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Fast universal control of a flux qubit via exponentially tunable wave-function overlap
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Fast, high-fidelity control and readout of protected superconducting qubits are fundamentally challenging due
to their inherent insensitivity. We propose a flux qubit variation which enjoys a tunable level of protection against
relaxation to resolve this outstanding issue. Our qubit design, the double-shunted flux qubit (DSFQ), realizes a
generic double-well potential through its three-junction ring geometry. One of the junctions is tunable, making
it possible to control the barrier height and thus the level of protection. We analyze single- and two-qubit gate
operations that rely on lowering the barrier. We show that this is a viable method that results in high-fidelity
gates as the noncomputational states are not occupied during operations. Further, we show how the effective
coupling to a readout resonator can be controlled by adjusting the externally applied flux while the DSFQ is
protected from decaying into the readout resonator. Finally, we also study a double-loop gradiometric version of
the DSFQ which is exponentially insensitive to variations in the global magnetic field, even when the loop areas
are nonidentical.
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I. INTRODUCTION

Qubits based on superconducting junctions form a promis-
ing platform for quantum computation (QC) architectures
[1–3]. In order to scale up fault-tolerant QC, it is crucial that
gate and readout infidelities must be lower than the threshold
for quantum error correction (QEC), which for the surface
code is about 1% [4,5]. A number of experiments using
transmon-based multiqubit chips have demonstrated surface
code QEC close to the threshold [6–8].

To go beyond the capabilities of contemporary transmon-
based architectures, a number of T1-protected qubit designs
have appeared [2,9–12]. The general idea of a T1-protected
superconducting qubit is that the computational states are
localized in different quantum wells, leading to exponentially
suppressed noise-induced transitions, enhancing the relax-
ation time significantly [2]. Additionally, the double-well
potential realizes low-frequency qubits resulting in less sen-
sitivity to dielectric loss and ohmic noise channels [13,14].

In the flux qubit modality, this kind of double-well protec-
tion can be reached by biasing the superconducting loop with
an external flux close to half a flux quantum [15,16]. Here the
low-energy computational states corresponds to supercurrent
flowing in opposite directions in the loop. At a bias of half
a flux quantum, the fluxon states are degenerate up to the
exponentially small splitting due to overlap of the evanes-
cent part of the wave functions across the barrier separating
the two wells. Below we refer to this small splitting as the
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wave-function overlap. The fluxon states are sensitive to the
external magnetic flux as it picks out a preferred current
direction and determines the energy splitting. The strong flux
dependence leads to a linear sensitivity of the qubit frequency
to flux noise, causing dephasing of the qubit and limiting
coherence [10,17].

Despite the enhanced relaxation time of low-frequency
qubits (e.g., heavy fluxonium [10,18], 0 − π qubit [9,19],
etc.), a general disadvantage is that gate times typically also
increase due to the vanishing wave-function overlap of the
computational states. One way of circumventing this limita-
tion is to use higher lying noncomputational states [2,10,19].
In this manner, single- and two-qubit gates can be activated
through multitone driving [20]. The downside of such an
approach, however, is that the momentary occupancy of the
noncomputational states leads to increased decoherence, lim-
iting gate fidelities [21]. Another possibility is to rely on
diabatic single-qubit control [18].

In this paper, we explore an alternative approach to perform
gates on T1-protected qubits that rely on adiabatically adjust-
ing the level of protection by lowering the barrier between
the two wells. We propose a qubit design, the double-shunted
flux qubit (DSFQ), which aims to be a relatively simple
modification of a flux qubit with exponentially tunable wave-
function overlap. The DSFQ is related to the persistent current
flux qubit (PCFQ) [15,17] and the capacitively shunted flux
qubit (CSFQ) [22] as they all share the same circuit layout
of three Josephson junctions (JJs) connected in a loop, see
Fig. 1. While the PCFQ realizes a large EJ/EC via three large
junctions, the CSFQ uses smaller junctions with one large
capacitive shunt such that one mode is heavy (large EJ/EC)
and one mode is light (smaller EJ/EC). The DSFQ finds the
middle ground between these designs by using small junctions
and two large capacitive shunts such that both modes are
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FIG. 1. (a) Circuit layout for the DSFQ with a variable junction
by either a SQUID or gate voltage tunable nanowire junction. (b) Po-
tential landscape of the DSFQ with the two lowest-energy eigenstates
shown in red and blue with EJ/EC = 100, α = 1, and φext = 0.997π .
(c) One-dimensional cut of (b) along φ = (φ1 − φ2)/2 with wave
functions showing their exponential separation at α = 1. The poten-
tial at α = 0.7 is shown in gray dashed. (d) Energy splitting of the
qubit as a function of the barrier height controlled by α. The value
of α corresponding to the CSFQ and PCFQ is indicated with a star
and bullet, respectively (α = 0.5/0.8). Energies are in units of the
Josephson energy, EJ .

heavy, similarly to the PCFQ. Since both modes are heavy,
the lowest-energy wave functions are localized in separate
wells, protecting the qubit from relaxation. Other designs,
namely the supersemi cos(2φ) qubit and the bifluxon, have
successfully shown an order-of-magnitude improvement of
the relaxation time in the protected regime [11,12]. However,
both qubits are challenging to fabricate and tune to the ideal
regime and two-qubit gates have not yet been realized [2].
The DSFQ offers a comparatively simple platform for study-
ing universal gate sets for qubits with variable wave-function
overlap. In addition to the universal gate scheme, we also
propose a noise-insensitive readout method for the DSFQ.

We imagine tuning the barrier height by a tunable junction,
implemented either in a SQUID-loop as in previous PCFQ
experiments [23–26] or in a hybrid version where the tunable
junction is a superconductor-semiconductor-superconductor
junction. This type of junction has been demonstrated earlier
to be stable and having coherence times longer than the an-
ticipated gate times [11,27–30]. However, we note that the
coherence times for the semiconductor-based junctions are
still shorter than the more standard insulator-barrier junctions.
The physics of semiconductor-based junctions is still not fully
understood and the coherence times could improve with future
devices [31].

We calculate the coherence properties of the DSFQ and
discuss the flux-noise sensitivity. In order to reduce the flux

dephasing, we propose a double-loop gradiometric version
of the DSFQ which gives exponential protection against
global flux noise. Gradiometric qubit designs have been
proposed previously but rely on identical areas in the two
loops [23,26,32]. We show that small area variations can be
compensated for by adjusting the tunable junction without
introducing sensitivity to the junction control line. The main
focus of our study is a set of one- and two-qubit gates where
the idea is to tune the qubit out of the protected regime by
adiabatically lowering the barrier between the two wells and
thereby hybridize the computational states. Two-qubit gates
can be performed by simultaneously lowering the barriers
for two capacitively coupled DSFQ’s while single-qubit gates
require a fast single-tone microwave pulse in the an interme-
diate regime. Advantages of variable-protection gates are that
fast-decaying noncomputational states do not participate in
gate operations and that two-qubit interactions can be turned
off with exponential on-off ratio while maintaining the ability
to perform one-qubit gates. Finally, we show how the effective
coupling to a readout resonator can be adjusted with a simple
flux control of the qubit, leading to an order-of-magnitude
on-off ratio while decay to the readout resonator is suppressed.

II. THE DOUBLE-SHUNTED FLUX QUBIT

We consider a system of three Josephson junctions con-
nected in a ring. The circuit is illustrated in Fig. 1(a) where the
Josephson energy of the tunable junction is denoted by αEJ .
The two other junctions have Josephson energy EJ , but they do
not have to be identical for our proposal to work. In the phase
variables φ = (φ1 − φ2)/2 and θ = (φ1 + φ2)/2, the potential
energy of the qubit is thus given by

HJ = −2EJ cos(φ) cos(θ ) − αEJ cos(2φ + φext ), (1)

where φext = 2π�/�0 and � is the flux through the loop,
controlled by an external magnetic field whose value is typi-
cally set to φext = 0.997π unless other stated. At α = 0.5, the
barrier is completely lowered, making the potential along the
φ direction approximately quartic as for the CSFQ [22]. At a
value of α = 0.8, the barrier is significant and the potential of
the PCFQ [15,17] is recovered. Controlling the barrier height
of the DSFQ through α thus interpolates between the PCFQ
and the CSFQ. Note that in the flux-tunable PCFQ, the barrier
height can be controlled via an external flux in a slightly
different geometry [23,25,26].

The charging energy is determined by the capacitances C
shown in Fig. 1(a) and gives rise to the kinetic energy [33],

HC = 2EC (−i∂φ − ngφ )2 + 2EC (−i∂θ − ngθ )2. (2)

Here we have included offset charges ngφ and ngθ (the 4EC

typically found as the prefactor is reduced due to the change
of variables nθ/φ = n1 ± n2). The qubit will be operated in the
regime of small EC = e2/2C (i.e., both φ and θ being heavy
modes). Realistically, the Josephson capacitances are about
two orders of magnitude smaller than the large shunting ca-
pacitances and thus merely renormalizes EC without affecting
the results presented in this work.

The potential landscape and the ground-state wave func-
tions are shown in Fig. 1(b) in the heavy-modes regime
(EJ/EC = 100). The external flux is tuned to a value close

023064-2



FAST UNIVERSAL CONTROL OF A FLUX QUBIT VIA … PHYSICAL REVIEW RESEARCH 6, 023064 (2024)

FIG. 2. (a) Circuit layout of the single-loop DSFQ. (b) Dispersion of the qubit frequency with respect to the reduced external flux through
the loop, showing the linear dependence in the region φext/2π = 0.47–0.53. [(c) and (d)] Relation between the relaxation-dephasing time
(T1/Tϕ) and the barrier height controlled by α for the single loop DSFQ. (e) Circuit layout of the gradiometric DSFQ with two tunable
junctions. The inconvenient placement of large capacitors in the loops can be worked around by using crossover junctions. (f) Dispersion
of the qubit frequency with respect to the redcued external global flux, φG = 2π�G

�0
. We display the cases where the loop areas are identical

(solid line), nonidentical (dot-dashed line) and nonidentical with compensating asymmetric junctions (dashed line). [(g) and (h)] Relation
between the relaxation-dephasing time (T1/Tϕ) and the barrier height controlled by α for the gradiometric DSFQ. Note the insensitivity to
noise in the global magnetic field and sensitivity to local magnetic field noise. The noise amplitudes in all figures are A� = 10−6�0/

√
Hz,

Ang = 10−4e/
√

Hz [13], Bng = 5.2 × 10−9e/
√

Hz [22] and tan δdiel = 2 × 10−7 [14]. The Josephson energy is EJ = 10 h GHz and external
flux is φext = 0.997π where relevant.

to half a flux quantum. The two wave function shown in red
and blue (ψ0 and ψ1) are clearly well separated and localized
in the two wells. They represent the qubit states |0〉 and |1〉.
The state separation is most easily seen in Fig. 1(c) which
is a cut along the φ direction. Due to their separation, the
tunneling between the two wells is suppressed. It results in
a small qubit splitting near α = 1 determined by the external
flux and also a large anharmonicity, see Fig. 1(d). Lowering
the barrier by reducing α, increases the qubit frequency and
decreases the anharmonicity αan = (ω02 − ω01) − ω01, as the
states hybridize and change significantly. This fact is used
below to perform fast gates by lowering the value of α to
α ≈ 0.7 where the logical states partially overlap.

A. Gradiometric DSFQ

The qubit discussed above is designed to have a large
relaxation time due to the exponential suppression of interwell
coupling. However, it is likely to have a poor dephasing coher-
ence time because of the sensitivity of the energy difference
of the two wells to flux noise. To improve the dephasing time,
we propose a double-loop variation as in Fig. 2(e) which is
designed to cancel out any fluctuations in the global flux.
In the double-loop design, we picture the variable junctions
as tunable nanowire junctions. Alternatively, these could be
SQUIDs controlled by individual flux lines without defeating
the purpose of the gradiometric setup. However, the additional
flux loops will complicate the control of the qubit because
there will be flux lines to each SQUID and one to control

the global flux. The tunable Josephson junctions give an
advantage with fewer flux control lines compared to using
SQUIDs at the potential expense of reduced coherence due
to semiconducting junctions. To understand the double-loop
cancellation better, we consider the situation where half a
flux quantum threads through each loop. This gives rise to
two lowest-energy combinations of current flowing in the
circuit, |��〉 , |��〉, where an arrow indicates the direction
of the current in each loop. Thus, the two lowest-energy states
correspond to the situation where current flows in opposite di-
rections, making them indifferent to variations in the external
flux. Said differently, the magnetic dipole moment vanishes
and the computational states are only affected by magnetic
field gradients through the magnetic quadrupole moment as
verified in Refs. [26,32,34]. In Figs. 2(b) and 2(f), we show
the dependence of the qubit splitting on the global flux for
both single- and double-loop DSFQs.

For a symmetric situation where the areas of the two
loops and the Josephson energies of two outer junctions are
identical, the dependence of the global flux �G (proportional
to a global magnetic field) has zero slope when �G is
at half flux quantum [see Fig. 2(f), blue solid line]. In
an experimental situation, the loop areas will be slightly
different, leading to a sensitivity to the global magnetic field
(blue dash-dotted line). However, by appropriately choosing
the ratio of the tunable junctions, the dispersion with �G can
become exponentially flat again at the expense of splitting
the degeneracy (blue dashed line). If the flux through the
two nonidentical loops is controlled by a single global field,
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and the tunable junctions can be tuned to be asymmetric,
α2 = (1 + δ)α1, then the sweet-spot simply shifts to

δ = −1 + 1 + r

1 − r
cos

(
2πr

1 − r

)
≈ 2r, r = A1 − A2

A1 + A2
, (3)

where r is a measure of the loop area asymmetry and assumed
small; see also Appendix A where the condition on δ is
derived. Here it is also shown that the fluctuations in δ has
very little effect on the energies near half a flux quantum
as can also be seen by comparing the dashed (δ = 2r) and
dash-dotted blue lines (δ = 0). Figure 2(f) summaries how
the sensitivity to the external global magnetic field and how
choosing the value of the Josephson energy of the second
junction can make the spectrum practically insensitive to the
global field. As detailed in Appendix A, the slope and height
of the curve is set by the area and junction asymmetry. While
being insensitive to variations in the global magnetic field,
the qubit frequency is still linearly sensitive to the local fluxes
in the individual loops, see Fig. 2(h) and discussion below.

B. Decoherence times

The decoherence of the DSFQ is estimated by calculating
relaxation and dephasing rates for different noise sources.
The relaxation time T1 = (

∑
λ λ

1 )−1 is computed through
the relaxation rates which are given by Fermi’s Golden rule
[13,14,35],

λ
1 = 1

h̄2 |〈1| ∂λH |0〉|2Sλ(ω),

diel
1 = h̄|〈1| φ |0〉|2Sdiel(ω), (4)

where λ is an external noise source and Sλ(ω) is the power
spectral function for a given noise source. We consider 1/ f
and ohmic noise which were the limiting noise channels
for flux and charge noise respectively for the CSFQ [22] in
addition to dielectric loss, the limiting factor for fluxonium
relaxation time [14,36]. The associated spectral functions are

S
1
f

λ (ω) = 2πA2
λHz

|ω| , S�
λ (ω) = B2

λω

2π × 1 GHz
,

Sdiel(ω) = ω2 tan δdiel

4EC

[
coth

(
ω

kBT

)
+ 1

]
,

where Aλ and Bλ are noise amplitudes for 1/ f and ohmic
noise respectively, tan δdiel = 2 × 10−7 is the loss tangent, and
T = 20 mK is the temperature [14]. We use typical noise am-
plitudes A� = 10−6�0/

√
Hz [13], Ang = 10−4e/

√
Hz [13],

and Bng = 5.2 × 10−9e/
√

Hz [22].
In Figs. 2(c) and 2(g), we display the computed relaxation

times for the single-loop and double-loop (gradiometric) ver-
sions of the DSFQ. Both panels show exponentially enhanced
T1 in the protected regime (α = 1) with T1 = 603 µs in the
single loop and T1 = 733 µs in the gradiometric setup, the
limiting factor being dielectric loss. In the unprotected regime
(α = 0.5), the relaxation time is reduced to T1 = 0.35 µs in the
single loop and T1 = 0.35 µs in the gradiometric equivalent to
three orders of magnitude.

We can compare the relaxation times to the dephasing
times shown in Figs. 2(d) and 2(h). The first-order dephasing

rates for 1/ f noise are computed through [13]


1
f ,λ

ϕ =
√

2Aλ(∂λωq)2 ln |ωirt |,
where we have introduced an infrared cutoff and a character-
istic time with the product ωirt = 2π × 10−6 as in Ref. [13].
The dephasing times shown in Figs. 2(d) and 2(h) are limiting
the coherence time 1

T2
= 1

2T1
+ 1

Tϕ
compared to the relaxation

time due to the linear sensitivity to (local) flux noise in the
T1-protected regime. Conversely, in the unprotected regime,
the coherence is limited by relaxation through dielectric loss,
illustrating the trade-off between T1 protection and dephas-
ing due to flux noise is general to flux qubits. Note that
the sensitivity to global flux noise in Figs. 2(g) and 2(h)
is reduced due to the gradiometric construction of the de-
vice. In the T1-protected regime (α = 1) the dephasing time
is Tϕ = 0.12 µs in the single loop and Tϕ = 0.74 µs in the
gradiometric setup. In the unprotected regime (α = 0.5) the
dephasing time is enhanced to Tϕ = 7.6 µs in the single loop
and Tϕ = 98 µs in the gradiometric setup. The CSFQ has
relaxations times reported in the range T1 = 20–60 µs [22].
State-of-the-art transmon qubit reports relaxation times up to
T1 = 0.5 ms [37].

In total, the DSFQ does not exceed the relaxation time
of state-of-the-art transmon qubits but offers a platform with
adjustable and strong noise bias and a tunable degree of T1

protection, which can be used to study optimum strategies for
gate operations on protected qubits. While the noise bias, in
principle, opens up paths towards efficient noise biased error
correcting codes, the linear sensitivity to (local) flux noise is a
limiting factor. This could be suppressed by choosing a larger
qubit splitting, creating a wider sweet spot at half flux quan-
tum. However, we have chosen to focus on the T1-protected
regime here. We note that such compromise is relevant for
other qubit proposals such as the heavy fluxonium and the
bifluxon [10,12,18].

III. QUBIT CONTROL

To control the DSFQ, we leave the protected regime (α =
1) and lower the barrier between the two wells (α � 0.5–
0.7). When the barrier is lowered, traditional techniques in
microwave control such as DRAG and IQ mixing can be
used for the DSFQ [38,39]. As detailed in the sections be-
low, the height of the barrier at the operating point and the
rate at which it is lowered depends on whether single- or
two-qubit gates are performed. We continue in the following
section by implementing an σx gate numerically to illustrate
how single-qubit gates can be performed on qubits with vari-
able protection using single-tone driving.

A. Variable-protection single-qubit gates

Our proof-of-concept σx gate has three steps as illustrated
in Fig. 3:

(1) Lower the barrier adiabatically, α = 1 → 0.7.
(2) Apply an appropriate microwave pulse to the qubit.
(3) Raise the barrier adiabatically, α = 0.7 → 1.
This control sequence is illustrated in Fig. 3 where the

lowering and raising of the barrier takes 7 ns and the mi-
crowave drive takes 11 ns (including 1.5 ns ramp up or
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FIG. 3. (a) The coupling of computational states through the
charge operator as a function of α, showing when transitions can
be stimulated through a capacitively coupled drive line. (b) The
pulse profile for the σx gate displaying the low-frequency α drive
(black) and the high-frequency microwave drive (red). The envelope
of the microwave pulse is 11 ns long with a 1.5-ns cosine ramp up
or down. The drive frequency is slightly detuned from the qubit
frequency ωd = 0.979 ωq. (c) Numerical data from nondissipative
simulations showing the time history of the spectral weights during
the low-leakage, high-fidelity σx gate. In all panels, the scale of the
Josephson energy is EJ = 10h GHz and EJ/EC = 100 with the flux
bias set to φext = 0.995π .

down), totalling a gate time of 25 ns. The microwave drive
line is coupled to one of the nodes of the qubit through
a small capacitance Cd � C, giving rise to the Hamilto-
nian term Hd = Cd

C+Cd
Vd (t )n1 [39]. As the barrier is lowered,

the quantum states changes significantly and a small sub-
space of states is insufficient to describe the evolution due
to H (t ) = HC + HJ (t ). We therefore perform simulation in
a relatively large Hilbert space with 625 states (in the
charge basis with cutoff ncutoff = 12 for both the φ and
θ mode) and numerically evaluate exp[−i�t H (t )] at each
time step to perform the time evolution (857 time steps per
nanosecond). When the drive is turned on at fixed α, we
instead numerically integrate the time-dependent Schrödinger
equation using the same Hilbert space dimension. At each
time step, we numerically diagonalize the Hamiltonian and
compute the overlap with the instantaneous qubit states to
produce Fig. 6(c).

In our single-qubit gate scheme, we choose to lower
the barrier only partially (α = 0.7) to limit the time spent
adiabatically adjusting α and to avoid small, unwanted
interactions with neighboring qubits which arise when the

barrier is completely lowered; see also Appendix C. The
qubit frequency is changed from ωq(α = 1) = 0.25h GHz
to ωq(α = 0.7) = 0.39h GHz, where the Josephson energy
is EJ = 10h GHz and EJ/EC = 100 with the flux bias set to
φext = 0.995π . At the operating point (α = 0.7) the relaxation
time is reduced to 1.6 µs. The speed at which the barrier is
lowered is adiabatic with respect to the energy gap between
the computational states and the noncomputational states such
that the adiabatic time is set by the desired leakage bound. The
7-ns lowering time results in a very small (∼10−4) leakage
but does admit for a small (∼10−3) probability to transition
from one logical state to the other. This small effect makes
it necessary to slightly adapt the microwave pulse to achieve
high fidelity. One possibility is to marginally reduce the drive
amplitude, but the qubit frequency is also shifted due to the
AC-Stark effect. We therefore instead adapt the pulse by a
minor frequency shift of the drive, ωd = 0.979 ωq, to account
for both of these contributions. The limit to the fidelity
imposed by coherent errors (leakage) during the σx gate is
99.98% while the gate time is Tg = 25 ns. The single-qubit
gate fidelity is limited by decay from the shorter relaxation
time at the operating point. We estimate the T1 limited fidelity
via F ≈ exp[− ∫ Tg

0 dt 1(t )], where 1(t ) is the sum of
(instantaneous) decay rates. The resulting T1-limited fidelity
is 99.1% for the single-qubit X gate. While the gate is
limited by decay in this device, the coherence limited gate
fidelity is comparable to state-of-the-art single-qubit gates on
unprotected qubits such as the transmon [7] and potentially
faster than alternative gates on T1-protected qubits [20].
The latter makes use of noncomputational states, multitone
driving, and an optimal control algorithm to optimize gate
performance. The comparatively simple variable-protection
gate shows the benefits of tuning in and out of protection and
that the access to fast, single tone pulse control outweigh the
additional overhead from the adiabatic control of the level
of protection. In Appendix B, we exemplify, using standard
IQ mixing, how also σy and (σx − σy)/

√
2 gates can be

implemented with similar fidelity as the σx gate. Combined
with virtual σz gates, we have thus demonstrated a compelling
scheme for realizing universal single-qubit control. To
improve the T1-limited fidelity, we expect that it can be
beneficial to maintain a higher degree of protection during the
gate (higher αmin) while increasing the drive amplitude and/or
increase the gate duration. Our proof-of-principle design can
also be optimized using more advanced α profiles combined
with microwave pulse shaping techniques such as DRAG [38]
in order to further reduce leakage and the time spent at low
coherence for smaller α. Alternatively, sudden gates or gates
where the flux bias is also controlled may be explored with
inspiration from Ref. [18]. Reference [18] also shows how
multitone driving can initialize low-frequency qubits where
the qubit frequency is subthermal. Alternatively, our flexible
design also allows for thermal initialization in the unprotected
regime.

B. Variable-protection two-qubit gates

An advantage of qubits with variable protection is that they
can act as their own tunable couplers with exponential on-off
ratio. In the protected idling regime, the qubit-qubit coupling
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FIG. 4. Two-qubit setup and gate characteristics from nondissipative simulations. (a) Schematic of two capacitively coupled DSFQs
with substantial coupling capacitance Cg = 0.3C. (b) The five lowest-energy states shown as the two barriers are lowered simultaneously
by decresing α1 = α2. (c) The α1 = α2 profile as a function of time for the CPHASE gate. (d) The entanglement entropy of the final two-qubit
gate as a function of the waiting time Tw and the total adiabatic control time Ta. The red markers in this and subsequent panels show the
optimal

√
iSWAP (star) and CPHASE (triangle) gates which have respective fidelities limited by coherent gate errors and gate times of

F√
iSWAP = 99.96%, T√

iSWAP = 32.66 ns and FCPHASE = 99.95%, TCPHASE = 68.76 ns. The estimated T1-limited fidelities are F√
iSWAP = 99.7%

and FCPHASE = 91.4%. [(e) and (f)] The resulting phase and swap parameters φCPHASE and θSWAP of the final two-qubit gate as a function of the
waiting time Tw and the total adiabatic control time Ta. The flux bias is set to φext = 0.99π .

vanishes due to the exponentially small wave-function over-
lap, see also Appendix C. As a result of the exponentially
suppressed coupling between the computational states in the
idling regime, a capacitive qubit-qubit coupling,

HQ−Q = 4EC
Cg

C + Cg
n1n3, (5)

may be relatively strong Cg � 0.3C compared to, e.g., trans-
mon qubits, see Appendix C for a derivation of Eq. (5). We
can thus implement two-qubit gates that rely solely on the
simultaneous lowering of both barriers of two capacitively
coupled DSFQs.

Our implementation of two-qubit gates has three steps:
(1) Lower both barriers simultaneously in a time Ta/2,

α1 = α2 = 1 → αmin.
(2) Wait for a time Tw.
(3) Raise the barriers simultaneously in a time Ta/2, α1 =

α2 = αmin → 1.
The total gate time thus becomes the sum of the waiting

time and the adiabatic control time, T2Q = Ta + Tw.
When the barriers are lowered, the qubits can exchange

excitations through the capacitive coupling element resulting
in an effective σ (1)

x σ (2)
x + σ (1)

y σ
(2)

Y interaction. Crucially, the
adiabatic control time can be adjusted such that there occurs a
transition between the states |01〉 and |10〉 due to their small
energy difference and not between other computational states

whose energy difference is large compared to the adiabatic
time. As shown in Fig. 4(b), an avoided crossing occurs near
α = 0.75. On the other side of this avoided crossing, when α

is further decreased, the coupling dramatically increases. See
also Fig. 7, where the σ (1)

z σ (2)
z interaction strength is shown.

The avoided crossing shown in Fig. 4(b) is a generic feature
of the coupled spectrum as long as the qubit frequencies of the
two interacting qubits are similar at α = 1.

To exclude transitions between the other computational
states and transitions out of the computational subspace, the
speed at which α is lowered should be slower compared to
the single-qubit gate. As a concrete example, we consider
lowering the barriers with a constant speed, meaning that the
adiabatic time is proportional to the minimum value αmin =
1 − Ta/2

2·35 ns . Thus, the barrier can be completely lowered in
35 ns which is three times slower than for the lowering rate
used for the single-qubit gate. Adiabatic lowering or raising
times Ta/2 less than 35 ns results in only partly lowering
the barrier due to the constant lowering or raising speed, see
also Fig. 4(c).

In addition to the σ (1)
x σ (2)

x + σ (1)
y σ (2)

y interaction, the ener-
gies of the coupled system shifts relative to the bare energies
due to an effective σ (1)

z σ (2)
z interaction, see also Appendix C.

Below we simulate the two-qubit gate shown in Fig. 4 and
discuss the types of gates achieved. The two-qubit unitaries
can be modelled by a two-qubit interacting system of the
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following form:

Heff = − ω1

2
σ (1)

z − ω2

2
σ (2)

z

+ gxy

2

[
σ (1)

x σ (2)
x + σ (1)

y σ (2)
y

] + gz

2
σ (1)

z σ (2)
z , (6)

where the σ (i)
x,y,z’s are Pauli matrices acting in the logical sub-

space of qubit i, ωi describe the qubit frequencies, and the
swap coupling gxy and σ (1)

z σ (2)
z coupling gz are all α depen-

dent. This model Hamiltonian gives rise to the so-called fSim
gates which interpolate between the iSWAP and CPHASE
gate [39,40],

UfSim =

⎡
⎢⎢⎢⎣

1 0 0 0

0 cos(θSWAP) −i sin(θSWAP) 0

0 −i sin(θSWAP) cos(θSWAP) 0

0 0 0 e−iφCPHASE

⎤
⎥⎥⎥⎦,

(7)

which is precisely what we see in the simulation of the full
model. By timing the adiabatic control time and the waiting
time to match |01〉 ⇐⇒ |10〉 swap oscillations and the rotat-
ing σ (1)

z σ (2)
z phase, different gates in the fSim space can be

targeted as shown in Figs. 4(d)–4(f). Here we sweep over the
adiabatic and waiting times, Ta and Tw, and in Fig. 4(d), we
display the entanglement entropy which is normalized to unity
for maximally entangling gates [41]. The only maximally
entangling gates in the fSim space are CPHASE and iSWAP.
In Figs. 4(e) and 4(f), we decompose the resulting unitary
into the fSim-parameters; the phase angle φCPHASE and the
swap angle θSWAP. The red markers show two example gates
in the fSim space; the CPHASE and

√
iSWAP gates. The

fidelity limited by coherent errors (leakage) is well beyond
99.9% (up to single-qubit σz gates) and can be performed
in about 69 and 33 ns, respectively. Again, the two-qubit
gates are limited by decay, with estimated T1-limited fideli-
ties of F√

iSWAP = 99.7% and FCPHASE = 91.4%. The fidelity
of the CPHASE gate is severely impacted by the low qubit
coherence near α = 0.6, where T1 = 0.6 µs but the

√
iSWAP

gate is a promising high-fidelity alternative. By applying two√
iSWAP gates sequentially, a fully entangling iSWAP gate

can be realized with a predicted T1-limited fidelity of 99.3%
in about 66 ns, making it superior to the CPHASE gate. In
our testing, we find that the

√
iSWAP gate depends relatively

little on the Hamiltonian parameters and can generally be
performed following a sawtooth-shaped pulse as in Fig. 4(c).
The CPHASE gate can also be realized in range of parameters
but does depend on the Hamiltonian parameters to a higher
degree as careful timing of Ta and Tw is required.

Considering the fidelity limit set by T1, it is natural to
consider how the α-pulse shape can be optimized to reduce
the time spent at low T1. Generally, the waiting time Tw should
be minimized, resulting in sawtooth pulse shapes as for the√

iSWAP gate in Fig. 4(c). The overall gate duration can be
further decreased by increasing the speed of the near-adiabatic
α-pulse; however, if α is pulsed too fast, then the gate fidelity
will be reduced by leakage and unwanted transitions within
the computational subspace.

FIG. 5. (a) The qubit coupled to a readout resonator. The qubit
induces a state-dependent shift of the frequency of the resonator,
which can be measured using standard techniques. (b) Dispersive
shift as a function of external flux. By adjusting the flux away from
half flux bias, a resonance between one of the computational states
become and a higher-energy states comes close to the frequency of
the readout resonator. The resonator shift is increased resulting in a
stronger readout signal. A smaller shift is preferable in the context
of error suppression where it reduces the sensitivity to photon-shot
noise.

As mentioned, the wave functions change substantially
as the barriers are lowered and complicate the simulation
of the qubit interactions. In order to faithfully simulate
the time evolution, we numerically diagonalize the charge-
basis Hamiltonian (ncutoff = 9) at each α and keep the 24
lowest states. Since the diagonalizing unitary, V : V †HV =
diag(E1, E2, . . .), is time dependent, the Schrödinger equa-
tion acquires an additional term, −iV †∂tV . Finally, using the
combined Hamiltonian H = H1 + H2 + HQ−Q [Eqs. (1), (2),
and (5)], the time-evolution operator of the lowest 24 states is
evolved by exp[−i(V †HV − iV †∂tV )�t] at each time step �t
(286 time steps per nanosecond).

Despite relying only on adiabatic control, the two-qubit
gates presented here are competitive compared to state-of-the-
art two-qubit gates for both single- and double-well qubits
[18,19,21]. Further advantages include the exponential on-off
coupling ratio, that only the computational states are used and
the possibility of being able to produce different gates in the
fSim space. Further developments, for example controlling α1

and α2 individually as well as the fluxes, will likely provide
more control over what fSim gates can be reached and reduce
the overall gate time or increase fidelities using optimized
strategies. Additionally, recent work suggests to also use the
DSFQ as a transmon-transmon coupler (called the “double
transmon coupler”), which illustrates the exciting flexibility
of the device [42].

C. Readout

Readout of the DSFQ device can be performed using con-
ventional dispersive readout techniques [39]. However, rather
than reading out via the φ mode, similarly to fluxonium qubits,
we instead propose to readout via the θ mode. By coupling the
qubit capacitively to a readout resonator through the θ degree
of freedom, as shown in Fig. 5(a), we can achieve substantial
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dispersive shifts while remaining in the protected qubit regime
to suppress (Purcell enhanced) relaxation. As we detail below,
the plasmon frequency of the θ mode depends on which well
the φ mode is localized in. Further, the difference in plasma
frequencies for the two wells are tuned by the external mag-
netic flux. In this way, we can use the external flux to control
the state-dependent shift of the readout resonator as shown in
Figs. 5(b)–5(c).

We start by considering the Hamiltonian of the combined
system which can be written as [39]

H = Hsys + g(a + a†)nθ + ωra†a, (8)

where Hsys is the qubit Hamiltonian, a(a†) is the resonator
annihilation (creation) operator, ωr is the bare resonator fre-
quency, and g is the coupling strength between resonator and
qubit. In the dispersive regime, the resonator frequency is
effectively shifted by the state of the qubit. This can be seen
by performing a Schrieffer-Wolff transformation [43,44] to
second order,

Heff = Hsys + ωra†a −
(χ

2
a†a + δ

)
σz, (9)

where χ is the qubit state-dependent resonator shift, δ is a
small shift of the qubit frequency, and σz = |0〉 〈0| − |1〉 〈1|
is the qubit Pauli Z operator. To correctly estimate the dis-
persive resonator shift it is important to account for higher
levels outside of the computational subspace. Carrying out
the perturbation calculation, we find the dispersive shift as
χ = ∑

j χ1 j − χ0 j , where

χi j = g2|〈i| nθ | j〉|2
(

1

Ei − Ej − ωr
+ 1

Ei − Ej + ωr

)
. (10)

Figures 5(b) and 5(c) shows the resonator shift as a function
of the externally applied magnetic flux. For these simulations,
we have used a bare resonator frequency of ωr = 4.8h GHz
and coupling strength of g = 25h MHz.

To explain the working principle of the readout, we briefly
adopt a simple, minimal model of the DSFQ. In this model,
we assume that we are away from the sweet spot at exactly
half flux quantum and write an effective potential for the θ

degree of freedom by freezing the φ degree of freedom to
one of the two minima at φ± = (±π − δφext )/3 for α = 1 and
thus momentarily neglect tunneling between the two wells,

V± = ∓EJ
δφext

2
√

3
− EJ

(
1 ± δφext√

3

)
cos(θ ), (11)

where φext = π + δφ and δφ � 1. In this picture, each min-
ima corresponds to one of the computational states. Close to
half flux bias (δφext ≈ 0), V± are nearly identical and the read-
out resonator cannot discriminate between the computational
states as the matrix elements | 〈±| nθ | j〉 | are approximately
the same for the two qubit states |±〉. By increasing the offset
from the flux frustration point, the two terms in Eq. (11) lead
to differences between the two wells that can result in a large
dispersive shift if the readout resonator is close in frequency
to the plasma frequency of the θ mode in one of the wells.
The first term in Eq. (11) contains the simple energy splitting
between the two wells due to the external flux which does not
change the plasmon frequency. The second term in Eq. (11)
shows that the plasmon frequency of the θ mode in each well

ω±
θ =

√
8ẼCẼ±

J , where ẼC and Ẽ±
J are the effective charging

and Josephson energies of the θ mode [39], also depends on
the offset from half flux bias. In this way, we may tune the
plasmon frequency in one of the wells close to the readout
resonator frequency and thereby achieve a large dispersive
shift, see Figs. 5(b) and 5(c). We may now consider what hap-
pens at exactly half flux quantum where the small tunneling
between the wells results in wave functions that are even-odd
in φ. In this situation, different selection rules for the even-
odd computational states dictate what matrix elements can
be nonzero and will generally result in a nonzero dispersive
shift. However, as the resonator frequency can be far off the
frequency of the contributing transitions, the dispersive shift
remains small.

There are several advantages to performing readout in the
proposed scheme: Suppression of the dispersive shift con-
trolled by the external flux grants us insensitivity to dephasing
through photon shot noise [39]. By coupling the readout res-
onator to the θ mode of the qubit, we also obtain protection
against Purcell decay: The matrix element 〈0| nθ |1〉 [or in
the notation surrounding Eq. (11)], 〈+| nθ |−〉) is zero since
the computational states are both in the even θ -mode ground
state in their respective wells. Via this mechanism, the qubit
is protected from the Purcell effect due to the symmetries of
the wave functions. There are no additional Purcell effect due
to nφ as the readout resonator remains decoupled from this
mode. In total, the dominant source of error during readout
is the direct tunneling between the qubit states. The T1 times
computed in Sec. II depends weakly on the external flux
and for readout at φext = 1.023π we find T1 = 519 µs. For a
readout integration time around 1 µs, the T1-limited readout
fidelity is F = 99.8%.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have shown how gates and readout can
be performed on a new flux qubit variation with a variable
level of T1 protection, the DSFQ. By adiabatically reducing
the height of the barrier, the otherwise insensitive qubit can
be made sensitive to a microwave drive. Our implementation
of this variable-protection gate scheme shows that fast, high-
fidelity single-qubit gates can be performed without involving
lossy noncomputational states. We predict single-qubit gates
with coherence limited fidelities at 99.98% in 25 ns, making it
competitive with established gate schemes for both protected
and unprotected qubits. However, nonoptimized gates suffer
from T1 decay during the lowering of the barrier and results
in a T1-limited gate fidelity of 99.1%. Likewise, we show that
by lowering the barriers of two capacitively coupled DSFQs,
that high-fidelity two-qubit gates in the fSim space can be
performed. Specifically, we find CPHASE and

√
iSWAP gates

with a coherence limited fidelity above 99.9% in 69 and
33 ns, respectively, without residual ZZ interactions. Again,
the two-qubit gates are limited by relaxation and the T1-
limited fidelities are FCPHASE = 91.4% and F√

iSWAP = 99.7%,
respectively The fidelities and gate times can be further im-
proved by using optimized protocols.

We have further shown that readout can be performed ef-
ficiently in the T1-protected regime by adjusting the external
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flux bias away from the flux frustration point. Near half a flux
bias, the dispersive shift is not only reduced due the the qubit-
resonator detuning but also due to the approximate symmetry
between the two wells. With the order-of-magnitude varia-
tions in dispersive shift and separated double wells, the DSFQ
is robust against noise channels arising from the coupling to
the resonator.

In addition to the T1 protection, we have also proposed
a gradiometric double-loop variation of the DSFQ which is
exponentially insensitive to global flux noise while remaining
linearly sensitive to local flux noise. We show that area vari-
ability of the loops can be compensated for by making the
tunable junction slightly asymmetric without being sensitive
to the noise in the tunable junctions.

In total, the DSFQ presents an experimentally available
platform for studying qubits with a variable level of T1 pro-
tection, where gates can be performed without involving
noncomputational states. This contribution may help pave the
way for achieving fast, high-fidelity gates on protected qubits
using this novel gate implementation.
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APPENDIX A: GRADIOMETRIC DSFQ

To better understand the dependence on the global flux, we
look at the potential energy for the double-loop qubit,

HJ = −EJ cos(φ1) − EJ cos(φ2) + HJα,

HJα = −EJ

2
[α1 cos(φext,1 + 2φ) + α2 cos(φext,2 + 2φ)].

(A1)

Here the flux-induced phases are given by

φext1,2 = ±2πA1,2B1,2

�0
, (A2)

where A1,2 are the areas of the two loops and B1,2 = (B ± b)/2
are the field through them.

In the symmetric case when A1B1 = A2B2, α1 = α2 the
flux-dependent term becomes

HJα = −EJ

2
α1 cos(2φ) cos(φext,1), (A3)

and we see that the potential maintains the symmetry with
two degenerate minima for all values of the global field B.
However, it is not realistic to assume that the two areas can
fabricated to be identical. Therefore, we consider the situation
where they differ by some (small) amount. To study this case,
we write HJα as

HJα = −EJ

2
[Vc cos(2φ) − Vs sin(2φ)], (A4)

where

Vc = α1 cos(φext,1) + α2 cos(φext,2), (A5a)

Vs = α1 sin(φext,1) + α2 sin(φext,2). (A5b)

The splitting of the degeneracy of the minima of Vc is con-
trolled by the second term Vs. One could, in principle, choose a
set parameters (α1, α1, B1, B2) such that Vs = 0 and regain the
degenerate double-well potential. However, the degeneracy is
lifted linearly in both the global external field B and the tun-
ing of the Josephson junctions, and the situation is therefore
worse than before. Instead, we search for a point where the
qubit is split by the different well depths, but with at least
quadratic protection against deviations from the mentioned set
of parameters. If both junctions in the outer SQUID-loop are
tunable junctions, then we have to minimize with respect to
both which gives the condition sin(φext,1) = sin(φext,2) at the
operating point. Consequently, the condition for the junctions
when minimizing with respect the global field B is

A1α1 = A2α2. (A6)

If the tunable junctions are parameterized as α2 = (1 + δ)α1,
then the condition obtaining the sweet spot where the splitting
is quadratic or better in δ and B is

∂Vs

∂δ
= 0 → sin(φext,2) = 0, (A7a)

∂Vs

∂B
= 0 → cos(φext,1) = (1 + δ)A2

A1
cos(φext,2).

(A7b)

Note that the condition in Eq. (A7a) results in a Vs which is
insensitive to δ for all δ. If the flux through the two loops
is controlled by a single global field (i.e., b = 0), then the
two equations above can be combined to give the following
condition on δ,

δ = −1 + 1 + r

1 − r
cos

(
2πr

1 − r

)
≈ 2r, r = A1 − A2

A1 + A2
, (A8)

for small r.

APPENDIX B: IQ MIXING

We show that our single-qubit gate scheme is compatible
with IQ mixing in Fig. 6. The pulses are parametrized by
ε(t ) cos(ωdt + φoffset ), where ε(t ) is the envelope with cosine
ramp up or down and φoffset is the phase offset that determines
the I and Q components. We display three flip gates σx (also
found in Fig. 3), σy and σxy = (σx − σy)/

√
2 with similar

fidelities >99.9% and a 25-ns gate time. The pulse parameters
can be found in the caption of Fig. 6.
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FIG. 6. [(a)–(c)] Pulse sequence for the σx , σy, and σxy = (σx − σy )/
√

2. Parameters for the pulse envelope and the α profile is identical to
those in Fig. 3. The phase offset and drive frequency are in the three cases: (a) φoffset = 0π, ωd = 0.979ωq; (b) φoffset = 0.5π, ωd = 0.979ωq;
and (c) φoffset = 0.26π,ωd = 0.977ωq. [(d)–(f)] Corresponding evolution of the states during the gate operation. The fidelities in the three
panels are (d) Fx = 99.98%, (e) Fy = 99.98%, and (f) Fxy = 99.93%.

APPENDIX C: Q-Q COUPLING

Two coupled DSFQs are shown in Fig. 4(a). The La-
grangian for the total circuit is

L = C

2
φ̇2

1 + C

2
φ̇2

2 + C

2
φ̇2

3 + C

2
φ̇2

4

+ Cg

2
(φ̇1 − φ̇3)2

+ EJ cos φ1 + EJ cos φ2 + α1EJ cos (φ1 − φ2 + φext,1)

+ EJ cos φ3 + EJ cos φ4 + α2EJ cos (φ3 − φ4 + φext,2).

(C1)

By performing a Legendre transformation, we arrive at the
result

H1(2) = 4EC

(
C + Cg

C + 2Cg

)
n2

1(3) + 4ECn2
2(4)

− EJ cos φ1(3) + EJ cos φ2(4)

+ α1(2)EJ cos[φ1(3) − φ2(4) + φext1(2) ],

HQ−Q = 4EC

(
Cg

C + Cg

)
n1n3, (C2)

where 1(2) refers to qubit 1(2) with charge and phase opera-
tors n1(3), n2(4), φ1(3), φ2(4). The full Hamiltonian is a sum the
two-qubit Hamiltonians and the interaction term, H = H1 +
H2 + HQ−Q. The qubit Hamiltonians have been renormalized
due to the coupling capacitance between the two circuits. In
Fig. 7, we show the σ (1)

z σ (2)
z coupling due to the capacitive

coupling defined by ζZZ = ω00 − ω01 − ω10 + ω11. In Fig. 7,
it is apparent that the σ (1)

z σ (2)
z coupling is suppressed unless

both barriers are lowered. Thus, single-qubit gates where
only one barrier is lowered do not give rise to unwanted
σ (1)

z σ (2)
z interactions. However, we are limited to only half-

grid single-qubit gates if we neglect the next-nearest-neighbor
stray capacitances. As a final remark, we would like to point
to the half-circular suppression of ζ<< in Fig. 7. This interest-
ing feature appears when the sign of the σ (1)

z σ (2)
z interaction

changes. In colloquial terms, the σ (1)
z σ (2)

z interaction is exactly
canceled when the “push” or “pull” on the |11〉 state from
states below it is exactly compensated for by the push or pull
from states above it.

FIG. 7. Plot of the ZZ-interaction strength due to the capacitive
coupling. When one or none of the barriers are lowered, the interac-
tion strength is suppressed to the 10-kHz level.
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