given circuit. Finally, we focus on the
generalized S/BW circuits Fy . in Sec. 3, where we combine
the results from previous sections to prove Theorem 1.

To keep our notation clearer, we identify a product of
N two-site gates acting on nearest-neighbor sites with a
sequence of N numbers in the following way:

Viviv+1 Vi o1 Vi1 = (1, B2, .., iN). (C1)

We will refer to i; as gate numbers and / as time indices.
When talking about the gates appearing before/after a gate
i; in a given F, we will call i;;; the time successor and i;_;
the time predecessor, whereas when referring to gates with
neighboring numbers, we will call i; — 1 the left neighbor and
i; + 1 the right neighbor of i;. By definition, the sequences
corresponding to simple circuits are permutations of the first
N natural numbers. For the canonical simple circuits defined
in the paper in Eq. (2),

Fo,=0,1+q,....,1+WN/q—1)q,
l+rnl+r+gqg,...), (C2)

where all gate numbers are taken modulo N (from 1 to N).
We are interested in (spectrally) equivalent circuits, as de-
fined in the paper. The equivalence will be denoted with =.
The two important equivalence operations are time predeces-
sor/successor commutation of non-neighboring gates (here the
Floquet operators are actually equal, not only equivalent)

i — i1l > 1 (mod N)
= ‘/iN,iN+1 e ‘/'ik+],ik+1+1‘/ik,ik+l T ‘/l'l,l'H*l
= Viy,iy+1 """ ‘/ikvik+l‘/ik+lvik+l+l e ‘/ilsil"!‘l . (C3)

in the new notation written as

lix —ik+1] >1 (mod N) =
(C7TIPPY  PA TAN v BT ¢ TR /Ty /SRS /YO B

(C4)

and cyclic permutation

Vivivt1 = Vi io+1Viy i1

= Vii+1Vigsiv+1 - Viio+ 15 (&)

or in the new notation
(ilvi27"'iN);(i27°~-3iNvil)' (C6)

While the equivalence of cyclically permuted circuits was
motivated by spectral equivalence, a different, perhaps more
general, motivation is also possible. If we have dynamics in
mind, i.e., F* with possibly large ¢, the definition of a starting
time of our period is arbitrary, e.g., the first operator in a
period could just as well have been defined as the last operator
in the previous period. Therefore, it would also make sense

..ﬁJ

FIG. 5. Diagram of F), defined in Eq. (C7).

to define cyclically permuted circuits to be equivalent in this
case.

1. Double staircase canonical circuits F),

We now introduce a new canonical form, different from
the one in the main paper, its diagram is shown in Fig. 5. It
consists of two staircase sections with opposite chirality, the
second having length p. To show that it is indeed a canonical
form, i.e., that every simple circuits is equivalent to some
circuit in this form, we can prove the following Theorem.

Theorem 2. Any simple circuit is equivalent to a simple
circuit with the Floquet operator given by

Fy =Vn_prin—ptr2- - VNoinVna
X Vn_pN—p+1---V23Vi2

=,2,...,.N—p,NNN—-1,....N—p+1), (C7)

forsome p e {1,2,...,N — 1}.

Proof. Let F = (iio), i;o), R i,(\?)) be any simple circuit.
This means that i,ﬁo) #* il(o) for k # [. First, we will bring gate
1 to index 1 (step I). After that, we will try to bring gate 2
to index 2 (step 2). This will either be possible, in which case
we will continue to try bring gate k to index k in the general
step, or it won’t be possible, in which case our gate will be
equivalent to Fy_;.

Step I: By means of cyclic permutations (C6) we can
always transform F into an equivalent simple circuit begin-
ning with gate 1 (V) , in the standard notation)

F(Li" . L)), (C8)

where we have appropriately relabeled the indices.

Step 2: We now try to bring gate 2 = ig), K e{2,...N}
to the second position by doing time predecessor/successor
commutations (C4). Gate 2 does not commute only with gates
1 and 3, which means that we must consider two possibilities:

(i) Gate 3 appears after gate 2, 3 = izl) for L > K:

By applying (C4), we can bring gate 2 to index 2

+(2)
Iy )’
where we have again relabelled the indices. We can

continue with the general step.
(ii) Gate 3 appears before gate 2, 3 = ig) forL < K:

F=(1,2,i, ..., (C9)
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By applying (C4) (and relabelling the indices), we can
bring gate 2 to be the time successor of gate 3,

F=(1"...,32,...,i"). (C10)

In the context of equivalence transformations, we can
now think of the sequence of gates (3,2) = (i;g,l), l;g J)r D)
as a gate that does not commute only with gates 1 and
4. Again, we have two similar cases:
(a) Gate 4 appears after the sequence of gates (3, 2),
4=iVforl’ > K +1:
By applying (C4), we can bring gate 3 to index 1
and gate 2 to index 3,

F=@3,1,2,...) (C11)

and by applying (C6), we can cyclically permute
gate 3 to index N,

F=(1,2,,...,i{,.3).

(C12)

We can now continue with the general step.
(b) Gate 4 appears before (3,2),4 = i/L(,l) for L’ < K':
By applying (C4)

F=(,...,4,3,2,...). (C13)

We can again think of (4, 3, 2) as a gate that does not
commute only with gates 5 and 1 and again consider
two cases similar to (a) and (b). By repeating this
process, we either get to the point where case (a)
arises, and we can continue with the general step,
or our circuit is equivalent to

F=(,NN—1,...,2). (C14)

Here, the obtained equivalent circuit is thus precisely
F, N—1-
General step: Let us suppose we have already shown that
F is equivalent to

Fe(1L2,. ki i), (C15)

k+1°

where i}k ) are arbitrary indices relabelled in a convenient way.

We can treat the sequence of gates (1, 2, ..., k) as a gate, that
does not commute only with N and k + 1, which means that
we can repeat step 2 by trying to bring gate k + 1 to the right
of k (index k + 1). Thus, either

G F=d,....,kkk+1,...)or

) F=d,....,.k,kNNN—1,...,k+ 1) = Fy_.

In (i) we can repeat the general step until case (ii) arises,
orweendupwith F = (1,2,...,N) = F}. |

Since there are (N — 1) allowed p, it is clear that there are
(at most) (N — 1) non-equivalent simple circuits. The proof
given is constructive, which means that we can use it as an
algorithm to convert a given F to some F),.

2. Circuit invariant

An alternative way to determine the equivalent F, for a
given F is to calculate some quantity, which is invariant in
equivalence operations and is different for all F,. A convenient
choice is the length of the second staircase p, which is clearly
equal to the number of gates, for which their right neighbor

(modulo N) appears in the Floquet operator before them. Let
us thus define C(F') to be exactly that

Clp,..oviv) =W, e {l, ..., N} i,

(mod N)}|,

k<l:

p—ip=1 (C16)
where | o | denotes the cardinality of a set. As stated, C(F),) is
clearly equal to the length of the second staircase

C(F,)=|{N.N—1,....N—p+1}| = p. (C17)

Let us now show that C(F') is indeed invariant under circuit
equivalence operations.

Lemma 1. For simple circuits C(F') is invariant under cir-
cuit equivalence operations (C4) and (C6).

Proof. Let

Ca, ..

ik—ilEl

iv) =i L e{l, ..., N} T,
(mod N)},

k<l:
(C18)

be the set of gates the invariant is counting, which means

Clir, ..., i) = C(, ... in)|.
As stated previously, for simple circuits (iy, ..., iy) is just
a permutation of (1, ..., N), which means
i1 ¢ C(, ..., in), because nothing is before iy, (C19)
ii—1eC(@y,...,iy), becauseij — | € {i; 7=2, (C20)

where indices are taken modulo N. But in the equivalent
cyclically permuted circuit (C6)
il € C(iz, ..

- insdn), because i + 1 € {i;})L,,  (C21)

i —1¢Cla,.... iy, 0). (C22)
The membership of all other gates in C stays the same in both
cases, since the position of i; can change only the membership
of iy — 1 and i; in C and all other relative positions stay the
same. Thus
C(iy,...,in) =Cla, ..

L) iN’ il )a (C23)

which means that C is conserved under cyclical permutations
(C6).

A transposition of time successive gates can only change C
if their gate number difference is 1, which does not happen
if they commute [Eq. (C4)]. Therefore, C is conserved there

(mod N) =
Liy) =C(y, ..

lix — 1] > 1
C(i],.. .,ik+1,ik,...,iN).

(C24)

SRS 788 T2 PR

|
An obvious consequence of Theorem 2 is the following
lemma.
Lemma 2. For simple circuits C(F) € {1,...,N — 1}.
Proof. According to Theorem 2, any simple circuit F is

equivalent to some F, for p € {1, ..., N — 1}. Since C(F) is
conserved under equivalence transformations (Lemma 1) and
CF,)=pCF)e{l,...,N—1}. ]
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3. Generalized S/BW canonical circuits F, ,

We now turn to the canonical form F,,. For a
given N € N, define the set of allowed (g, r) pairs (see
Theorem 1)

Oy =1{(q.r); 2<q<N,
ged(q, N) =g, ged(q,r) =1}

1<r<ag,
(C25)

The allowed (q, r) generate either a generalized S circuit

S — (N, r);1<r<N, gedN,r)=1}  (C26)
or a generalized BW circuit
v =g 2<q<N. 1<r<gq
ged(g, N) =g, ged(g, r) =1}, (C27)
which means that Qy = QI(\,S) U Ql(\?w), where 1(5‘) N

BW) _
W) — g,

The first thing to check is that F, , is well defined, i.e., if
Floquet operators I, , actually correspond to simple circuits.

Lemma 3. F,, for N € N and (g, r) € Qy are simple cir-
cuits, i.e., contain every gate on neighboring sites exactly
once.

Proof. To show that F,, , are simple circuits, we thus have
to check that the sequence (C2) contains every positive integer
less than or equal to N exactly once.

Let us first consider the generalized S case, where ¢ = N
and gcd(N, r) = 1. Because of that, it is intuitively clear that
translations by » must be “ergodic” and thus generate all gates.
More formally this means that the least common multiple
lem(N, r) = rN/ged(N, r) = rN. Since Fy, , is generated by
translating gate 1 by r sites, the lowest number of translations
after which gate 1 (modulo N) is generated again must be
N [since the smallest solution to kr = 0 (mod N) is exactly
k =lem(N, r)/r]. Thus, before looping back to gate 1 we
generate N gates. By an analogous argument, any gate is
generated again only after N translations, which means that
all the generated gates are different.

Let us now consider the generalized BW case where g #
N. In this case lem(g, N) = N, which means that with transla-
tions by g we generate N/q different gates. These are exactly
gates 1 plus all the multiples of g less than or equal to N,
so gates 1 + gk, k=0, ..., N/q — 1. By translating them by
any r, such that 1 < r < g, we generate all gates 1 4 r + gk,
which since r < g cannot be equal to any gates generated
with r = 0. More formally, this is true because 1 + r + gk
1 4+ gk (mod g) necessarily implies 1 + r + gk # 1 + gk. In
order to generate all gates, 1 + kr fork € {0,1,2,...,q — 1}
must now take all the possible values modulo g. Analogous
to the generalized S case, this indeed does happen when
ged(g,r) = 1. [ |

Since Theorem 2 implies that there are (N — 1) non-
equivalent simple circuits, a required condition for Fy , to be
a canonical form is that there are (N — 1) allowed (g, r).

Lemma 4. |Oy| =N — 1.

Proof. Let o(N) = [{k;1 <k <N, gcd(N, k) =1}| de-
note the number of natural numbers less than N and coprime
with N, also called the Euler’s totient or Euler’s phi function.

We can now express the number of generalized staircase
circuit with Euler’s phi function

1OV =N, 1)1 <r <N, ged(N.r) = 1}| = ¢p(N)
(C28)
and also the number of generalized BW circuits
oV |= I(g.r): 2<q<N. 1<r<gq
ged(g,N)=g¢q, ged(g,r) =1}
N—-1
= > H@gr;1<r<gq, ged(g,r) =1}
q=2,q9IN
N—1
= ) e, (C29)
q=2,qIN

where ¢|N denotes that ¢ divides N [equivalently gcd

(g, N)=ql.
Thus, since Q(S) N Q(BW)

N
lovl =100+ 108" = > e@
q=2.9IN
=Y 9@—e()=N—1, (C30)

qIN

where we used the well-known theorem that qu w(g) =N
[47] and ¢(1) = 1.

We now wish to show that the invariant C(F,,,) is different
for all allowed (g, r), which is the last important statement
required for the proof of Theorem 1. We do this in two steps,
first for the generalized S in Lemma 5 and then for generalized
BW in Lemma 6, finally combining both in Lemma 7.

Lemma 5. In the generalized S case, (¢, r) € Q(S)

C(Fy,r) = 1 + |{gates appearing after gate N}
ged(p, N) = 1}, (C3D)

and is different for different . Here all the values in the set
(C31) are taken for some allowed r.

Proof. Since we are considering the generalized S case:
qg=N,r <N and gcd(N,r) = 1.

We first want to consider if we know that a certain
gate is a member of C'(FNA,), what can we say about
the membership of its time successor and predecessor. Let
Fy., = (i1, ...,iy). Let iy € C(Fy,), which means that its
right neighbor appears in Fy , before it, iy =i + 1,k <
(gate numbers are taken modulo N, but indices are not).
Here [ # 1, since in that case, such k < [ = 1 never exists.
Let us now consider the membership of i;’s successor and
predecessor:

(@) If ijyy =i+ r is a valid gate (i.e., its index is
valid, whichmeans [ < N),theniy, 1 =i +r=i+14+r =
ir+1 + 1, is the right neighbor of i) and k + 1 < [ 4 1, which
implies i;y; € C(Fy.,). In other words: If i)’s time successor
exists (i.e., i; is not the last gate in F ), it is also a member of
C(FN,r)-

® 1 =i—r, then if j_1 =i —r=i+1—r=
i1+ 1 is a valid gate (i.e., k > 1), it is the right neighbor
ofij_yand k—1 <1 —1,soclearly i;_; € C‘(FN,,). In other

e{pip <N,
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words: Ifi;’s right neighbor is not iy, then it’s time predecessor
is also a member ofC(FN,,).

In case (b) i, is not valid only if k = 1. In the case of F ,,
iy = 1 and thus iy = N. Since always N € C(Fy,,) (its right
neighbor is 1 = iy), by iterating (a), all gates appearing after
gate N are also members of C(Fy,). If any gate appearing
before gate N would be a member of C(Fy,,), iterating (b)
would eventually lead toi; = 1 € C(iy, ..., iy), which cannot
happen, thus leading to a contradiction. We have shown

C(Fy.r) = 1 4 |{gates appearing after gate N}| =

=N —ky+1, (C32)

where ky is the index of gate N, iy, = N. We have thus shown
the first part of the lemma.

We now want to determine what are the possible values of
C(Fy,r). In order to do that, we must only find the possible
values of ky. By definition, we get gate N after ky — 1 trans-
lations of gate 1 by r,

1+ ky—1r=0 (modN),

= —(ky —Dr=1 (mod N). (C33)

Thus, —r is a modular multiplicative inverse of ky — 1.
According to a well known theorem [47], a requirement for
modular multiplicative inverses to exists is gcd(ky — 1, N) =
1. Therefore

gcd(C(Fy,,),N) = gcd(N —ky +1,N)

= ged(ky — 1,N) = 1. (C34)

In other words, C(Fy, ) is coprime with N. According to
Lemma 2, C(F) < N — 1, which means that C(Fy ,) can only
be a number less than N and coprime with N,

C(Fy.,) € {p;p <N, ged(p,N) = 1}. (C35)

Let us now show that ky is different for different Fy , and
Fy 7 by contradiction. Let us suppose otherwise, this means
that ky — 1 translations by r and by 7 must generate the same
gate number modulo N,

(ky — )r = (ky — 1)7 (mod N). (C36)

Since ged(ky — 1, N) =1, we can divide the equation by
ky — 1 [47],

(mod N). (C37)

r=r

By definition of allowed Fy , circuits, r, 7 < N, which means
that r = 7, leading to a contradiction.

We have thus shown that for different allowed r, C(Fy,,)
are different. Moreover, in Eq. (C35) we have shown that
the value of C(Fy ,) is a member of a set with exactly the
same number of elements as allowed r (see |Q§f)| in the proof
of Lemma 4). This means that C(Fy ) takes all the values
from the set in Eq. (C35) if we let r be all the allowed r
values.

Lemma 6. In the generalized BW case, (g, r) € Ql(\l,sw), for
fixed g,

N
C(F,,) € {;p;p < q,ged(p, q) = 1}. (C38)

The values are different for different » and are all taken for
some allowed r.

Proof. Since we are considering the generalized BW case:
q|N,r < g, ged(q,r) = 1.

In this case, we can divide the circuit in g blocks (layers)
of N/q time consecutive gates. The first block is generated by
translating gate 1 by ¢ (modulo N) until we reach gate 1 again.
The second block consists of all the gates from the first block
translated by r. This means that the first block can be mapped
to the subgroup of the cyclic group Zy = {0, ..., N — 1} of
order N/q, where group addition is taken modulo N. The other
blocks are cosets of this subgroup (since according to Lemma
3, they must be disjoint), implying that the first ¢ gate numbers
are contained in different blocks. We can therefore denote the
blocks with the minimal gate number contained in it (and a
tilde for clarity) 1,2, ..., g.

We now wish to consider a similar thing as in the proof
of Lemma 5, but in the context of a block, i.e., given that
a gate is a member of C, what can we say about the mem-
bership of its time successor and predecessor. We will see
that the main difference is that this time, the notion time
successor/predecessor can be taken inside a given block, so
with indices modulo N/q.

Let us suppose that a gate with index / (this index is now
taken in the context of a block, meaning modulo N/g) in
block I (modulo q) is a member of C'(F(,,,), il(l) € C’(Fq,,).
This means that its right neighbor must appear before it,
Eli,({k) = il(l) +1,k<I (if such k would exists in block k=1,
the block would contain all N gate numbers, which is not
possible in the generalized BW case). Analogously to the

generalized S case, it D4 q and i,((’f:] = if{k) +q= il(l) +

: +1 = U
q+1= ’.1(21 + 1 and thus i;?l eC (Fy,r)- Crucially, indices k

and / here are taken modulo N/g because translating the last
gate of the block by g (modulo N) yields the first element of
the block. Iterating this, we can conclude that if a gate from a
block is contained in C (F,,r), then all the gates from this block
are contained in C(F, ).

We have therefore shown that by relabelling the considered
circuitwith 1, 2, . . ., g, the considered circuit behaves exactly
the same as is in the generalized S case. Using Lemma 5, for
afixed g and N,

N
C(Fy,) € {;p;p <q,ged(p, q) = 1}, (C39)
where we took into the account that the number of gates in a
block is N/q. Also according to Lemma 5, all the values from
the set in Eq. (C39) are taken for some r and are different for
different r. ]

Lemma 7. C(Fy,) is different for all (g,r) € Qy for a
given N.

Proof. We have calculated all the allowed values of C(Fy ;)
and shown that they are different for different » and a fixed
g in Lemma 5 and Lemma 6. The only thing left to do is
to show that for different ¢, the sets (C31) and (C38) are
disjoint.

From Eq. (C38), we can see that in the generalized BW
case gcd(C(Fy ), N) > N/q, meaning that all the values of
C(Fy,,) must be different than in the generalized S case (¢ =
N) where gcd(C(Fy,,), N) = 1 [Eq. (C31)].
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The only thing left is to check that the sets in the
BW case [Eq. (C38)] are disjoint for two different
q1,q2I|N. We can do this by finding a contradiction in
the converse case. Let us suppose that we would find the
same value of C for different ¢, ¢», this means that for some
P1, P2, ged(pi, q1) = ged(pz, g2) = 1 we must have

N N

—p1 = —p2, (C40)
q1 q2
= @2p1 = q1p2- (C41)

This implies that pi|q; p», but since gcd(py, q1) = 1, we see
that p;|p,. Symmetrically, we can show p;|p;, which then
implies p; = p,. From Eq. (C41) we finally get q; = ¢, a
contradiction. Therefore, C(F, ) must also be different for
different g in the BW case. |

Finally, we can put all the previous lemmas together and
prove the main theorem.

Theorem 1 (restated from the main text). Any simple cir-
cuit on N sites with periodic boundary conditions is equivalent
to exactly one of the N — 1 canonical simple circuits having
Floquet propagator F, ., where (g, r) € Qy.

Proof. The fact that F, , are simple circuits follows from
Lemma 3 and the number of them follows from Lemma 4.
According to Lemma 7, C(F, ;) is different for all allowed
(g,r) and a given N. Since according to Lemma 1 C is
conserved under equivalence transformations and, according
to Eq. (C17), is different for all F,, different F;, , are equivalent
to different F), (according to Theorem 2, they must be equiv-
alent to some F,). Moreover, since there are (N — 1) F;, , and
(N—1) F,, every F, must be equivalent to some Fy ,, i.e., there
exists a bijective equivalence mapping between F, , and F,,.
Given any simple circuit F', according to Theorem 2, we
know F = F, for some p. We have shown that F, = F,, , for
some g, r. Therefore, I = F,, , for some g, r. [ |
In contrast to the proof of Theorem 2, the proof of Theo-
rem 1 is not constructive, i.e., it cannot be used as an algorithm
to transform a given F to the equivalent F; .. The most con-
venient way to do this in practice is via the invariant C(F')
defined in Eq. (C16), which can be numerically calculated in
linear time in N. One can then calculate C(F') and C(F,,,) for
the all (N — 1) allowed (g, r) in quadratic time. Finally, F
must be equivalent to the F;, , with the same value of C. As an
example, the values of C(F ) are included in Fig. 4.
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