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Non-Hermitian p-wave superfluid and effects of the inelastic three-body loss
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We theoretically investigate non-Hermitian p-wave Fermi superfluidity in one-dimensional spin-polarized
Fermi gases which is relevant to recent ultracold atomic experiments. Considering an imaginary atom-dimer cou-
pling responsible for the three-body recombination process in the Lindblad formalism, we discuss the stability
of the superfluid state against the atomic loss effect. Within the two-channel non-Hermitian BCS-Eagles-Leggett
theory, the atomic loss is characterized by the product of the imaginary atom-dimer coupling and the p-wave
effective range. Our results indicate that for a given imaginary atom-dimer coupling, a smaller magnitude of the
effective ranges of p-wave interaction is crucial for reaching the non-Hermitian p-wave Fermi superfluid state.
Moreover, our theoretical framework for many-body systems with the three-body loss, which is inevitable in
ultracold atoms, would promote further progress in non-Hermitian cold-atomic physics.
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I. INTRODUCTION

Unconventional superconductivity and superfluidity are
of great interest due to their nontrivial properties such as
anisotropic gap structures and topological states. In par-
ticular, p-wave superconductors and superfluids have been
discussed in the various contexts of physics ranging from
condensed-matter physics [1] to nuclear physics [2]. Once
stable topological p-wave superconductors or superfluids can
be manipulated in a controllable manner, it would make sig-
nificant progress toward the realization of a universal quantum
computer based on anyons [3].

In this regard, over the last few decades, great efforts
have been devoted to experimentally realizing the p-wave
superfluid state in ultracold atoms [4–16], because of the
strong advantages of the atomic systems with tunable pair-
ing interaction near the Feshbach resonance [17]. Moreover,
the transition from the molecular Bose-Einstein condensates
(BEC) to Bardeen-Cooper-Schrieffer (BCS) Fermi super-
fluid in the p-wave channel has been discussed theoretically
[18–23].

However, the experimental realization of p-wave Fermi su-
perfluids in ultracold atoms has not been achieved yet. One of
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the major obstacles is the inevitable three-body loss induced
by the three-body recombination process where two atoms
form a deep bound state and its binding energy is released
by another energetic atom [4]. For the narrow resonance, the
atomic loss rate is well explained by the so-called two-step
cascade model [10,13,24]. Recently, one-dimensional systems
have attracted attention since it is theoretically reported that
the atomic loss associated with the p-wave interaction can be
suppressed [25–29]. While the suppression of atomic losses
in one-dimensional systems is under investigation in recent
experiments [13,14], it is worth investigating theoretically
how close the present experimental situation is to realizing
the p-wave superfluid state in one dimension [30,31].

To explore the effects of particle losses on the many-body
supefluid state, the non-Hermitian BCS formalism can be a
promising route [32]. By using the complex-valued interac-
tion, one can incorporate the effect of the atomic loss in the
BCS formalism in a similar manner to conventional Hermi-
tian models. While the quantum jump term is neglected in
the non-Hermitian BCS theory, this treatment can be justi-
fied in postselected quantum trajectories [33] by separating
the transient dynamics into the nonunitary evolution and the
quantum jump process, where one may selectively observe
ensembles remaining in the system without experiencing the
jump process.

The BCS theory is further extended to describe the BCS-
BEC crossover by solving the particle-number equation with
respect to the chemical potential self-consistently, which
is referred to as the BCS-Eagles-Leggett theory [34]. The
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non-Hermitian extension of the BCS-Eagles-Leggett theory,
which covers not only the weak-coupling BCS regime but
also the strong-coupling BEC regime in the continuum model
[35,36], can be useful in studying the impact of particle
losses in the present system. The present authors applied this
approach to one-dimensional two-component p-wave Fermi
superfluid with the dominant two-body loss originating from
the dipolar relaxation [36].

However, to our knowledge, there are no previous studies
on non-Hermitian many-body states with the three-body loss
in spin-polarized Fermi gases even though the three-body loss
is a major obstacle in ultracold atomic systems. Obviously,
the three-body loss effect is theoretically challenging since it
may involve a kind of effective three-body interaction [37–42]
which is not well established compared with the two-body
interaction in the present system.

In this work, we theoretically discuss the stability of
the p-wave superfluid state against the three-body loss in
a one-dimensional spin-polarized Fermi gas by using the
non-Hermitian BCS-Eagles-Leggett theory. The imaginary
atom-dimer coupling can describe the inelastic atom-dimer
collision responsible for the three-body recombination. To
incorporate such a non-Hermitian term, we start from the two-
channel Hamiltonian [43] for the p-wave Feshbach resonance
where open- and closed-channel atoms are simultaneously
considered. We show that this non-Hermitian two-channel
model gives a microscopic description of the two-step cascade
process [10,13,24]. In this framework, we investigate the pos-
sible ground-state phase diagram to see the condition realizing
the non-Hermitian p-wave Fermi superfluid state under the
three-body loss process.

Our study would be useful for the future experimental
realization of the p-wave Fermi superfluid under the inevitable
three-body loss effect in ultracold atoms. Moreover, our the-
oretical development of the non-Hermitian many-body theory
for open quantum environments with the inelastic three-body
loss would make an important step in studying various fasci-
nating topics in the field of ultracold atomic physics.

This paper is organized as follows. In Sec. II, we first
introduce the effective Hamiltonian. Second, we apply the
non-Hermitian BCS-Eagles-Leggett theory to this model. Fi-
nally, we show how the Lindblad master equation is related to
the observed loss. In Sec. III, we show the numerical results of
the ground-state phase diagram of the mean-field theory. The
summary of this paper is given in Sec. IV. Hereafter, we work
in the unit of kB = h̄ = 1 for convenience.

II. FORMALISM

A. Effective Hamiltonian

We consider the two-channel effective Hamiltonian of one-
dimensional homogeneous spinless fermions near the p-wave
Feshbach resonance with the three-body force, which is given
explicitly by [44]

Heff = Ha + Hd + V2 + V3, (1)

where

Ha =
∑

k

ξka†
kak, Hd =

∑
P

ξP,dd†
PdP, (2)

are kinetic terms of Fermi atoms and Feshbach dimer, re-
spectively. ξk = k2/(2m) − μ is a single-particle energy of
a Fermi atom with a mass m measured from the chemical
potential μ and ξP,d = P2/(4m) + ν − 2μ is that of Feshbach
dimer with an energy level ν. a(†)

k and d (†)
P denote annihilation

(creation) operators of a Fermi atom and a Feshbach dimer
with momenta k and P, respectively.

The interaction terms consist of a two-body term for the
p-wave Feshbach resonance

V2 =
∑
P,k

g2kd†
Pa−k+P/2ak+P/2 + h.c. , (3)

and a non-Hermitian three-body term for the inelastic atom-
dimer collision

V3 =
∑

Q,q,q′
g3d†

q+Q/2a†
−q+Q/2a−q′+Q/2dq′+Q/2. (4)

The two-body coupling constant g2 is related to the p-wave
scattering length a and effective range r (where the one-
dimensional p-wave phase shift is defined by kcotδ(k) =
− 1

a + rk2/2) through [45]
m

2a
= − ν

2g2
2

+ m�

π
, (5)

r = − 2

m2g2
2

, (6)

where � is the momentum cutoff. On the other hand, g3 is
taken to be a pure imaginary value in this work since we
are interested in the effect of inelastic atom-dimer scattering.
Later we relate g3 to the inelastic atom-dimer collision rate
Kad which is determined experimentally [13]. For simplicity,
we ignore the off-resonant background interactions.

B. Non-Hermitian BCS-Eagles-Leggett theory

In the following, we apply the non-Hermitian BCS-Eagles-
Leggett theory [35,36] to Heff by assuming the postselected
quantum trajectories [33]. We replace dP and d†

P in Heff with
a pair of complex mean-field order parameters φ and φ̄,
respectively (note that φ̄ �= φ∗ due to the non-Hermicity of
Heff ) and neglect the contributions associated with nonzero
center-of-mass momentum of a dimer (i.e., dP �=0 and d†

P �=0).
Accordingly, we obtain the mean-field Hamiltonian

HMF = (ν − 2μ)φ̄φ + 1

2

∑
k

ξ̃k

+ 1

2

∑
k

�
†
k

(
ξ̃k −	̄k

−	k −ξ̃k

)
�k, (7)

where we introduced the shifted dispersion ξ̃k = k2/(2m) −
μeff with the effective chemical potential μeff = μ − g3φ̄φ ≡
μeff,R + iμeff,I, the complex pairing gaps 	k = −2g2φk and
	̄k = −2g2φ̄k, and the Nambu spinor �k = (ak a†

−k )t. For
convenience, we introduce φ0 = φR + iφI satisfying φ2

0 =
φ̄φ and D0 = −2g2φ0 ≡ DR + iDI. Following the previous
works [35,36], we assume DR � 0, DI � 0, and μeff,I � 0.
At μeff,R > 0, the present system encounters the exceptional
point when the indicator

z = DR

√
m2D2

I + 2mμeff,R − mDRDI + μeff,I (8)
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becomes zero [35,36], and the superfluid solution vanishes
there. In turn, at μeff,R < 0, the superfluid solution disappears
when the diffusive gapless mode appears at μeff,R → −0 [36].

Performing the Bogoliubov transformation, we obtain the
ground-state energy

EGS =
(

m2rμ

4
− m

4a

)
D2

0

+ 1

2

∑
k

(
ξ̃k − Ek + mD2

0

)
, (9)

where Ek =
√

ξ̃ 2
k + D2

0k2 is the quasiparticle dispersion. The
value of D0 can be determined from the gap equation given by

m2r

4

[
2μeff − g3

(
n + rm2D2

0

2

)]
− m

2a

=
∑

k

k2

(
1

2Ek
− m

k2

)
, (10)

where the number density n reads

n = 1

2

∑
k

(
1 − ξ̃k

Ek

)
− rm2D2

0

4
, (11)

which is kept to be a real value. Also, it is useful to define the
effective complex scattering length aeff as

1

aeff
= 1

a
+ mr

2

[
g3

(
n + rm2D2

0

2

)
− 2μeff

]
. (12)

Using Eq. (12), one can rewrite Eq. (10) as

− m

2aeff
=

∑
k

k2

(
1

2Ek
− m

k2

)
, (13)

which is equivalent to the complex gap equation in Ref. [36].
In this regard, the non-Hermitian loss effect is characterized
by 1/aeff = 1/aeff,R + i/aeff,I where

1

aeff,I
= mr

2
Im

[
g3

(
n + rm2D2

0

2

)
− 2μeff,I

]
, (14)

indicating that the value of rg3 plays a crucial role in the
stability of the non-Hermitian superfluid state. In other words,
1/aeff,I = 0 (i.e., vanishing loss) can be realized even in the
presence of g3 at r = 0, indicating a potential way to reach
the p-wave superfluid without suffering from the atomic loss.
We note that aeff,R �= Re[aeff ], and aeff,I �= Im[aeff ]. Since the
zero-range limit is not prohibited in the one-dimensional p-
wave scattering [37,40,45–47], our result indicates that the
three-body loss process may be avoided by reducing the mag-
nitude of the effective range, which is possible by using the
optical control method [12,48,49]. This is one of the main
results of this paper. It is worth noting that in one dimension
the effect of the confinement-induced resonance should also
be taken into account [50,51].

We note that the existence of the superfluid solution does
not immediately indicate its stability. It is argued that there
is a first-order-like phase transition between the normal and
superfluid phases [35,36]. To see this, one may calculate the
free-energy density

FS = EGS + μn, (15)

and compare it to that in the normal phase denoted by FN. The
first-order phase transition is defined through Re(FS − FN) = 0
[32,35,36,52].

While we employ the mean-field theory, it is known
that such a theory works qualitatively well for describing
ground-state properties in equilibrium systems throughout the
BCS-BEC crossover [34]. Although the off-diagonal long-
range order is prohibited in one dimension due to strong
quantum fluctuations [53,54], the mean-field theory is still
useful to see characteristic features of the pairing effect in one-
dimensional systems [55]. A typical example is the mean-field
study of the Ising model across various spatial dimensions.
Although the mean-field theory fails to accurately predict the
critical behaviors of the Ising model, it provides a simple and
straightforward picture to understand physical properties of
the system (e.g., see Ref. [56]). In this regard, our framework
would be sufficient for the first examination of the p-wave
superfluid in a one-dimensional spin-polarized Fermi gas with
the three-body loss.

C. Lindblad master equation for the atom-dimer
inelastic collision process

To compare the many-body theory presented in Sec. II B
with the experiment, it is important to express g3 by using
an experimental observable. While the two-body coupling
parameters g2 and ν can be renormalized via the p-wave
scattering length a and effective range r as shown in Eqs. (5)
and (6), a kind of the three-body scattering parameter should
be known experimentally to renormalize g3 in one dimension
[37–40,42]. Although such quantities have not been measured
yet, the three-body loss measured in the experiment [13]
can be used for this purpose. To relate g3 to the observed
atom-dimer inelastic collision rate Kad, we consider the Lind-
lad quantum master equation of the density matrix ρ given
by [57,58]

i
d

dt
ρ = [H, ρ] − i{K, ρ} + i

∫
dxL(x)ρL†(x), (16)

where H = Ha + Hd + V2 in the real-space basis, L(x) is the
Lindblad operator given by

L(x) =
√

−2Im[g3]ψ (x)�(x), (17)

and

K = 1

2

∫
dxL†(x)L(x) (18)

is the non-Hermitian part of the effective Hamiltonian. ψ (x)
and �(x) are field operators of a Fermi atom and a Feshbach
dimer, respectively, where x is the one-dimensional position
coordinate. We note that the non-Hermitian effective Hamil-
tonian corresponds to Heff = H − iK . While we ignored the
quantum jump term [i.e., the third term of Eq. (16)] in the
non-Hermitian BCS-Eagles-Leggett theory, we here keep it to
see the connection with the observed loss rate in experiments
without the postselection.

In this framework, the time-dependent atomic num-
ber Na = Tr[ρN̂a] with N̂a = ∫

dxψ†(x)ψ (x) obeys the rate
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equation

d

dt
Na � −i〈[V2, N̂a]〉 + 2Im[g3]

NaNd

�
, (19)

where Nd = Tr[ρN̂d] with N̂d = ∫
dx�†(x)�(x) is the num-

ber of Feshbach dimers and � is the system length. The first
term with 〈[V2, N̂a]〉 ≡ Tr[ρ[V2, N̂a]] in Eq. (19) is responsible
for a conversion process from atoms to dimers and a one-body
decay of dimers via the Feshbach coupling as

i〈[V2, N̂a]〉 � −2
Nd + 2Kaa
N2

a

2�
, (20)

where 
 = −�Im�ret.
d (P � P̄d, ω � ω̄d ) and Kaa = −2�Im

�ret.
� (P � P̄d, k � k̄a, ω � ω̄�) are the dimer and two-particle

retarded self-energies at the averaged dimer and atom mo-
menta P̄d and k̄a, and dimer and two-particle frequencies ω̄d

and ω̄�, respectively (see Appendix A where the relation
to the two-step cascade model is microscopically discussed
within the Schwinger-Keldysh approach [59]). Here we focus
on the second term of Eq. (19) and for simplicity, we con-
sider the homogeneous system where the number densities
are given by na,d = Na,d/� with the system length � (which
is approximately given by the twice Thomas-Fermi radius as
� � 2RR for comparison with Ref. [13]). In this regard, one
finds

Kad = −2Im[g3]. (21)

Using the experimental values reported in Ref. [13], as the
atom-dimer collision rate Kad � 0.67 cm/s, the system length
� � 2RF � 2×10−3 cm, the total number Na � 9×104, and
the Fermi energy EF � 4.8 μK, we can estimate the normal-
ized atom-dimer coupling γ3 = −Im[g3] na

EF
as γ3 � 1.5×102,

which is much larger than the typical many-body energy scale
(i.e., Fermi energy and momentum). Incidentally, under the
assumption of the dimer steady state, the three-body loss rate
is given by L3 = 3

2
Kaa



Kad [13]. The accurate calculations of
Kaa and 
 will be left for future work.

III. RESULTS

Figure 1 shows the numerical results of (a) μR, (b) DR, (c)
μI, and (d) DI in the plane of the inverse p-wave scattering
length (kFa)−1 and effective range −kFr normalized by the
Fermi momentum kF, where the normalized three-body loss
parameter is taken as γ3 = 1.5×102 that is relevant to the
experiment [13]. In the numerical calculation, we used a suf-
ficiently large cutoff as �/kF = 102 where we confirmed that
the numerical results are qualitatively unchanged. Since the
magnitude of r is associated with aeff,I as shown in Eq. (14),
the effective range dependence of μR, DR, μI, and DI are
similar to the imaginary scattering length dependence of them
in a two-component Fermi gas with the two-body loss [15].
DI increases and μI decreases when −kFr becomes larger
(i.e., the loss feature is strengthened). We note that μR can be
positive in the strong-coupling regime [(kFa)−1 � 1] unless
μeff,R ≡ μR − 1

4g2
2
Re[g3D2

0] turns positive. Figure 2 shows
the mean-field ground-state phase diagram of the present non-
Hermitian system, where γ3 = 1.5×102 is used. One may
find that the structure of the phase diagram is similar to that
in two-component Fermi gases with two-body losses [36].

FIG. 1. Solution of Eqs. (10) and (11) with the normalized imag-
inary three-body coupling γ3 = 1.5×102: (a) real part μR of the
chemical potential, (b) real part DR of the superfluid order parameter,
(c) imaginary part μI of the chemical potential, (d): imaginary part
DI of the superfluid order parameter.

For the zero-range limit (−kFr → 0) where μeff is equal to
μ because of the vanishing dimer fraction (i.e., φ2

0 → 0),
the system exhibits the topological phase transition from the
BCS phase [Re(μ) > 0] to the BEC phase [Re(μ) < 0] at
(kFa)−1 = 4/π � 1.27 [31]. Around this point, the system
is extremely fragile against the non-Hermitian loss term as
found in the case with the two-body loss [36]. However, since
the three-body loss occurs via the atom-dimer collision, the
present system is exceptionally stable against the three-body
loss effect in the zero-range limit with a vanishing dimer frac-

FIG. 2. Calculated ground-state phase diagram with the normal-
ized imaginary three-body coupling γ3 = 1.5×102. The BCS state
becomes metastable when the BCS free energy F is larger than that
of the normal phase. The dotted curve represents the first-order-
like phase transition between the BCS and the normal phase. The
boundary between the BCS phase (or metastable BCS phase) and the
normal phase and that between the BEC phase and the normal phase
are accompanied by the appearance of the exceptional point and the
diffusive gapless mode, respectively [36].
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FIG. 3. Calculated ground-state phase diagram in the plane of
the normalized imaginary three-body coupling γ3 and the normalized
effective range −kFr. In this figure, (kFa)−1 = −0.5 is used.

tion. If one increases kF|r|, the loss effect becomes remarkable
as the superfluid solution disappears at the exceptional point
(i.e., z → 0) in the BCS phase and at the appearance of the
diffusive gapless mode in the BEC phase (i.e., μeff,R → −0).
Moreover, the weak-coupling BCS phase can be metastable
against the normal phase due to the atomic loss effect as it is
found in three-dimensional s-wave supefluid [35] as well as in
one-dimensional two-component p-wave superfluid. [36].

In the experiment [13], the quasi-one-dimensional effective
range is given by r = Rpa2

⊥/6 where Rp = −0.41(1)a−1
0 is

the p-wave effective range (a0 is the Bohr radius) in three
dimensions and a⊥ = √

2/mωr is the transverse oscillator
length with the frequency ωr . Using the experimental value
ωr = √

4×75Er where Er = 1.41 μK is the recoil energy, one
can estimate r � −4.3 μm and hence kFr � −47. This value
is much far away from the superfluid region.

The relation with the two-component system involving
two-body loss [36] is more evident if one examines the
imaginary part of the effective scattering length. Because of
extremely large γ3, one may approximately obtain the inverse
effective scattering length

1

kFaeff,I
� 1

4
γ3kF|r|, (22)

indicating (kFaeff,I )−1 � 0.9 around (kFa)−1 = −1, which is
consistent with Ref. [36] when replacing aeff,I with the imag-
inary scattering length induced by the two-body loss.

While the value of γ3 is fixed in Figs. 1 and 2, it should be
noted that the observed Kad is not a constant near the p-wave
resonance [13], indicating that γ3 is also not a constant in
an actual experiment. To examine the dependence on γ3, we
address the ground-state phase diagram with respect to γ3

and −kFr at (kFa)−1 = −0.5 as shown in Fig. 3. For smaller
γ3, the superfluid solution is allowed up to larger kF|r|. The
magnitude of the critical effective range of the superfluid
solution becomes smaller and smaller with increasing γ3. As
shown in Eq. (14), for larger γ3 the critical effective range is
proportional to 1/γ3. We note that the first-order-like phase
transition is absent in the case with a large negative effective
range. This can be understood as reaching the strong-coupling

side induced by the negative range effect [60–63], where
the metastable superfluid solution exists in only the weak-
coupling regime [36].

While we consider a pure imaginary atom-dimer coupling
Im[g3] to examine the three-body loss process, the real part
Re[g3] can also be present as pointed out in Ref. [40]. In such
a case, μeff is modified by −Re[g3]φ2

0 , so that the exceptional
point and the appearance of the diffusive gapless mode would
be shifted quantitatively. However, it is out of scope in this
work.

IV. SUMMARY

To summarize, in this work, we have discussed the non-
Hermitian p-wave Fermi superfluid near the p-wave Feshbach
resonance involving inelastic atom-dimer collisions, which
lead to the three-body recombination via the two-step cascade
process. Developing the non-Hermitian BCS-Eagles-Leggett
theory for the present system, we have shown how the super-
fluid state is destroyed by the inelastic atom-dimer collision.
Importantly, the existence of the superfluid solution is deeply
related to the magnitude of the p-wave effective range r,
which characterizes the coupling between fermionic atoms
and Feshbach dimers. It is found that the smaller value of
kF|r| is highly advantageous for realizing the non-Hermitian
p-wave Fermi superfluid state under the postselected quantum
trajectories. Estimating the imaginary atom-dimer coupling
from the experimental result [13], we have drawn the possible
ground-state phase diagram in the plane of the p-wave low-
energy constants. Our result suggests that the p-wave Fermi
superfluid state can be achieved by reducing kF|r| with, e.g.,
the optical control of scattering properties [12,48,49] and the
strong transverse trap confinement [50,51], where the one-
dimensional zero-range limit is not prohibited by the causality
bound [64,65] in contrast to higher dimensions.

For future perspectives, it is interesting to consider the
beyond-mean-field effects by including pairing fluctuations.
As quantum fluctuations reduce the magnitudes of the pair-
ing gap and the chemical potential in the Hermitian systems
[34], the corresponding quantities and hence the phase di-
agram would be modified by quantum fluctuations in the
non-Hermitian systems. Thermal effects at finite tempera-
ture are more challenging because the realization of the
thermal Gibbs state is not guaranteed in the non-Hermitan sys-
tems. The inclusion of the jump term and the self-consistent
calculation of Kaa and 
 during the time evolution would
enable us to perform a more detailed comparison with the
experiment. The effects of the confining trap potential and
quasi-one-dimensionality should also be addressed for further
quantitative investigations. Moreover, our formalism for the
three-body loss can be applied to studies of the non-Hermitian
Efimov effect [66,67].
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APPENDIX: TWO-BODY TRANSITION PROCESS AND
THE RELATION TO THE TWO-STEP CASCADE MODEL

In this Appendix, we discuss the relation with the two-step
cascade model [10,13,24] by examining the two-body term
−i〈[V2, N̂a]〉 in Eq. (19). We need to evaluate

i〈[V2, N̂a]〉 = 2
∑
P,k

kg2Re[i〈d†
Pa−k+P/2ak+P/2〉]. (A1)

The expectation value 〈· · · 〉 should be a two-time correlation
function for an infinitesimally small time step dt as 〈· · · 〉 =
〈�(t ′)| · · · |�(t )〉 with t ′ = t + dt where |�(t )〉 describes the
time-dependent many-body state vector. While we are in-
terested in the strongly-interacting regime, the lowest-order
perturbation with respect to the atom-dimer transition V2 can
be a good approximation since the transition rate during the
infinitesimally short time period dt is concerned here. Accord-
ingly, we consider the perturbation on the Schwinger-Keldysh
contour for the two-time expectation value [59] as

〈d†
P(t ′)a−k+P/2(t )ak+P/2(t )〉
= 〈TC[e−i

∫
C dt ′′V2(t ′′ )d†

P(t ′)a−k+P/2(t )ak+P/2(t )]〉

= −i
∫

C
dt ′′〈TC[V2(t ′′)d†

P(t ′)a−k+P/2(t )ak+P/2(t )]〉

+ O
(
V 2

2

)
, (A2)

where TC denotes the time-order product on the deformed time
contour C, and dP(t ), ak (t ), and V2(t ) are the Heisenberg rep-
resentations of the operators. Considering the Wick theorem,
one can find the relevant contribution given by

〈d†
P(t ′)a−k+P/2(t )ak+P/2(t )〉

= 2i
∫

C
dt ′′kg2Gd(P, t ′′, t ′)�(P, k, t, t ′′), (A3)

where

iGd(P, t ′′, t ′) = 〈TC[dP(t ′′)d†
P(t ′)]〉, (A4)

and

i�(P, k, t, t ′′) = 〈TC[a−k+P/2(t )ak+P/2(t )a†
k+P/2(t ′′)

× a†
−k+P/2(t ′′)]〉, (A5)

are the contour-ordered Green’s functions of a Feshbach
dimer and two Fermi atoms, respectively. Since our aim is to
derive the two-step cascade process used in the experimental
analysis of normal-state p-wave Fermi gases [13], the conden-
sates and the anomalous Green’s functions are ignored here.

FIG. 4. Diagrammatic representation of the dimer self-energy
�d and the two-particle self-energy ��. The black dot denotes the
p-wave Feshbach coupling g2k. The box and double solid lines
represent the two-particle propagator � and the dimer propagator
Gd, respectively.

Using the Langreth rule [59], we further rewrite Eq. (A3) as

〈d†
P(t ′)a−k+P/2(t )ak+P/2(t )〉

= −2i
∫ ∞

−∞
dt ′′kg2[�ret.(P, k, t, t ′′)G<

d (P, t ′′, t ′)

+ �<(P, k, t, t ′′)Gadv.
d (P, t ′′, t ′)]. (A6)

Here we introduced the lesser Green’s functions

iG<
d (P, t ′′, t ′) = 〈d†

P(t ′)dP(t ′′)〉, (A7)

i�<(P, k, t, t ′′) = 〈a†
k+P/2(t ′′)a†

−k+P/2(t ′′)a−k+P/2(t )ak+P/2(t )〉,
(A8)

the retarded two-particle Green’s function

i�ret.(P, k, t, t ′′) = θ (t − t ′′)〈[a−k+P/2(t )ak+P/2(t )

× a†
k+P/2(t ′′)a†

−k+P/2(t ′′)]〉, (A9)

and the advanced dimer Green’s function

iGadv.
d (P, t ′′, t ′) = θ (t − t ′′)〈[dP(t ′′), d†

P(t ′)]〉. (A10)

We note Gadv.
d (P, t ′′, t ′) = [Gret.

d (P, t ′, t ′′)]∗.
To make further progress, we assume the nonequilibrium

steady state with the time-translational symmetry which al-
lows us to perform the Fourier transformation as

i〈[V2, N̂a]〉 = 4
∑

P

∫ ∞

−∞

dω

2π
Re

[
�ret.

d (P, ω)G<
d (P, ω)

+
∑

k

�<(P, k, ω)[�ret.
� (P, k, ω)]∗

]
, (A11)

where we introduced the dimer retarded self-energy

�ret.
d (P, ω) = g2

2

∑
k

k2�ret.(P, k, ω), (A12)

and two-particle retarded self-energy

�ret.
� (P, k, ω) = g2

2k2Gret.
d (P, ω). (A13)

As diagrammatically shown in Fig. 4, while �ret.
d (P, ω) de-

scribes the decay of a dimer into two atoms and its inverse
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process, �ret.
� (P, k, ω) does the formation of a dimer and

its inverse process. The lesser components can be rewrit-
ten approximately by the equilibrium values as iG<

d (P, ω) �
b(ω)Ad(P, ω) and i�<(P, k, ω) � b(ω)A�(P, k, ω) where
Ad(P, ω) and A�(P, k, ω) are dimer and two-particle spectral
functions, respectively. b(ω) is the Bose-Einstein distribution
function. Using them, we obtain

i〈[V2, N̂a]〉 = 4
∑

P

∫ ∞

−∞

dω

2π

[
b(ω)Ad(P, ω)Im�ret.

d (P, ω)

−
∑

k

b(ω)A�(P, k, ω)Im�ret.
� (P, k, ω)

]
. (A14)

Motivated by the experimental work [13], we can define the
lifetime of the dressed dimer


 = −2�Im�ret.
d (P � P̄d, ω � ω̄d ), (A15)

and the two-body inelastic collision rate

Kaa = −4�Im�ret.
� (P � P̄d, k � k̄a, ω � ω̄�), (A16)

where we ignored the momentum and frequency dependence
of the self-energies by replacing them with the averaged val-
ues P̄d = ∑

P |P| fd,P, ka = ∑
k |k| fd,k , ω̄d = ∑

P
P2

4m fd,P, and

ω̄� = ∑
P,k[ (P+k/2)2

2m fa,P+k/2 + (P−k/2)2

2m fa,P−k/2] (noting that

fd,P and fa,k are the momentum distributions of dimers and
atoms, respectively). Eventually, the rate equation of Na is
given by

dNa

dt
� 2
Nd − 2Kaa

N2
a

2�
− Kad

NaNd

�
, (A17)

where we used
∑

P

∫
dω
2π

b(ω)Ad(P, ω) = Nd
�

and
∑

P,k

∫
dω
2π

b(ω)A�(P, k, ω) ≡ i�<(P, k, ω) � ∑
P,k fa,P+k/2 fa,−P+k/2

= N2
a

�2 , assuming the homogeneous system with the system
length � and ignoring the atomic self-energy. Equation (A17)
is indeed consistent with the two-step cascade model
considered in Ref. [13] except for the second term of
Eq. (A17) because we consider the large-Na limit (i.e.,
Na → ∞) whereas it is proportional to Na(Na − 1) in
Ref. [13]. The loss-rate equation of the dimer number can
also be obtained similarly.

In this way, one can see the relation between our model and
the two-step cascade model. It is reported that the three-body
loss rate L3 is proportional to KaaKad/
 by assuming the
steady state of dimers. While Kaa is proportional to g2 and
hence r−1 at the leading order, this r−1 behavior is compen-
sated by the denominator 
 which is also proportional to r−1.
Thus, L3 does not increase with r at this approximation, and
our conclusion that a smaller magnitude of the effective range
is more advantageous for realizing the p-wave superfluid state
is unchanged.

[1] M. Sigrist and K. Ueda, Phenomenological theory of unconven-
tional superconductivity, Rev. Mod. Phys. 63, 239 (1991).

[2] D. J. Dean and M. Hjorth-Jensen, Pairing in nuclear systems:
From neutron stars to finite nuclei, Rev. Mod. Phys. 75, 607
(2003).

[3] C. Beenakker and L. Kouwenhoven, A road to reality with
topological superconductors, Nat. Phys. 12, 618 (2016).

[4] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Tuning p-
wave interactions in an ultracold fermi gas of atoms, Phys. Rev.
Lett. 90, 053201 (2003).

[5] J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich, J.
Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F.
Kokkelmans, and C. Salomon, p-wave feshbach resonances of
ultracold 6Li, Phys. Rev. A 70, 030702 (2004).

[6] J. Fuchs, C. Ticknor, P. Dyke, G. Veeravalli, E. Kuhnle, W.
Rowlands, P. Hannaford, and C. J. Vale, Binding energies
of 6Li p-wave feshbach molecules, Phys. Rev. A 77, 053616
(2008).

[7] Y. Inada, M. Horikoshi, S. Nakajima, M. Kuwata-Gonokami,
M. Ueda, and T. Mukaiyama, Collisional properties of p-wave
feshbach molecules, Phys. Rev. Lett. 101, 100401 (2008).

[8] J. Yoshida, T. Saito, M. Waseem, K. Hattori, and T. Mukaiyama,
Scaling law for three-body collisions of identical fermions with
p-wave interactions, Phys. Rev. Lett. 120, 133401 (2018).

[9] M. Waseem, J. Yoshida, T. Saito, and T. Mukaiyama, Unitarity-
limited behavior of three-body collisions in a p-wave interact-
ing fermi gas, Phys. Rev. A 98, 020702(R) (2018).

[10] M. Waseem, J. Yoshida, T. Saito, and T. Mukaiyama, Quantita-
tive analysis of p-wave three-body losses via a cascade process,
Phys. Rev. A 99, 052704 (2019).

[11] F. c. Top, Y. Margalit, and W. Ketterle, Spin-polarized fermions
with p-wave interactions, Phys. Rev. A 104, 043311 (2021).

[12] G. Bian, L. Huang, D. Li, Z. Meng, L. Chen, P. Wang, and
J. Zhang, Realization of space-dependent interactions by an
optically controlled magnetic p-wave feshbach resonance in
degenerate fermi gases, Phys. Rev. A 106, 023322 (2022).

[13] Y.-T. Chang, R. Senaratne, D. Cavazos-Cavazos, and R. G.
Hulet, Collisional loss of one-dimensional fermions near a p-
wave feshbach resonance, Phys. Rev. Lett. 125, 263402 (2020).

[14] A. S. Marcum, F. R. Fonta, A. M. Ismail, and K. M. O’Hara,
Suppression of three-body loss near a p-wave resonance due to
quasi-1d confinement, arXiv:2007.15783.

[15] K. Welz, M. Gerken, B. Zhu, E. Lippi, M. Rautenberg, L.
Chomaz, and M. Weidemüller, Anomalous loss behavior in a
single-component fermi gas close to a p-wave feshbach reso-
nance, Phys. Rev. A 107, 053310 (2023).

[16] V. Venu, P. Xu, M. Mamaev, F. Corapi, T. Bilitewski, J. P.
D’Incao, C. J. Fujiwara, A. M. Rey, and J. H. Thywissen, Uni-
tary p-wave interactions between fermions in an optical lattice,
Nature (London) 613, 262 (2023).

[17] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).

[18] V. Gurarie, L. Radzihovsky, and A. V. Andreev, Quantum phase
transitions across a p-wave feshbach resonance, Phys. Rev. Lett.
94, 230403 (2005).

[19] Y. Ohashi, Bcs-bec crossover in a gas of fermi atoms with a
p-wave feshbach resonance, Phys. Rev. Lett. 94, 050403 (2005).

[20] M. Iskin and C. A. R. Sá de Melo, Evolution from bcs to bec
superfluidity in p-wave fermi gases, Phys. Rev. Lett. 96, 040402
(2006).

023060-7

https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/RevModPhys.75.607
https://doi.org/10.1038/nphys3778
https://doi.org/10.1103/PhysRevLett.90.053201
https://doi.org/10.1103/PhysRevA.70.030702
https://doi.org/10.1103/PhysRevA.77.053616
https://doi.org/10.1103/PhysRevLett.101.100401
https://doi.org/10.1103/PhysRevLett.120.133401
https://doi.org/10.1103/PhysRevA.98.020702
https://doi.org/10.1103/PhysRevA.99.052704
https://doi.org/10.1103/PhysRevA.104.043311
https://doi.org/10.1103/PhysRevA.106.023322
https://doi.org/10.1103/PhysRevLett.125.263402
https://arxiv.org/abs/2007.15783
https://doi.org/10.1103/PhysRevA.107.053310
https://doi.org/10.1038/s41586-022-05405-6
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevLett.94.230403
https://doi.org/10.1103/PhysRevLett.94.050403
https://doi.org/10.1103/PhysRevLett.96.040402


HIROYUKI TAJIMA et al. PHYSICAL REVIEW RESEARCH 6, 023060 (2024)

[21] J. Levinsen, N. R. Cooper, and V. Gurarie, Strongly resonant
p-wave superfluids, Phys. Rev. Lett. 99, 210402 (2007).

[22] D. Inotani, R. Watanabe, M. Sigrist, and Y. Ohashi, Pseudogap
phenomenon in an ultracold fermi gas with a p-wave pairing
interaction, Phys. Rev. A 85, 053628 (2012).

[23] D. Inotani and Y. Ohashi, Pairing fluctuations and an anisotropic
pseudogap phenomenon in an ultracold superfluid fermi gas
with plural p-wave superfluid phases, Phys. Rev. A 92, 063638
(2015).

[24] J. Li, J. Liu, L. Luo, and B. Gao, Three-body recombination
near a narrow Feshbach resonance in 6Li, Phys. Rev. Lett. 120,
193402 (2018).

[25] D. V. Kurlov and G. V. Shlyapnikov, Two-body relaxation of
spin-polarized fermions in reduced dimensionalities near a p-
wave Feshbach resonance, Phys. Rev. A 95, 032710 (2017).

[26] L. Zhou and X. Cui, Stretching p-wave molecules by transverse
confinements, Phys. Rev. A 96, 030701(R) (2017).

[27] L. Pan, S. Chen, and X. Cui, Many-body stabilization of a
resonant p-wave fermi gas in one dimension, Phys. Rev. A 98,
011603 (2018).

[28] F. Fonta and K. M. O’Hara, Experimental conditions for obtain-
ing halo p-wave dimers in quasi-one-dimension, Phys. Rev. A
102, 043319(R) (2020).

[29] Y. Guo and H. Tajima, Stability against three-body clustering in
one-dimensional spinless p-wave fermions, Phys. Rev. A 106,
043310 (2022).

[30] V. Pastukhov, Ground-state properties of dilute spinless
fermions in fractional dimensions, Phys. Rev. A 102, 013307
(2020).

[31] H. Tajima, Y. Sekino, and S. Uchino, Optical spin transport
theory of spin- 1

2 topological Fermi superfluids, Phys. Rev. B
105, 064508 (2022).

[32] K. Yamamoto, M. Nakagawa, K. Adachi, K. Takasan, M. Ueda,
and N. Kawakami, Theory of non-Hermitian fermionic super-
fluidity with a complex-valued interaction, Phys. Rev. Lett. 123,
123601 (2019).

[33] A. J. Daley, Quantum trajectories and open many-body quan-
tum systems, Adv. Phys. 63, 77 (2014).

[34] Y. Ohashi, H. Tajima, and P. van Wyk, BCS–BEC crossover in
cold atomic and in nuclear systems, Prog. Part. Nucl. Phys. 111,
103739 (2020).

[35] M. Iskin, Non-hermitian BCS-BEC evolution with a complex
scattering length, Phys. Rev. A 103, 013724 (2021).

[36] H. Tajima, Y. Sekino, D. Inotani, A. Dohi, S. Nagataki, and T.
Hayata, Non-Hermitian topological Fermi superfluid near the
p-wave unitary limit, Phys. Rev. A 107, 033331 (2023).

[37] Y. Sekino, S. Tan, and Y. Nishida, Comparative study of one-
dimensional Bose and Fermi gases with contact interactions
from the viewpoint of universal relations for correlation func-
tions, Phys. Rev. A 97, 013621 (2018).

[38] M. Valiente, Bose-Fermi dualities for arbitrary one-dimensional
quantum systems in the universal low-energy regime,
Phys. Rev. A 102, 053304 (2020).

[39] M. Valiente, Universal duality transformations in interacting
one-dimensional quantum systems, Phys. Rev. A 103, L021302
(2021).

[40] Y. Sekino and Y. Nishida, Field-theoretical aspects of one-
dimensional bose and fermi gases with contact interactions,
Phys. Rev. A 103, 043307 (2021).

[41] Y. Guo and H. Tajima, Cooper pairing and tripling in
one-dimensional spinless fermions with attractive two- and
three-body forces, Phys. Rev. A 108, 043303 (2023).

[42] Z. Wang and S. Tan, Three-body scattering hypervolume of
identical fermions in one dimension, Phys. Rev. A 108, 033306
(2023).

[43] V. Gurarie and L. Radzihovsky, Resonantly paired fermionic
superfluids, Ann. Phys. 322, 2 (2007).

[44] M. Schmidt, H.-W. Hammer, and L. Platter, Three-body losses
of a polarized Fermi gas near a p-wave Feshbach resonance in
effective field theory, Phys. Rev. A 101, 062702 (2020).

[45] X. Cui and H. Dong, High-momentum distribution with a sub-
leading k−3 tail in odd-wave interacting one-dimensional fermi
gases, Phys. Rev. A 94, 063650 (2016).

[46] T. Cheon and T. Shigehara, Fermion-boson duality of one-
dimensional quantum particles with generalized contact inter-
actions, Phys. Rev. Lett. 82, 2536 (1999).

[47] H. Tajima, S. Tsutsui, T. M. Doi, and K. Iida, Unitary p-
wave fermi gas in one dimension, Phys. Rev. A 104, 023319
(2021).

[48] H. Wu and J. E. Thomas, Optical control of the scattering
length and effective range for magnetically tunable Fesh-
bach resonances in ultracold gases, Phys. Rev. A 86, 063625
(2012).

[49] N. Arunkumar, A. Jagannathan, and J. E. Thomas, Designer
spatial control of interactions in ultracold gases, Phys. Rev. Lett.
122, 040405 (2019).

[50] L. Pricoupenko, Resonant scattering of ultracold atoms in low
dimensions, Phys. Rev. Lett. 100, 170404 (2008).

[51] S.-G. Peng, S. Tan, and K. Jiang, Manipulation of p-wave scat-
tering of cold atoms in low dimensions using the magnetic field
vector, Phys. Rev. Lett. 112, 250401 (2014).

[52] S. Takemori, K. Yamamoto, and A. Koga, Theory of non-
Hermitian fermionic superfluidity on a honeycomb lattice:
Interplay between exceptional manifolds and Van Hove singu-
larity, Phys. Rev. B 109, L060501 (2024).

[53] N. D. Mermin and H. Wagner, Absence of ferromagnetism
or antiferromagnetism in one- or two-dimensional isotropic
heisenberg models, Phys. Rev. Lett. 17, 1307 (1966).

[54] P. C. Hohenberg, Existence of long-range order in one and two
dimensions, Phys. Rev. 158, 383 (1967).

[55] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[56] K. G. Wilson and J. Kogut, The renormalization group and the
ε expansion, Phys. Rep. 12, 75 (1974).

[57] E. Braaten, H.-W. Hammer, and G. P. Lepage, Open effective
field theories from deeply inelastic reactions, Phys. Rev. D 94,
056006 (2016).

[58] E. Braaten, H.-W. Hammer, and G. P. Lepage, Lindblad equa-
tion for the inelastic loss of ultracold atoms, Phys. Rev. A 95,
012708 (2017).

[59] J. Rammer, Quantum Field Theory of Non-Equilibrium States
(Cambridge University Press, Cambridge, 2007).

[60] T.-L. Ho, X. Cui, and W. Li, Alternative route to strong interac-
tion: Narrow Feshbach resonance, Phys. Rev. Lett. 108, 250401
(2012).

[61] H. Tajima, Precursor of superfluidity in a strongly interacting
Fermi gas with negative effective range, Phys. Rev. A 97,
043613 (2018).

023060-8

https://doi.org/10.1103/PhysRevLett.99.210402
https://doi.org/10.1103/PhysRevA.85.053628
https://doi.org/10.1103/PhysRevA.92.063638
https://doi.org/10.1103/PhysRevLett.120.193402
https://doi.org/10.1103/PhysRevA.95.032710
https://doi.org/10.1103/PhysRevA.96.030701
https://doi.org/10.1103/PhysRevA.98.011603
https://doi.org/10.1103/PhysRevA.102.043319
https://doi.org/10.1103/PhysRevA.106.043310
https://doi.org/10.1103/PhysRevA.102.013307
https://doi.org/10.1103/PhysRevB.105.064508
https://doi.org/10.1103/PhysRevLett.123.123601
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1016/j.ppnp.2019.103739
https://doi.org/10.1103/PhysRevA.103.013724
https://doi.org/10.1103/PhysRevA.107.033331
https://doi.org/10.1103/PhysRevA.97.013621
https://doi.org/10.1103/PhysRevA.102.053304
https://doi.org/10.1103/PhysRevA.103.L021302
https://doi.org/10.1103/PhysRevA.103.043307
https://doi.org/10.1103/PhysRevA.108.043303
https://doi.org/10.1103/PhysRevA.108.033306
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1103/PhysRevA.101.062702
https://doi.org/10.1103/PhysRevA.94.063650
https://doi.org/10.1103/PhysRevLett.82.2536
https://doi.org/10.1103/PhysRevA.104.023319
https://doi.org/10.1103/PhysRevA.86.063625
https://doi.org/10.1103/PhysRevLett.122.040405
https://doi.org/10.1103/PhysRevLett.100.170404
https://doi.org/10.1103/PhysRevLett.112.250401
https://doi.org/10.1103/PhysRevB.109.L060501
https://doi.org/10.1103/PhysRevLett.17.1307
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/PhysRevD.94.056006
https://doi.org/10.1103/PhysRevA.95.012708
https://doi.org/10.1103/PhysRevLett.108.250401
https://doi.org/10.1103/PhysRevA.97.043613


NON-HERMITIAN P-WAVE SUPERFLUID AND EFFECTS … PHYSICAL REVIEW RESEARCH 6, 023060 (2024)

[62] H. Tajima, Generalized crossover in interacting fermions within
the low-energy expansion, J. Phys. Soc. Jpn. 88, 093001 (2019).

[63] J. Hu, F. Wu, L. He, X.-J. Liu, and H. Hu, Theory of
strongly paired fermions with arbitrary short-range interactions,
Phys. Rev. A 101, 013615 (2020).

[64] H.-W. Hammer and D. Lee, Causality and universality in
low-energy quantum scattering, Phys. Lett. B 681, 500
(2009).

[65] H.-W. Hammer and D. Lee, Causality and the effective range
expansion, Ann. Phys. 325, 2212 (2010).

[66] L. Zhou and X. Cui, Effective scattering and efimov physics in
the presence of two-body dissipation, Phys. Rev. Res. 3, 043225
(2021).

[67] M. Sun, C. Liu, and Z.-Y. Shi, Non-Hermitian Efimov physics
in dissipative three-body systems, Phys. Rev. Res. 5, 043010
(2023).

023060-9

https://doi.org/10.7566/JPSJ.88.093001
https://doi.org/10.1103/PhysRevA.101.013615
https://doi.org/10.1016/j.physletb.2009.10.033
https://doi.org/10.1016/j.aop.2010.06.006
https://doi.org/10.1103/PhysRevResearch.3.043225
https://doi.org/10.1103/PhysRevResearch.5.043010

