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Anomalous Floquet topological superconductivity with chirality can be achieved by applying a dc-bias voltage
across the Josephson junction with a sandwiched magnetic topological insulator (TI), in which the intrinsic
Josephson phase provides a time-dependent periodic driving [R.-X. Zhang and S. Das Sarma, Phys. Rev. Lett.
127, 067001 (2021)]. In this work, we remove the bias voltage and connect the magnetic TI to an external AC
voltage source to modulate the chemical potential, thus bringing about an explicit-time Floquet periodic driving.
In the context of the driving, the system is similarly found to convert into a two-dimensional anomalous Floquet
topological superconductor with chirality. By tuning the AC voltage source’s frequency, we obtain a rich variety
of novel Floquet topological superconducting phases with chirality. Particularly, by manipulating such static
parameters as Zeeman field and superconducting pairing potential, a series of topological superconducting phase
transitions are also exhibited, accompanied by exotic Floquet topological superconducting phases with chirality.

DOI: 10.1103/PhysRevResearch.6.023059

I. INTRODUCTION

In recent years, several distinguished topological phases
have attracted great attention, such as Chern insulators [1–3],
topological insulators (TIs) [4–9], and topological super-
conductors (TSCs) [10–13]. More importantly, there is an
intrinsic connection between non-Abelian Majorana zero
modes and TSCs, which builds a bridge between condensed
matter physics and quantum computation [14–19].

An interesting observation is that quantum systems also
reveal topological properties when experiencing periodic driv-
ing beyond the adiabatic regime. The driving was initially
expected to trigger topological phase transitions [20–22],
but can also generate specific topological properties, which
are incomprehensible in the classical framework of topolog-
ical band theory [23,24]. In such periodic driving systems,
the induced topological phases are governed by the Floquet
theory [23,25–31] and have aroused interest significantly in
experiments. Several artificial systems have been suggested to
investigate analogous phases, such as one-dimensional (1D)
quantum walks with photons [32] and two-dimensional (2D)
waveguide lattices [33].

However, few studies have been reported on the corre-
sponding superconducting counterpart except for only one
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recent theoretical work, in which a 2D anomalous Flo-
quet chiral topological superconducting Josephson junction
was proposed [34]. The Floquet topological superconducting
physics with the chiral Majorana edge modes (MEMs) is
considered to stem entirely from the intrinsic dynamics due
to the dc-bias Josephson effect.

In contrast to this intrinsic driving, an explicit time-
dependent period driving was obtained through a microwave
voltage source (modulation of the chemical potential), which
was inflicted on a planar Josephson junction with a 2D elec-
tron gas separating two superconducting leads. Both Majorana
zero and π modes were found to co-occur accompanied by
subharmonic response, which affords the possibility to un-
equivocally identify Majorana modes [35].

On the other hand, the chemical potential μ, Zeeman field
gz, and proximity-induced superconducting energy gap �t (b)

can exert a great influence on the generation of topological
phases, as demonstrated in a variety of materials with low
and three dimensions. For a nonuniform 1D p-wave super-
conducting wire with a periodically modulated μ, the fate
of the Majorana fermions (MFs) was investigated under the
density modulation and disorder [36]. The modulated poten-
tial μ is of benefit to the formation of periodic density waves
and the topological superconducting phase could be destroyed
for the large modulation amplitude. gz applied to semicon-
ductor quantum wires with strong spin-orbit coupling and in
contact with s-wave superconductors (SCs) was also studied.
A topological phase, which supports end Majorana fermions
and offers an enticing platform for implementing topological
quantum information processing, can be achieved [37].

Then, a natural question is raised whether both the explicit
time-dependent periodic driving and adjustment of the static
parameters gz and �t (b) are significant for generating the
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FIG. 1. Schematic diagram of a Floquet TSC Josephson hybrid
structure, which consists of top and bottom s-wave SCs and a sand-
wiched thin layer of TI. A Zeeman field gz is applied along the z
direction and a microwave/infrared frequency AC voltage source
(e.g., GaN-based Gunn diodes) is connected to the interface of the
magnetic TI thin layer and SC, leading to the chemical potential μ as
a periodic modulation.

Floquet chiral topological superconducting phase or not. To
the best of our knowledge, the systematic study is of extreme
paucity, which is urgently demanded and also the main incen-
tive of this work.

In this work, we construct a Josephson hybrid structure
with a sandwiched magnetic TI, which is subject to a Zeeman
field gz and connected to an AC voltage source, as shown in
Fig. 1. Here, the explicit-time periodic driving brought by the
AC voltage source makes the whole system evolve into a 2D
anomalous Floquet chiral TSC.

Our structure differs markedly from that in Ref. [34]. The
standard Josephson junction operation induces an intrinsi-
cally implicit time-periodic phase due to the bias voltage
between the two superconducting layers in Ref. [34], seen
in the Hamiltonian’s off-diagonal elements. We remove the
bias voltage and use an AC voltage source coupled to the TI
instead. This explicit-time operation makes the Hamiltonian’s
diagonal elements, which refer to the chemical potential, os-
cillate periodically with time [see Eq. (5)]. Hence the explicit
and implicit time dependencies and their effects on differ-
ent materials lead to different Hamiltonians and topological
properties. Analogously, a lot of anomalous Floquet topolog-
ical superconducting phases appear in our structure as shown
below.

We find that, at a small T of the AC voltage source, the sys-
tem is within the high-frequency ω limit (T = 2π/ω) and its
topological properties resemble those of the traditional static
TSC, namely, the number of edge states matches the bulk
band Chern number. However, the system will cross the high-
frequency limit as T is gradually raised, generating a series of
novel anomalous Floquet superconducting topological phases
and the corresponding topological phase transitions. These
anomalous Floquet topological phases require both the Chern
number and the winding number to be characterized, which

have a different bulk-edge correspondence relation from the
conventional static topological superconducting phase. We
obtain the number of edge states by the local density of states
(LDOS) distribution and numerically calculate the winding
number and BdG Chern number to verify the new bulk-edge
correspondence relation. Meanwhile, we present a detailed
demonstration of two types of topological phase transitions,
one triggered by the variation of T and the other by the
alteration of the static parameters under a fixed T .

The rest of this paper is organized as follows. In Sec. II,
we introduce the model with its BdG Hamiltonian and Flo-
quet Hamiltonian. The theoretical and computational methods
utilized are also shown. The phase diagram of the anoma-
lous Floquet topological superconducting phase is shown in
Sec. III, where we employ the bulk bands to analyze the
phase transition origins and provide the edge states by using
the LDOS method. In Sec. IV, we give a brief discussion of
experimental feasibility, covering the fabrication of Josephson
junction structure, the probable effects of AC voltage source
heating, and the experimental examination of edge states.
Finally, the summary and outlook are given in Sec. V.

II. MODEL HAMILTONIAN AND FLOQUET THEORY

A. Model Hamiltonian

Without losing generality, we define the tight-binding
model Hamiltonian on a square lattice. The four-band Hamil-
tonian of TI thin film can be represented as [38–41]

Ĥ0 =
∑

k

ψ̂
†
kH0(k)ψ̂k,

H0(k) = t (k)τx

⊗
I2×2 + h̄v

(
sin kxτz

⊗
σy

− sin kyτz

⊗
σx

)
+ gzI2×2

⊗
σz, (1)

with the basis vector ψ̂k = [c1k↑, c1k↓, c2k↑, c1k↓]T , in which
1(2) represents the TI’s top(bottom) surface or the TI-SC
interface and ↑ (↓) denotes spin up(down). Here, t (k) = t0 −
t1(cos kx + cos ky) refers to the hybridization of the top and
bottom surfaces, v is the Fermi velocity, h̄ is the reduced
Planck constant, and gzI2×2

⊗
σz stands for the Zeeman split-

ting term caused by the magnetic field in the z direction. The
Pauli matrices σi indicate the spin and τi the opposite surfaces
of the TI.

The superconducting proximity effect of the opposite sur-
faces can be incorporated in the BdG Hamiltonian

ĤBdG =
∑

k

�̂
†
kHBdG(k)�̂k,

HBdG(k) =
(

H0(k) − μ �

�† −HT
0 (−k) + μ

)
, (2)

with the basis vector

�̂k = [c1k↑, c1k↓, c2k↑, c1k↓, c∗
1k↑, c∗

1k↓, c∗
2k↑, c∗

1k↓]T , (3)

where the s-wave superconducting pairing potential � has the
following specific form:

� =
(−i�tσy 0

0 −i�bσy

)
, (4)
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(0,−1)(−2,0) (−3,1) (−1, −1) (−2,0) (−1, −1)
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⋯⋯
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FIG. 2. Topological phase diagram under the periodic driving T , where the topological phase is represented by the integer topological
invariants Chern number and winding number, written as (C,W ) in the table. The first topological phase region in each subplot is the high-
frequency one that we define and its boundary is clearly shown by the black dashed line. Three sets of different parameter settings are chosen
as μ = 1, �b = 0.4, (a) gz = 0.6, �t = 2.4, (b) gz = 2.87, �t = 2.4, and (c) gz = 0.6, �t = 0.8.

with �t and �b the superconducting pairing potentials of the
opposite surfaces, respectively, and μ refers to the chemical
potential of the TI.

The time period we consider is driven by periodic
oscillations of the chemical potential, resulting from a
microwave/infrared frequency AC voltage source that is cou-
pled to the TI. It is written as μ(t ) = μ[1 + cos(ωt )] with
the frequency of the AC voltage source ω = 2π/T . Then, the
time-dependent BdG Hamiltonian of the system is given by

H (k, t ) =
(

H0(k) − μ(t ) �

�† −HT
0 (−k) + μ(t )

)
. (5)

The periodic driving converts the static TSC Josephson
junction into a Floquet TSC one, which enables us to utilize
the Floquet-Bloch theory and derive the matrix elements of
the Floquet Hamiltonian in the extended Hilbert space [42]

(HF )nm = hn−m
ω + ωnδnm, n, m ∈ Z. (6)

Here, hn−m
ω = 1/T

∫ T
0 H (k, t )ei(n−m)ωt dt , from which the

term of each order can be simply derived:

h(0)
ω = H (k, t )[cos(ωt ) → 0],

h(1)
ω = −μ

2

(
σz

⊗
I4×4

)
, (7)

with h(−1)
ω = (h(1)

ω )†. Thus the infinite-dimensional form of the
Floquet Hamiltonian can be written as

HF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
... . .

.

· · · h(0)
ω − ω h(1)

ω h(2)
ω · · ·

· · · h(−1)
ω h(0)

ω h(1)
ω · · ·

· · · h(−2)
ω h(−1)

ω h(0)
ω + ω · · ·

. .
. ...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

For the matrix elements with |n − m| > 1, Eq. (6) indicates
that (HF )nm = 0. We take a truncation of the infinite-
dimensional matrix to m, n = 5 in Eq. (8), which can ensure

sufficient numerical accuracy and convergence with a reason-
able computational complexity.

Next, by using the Magnus Expansion, the effective Hamil-
tonian Heff of the system can be derived as [43,44]

Heff = HME = H (0)
ME + 1

ω
H (1)

ME + 1

ω2
H (2)

ME + · · · , (9)

where

H (0)
ME = 1

T

∫ T

0
dt H (t ),

H (1)
ME =

∞∑
n=1

1

n
([Hn, H−n]

− einωt [Hn, H0] + e−inωt [H−n, H0]), (10)

with Hn the Fourier expansion of H (t ), specifically H (t ) =∑
n∈Z(Hneinωt ). The effective Hamiltonian approximately

reduces to Heff � H (0)
ME = 1

T
∫ T

0 dt H (t ) = h(0)
ω in the high-

frequency limit, which corresponds to the range where the
system has not entered the anomalous Floquet TSC phase, as
indicated in Fig. 2. Its topological properties resemble those of
the traditional static TSC. Hence the time-dependent periodic
driving problem becomes a static one. The periodic variation
terms in the time-dependent Hamiltonian become zero in the
high frequency. It is deduced that the zeroth-order term of the
Floquet Hamiltonian HF is essentially the same as the effec-
tive Hamiltonian in the high-frequency limit. This is due to the
fact that the frequency ω is much higher than the energy band
range of h(0)

ω and the gap between the Floquet bulk energy
bands is very large. Therefore, the topological properties of
the system can be illustrated only by the zeroth-order term h(0)

ω

basically, which elucidates the reason why the system man-
ifests similar topological properties to the traditional static
TSC in the high-frequency limit. Here, it is worth pointing
out that the analysis following Eq. (9) is limited to the high
frequency range and cannot be used to obtain the full phase
diagram as a function of the drive period T .
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B. Topological invariants

In order to identify the topological phase of the system,
we need to calculate two topological invariants—the Chern
number C and the winding number W . We use (C,W ) to
characterize the topological phase in the results and these
two topological invariants also have corresponding relations
with the edge states. To begin with, the BdG Chern num-
ber C is defined on all the quasienergy bands lying between
[0, ω/2] [45]

C =
∑

n

Cn, (11)

where

Cn = 1

2π

∫
BZ

dk2
n(k), (12)

with the integral over the complete Brillouin zone and 
n(k)
the Berry curvature, which can be further illustrated as a
summation over the Floquet Hamiltonian eigenstates


n(k) = i
∑
α′ 
=α

〈ψα| ∂HF
∂kx

|ψα′ 〉〈ψα′ | ∂HF
∂ky

|ψα〉 − (kx ↔ ky)

(εα − εα′ )2
.

(13)

The above is the definition of the Chern number and, in
the specific numerical computation, in order to simplify the
calculation process, we use the following formula [24]:

Cn = i

2π

∫
BZ

dkxdky

× Tr(Pn(kx, ky)[∂kx Pn(kx, ky), ∂ky Pn(kx, ky)]), (14)

with Pn(kx, ky) the projection matrix given by the eigenvector
of HF (kx, ky).

Here we obtain the BdG Chern number C of the 2D
anomalous Floquet chiral TSCs, which is completely different
from that of the conventional Floquet chiral TSCs related to
the Chern number. The latter is similar to the case in the
high-frequency limit, which is adiabatically equivalent to the
static chiral TSC.

Corresponding to the chiral MEMs in such a 2D anomalous
Floquet chiral TSC, another relevant topological invariant,
i.e., a homotopy-based winding number, is needed to delib-
erately describe them [23,24,27,46–48],

W = 1

8π2

∫ T

0
dt

∫∫
BZ

dk Tr{[Uε (k, t )−1∂tUε (k, t )]

× [[Uε (k, t )−1∂kxUε (k, t )], [Uε (k, t )−1∂kyUε (k, t )]]},
(15)

with Uε (k, t ) = U (k, t )[U (k, T )]
− t

T
ε , where the time-

evolution unitary U (k, t ) = T O exp[−i
∫ t

0 H (k, t )dt] with
T O denoting the time ordering and [49,50]

[U (k, T )]
− t

T
ε =

N∑
m=1

exp

[
− t

T logεk
(e−iεm,k )

]
Pk,m(T ), (16)

with Pk,m(T ) the projection matrix given by the eigenvector
of U (k, T ) for e−iεm,k . Here εk serves as the branch cut of
the logarithm by requiring i logεk

(x) ∈ [εk, εk + 2π ) for all

x ∈ U (1). As we always set the branch cut to εk = −π , we
have

i logεk
(e−iεm,k ) = εm,k. (17)

In numerical computation, the time-evolution unitary U (k, t )
can be decomposed into [27,51]

U (k, t ) = lim
�t→0

e−iH (k,t−�t )�t e−iH (k,t−2�t )�t · · ·

× e−iH (k,�t )�t e−iH (k,0)�t . (18)

C. Quasi-one-dimensional Hamiltonian
and boundary states from LDOS

In order to study the behavior of boundary states under
quasi-one-dimensional geometric conditions, we consider the
tight-binding representation of the Hamiltonian on a square
lattice:

H =
∑

i

ϕ
†
i

(
h0 �

�† −hT
0

)
ϕi

+
∑

i

ϕ
†
i

(
hx 0
0 −hT

x

)
ϕi+δx + H.c.

+
∑

i

ϕ
†
i

(
hy 0
0 −hT

y

)
ϕi+δy + H.c. (19)

Here, i is the site index and δx, δy represent unit vectors along
the x and y directions respectively. The elements in the ma-
trix are h0 = t0(σx

⊗
s0) + gz(σ0

⊗
sz ) − μ(σ0

⊗
s0), hx =

1
2 [−iv(σz

⊗
sy) − t1(σx

⊗
s0)], and hy = 1

2 [−iv(σz
⊗

sx ) −
t1(σx

⊗
s0)]. We apply this Hamiltonian to a quasi-one-

dimensional strip, considering the periodic boundary condi-
tion in the y direction, while taking the number of lattice
points in the x direction as 100. In this case, ky is a good
quantum number and the system energy spectrum can be
obtained by diagonalizing the Hamiltonian. Since we need to
study the behavior of boundary states, we calculate the LDOS
of the system, which is given by the following formula [52]:

ρi(ky) = 1

2π
Tr

[
Im

[
GR

i (ky) − GA
i (ky)

]]
,

GR
i (ky) =

∑
α

Pi(ky)

E − εα (ky) + iη
, (20)

with GR
i (ky) = [GA

i (ky)]†. In Eq. (20), εα (ky) is the eigen-
spectrum of the quasi-one-dimensional Floquet Hamiltonian,
α represents the band index, the summation extends over all
bands, and the projection operator Pi(ky) = |ψ i

α (ky)〉〈ψ i
α (ky)|.

The distribution of the LDOS is exhibited at the boundary
by a projecting operation, which can be interpreted as the
probability distribution of the wave function on the ith strip
in real space. Since the quasi-one-dimensional square lattice
has 100 lattice points along the x direction, for the edge states,
we take i = 100, and thus the corresponding probability is
determined by P100(ky).

III. RESULTS AND DISCUSSIONS

In this section, we investigate extensively how Floquet
topological superconducting phases evolve with the tuning
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of T and diverse static parameters and also examine the as-
sociation between the topological phase transitions and the
band gap closure in different cases. Then, we verify the new
bulk-edge correspondence relation by combining the topolog-
ical invariants and number of edge states. In the calculation,
the static parameters μ,�t (b), and gz are all measured in
units of t0, which represents the hybridization energy or
tunneling energy between the top and bottom surface states
of the TI.

A series of rich Floquet topological superconducting
phases are produced by tuning the driving period T (in units of
1/t0) with the static parameters μ = 1, �t = 2.4, �b = 0.4,
and gz = 0.6, which are characterized by both the Chern
number and winding number as topological invariants [see
Fig. 2(a)]. It is shown that the topological phase transitions
are induced by the driving period T , where seven different
topological phases are displayed, namely (0, 0), (−1, 1), (1,
−1), (1, 0), (−1, 0), (−2, 2), and (−2, 1). The system remains
in the high-frequency limit when the AC voltage source has a
small driving period T . In this case, there are no edge states
near E = ω/2, while the edge states at E = 0 match the Chern
number, similar to the traditional static TSCs. As T increases,
the system starts to depart from the high-frequency region at
0.8 and undergoes a series of topological phase transitions,
which are caused by the closing of the bulk bands at the
high-symmetry points of the Brillouin zone at E = ω/2 [see
Fig. 3(a)]. Specifically, the dashed line in Fig. 3 corresponds
to the energy E = ω/2 and the occurrence of the topolog-
ical phase transition is signified by the intersection of the
high-symmetry points and the dashed line. This conforms to
the essential theory of topology, namely, the gap closing is
related to the occurrence of the topological phase transition
and the alteration of the topological invariant [8]. The first
four topological phase transitions in Fig. 2(a) are represented
by the four dashed lines from the top to bottom in Fig. 3(a),
respectively. The system transitions from the high-frequency
region to the low-frequency one when the highest dashed
line intersects with the high-symmetry point M at T = 0.8.
This corresponds to the first topological phase transition in
Fig. 2(a). As T increases, ω/2 diminishes gradually and the
high-symmetry point X is intersected by the second dashed
line at T = 0.9. This represents the second topological phase
transition and so on. The similar correspondence is between
Figs. 3(b) and 2(b).

With the Zeeman field strength gz changed to 2.87, more
new topological phases arise. The topological phase diagram
is presented in Fig. 2(b) with the other parameters equal to
those in Fig. 2(a). In contrast to Fig. 2(a), there exist three new
Floquet topological superconducting phases, (0,1), (2,−1),
and (−1,2). All those topological phases, which have emerged
in Fig. 2(a), have completely different driving periods. In
addition, the same winding numbers are shared by the first
four topological phases in Fig. 2(b) and those in Fig. 2(a),
which is obvious from the sequence of the bulk band closing.
Comparing Figs. 3(a) and 3(b), it is evident that the sequence
of the first four closing points in both cases is M, X, �, M, and
no edge states are occurring at E = ω/2 in the high-frequency
limit, so the winding numbers start from zero, which leads to
the same winding number indices for the first four Floquet

(a)

(b)

FIG. 3. Spectrum of bulk energy band in which the band gap
closes at the �, X , and M points of the Brillouin zone sequentially.
The dashed lines of different colors from the top to bottom indicate
the energy E = ω/2 of the band gap closing points. Here, μ = 1,
�b = 0.4, �t = 2.4, gz = 0.6 for (a), and 2.87 for (b).

topological superconducting phases. From this, it can also be
inferred that the interval of the topological phase transitions
or the range of the existence of the topological phases is
related to the distance between the high-symmetry points.
For instance, as shown in Fig. 3(b), the distance between
the third and fourth high-symmetry points is obviously larger
than those between the first three adjacent high-symmetry
points. This directly results in the second and third topological
phases having a significantly narrower range than the fourth
topological phase (1,0).

Similarly, using another set of parameters, where only �t

is changed to 0.8, many new topological phases can also be
achieved, as illustrated in Fig. 2(c). Four completely novel
topological phases, namely (−2, 0), (−3, 1), (−1,−1), and
(0,−1), have not occurred in the prior two parameter choices.
Similar to Fig. 2(b), the winding number indices of the first
five topological phases in Fig. 2(c) are the same as those
in Fig. 2(a), and their formation reasons resemble those ex-
plained in Fig. 2(b).

Under the three different sets of static parameters, a total
of up to 14 different Floquet topological superconducting
phases have occurred in the driving period modulation of T .
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(−1,0)(1,0)(0,0) (−1,0) (−2,0) (−1,0) (0,0)

0 0.98 0.99 1.03 2.7

⋯⋯

2.98 3.351.06

= 2.7 = 2.98 = 3.35

(a)

(b)

FIG. 4. (a) Topological phase diagram under the modulation of
gz at T = 0.1 in the high-frequency region. Here μ = 1, �b = 0.4,
and �t = 2.4. (b) The variation of gz causes the bulk energy band
gap of the Floquet Hamiltonian to close at the �, X , and M points
in the high-frequency region. Apart from gz, the values of the other
parameters are identical to those in (a).

In addition, the succession of the topological phases under
the three sets of parameters are distinct from each other. The
similar situations are for the corresponding topological phases
under fixed T . It follows that the explicit time-dependent
periodic driving modulation under different static parameters
induces various Floquet topological superconducting phases
and topological phase transitions.

Moreover, the topological phase transitions are not only
due to the closing of the bulk bands at the high-symmetry
points of the Brillouin zone at E = ω/2 but also the band
gap closing at E = 0 can lead to the occurrence of topological
phase transitions. In Fig. 4(a), we find a series of topological
phase transitions occurring with the Zeeman field strength gz.
From Fig. 4(b), it can be seen that the bulk bands close at the
�, X , and M points of the Brillouin zone, respectively, when
gz = 2.7, 2.98, and 3.35, which also lead to the emergence of
topological phase transitions.

It is also worth noting that the topological properties of
the system are completely different from those of the static
TSC after the system exits the high-frequency limit region
and the Chern number cannot fully capture the topological
properties. Thus another topological invariant, namely the
winding number, has to be introduced. As the driving period
T increases, the system gradually produces phase transitions
from the high-frequency region to the low-frequency region.
They are accompanied by the emergence of a series of anoma-
lous Floquet topological superconducting phases, where the
number of edge states does not conform to the conventional
bulk-edge correspondence relation. The present bulk-edge
correspondence relation is given by

n(0) = C + W, n
(ω

2

)
= W, (21)

with the absolute value of n(0) or n(ω/2) being the number
of Majorana edge states at E = 0 or ω/2 and the sign of n
indicating the chirality of the edge states, where the negative
(positive) values indicate the left- (right-) shifted chirality.

Now, taking the topological phases (1,−1) and (−1, 2) as
examples, we explain the bulk-edge correspondence in detail.
As shown in Fig. 5(a), the topological phase (1,−1) has no
edge states at E = 0, but its Chern number is not zero, and
the number of edge states at E = 0 matches C + W = 0.

(a)

(b)

FIG. 5. Panels (a) and (b) are the edge state LDOS spectrum for
the anomalous Floquet topological superconducting phases (1,−1)
and (−1, 2), respectively. Here, T = 1.2, gz = 0.6 for the former and
T = 0.81, gz = 2.87 for the latter; the other parameters are μ = 1,
�b = 0.4, and �t = 2.4.

Meanwhile, there is one left-shifted Majorana edge state near
E = ω/2, which matches W = −1. Figure 5(b) shows the
topological phase (−1, 2), which has one right-shifted Ma-
jorana edge state near E = 0 and two right-shifted ones near
E = ω/2, perfectly satisfying Eq. (21).

IV. EXPERIMENTAL FEASIBILITY

In this section, we discuss the experimental feasibility of
our proposed scheme. In the sandwich-hybrid structure of a
thin layer of magnetic TI between two superconducting layers,
Pb, Nb [53], or NbSe2 [54] can be experimentally chosen as
the SCs and (Bi, Sb)2Se3 [7,55–57] and Nb [58,59] thin films
with Cr doping as the magnetic TI.

The magnitude of the hybridization energy t0 is around
meV, which can be tuned by varying the thickness of the TI
layer [60].

The periodic driving is provided by a microwave/infrared
frequency AC voltage source attached to the TI-SC interface.
TIs are insulating in the bulk, but possess metallic surface
states [8,52,61,62]; the contact of the AC voltage source on
the surface can generate a periodic modulation of the chemical
potential [35]. As long as the AC voltage source touches
the surface, it can adjust the chemical potential of the inter-
face state, indicating the contact does not act on the entire
interface.

Considering the realistic energy scale, if NbSe2 is used as
the superconducting layer (superconducting gap of 0.5 meV),
then the periodic driving frequency covers the range from
microwave to infrared. Therefore, the microwave and tera-
hertz frequency voltage sources are required in the low (below
300 GHz) and high (300 GHz ∼ 1.5 THz) frequency ranges,
respectively. We can employ Gunn diodes as these voltage
sources, for example, GaN-based Gunn diodes [63], which
operate adjustably in a frequency range of 100 GHz ∼
1.8 THz. And thus the demand of covering the microwave
to infrared frequency range can be satisfied. Also, it should
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be uncomplicated and straightforward to control other static
parameters.

However, the microwave/infrared frequency AC voltage
source can also cause thermal effects, which affect the Joseph-
son current, the superconducting pairing potential �(T ) =
�0 tanh(1.74

√
Tc/T − 1) [64], and the electron dephasing

rate in the TI layer [65]. These effects can be mitigated by
keeping the temperature as low as feasible or by modifying
Tc and �0 of the SC through doping, strain, electric field,
and so on. As for detecting the edge states of the Floquet
topological phase, we can use the scanning tunneling micro-
scope (STM) to obtain the LDOS curves of the bulk and the
boundary, which are similar to the dI/dV ones in Fig. 1 of
Ref. [8]. Specifically, we need to place the STM probe at
the edge of the TI. The dI/dV spectroscopy suggests the
sharp peaks of the LDOS near 0 and ω/2, which correspond
to the chiral edge modes with 0 and ω/2 gaps, respectively.
Consequently, we hope that this explicit time-periodic driv-
ing topological superconducting Josephson junction structure
based on microwave/infrared frequency AC voltage source
modulation, and its rich Floquet topological properties, can
be conformed in future experimental reports.

V. SUMMARY

To summarize, we have constructed a TSC Josephson junc-
tion, which is subjected to an explicit time-periodic driving
based on a microwave/infrared frequency AC voltage source
modulation, and revealed various novel anomalous Floquet
chiral topological superconducting phases. In particular, we
have observed that modifying the static parameters, such as
�t and gz, can trigger more exotic Floquet topological super-
conducting phase transitions. The features for the emergence
of the topological superconducting phase transitions are as
follows. (1) At fixed static parameters, the system steadily
departs from the high-frequency region as the driving period
T of the AC voltage source enlarges or the frequency ω di-
minishes, resulting in many topological phase transitions and
producing a series of novel anomalous Floquet topological
superconducting phases. The origin of their appearance is
the elimination of the energy gap at the high-symmetry point
E = ω/2 of the bulk bands. (2) At fixed T , topological phase

transitions can also occur when tuning the static parameters,
but these topological phase transitions are distinct from the
former since they are induced by the closure of the bulk
bands at E = 0. (3) For topological properties, T being in the
high-frequency region makes the topological phases resemble
the conventional static topological superconducting phases.
However, when T departs from the high-frequency region,
the topological phases turn into anomalous Floquet chiral
phases of topological superconductivity, which demand both
the winding number and the Chern number to illustrate them.
The bulk-edge correspondence under the anomalous Floquet
chiral topological superconducting phases is n(0) = C + W
with n(ω/2) = W .

Additionally, higher-order topological superconducting
phases (HOTSP) in various dimensions have aroused abun-
dant interest recently. Particularly, the Floquet HOTSPs have
been predicted theoretically. For instance, 2D anomalous Flo-
quet TSC might possess localized Majorana corner modes in
the 0 and π gaps. They are tightly associated with the singular-
ities in the phase spectrum of the system’s bulk time-evolution
operator [66–68]. Their numbers and locations depend on spe-
cific higher-order topological indices, which display different
behaviors in systems with different symmetries. Moreover, the
Majorana corner modes in 2D static systems are also influ-
enced by different types of superconducting pairing potentials
and geometric boundary shapes [69–71]. The edge theory
is developed to theoretically explain not only the formation
mechanism of Majorana corner modes but also 3D HOTSPs.
It is noteworthy that the theory is also utilized in 2D and
3D Floquet counterparts [72,73]. Unfortunately, we have not
attained localized Majorana corner modes in the present struc-
ture, which may originate from the fact that the edge state
gap always closes [70]. Our future work will involve finding
modulation methods to enable Floquet HOTSP in the current
structure by the aid of the phase spectrum and edge theory
methods.
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