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Recent work [M. J. Gullans et al., Phys. Rev. X 11, 031066 (2021)] has shown that quantum error correcting
codes defined by random Clifford encoding circuits can achieve a nonzero encoding rate in correcting errors
even if the random circuits on n qubits, embedded in one spatial dimension (1D), have a logarithmic depth
d = O(log n). However, this was demonstrated only for a simple erasure noise model. In this work, we discover
that, for the same class of codes, this desired property indeed holds for the conventional Pauli noise model.
Specifically, we numerically demonstrate that the hashing bound, i.e., a rate known to be achieved with
d = O(n)-depth random encoding circuits, can be attained for the above codes even when the circuit depth
is restricted to d = O(log n) in 1D for depolarizing noise of various strengths. This analysis is made possible
with our development of a tensor-network maximum-likelihood decoding algorithm that works efficiently for
log-depth encoding circuits in 1D.
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Protecting quantum information from noise and decoher-
ence is a requirement for scalable quantum computation,
which, in theory, can be done using quantum error-correcting
codes. Yet despite rapid developments in experimental realiza-
tions of quantum error-correcting codes [1–8], there are many
challenges that must be overcome before they can be used in
practical applications.

One major challenge is to deal with the daunting over-
head required for various error-correction schemes. For
instance, experimental realization of the surface code is being
pursued by several groups due to its high threshold and two-
dimensional (2D) layout [9,10]. However, its major drawback
appears to be a low encoding rate, defined as r := k/n, where
k and n are the numbers of encoded and physical qubits of
a quantum error-correcting code, respectively. For practical
computations, thousands of physical qubits may be required
for each encoded qubit [11].

As a result, a significant effort has been made to find error-
correction schemes with a higher encoding rate and lower
overhead. A variety of schemes have been proposed based
on quantum low-density parity-check (LDPC) codes [12–20]
and concatenated quantum codes [21]. However, the existing
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high-rate quantum LDPC codes are hard to implement in
many architectures since these codes require long-range two-
qubit gates. The high-rate concatenated code can suppress
errors even if we can only use nearest-neighbor noisy two-
qubit gates in a 2D layout [21,22], but it may still need a
higher circuit depth than is available under current technolo-
gies to attain sufficient error suppression.

Alternative approaches have been proposed, based on ran-
dom encoding. Random stabilizer codes are known to achieve
a nonzero rate with vanishing error probability in the limit of
large n for certain types of noise [23–25]. The rate achievable
by random stabilizer codes against independently and ide-
ally distributed (IID) Pauli noise N (ρ) = pIρ + pX XρX +
pY Y ρY + pZZρZ is known as the hashing bound r = 1 −
H ( �p), where X,Y, Z are Pauli matrices, �p = (pI , pX , pY , pZ )
represent Pauli error probabilities, and H is the Shannon en-
tropy [24]. While the hashing bound is not always optimal, it
is relatively high compared to known upper bounds on the op-
timal rate [26,27]. It was shown by Brown and Fawzi [28,29]
that asymptotically the same performance can be achieved by
random Clifford encoding circuits even when the circuit depth
is only O(log3 n).

From a practical perspective, the above random codes
have some shortcomings. In particular, an efficient decoding
procedure for them is not known and they require all-to-all
connectivity (which is not available in many physical archi-
tectures). A recent result of Gullans et al. [30] has shown
that random encoding by Clifford circuits with logarithmic
depth and 1D connectivity or sublogarithmic depth in higher
dimensions can achieve a nonzero rate against erasure noise.
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FIG. 1. Numerical results for encoding rate r vs threshold de-
polarizing probabilities pc of 1D log-depth circuits using a tensor
network decoder (red markers) compared with various analytical
bounds. The solid line is the hashing bound, and the dashed line is an
upper bound on the capacity, derived in Ref. [27].

A similar performance was observed against erasure noise
in an alternative construction of codes, based on constraint
satisfaction algorithms [31]. While restricting to the erasure
noise model greatly simplifies the decoding of such codes, it
involves the strong assumption that the locations of all physi-
cal errors are known, which is not the case in current quantum
computing architectures. Hence, to be practically relevant, it is
necessary to investigate the performance of such codes against
more realistic noise models.

In this paper, we consider 1D random Clifford encod-
ing circuits and demonstrate that, when the circuits have a
logarithmic depth d = O(log n), the generated codes can be
efficiently decoded and can achieve a rate close to the hash-
ing bound for depolarizing noise of various strengths. Our
numerical thresholds are plotted alongside various analyti-
cal bounds in Fig. 1. We obtain our results by developing
a tensor-network maximum-likelihood decoder for stochastic
Pauli noise that has poly(n) running time when d = O(log n).
The combination of a high threshold against stochastic noise,
nonzero rate, the practicality of low depth in 1D, and efficient
decoding shows that such codes are promising candidates for
quantum memories in future implementations of fault-tolerant
quantum computers.

We remark that the performance of these codes against
Pauli noise cannot be derived in a simple way from the results
about erasure noise in previous works [30]. While there is
a simple relationship between the distance w and the maxi-
mum error weight that can be corrected for erasure and Pauli
errors with optimal decoding (namely the code can correct
any Pauli error up to weight w/2 − 1 or any erasure error up
to weight w − 1), the distance alone does not determine the
performance of the code.

For instance, a quantum error-correcting code may sup-
press errors even when the typical errors have weight much
larger than the distance [a simple example of this would be
the surface code, where typical errors have weight O(w2)].
This is because a weight O(w) physical error will only cause
a logical error if the physical error locations are in a particular
configuration, which is unlikely in the case of IID noise [32].
Another reason why the distance alone does not determine

performance is that it is not even guaranteed that a quantum
error-correcting code can correct up to weight w Pauli errors
when heuristic/suboptimal decoding is employed (as is usu-
ally the case for Pauli noise).

While most of the analysis in Gullans et al. [30] is restricted
to the erasure noise model, the paper also contains an analysis
of the so-called “block model.” This approach can be used
to determine Pauli noise thresholds for random codes similar
to the ones we have considered in this work. We provide a
comparison of the block model to the random circuit encoding
of this work to clarify a regime where our random circuit
encoding has the advantage over the block model.

This paper is structured as follows. In Sec. I we define the
encoding circuits and codes that we focus on in this work. In
Sec. II we present the TN decoding algorithm that we use for
these codes. In Sec. III we present the results of numerical
simulations of these codes using the TN decoder. In Sec. IV
we describe the block model of Ref. [30], and we compare
it to the codes we study in this work. Finally, in Sec. V
we summarize our results and propose directions for future
research. Appendixes provide supplementary numerical re-
sults related to thresholds, locality properties of the code, and
additional comparison between our code construction and the
block model.

I. LOW-DEPTH RANDOM ENCODING CIRCUITS

Here we briefly outline the definition of codes based on
low-depth Clifford circuits. We start with a trivial quantum
code with one-qubit logical operators and checks. We partition
the n physical qubits into k logical qubits and n − k stabilizer
qubits such that the logical qubits are evenly spaced among
the physical qubits. For each stabilizer qubit, indexed by
i ∈ {1, . . . , n − k}, we randomly associate a nontrivial single-
qubit Pauli check operator gi ∈ {X,Y, Z}. The stabilizer of
the code is the group G generated by the checks. The check
operators trivially commute, and the code space is defined as
the +1 eigenspace of all such check operators (or all elements
of the stabilizer). This implies that the initial code space is
a product state on the stabilizer qubits. The logical qubits,
however, are not fixed by the checks, and for every logical
qubit, indexed by j ∈ {1, . . . , k}, we associate a pair of dis-
tinct anticommuting single-qubit Pauli operators lx

j , lz
j , which

we regard as the logical X and logical Z operators for that
qubit.

Given a Clifford circuit U , we can produce a new stabi-
lizer code by transforming the checks and logical operators
as gi �→ UgiU †, lx

j �→ Ulx
j U

†, and lz
j �→ Ulz

jU
†. We assume

U to be noiseless. The circuit U is an encoding circuit that
maps unencoded logical qubits to encoded ones. The specific
Clifford circuits we consider are low-depth circuits in 1D,
where two-qubit iSWAP gates are applied in parallel between
neighboring pairs of qubits in an alternating brickwork pattern
[see Fig. 1(a) of Ref. [33]]. After each round of two-qubit
gates, a uniformly random single-qubit Clifford gate is applied
to every physical qubit. The depth d of the circuit is taken to be
the number of two-qubit gate layers. These locality constraints
imply the weight of each check is at most 2d .

For the TN decoder, which we define below, it is use-
ful to consider open boundary conditions. To minimize the
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boundary effect, for a code with a given n and r, we add
an additional 4d − 1/r + 1 stabilizer qubits to make sure all
logical qubits are at least 2d physical qubits away from the
boundary before applying the encoding circuit. This changes
the rate of the code; however, given that we restrict to d =
O(log n), this does not affect the asymptotic rate as n → ∞.
In a slight abuse of notation, we use r to refer to the rate of
the code before the boundary qubits are added, and we define
nphys := n + 4d − 1/r + 1 to be the total number of physical
qubits (including boundary qubits) of the code.

II. TENSOR-NETWORK DECODING

To assess the performance of these codes, we consider the
following scenario. First, the logical information is encoded
into an error-correcting code using the encoding circuit U
as described above. Next, every physical qubit suffers noise,
which we assume is depolarizing noise. Finally, all of the
checks are measured, and decoding is performed. We assume
the measurements are noiseless. Decoding is a classical com-
putation that takes the check measurement outcomes, called
the syndrome, as input and outputs a correction to restore
the encoded data. For stochastic Pauli noise, this decoding
task (a classical computational problem) is hard in general
[34]; however, we show that efficient near-optimal decoding is
possible for 1D random Clifford codes of depth d = O(log n).
Note that, while this scenario is not fully realistic due to the
assumptions of noiseless encoding circuits and measurements,
these assumptions are conventionally used to quantify code
performance in a code capacity setting [35]. Here we briefly
outline how the decoding problem can be cast as a tensor
network (TN) contraction. Say an n-qubit Pauli error ep occurs
on a state in the code space and all of the checks are measured,
yielding the syndrome outcomes s = s1, s2, . . . , sn−k , where
si ∈ {−1, 1} is the outcome of the measuring check gi. Let
f be any product of Pauli operators that is consistent with
that syndrome, in that it anticommutes with the checks that
returned a −1 outcome and commutes with the other checks.
The physical error ep is one such error, but it is not known to
the experimenter. One can always efficiently find an operator
consistent with a syndrome by performing row-reduction on
the check matrix, the rows of which are binary vectors repre-
senting the check operators.

The operator f applied to the code will correct ep if ep ∈
fG. If not, then f ep = L for some nontrivial logical operator
L, and f Lg for any g ∈ G will correct the error. Maximum-
likelihood decoding finds the correction that is most likely to
correct the error. To do this, we determine the L for which
p( f LG) is maximized, i.e., the coset f LG that ep most likely
belongs to. For any L, we henceforth combine the f and L into
a single Pauli error fL.

The probability of an error belonging to the coset fLG
is simply the sum of the probabilities of every error in that
coset, i.e.,

p( fLG) =
∑
e∈G

p( fLe). (1)

For independent Pauli noise, each summand p( fLe) is a prod-
uct of Pauli error probabilities. It is inefficient to compute

Eq. (1) directly by evaluating the sum since the number of
terms in the summation is |G| = 2n−k . In fact, we do not
expect an efficient algorithm to exist for computing coset
probabilities of codes in general, due to the #P-hardness of
the problem [34].

Fortunately, for codes with local checks, there are exam-
ples where coset probabilities can be computed efficiently
using TN methods. Here we present two such methods for
evaluating coset probabilities that are efficient and nearly op-
timal when restricted to 1D codes with log-depth encoding
circuits. The key is to construct a tensor-network description
of Eq. (1) that can be efficiently contracted.

To obtain a tensor network description of Eq. (1), we use
the fact that every element of G is a product of generators,
i.e., is of the form e(σ ) = ∏n−k

i=1 gσi
i , where gi is the ith check,

and σ = σ1, σ2, . . . , σn−k , σi ∈ {0, 1} for each i represents a
particular check configuration.

For independent Pauli noise, we can write the probability
of an error fLe(σ ) as a product of single-qubit Pauli er-
ror probabilities p( fLe(σ )) = ∏n

j=1 A( j)
σ (L), where A( j)

σ (L) ∈
{p( j)

I , p( j)
X , p( j)

Y , p( j)
Z } for each σ and where p( j)

Q is the proba-
bility of Pauli error Q occurring on qubit j. Note that, if the
noise is identical for each qubit j, p( j)

P (P = I, X,Y, Z) does
not depend on j. To simplify notation, we will henceforth drop
the explicit dependence of A( j)

σ (L) on L.
While A( j)

σ for a particular site j depends on the check
configuration σ , it is clear that it only depends on the bits σi

for which gi acts nontrivially on qubit j. Thus, each term A( j)
σ

can be written as a tensor of rank r j , where r j corresponds
to the number of generators that act nontrivially on j. For a
general stabilizer code, we replace A( j)

σ with A( j)
σ ( j), where σ ( j)

is the list of all check bits σi for which gi acts nontrivially
on j.

To obtain the coset probability, we sum over all indices

p( fLG) =
∑

σ

n∏
j=1

A( j)
σ ( j). (2)

Note that the expression on the right-hand side has a similar
form to a TN contraction. Each A( j)

σ ( j) is a tensor of rank r j , and
the sum of the product structure is nearly identical to tensor
contraction. One small difference is that each index σi can
appear in more than two tensors (they essentially correspond
to hyperedges of the TN, compared to usual graph edges,
that only connect two nodes/tensors). We can convert this
into a typical TN in two ways. One of them is based on the
TN description of coset probabilities for the surface code in
Ref. [36], which we describe in Sec. II A.

The results presented in this paper, however, have been
computed using an alternative TN description of the coset
probabilities, which we explain in detail in Sec. II B. We
emphasize that these two tensor network descriptions both
evaluate to Eq. (1); however, due to their different structure,
they require different contraction methods and therefore will
take different amounts of time to evaluate (despite both being
polynomial time). We have used the version in Sec. II B in our
simulations since our implementation of it was substantially
faster.
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FIG. 2. (a) Coset probabilities represented as a TN following the
construction in Ref. [36]. Each black circle node corresponds to a
check, and each green square node corresponds to a qubit. An edge
is drawn between a check node and a qubit node if and only if the
check acts nontrivially on that qubit. The check nodes correspond to
δ tensors, and the green nodes correspond to Aσ ( j) tensors (defined
in the text). (b) δ tensor can be split and combined with the qubit
tensors, resulting in the blue square tensors. (c) This is done for every
δ tensor in (a), resulting in a 1D TN. For 1D codes with depth O(d )
encoding circuits, the maximum number of edges connecting a pair
of neighboring tensors is O(d ), resulting in a maximum matrix size
of 2O(d ) × 2O(d ).

A. TN Description of coset probabilities,
based on Ref. [36]

One way to turn the summation in Eq. (2) into a TN, as
done in Ref. [36], involves adding a δ tensor for each check,
with only two nonzero entries specified by δσ1,σ2,...,σn = 1 if
σ1 = σ2 = · · · = σn = 0 or 1. The TN is defined by connect-
ing indices of A tensors to the appropriate check tensors δ.

The TN then has the same form as the Tanner graph of the
code, as illustrated in Fig. 2. This is a bipartite graph with
two types of nodes, which we refer to as qubit nodes and
check nodes. Each qubit node corresponds to a physical qubit,
and each check node corresponds to a code check. An edge
is added between a qubit node and a check node if and only
if the check acts nontrivially on the corresponding qubit. This
graph is mapped to a TN by placing a δ tensor at every check
node and an A tensor at every qubit node.

This TN description has proven useful for the surface code
and other planar codes [37] since it can be contracted effi-
ciently using established TN methods. However, for families
of codes whose check weight grows with n, like the random
codes studied in this paper, one encounters the problem that
the size of the tensors grows exponentially with the weight of
the checks. Furthermore, the resulting TN is not planar and
so the methods of Ref. [37] cannot be applied directly.

Nevertheless, for 1D Clifford encoding circuits, the TN can
be converted into a 1D TN as shown in Fig. 2. The 1D TN
consists of a product of (sparse) matrices of size 2O(d ) × 2O(d ).
When d = O(log n), this TN can be contracted exactly in
polynomial time in n.

We have implemented this decoder and confirmed that it
produces the correct coset probabilities. We did not use this
TN description to obtain the results in this paper, since our
implementation of it was slower than the method described in

FIG. 3. (a) Tensors defined in terms of logic circuits. The en-
tries of these tensors are 1 for any assignment of bits to the tensor
indices that are valid with respect to the circuit, and 0 otherwise.
In particular, it is 1 only if σu = σd for each tensor. The logic gate
appearing in these circuits is the XOR gate. In computing p( fLe),
where e ∈ G, the indices σu and σd specify if a stabilizer generator is
contained in e or not, and (iX , iZ ) and ( jX , jZ ) are for keeping track of
changes of Pauli operators if the generator is applied. (b) The coset
probabilities for maximum-likelihood decoding for any stabilizer
code can be expressed as the contraction of a two-dimensional TN.
Each horizontal row corresponds to a physical qubit of the code, so
the number of rows is always nphys. The network is constructed from
generators of G (checks). In this illustration, nodes corresponding to
different generators are distinguished by their color. As illustrated,
the generators are sorted into columns and are arranged such that
no two generators overlap in a given column. Nontrivial Pauli oper-
ators in a generator are replaced with the corresponding tensors in
(a), and all tensors in a generator are connected by a vertical wire.
This implies that all σu and σd in the tensors corresponding to a given
check must coincide to contribute a nonzero term to the contraction.
The tensor p̃( j) is a vector of the four Pauli error probabilities on
site j which are permuted according to the action of fL on site j.
The 0-tensors on the left fix the left indices to 0, and the small black
tensors have entries all equal to 1. By horizontally contracting the
tensors in a given row with σ indices fixed, either pI , pX , pY or pZ

on the jth qubit is obtained depending on what Pauli operators act on
the qubit in fLe. Contracting the network corresponds to summation
over all σ indexes, and thereby all e ∈ G, which evaluates to p( fLG)
as in Eq. (1).

the following section. We note, however, that this description
could prove useful if optimized, e.g., by exploiting the sparse
structure of the matrices. For the remainder of this section, we
focus on the following alternative TN of coset probabilities.

B. Alternative TN description of coset probabilities

Here we describe an alternative way to efficiently represent
the coset probabilities p( fLG) for any stabilizer code as a
two-dimensional network of small tensors. We have used this
method to produce the results presented in this paper. The
network is illustrated in Fig. 3.
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Most of the tensors in the network are from the set
{T X , T Y , T Z}, which are defined in Fig. 3(a) in terms of
classical logical circuits. The tensors have an entry 1 for each
index assignment corresponding to a valid execution of the
circuit, and the remaining entries are zero. The tensors are pre-
cisely defined as follows: for P = X,Y, Z , T P

iX ,iZ , jX , jZ ,σu,σd
= 0

if σu �= σd ,

T P
iX ,iZ , jX , jZ ,0,0 =

{
1 if (iX , iZ ) = ( jX , jZ ),
0 otherwise, (3)

and

T X
iX ,iZ , jX , jZ ,1,1 =

{
1 if (iX , iZ ) = ( jX ⊕ 1, jZ ),
0 otherwise, (4)

T Y
iX ,iZ , jX , jZ ,1,1 =

{
1 if (iX , iZ ) = ( jX ⊕ 1, jZ ⊕ 1),
0 otherwise, (5)

T Z
iX ,iZ , jX , jZ ,1,1 =

{
1 if (iX , iZ ) = ( jX , jZ ⊕ 1),
0 otherwise. (6)

As we will see below, in the computation of the probability
p( fLe) (e ∈ G), the indexes σu and σd are used to characterize
what generators gi ∈ G are contained in e, and the indexes
iX , iZ , jX , jZ are used for recording the changes of the Pauli
operators when each such gi is applied. Following the graph-
ical representation of the tensor as shown in Fig. 3(a), in the
following, we may refer to (iX , iZ ), ( jX , jZ ), σu, and σd at the
left, right, top, and bottom indexes of the tensor, respectively.

A tensor p̃( j), which is dependent on fL (although not
explicitly in our notation), is associated with the Pauli error
probabilities pI , pX , pY , pZ occurring at the jth qubit. This
tensor has two left-pointing binary indexes (iX , iZ ) and has
entries from {pI , pX , pY , pZ}. In the case of fL = I , the en-
tries of the tensors p̃( j)

(iX ,iZ ) equal pI , pX , pY , pZ for (iX , iZ ) =
(0, 0), (1, 0), (1, 1), (0, 1), respectively. For nontrivial fL, one
simply flips input bits of p̃( j) according to the action of fL on
site j, so if f ( j)

L = X , one flips only the iX bit in the definition
above, and if f ( j)

L = Z , one flips iZ and for f ( j)
L = Y one flips

both bits.
We now explain how to determine the layout of the 2D

network. The number of rows in the network is always nphys,
but the number of columns depends on the details of the
checks, which we will explain later. Given a single check, we
construct part of the network corresponding to that check as
follows. When the check acts as a nonidentity Pauli operator
P on the jth qubit, we place T P tensor in the jth row. We
do this for each qubit that the check acts nontrivially on and
connect the σu/d indices of all the T P tensors by a vertical
wire. The σu of the top tensor and σd of the bottom tensor
are each connected to a single index δ tensor, which has two
entries both equal to 1 and is indicated by a small black circle
in Fig. 3(b). We call this connected set of tensors a check
subnetwork.

The set of all check subnetworks, where each subnetwork
corresponds to a given check, is then sorted into columns so
that no pair of subnetworks in a given column overlap on a
row. The right index of every T P tensor is connected to the left
index of the tensor on its right. The left index of the leftmost
tensor T P in each row is fixed to 0. The right index of the
rightmost tensor T P in the jth row is connected to the index
of p̃( j). See Fig. 3(b) for a specific example of the TN.

The number of columns depends on the choice of checks
and can be n − k when there is a qubit shared by all the
checks. However, in the case of 1D encoding circuits of depth
d , the number of columns can be O(d ) as the checks can only
act nontrivially on at most 2d neighboring qubits.

In the 2D TN, each horizontal row is associated with a sin-
gle physical qubit, and every horizontal wire actually contains
two single-bit wires, which we can represent as a single tensor
edge of dimension 4. In the jth row, the iX bit corresponds to
an X error on the jth qubit, and the other iZ corresponds to a
Z error on the jth qubit. By contracting with the probability
tensor, a probability factor of p( j)

I , p( j)
X , p( j)

Y , or p( j)
Z , which

does not depend on j if the noise is identical for all qubits,
will appear, depending on bit values of the wire. Note that
the probability tensor is permuted according to fL, as we have
explained.

In contracting the TN, it is important to notice that the set
of T P tensors in the network constitutes a large logic circuit
and that only valid computations of the classical logic circuit
will be summed over (invalid computations evaluate to zero).
In valid computations of the classical circuit, the bits σu/d

along all vertical wires in the tensors associated with single
check qubits must all be 0 or all be 1. If σ

(i)
u/d = 1 for a

given check i, then the bits on the horizontal wires match-
ing that check will be flipped; otherwise, they will not be
affected. Fixing the vertical check indices σ

(1)
u/d , σ

(2)
u/d , . . . , σ

(n)
u/d

and summing over the remaining indices, we can pull out a
product of Pauli probabilities from the p̃ tensors, which is
equal to p( fLe(σ )), with σ = σ

(1)
u/d , σ

(2)
u/d , . . . , σ

(n)
u/d . Finally, in

contracting the TN by summing over the check indices, we
sum over all possible configurations σ of the check bits and
obtain the coset probability p( fLG) = ∑

σ p( fLe(σ )).

C. Contracting the network

The TN described in Sec. II B can be contracted in various
ways. The task is, essentially, to contract an L × W sized
square-lattice TN, where L and W are the length and width,
respectively, of the network. To perform the contraction ex-
actly, we first contract the first row into a single tensor with
O(W ) indices. We then contract the remaining tensors one by
one with this tensor, starting with the first tensor in the second
row, then moving down the network along rows and then down
columns until all tensors are contracted. Assuming L � W ,
the maximum memory cost of this procedure is O(2W ), and
the time cost is O(W L2W ). For the low-depth random circuits
we consider, L = nphys and W = O(d ) = O(log nphys), and so
both the time cost and memory cost are polynomial in the
block size. Note that this is in contrast to the problem of
contracting an n × n square lattice TN, which is known to be
#P-complete [38].

One could try to improve this scaling further by, e.g., using
approximate contraction strategies. The approximate bound-
ary matrix product state (MPS) method, described in Ref. [39]
and used in other decoders [36,37,40,41], would reduce the
time and memory costs to polynomial in W if a truncated
bond dimension χ is kept constant in N . We have tested this
method, but it appears that the quality of the approximation
varies considerably among the codes sampled. A direction
of future research could be to find methods to contract the
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network more efficiently. However, for this work, we have
found that the exact contraction method is sufficiently fast for
our purposes.

D. Decoding logical qubits independently by marginalization

The coset probability p( fLG) can be computed for any
L using this method. One problem when encoding a large
number of qubits k is that the number of inequivalent logical
operators and cosets grows as 4k . Therefore, finding the most
likely coset by computing the probability of every coset takes
exponential time in the number of encoded qubits. We over-
come this issue by decoding each logical qubit independently.

To decode a single logical qubit j, we calculate
the probabilities of the cosets for fL ∈ { f , fU lx

j U
†,

fU lz
jU

†, fU lx
j lz

jU
†} and marginalize over the other logical

qubits, where l p
j are the unencoded logical Pauli operators

for the jth logical qubit, and U is the encoding circuit. This
marginalization is achieved simply by adding the logical
generators Ulx

i U †, Ulz
i U † for all i different from j to the list

of checks when we construct the TN. In the case of the 1D
encoding circuit with depth d , adding the logical operators
to the TN adds an additional O(rd ) columns to the network
and therefore does not change the scaling of the width of
the network with d . However, the cost of marginalization on
exact TN contraction does increase with r, which explains
why our simulations can only deal with d = 7 with r � 1/3,
while d = 8 for r � 1/5.

This approach returns the optimal correction for any given
logical qubit, but may not be globally optimal due to possi-
ble correlations between errors on logical qubits. However,
we do not expect this approximation to affect performance.
The reason for this is that when error correction is working,
the probability of the most likely coset should be substantially
higher than the sum of the probabilities of all other cosets.
If not, then even with an optimal correction, there would still
be a large probability of logical error. When one coset has a
substantially larger probability than all other cosets combined,
the optimal correction for any given logical qubit obtained by
marginalization will agree with the global optimum.

A TN must be contracted for each coset of each logical
qubit, so 4k contractions must be evaluated in total. Fortu-
nately, most of the contraction (i.e., the contraction of tensors
on qubits on which the logical does not act) can be reused, and
thus decoding every qubit requires only a small additional cost
compared to decoding a single logical qubit.

III. NUMERICAL RESULTS

We have performed simulations using the TN decoder de-
scribed above to study the properties of codes defined by
random Clifford encoding circuits in 1D. In each run of the
simulation, we randomly generate a code using a Clifford
circuit of depth d = O(log n) as described above and sample
a Pauli error ep according to the depolarizing noise model,
which gives rise to a syndrome s. The decoder calculates a
correction fL, using s as input.

We say that logical qubit j fails when fLep anticommutes
with at least one of the logical generators Ulx

j U
† or Ulz

jU
†,

which can be easily checked. At least 2 × 105 runs of the
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10−2

10−1

hashing

p

p
′ L

r = 1/5

standard d = 4

standard d = 5

standard d = 6

standard d = 7

standard d = 8

greedy d = 4

greedy d = 5
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greedy d = 7
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FIG. 4. Bulk logical error probability p′
L vs physical error prob-

ability p for r = 1/5 using a fixed system size of n = 50, excluding
O(d ) added boundary qubits using both standard and greedy ran-
dom encoding circuits. A clear crossing point can be observed,
which is very close to the threshold error probability implied by the
hashing bound p = 0.139 indicated by the dashed gray line. Com-
puted thresholds and threshold plots for other rates are included in
Appendix B.

simulation are performed for each data point. Taking the aver-
age over the stochastic Pauli noise as well as over the random
Clifford encodings, we can estimate the probability of any
given logical qubit failing.

First, although there is a clear boundary effect, we observe
that the logical failure probability for qubits sufficiently far
from the boundary is uniform across logical qubits and inde-
pendent of system size if d is kept constant. We let p′

L denote
the failure probability of a logical qubit in the bulk region.
We also find that, unlike the fully random stabilizer codes,
the spatial correlations of logical errors are short-ranged, as
observed in Ref. [30] for erasure noise. We present numerical
evidence for these properties in Appendix A.

We have plotted p′
L as a function of the physical error

probability for a variety of depths d and r = 1/5 in Fig. 4. The
crossing point for curves of different d indicates a threshold
in the code, below which p′

L decays exponentially in d . Ev-
idence of this exponential decay, plots at other rates, as well
as a list of computed thresholds are included in Appendix B.
The numerically obtained thresholds are plotted alongside the
hashing bound in Fig. 1.

The performance of the code can be improved by slightly
modifying the random Clifford circuits. As one instance, we
propose a random “greedy” code by choosing single-qubit
gates in the random circuit to maximize the weight of checks
and logical generators in each layer, rather than uniformly
at random. See Appendix C for the details. The results of
the greedy construction are also provided in Fig. 4 alongside
the standard construction. Despite differences in logical error
rates, the threshold crossing points are very similar, and the
greedy construction appears to behave like the standard con-
struction except with a greater effective depth.

For both constructions, these plots show that the thresholds
are very close to the hashing bound for r � 1/3. Hence these
codes achieve the same threshold as a fully random code for
these rates, despite being much more local and restricted. At
higher rates, e.g., r = 1/2, a threshold is harder to discern
from the data; however, we conjecture that using larger values
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FIG. 5. Probability of at least one logical qubit failing vs nphys

when d = α−1 log k, for various α. The error rate decays to zero with
nphys, and by varying α we can increase the number of encoded qubits
at the cost of a slower rate of decay.

of d than is currently accessible with our numerical method
would produce a threshold estimate close to the hashing
bound, as with the lower rates.

Note that the observed exponential rate of decay in d of p′
L

below the threshold for r � 1/3 implies a polynomial decay
in p′

L in n when d = O(log n) = O(log k). If we define α, δ,
and D such that log k = αd , and p′

L = D exp (−δd ), then the
probability of an error occurring on at least one logical qubit,
which we refer to as pL, satisfies pL = Dk1−δ/α + O(p′2

L ).
Therefore, pL can be made to decrease polynomially fast by
setting α < δ. Note that log, without a subscript, always refers
to the natural logarithm, and although not explicitly indicated
in our notation, in expressions where two integer values are
related (e.g., k and d in log k = αd), we always assume that
the dependent variable is rounded to the nearest integer. In
Appendix B, we have listed the exponents δ for various values
of r and p, from which one can determine the values of α that
result in asymptotically zero logical error probability. Note
that 1 − pL is equal to the entanglement fidelity of the k-qubit
logical channel (which is proportional to the average channel
fidelity [42]).

In Fig. 5, we plot pL as a function of nphys with fixed
rate r = 0.1 and p = 0.05 and various α. As can be seen, by
varying α, we observe a tradeoff between the rate of decay
of the total logical error rate and the total number of encoded
qubits k = rn. For practical error correction, it would likely
be useful to tune the value of α as well as the rate r, according
to the target number and error probability of logical qubits.

We remark that only a polynomial decay in logical error
probability is possible for constant rate r when d = O(log n).
While an exponential decay in logical error probability is
desirable, polynomial decay is sufficient for the use of im-
plementing quantum algorithms.

IV. BLOCK MODEL

In the previous section, we saw that 1D random codes
defined in Sec. I achieve a threshold close to the hashing
bound. To shed some light on this, we now consider a more
restricted and simpler “block model” with logarithmic block
sizes, which was described previously in Ref. [30]. Compared

to the random circuits we have described above, the threshold
of the block model is easy to determine analytically.

In the block model, the 1D chain of n physical qubits is
partitioned into noninteracting blocks of size m = β log2 n.
Note that the block model in this paper always refers to the
one with logarithmic block sizes. We then use encoding cir-
cuits which have the restriction that no two-qubit gates couple
qubits from different blocks. This model therefore describes
a tensor-product of independent codes, each with O(log n)
physical qubits.

Each block can be made into a random stabilizer code with
a 1D d = O(m) = O(log n) random Clifford encoding circuit.
For a random Clifford encoding, under an IID Pauli noise
model, in the limit of n → ∞, the logical error probability
of each individual block will tend to 0 exponentially fast in
the block size m below the hashing bound. Hence the thresh-
old of the whole code composed of O(n/ log n) independent
blocks will also equal the hashing bound provided that β is
sufficiently large. See below for an asymptotic evaluation of
such β.

Polynomial time maximum-likelihood decoding is also
possible in this block model by calculating the coset prob-
abilities in Eq. (1) by brute force summation, which takes
exponential time in the block size or polynomial time in n
when the block size is O(log n).

While the block model has many of the appealing prop-
erties of the 1D circuits we have studied above, the lack
of couplings between blocks appears to compromise its
error-correcting performance. We have performed numerical
simulations of the block model using the TN decoder de-
scribed in Sec. II (which we expect to be near optimal).

In Fig. 6, we present results comparing the logical error
rates for a given encoding depth of the block model to the
standard and low-depth random circuit encoding studied in
previous sections. In Fig. 6(a), we choose r = 1/3 and p =
0.025, which is somewhat below the hashing bound, while
in Fig. 6(b), we choose r = 1/2 and p = 0.07, which is only
slightly below the hashing bound.

In the former case, we see that the logical error rate for a
given encoding circuit depth d is substantially higher for the
block model than for the low-depth random circuit encoding
(for both the standard and greedy code constructions). In
Appendix D, we present data that show the block model also
has worse performance in the case when the logical error
rate is plotted against the average check weight rather than
encoding circuit depth d . Thus, while the threshold is easy
to determine with the block model, we have demonstrated
that in certain regimes the low-depth random circuit encoding
offers superior performance without being more complex to
implement in practice.

Although we do not present the numerical results here,
essentially the same trend is also observed when the logical
error rate is taken to be the probability of at least one qubit
failing on a region of size proportional to d (rather than the
average failure rates of each qubit).

The data in Fig. 6(b) close to the threshold do not show a
clear advantage or disadvantage of the block model compared
to the circuit encodings. However, they highlight that small-
size effects are likely the reason why a clear threshold is not
observable in our r = 1/2 data (see Fig. 9 in Appendix B)
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(a)

(b)

FIG. 6. Comparison of logical error rates of 1D random codes
to the block model described in Sec. IV, in which the n qubits are
separated into independent blocks of size O(log n) for an error rate
(a) somewhat below the hashing bound, and (b) slightly above the
hashing bound. The quantity p′

L on the y-axis is the average logical
qubit error rate, which for the greedy and standard code constructions
is taken over logical qubits sufficiently far from the boundary to avoid
boundary effects. The quantity d on the x-axis is the encoding depth
of the circuit for the standard and greedy constructions and is the
block size for the block model (which is a lower bound on the circuit
depth required to implement a uniformly random Clifford unitary on
a block with using nearest-neighbor gates in 1D). For the greedy and
standard code constructions, we have used n = 54 and 50 in (a) and
(b), respectively.

for the standard and greedy constructions. Neither the block
model nor the other circuit encodings exhibit an exponential
decay in logical error probability p′

L in this region, despite the
fact that asymptotically the block model should have expo-
nential decay for any p below the hashing bound.

The fact that the block model provably achieves the
hashing bound suggests that the low-depth random circuit
encoding may also achieve the hashing bound. However, we
do not currently have rigorous analytical proof of this, and we
leave this as an open question for future investigation.

To evaluate β discussed above, finite-size effects in the
block model would also be an important factor that we
should carefully consider. While finite-size effects exist in

the low-depth random circuit encoding as well, those in the
block model can be more severe due to the logarithmic block
size and may result in worse performance than naively ex-
pected from the asymptotic achievable bound, i.e., the hashing
bound.

Let qL be the probability of an error occurring on at
least one logical qubit in the block model against the IID
Pauli noise. When m = β log2 n, we can show that qL �

1
β log2 n n1− β

4 R to the leading order of n, where R = 1 − H ( �p) −
r. This reveals the asymptotic behavior of qL. If R > 0, i.e., if
(r, �p) is below the hashing bound, and β � 4/R, qL decreases
polynomially in n for sufficiently large n. Note that β diverges
when R goes to zero, possibly indicating that a large block size
is needed to asymptotically achieve the hashing bound.

We can similarly derive finite-size corrections to qL. To the
second-order of n, we obtain

qL � 1

β log2 n
n

1− β

4 R+ γ ( �p)
4

√
β

log2 n , (7)

with a coefficient γ ( �p) > 0. The last term in the exponent is
the second-order correction and quantifies the finite-size effect
in the achievable bound. As the term scales as (log2 n)−1, the
finite-size effects can remain significant in the block model
even for fairly large n.

From Eq. (7), we can estimate the block sizes required for
the finite-size effect to be negligible, which turn out to be
significant especially in the vicinity of the hashing bound. To
demonstrate this, we consider the IID Pauli noise with �p =
(1 − p, p/3, p/3, p/3). For (r, p) = (1/3, 0.025), the finite-
size effect in Eq. (7) is negligible when the block size is
moderately large around a few tens to a hundred, while much
larger block sizes, such as m = 104–105, are required for
(r, p) = (1/2, 0.07) that is slightly below the hashing bound.
As m = β log2 n, the system size n should be accordingly
huge.

Although these are about the finite-size corrections to the
achievable bound, i.e., the hashing bound, they may indicate
that the performance of the block model in the intermediate-
scale systems would be far worse than naively expected from
the asymptotic case. We provide a more in-depth analysis of
finite-size corrections in Appendix D.

V. DISCUSSION AND CONCLUSIONS

In this work, we have studied quantum error correcting
codes defined by 1D low-depth Clifford encoding circuits.
We have shown that for the family of these codes with log-
arithmic depth d = O(log n), maximum-likelihood decoding
of stochastic Pauli noise can be performed in poly(n) time
using TN methods. We have also numerically shown that,
for depolarizing noise over a large range of noise strengths,
the codes can achieve a rate close to the hashing bound if
d = O(log n). Thus, 1D Clifford encoding circuits with depth
O(log n) can generate quantum error correcting codes that
have the same rate as random stabilizer codes and can be
efficiently decoded. The high-performance, nonzero rate as
well as locality in 1D suggest that such codes could serve
as practical quantum memories in future implementations of
quantum computers.
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These results suggest a number of potential directions for
future research. First, it would be interesting to see whether
codes defined by low-depth Clifford encoding circuits in two
or higher dimensions have advantages over the 1D codes
considered here. This was shown to be the case for the erasure
noise model when the code is modified with a process called
expurgation [30].

Another direction towards practical implementation is to
consider the realistic case where syndrome extraction is
itself prone to error. In this case, fault-tolerant methods
for state preparation and logical gates must be developed.
One potential route is via Knill’s fault-tolerant error cor-
rection gadgets that work for any stabilizer code even with
a nonconstant-weight stabilizer like ours [43,44]. Finally, it
would be interesting to see whether analytical proofs of the
rates of these codes can be made by, for instance, strengthen-
ing bounds in Ref. [29].
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APPENDIX A: LOCALITY OF LOGICAL ERRORS

In this Appendix, we discuss the locality properties of the
codes defined by 1D low-depth encoding circuits with the TN
decoder. In particular, we show how the logical error rate of a
bulk qubit tends to a system-size-independent value, and how
correlations between logical qubit failures are short-ranged.

In Fig. 7, we show the spatial distribution of logical errors
for various system sizes. Although there is a clear boundary
effect, we observe that the logical failure probability for qubits
sufficiently far from the boundary is uniform across logical
qubits and independent of system size if d is kept constant.
We let p′

L denote the failure probability of a logical qubit in
the bulk region.

We also observe that correlations between failures for
log-depth circuits under Pauli noise are short-ranged, as was
observed in Ref. [30] for erasure noise. Let P2|1 be the prob-
ability that qubit 2 fails given that qubit 1 fails, and P2 the
probability that qubit 2 fails. In Fig. 8, we have plotted the
difference of these quantities, i.e., to what extent the failures
are correlated, as a function of the separation x between qubit
1 and 2, normalized by R and d and averaged over all qubit-2
locations. It can be seen that, with this normalization, the
various curves collapse, and correlations have a finite range
on the order of rd . This indicates that, unlike fully random
codes, these codes retain some aspects of the spatial locality
under local Pauli noise.
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FIG. 7. Error probability of a logical qubit vs a logical qubit
index divided by k (corresponding to its relative position on the
chain) for r = 0.5 with d = 6 and p = 0.02. The boundary effect can
clearly be seen. The error rate stabilizes to a system-size independent
value at a certain distance from the boundary.

APPENDIX B: SUPPLEMENTARY NUMERICAL RESULTS

In this Appendix, we provide additional results and details
on the numerical methods. The thresholds in this paper are
estimated using the critical exponent method similar to that
described for the surface code in Ref. [45], which assumes
that, near the threshold, the logical failure rate depends only
on the rescaled variable x = (p − pc)d−1/ν , where pc is the
threshold, and ν is some critical exponent. Note for the codes
with low-depth encoding circuits that we have replaced the
lattice dimension (used for the surface code) with the circuit
depth d . By fitting the bulk logical error probability p′

L to a
quadratic polynomial in x,

p′
L = A + Bx + Cx2, (B1)

we obtain pc, ν, A, B, and C as fit estimates. The obtained
threshold values for different r along with the hashing bound
are displayed in Table I.

We also include additional threshold plots for various rates
in Fig. 9. As can be seen, a clear crossing point is discernible
up to r = 1/3.

Finally, in order to illustrate the exponential decay of
p′

L as a function of d , we have plotted p′
L versus d on a

semilog plot in Fig. 10. A straight-line relationship is observed
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FIG. 8. Two-body correlations between qubit failures vs distance
normalized by rd . The curves appear to collapse onto a single line.
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FIG. 9. Bulk logical error probability p′
L vs physical error probability p for various encoding circuit depths d for r = 1/10, 1/3, and 1/2 in

(a), (b), and (c), respectively. The crossing point of the different curves on each plot corresponds to the threshold. For r � 1/3 the threshold is
close to that given by the hashing bound, while a clear crossing point is not discernible for r = 1/2 for the values of d simulated. The system
sizes used for (a), (b), and (c) are n = 50, 54, and 50, respectively.

below the threshold, indicating exponential decay. To be more
precise, the exponential decay of p′

L in d is captured by
p′

L = D exp (−δd ) for some constants D and δ. In Table II,
we list the exponents δ computed by fitting p′

L and d to this
function for various r and p below the threshold.

APPENDIX C: IMPROVEMENTS TO FULLY RANDOM
CLIFFORD ENCODING

Here we describe the “greedy” method to improve the
codes produced by random Clifford circuits. This slightly
modifies the encoding circuit to avoid low-weight checks
and logicals. The specific details of the Clifford circuit (e.g.,
the choice of the iSWAP as the two-qubit gate) are not ex-
pected to make much difference for a high depth, such as
d = O(n), where the generated code is expected to be close to
a fully random stabilizer code, as exactly shown for a class of
Clifford gate set [46]. However, for a low depth, the choice of
gate set can make a large difference, as we will observe in the
performance improvement in the “greedy” method.

The first simple modification is to ensure that the initial
checks are either single-qubit X or Y before applying the first
layer of iSWAP gates. This ensures that the weight of all
checks is increased to 2 by the iSWAP gates (the weight of
a single qubit Z would not be changed). After this step, the
distance between the first and last sites on which the check

TABLE I. The column pc (TN) contains the maximum de-
polarizing error probabilities for error suppression (threshold) we
obtain from simulations with codes defined by log-depth 1D random
Clifford circuits using the tensor network decoder and fitting our
numerical data to Eq. (B1). The parenthesized value indicates the
error in the last digit, which is the standard error obtained for the fit
estimate. The column pc (hashing) contains the probabilities given
by the hashing bound for this noise model.

r pc (TN) pc (hashing)

1/10 0.164(2) 0.16305
1/5 0.144(3) 0.13854
1/4 0.125(4) 0.12690
1/3 0.102(3) 0.10835
1/2 0.061(3) 0.07439

acts nontrivially is guaranteed to be increased maximally by 2
for every layer of iSWAP.

Note that, when a two-qubit gate is applied to a Pauli
operator acting on two qubits, the weight of the operator may
increase, decrease, or stay the same. Therefore, rather than
choosing single-qubit Clifford gates uniformly at random,
as in the standard construction, we choose the single-qubit
Clifford gate that maximizes the increase in total check weight
(sum of the weights of all the checks) when passed through
the next iSWAP gate. When multiple gates produce the same
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FIG. 10. Bulk logical error probability p′
L vs depth d for r =

1/10 and 1/3 in (a) and (b), respectively, for various error probabil-
ities using the greedy code generator. The dashed lines are obtained
by linear regression. A straight-line relationship indicates exponen-
tial decay in d .
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TABLE II. Exponents δ obtained by fitting the numerically
computed logical failure probabilities to p′

L = D exp (−δd ). The
parenthesized value indicates an error in the last digit, which is the
standard error obtained for the fit estimate.

r p δ

0.05 −0.72(2)
0.075 −0.45(1)

1/10 0.1 −0.274(4)
0.125 −0.125(2)
0.15 −0.036(2)
0.05 −0.55(3)
0.075 −0.33(1)

1/5 0.1 −0.17(1)
0.125 −0.059(6)
0.05 −0.44(2)

1/4 0.075 −0.23(1)
0.1 −0.09(1)
0.025 −0.48(3)

1/3 0.05 −0.26(3)
0.075 −0.11(2)

increase in weight, one among these is chosen uniformly at
random.

It is harder to avoid low-weight logical operators since any
product of logical generators and stabilizers is also a logical
operator, and therefore it is harder to check that the overall
weight of logical operators increases or decreases with the ap-
plication of a two-qubit gate. However, as a simple heuristic,
we also add the logical generators to the list of checks whose
weight is maximized by greedily choosing single-qubit gates.
This appears to slightly improve performance.

APPENDIX D: BLOCK MODEL SUPPLEMENTARY
INFORMATION

Here we provide some additional details comparing the
standard and greedy random circuit constructions to the block
model, described in Sec. IV. Figure 6 shows that for values
of p somewhat below the hashing bound, the logical error
rate of the block model is significantly higher than that of
both the standard and greedy circuit encodings for a given
encoding depth. It may be tempting to attribute this entirely
to the fact that the block model produces codes with lower
weight checks on average for a given depth (since checks
are prevented from spreading between blocks). However, we
see in Fig. 11(a) somewhat below the hashing bound that if
we plot the logical error rate against the check weight, the
block model still appears to perform worse than the unblocked
model. In contrast, we do not observe such a clear advantage
of the circuit encodings compared to the block encodings for
error rates close to the threshold, as shown in Fig. 11(b).

One potential explanation for the lower performance of the
block model is second-order effects in the hashing bound,
which we describe in the rest of this Appendix.

In the following analysis of the block model, we leave
the block size as m and only assume that m is an increasing
function of n. We use the relation m = β log2 n when it is
necessary.

(a)

(b)

FIG. 11. Logical error rate vs average check weight for block
model and circuit encodings. For standard and greedy circuit encod-
ings, the weights averages are taken only for checks sufficiently far
from the boundary to avoid finite-size effects.

We first introduce key quantities of the analysis. For two
positive-semidefinite operators ρ and σ such that supp ρ ⊆
supp σ , the δ-smooth quantum max-relative entropy, where
0 � δ � 1, is defined by

Dδ
max(ρ‖σ ) := min

ρ̃∈Bδ (ρ)
inf{λ ∈ R : ρ � 2λσ }, (D1)

where Bδ (ρ) = {ρ̃ : ‖√ρ
√

ρ̃‖2
1 � 1 − δ2}, and ‖ · ‖1 = Tr| · |

is the trace norm. The parameter δ is called a smoothing
parameter. For a state ρAB on a composite system AB, the
smooth conditional min-entropy is defined as

H δ
min(A|B)ρ := − min

σ B
Dδ

max(ρAB‖IA ⊗ σ B), (D2)

where the minimization is taken over all states in the sub-
system B. The smooth conditional min-entropy satisfies the
fully quantum asymptotic equipartition property (FQAEP)
[47], i.e.,

lim
δ→0

lim
n→∞

1

n
H δ

min(An|Bn)ρ⊗n = H (A|B)ρ, (D3)

where An and Bn denote n copies of A and B, respec-
tively, and H (A|B)ρ = H (AB)ρ − H (B)ρ is the conditional
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entropy based on the von Neumann entropy H (A)τ =
−Tr[τA log2 τA].

We also use the quantum information variance V (ρ‖σ ) for
the states ρ and σ that satisfy supp ρ ⊆ supp σ :

V (ρ‖σ ) := Tr
[
ρ(log2 ρ − log2 σ )2

]
. (D4)

The following relation is useful for analyzing the second-
order asymptotics [48]:

Dδ
max(ρ⊗n‖σ⊗n) = nD(ρ‖σ ) −

√
nV (ρ‖σ )�−1(δ2)

+ O(log n), (D5)

where D(ρ‖σ ) = Tr[ρ(log2 ρ − log2 σ )] is the quantum rel-
ative entropy, and �−1(ε) = max{z ∈ R : �(z) � ε} with
�(x) = ∫ x

−∞ ex2/2dx is the cumulative distribution function
with respect to the normal distribution.

Let us now investigate the logical errors in the block model.
Following the convention, we define the logical error �block

in each block by using the maximally entangled state |�〉
between the rm logical qubits and a reference system, where
r = k/n is the encoding rate. More specifically, when the
encoding circuit is U and the decoding operation is D, the
logical error against a noisy channel N is defined by

�block (U,N ,D)

= 1

2

∥∥|�〉〈�| − (id ⊗ (D ◦ N ◦ U )
)
(|�′〉〈�′|)‖1, (D6)

where id is the identity map on the reference, U (·) = U · U †

is a unitary channel, and |�′〉 = |�〉 ⊗ |0〉⊗(1−r)m. Taking the
minimum over all possible decoding operations D and taking
the average over the encoding circuit U , we define the average
logical error �block (N ) in each block. As the total number of
blocks is n/m, the total logical error �(N ) satisfies

�(N ) � n

m
�block (N ). (D7)

We consider below only the IID Pauli noise and omit N to
write �block (N ) and �(N ) as �block and �, respectively.

For stabilizer codes, these quantities are related to the
average logical error probabilities since, when decoding fails
for stabilizer codes, the resulting state becomes orthogonal to
|�〉. Hence, we have � = qL, where qL is the probability of an
error on at least one logical qubit in the block model. Using
the average logical error probability q′

L per logical qubit, it
also holds that

�block = 1 − (1 − q′
L )rm = rmq′

L + O((rmq′
L )2), (D8)

� = 1 − (1 − q′
L )k = kq′

L + O((kq′
L )2). (D9)

This also implies that � = n
m �block to the leading order for

stabilizer codes.
In the block model with block size m, the encoding circuit

forms a unitary 2-design on each block when the depth of
the random Clifford circuit is O(m). Using this fact and the
standard decoupling approach [49,50], we obtain an upper

bound on the average decoding error �block as

�block �
(
2− m

2 R(δ) + 12δ
)1/2

(D10)

for any δ � 0, where

R(δ) = 1

m
H δ

min(Am|Em)ν⊗m − r, (D11)

and νAE is the normalized Choi-Jamiołkowski state of the
complementary channel of the Pauli noise on a single qubit.
Here, we labeled by A a single physical qubit, and by E
an environment of the Pauli noise acting on A. Note that
recent studies [51] suggest that Eq. (D10) can be improved
to �block � 2−mR(δ) + 12δ. However, we here use Eq. (D10)
for simplicity.

Using the FQAEP [Eq. (D3)], it follows that

lim
δ→0

lim
m→∞ R(δ) = H (A|E )ν − r (D12)

= 1 − H ( �p) − r =: R, (D13)

where H ( �p) is the Shannon entropy of the Pauli error proba-
bilities �p = (pI , pX , pY , pZ ). Hence, for sufficiently large n,
we have �block � 2− m

4 R to the first order of m. Since � =
n
m �block, it further follows that � � n

m 2− m
4 R. In particular,

when m = β log2 n, the average logical error satisfies

� � n1− β

4 R

β log2 n
, (D14)

to the first order of n. As � = qL for stabilizer codes, which is
the case when the encoding circuit is Clifford, this is exactly
the claim in the main text.

To obtain the average logical error � up to the second
order, we use Eq. (D5). To this end, we rephrase the smooth
conditional min-entropy in terms of the smooth max-relative
entropy, such as

1

m
H δ

min(Am|Em)ν⊗m = − 1

m
min
σ Em

Dδ
max((νAE )⊗m‖IAm ⊗ σ Em

)

(D15)

� − 1

m
Dδ

max((νAE )⊗m‖(IA ⊗ νE )⊗m).

(D16)

Using Eq. (D5) and direct calculations such as

D(νAE‖IA ⊗ νE ) = −1 + H ( �p), (D17)

V (νAE‖IA ⊗ νE ) = 1 + 2H ( �p) +
∑

j

p j
(
log2 p j

)2
(D18)

=: V ( �p), (D19)

we have

1

m
H δ

min(Am|Em)ν⊗m � 1 − H ( �p) + �−1(δ2)
√

V ( �p)√
m

+ O

(
log m

m

)
. (D20)

Substituting this into Eq. (D11), we obtain

R(δ) � R − γ√
m

, (D21)
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FIG. 12. The right-hand side of Eq. (D24) for the IID Pauli noise
with pX = pY = pZ = p/3 and pI = 1 − p, and for the encoding
rates r = 1/3 (upper figure) and r = 1/2 (lower figure). The smooth-
ing parameter δ is set to 0.1, 0.05, 0.025, and 0.0125. If the block
size m is sufficiently larger than each line, the finite-size effect is
negligible. It is clear that the required block sizes grow radically
towards the hashing bound.

to the order of 1/
√

m, where γ = −�−1(δ2)
√

V ( �p). Us-
ing the relation � = n

m �block, we arrive at the second-order
asymptotics of the logical error:

� � n

m

(
2− m

2

(
R− γ√

m

)
+ 12δ

)1/2

(D22)

for any δ � 0. Note that, since �−1(x) < 0 if x < 1/2, γ > 0
when δ < 1/

√
2.

When the block size m is given by m = β log2 n, the aver-
age logical error is bounded from above by

� � n
1− β

4 R+ γ

4

√
β

log2 n

β log2 n
, (D23)

where we ignored δ for simplicity. Recalling � = qL, this
provides the second claim in the main text. As γ > 0 for small
δ, the achievable bound to the second order is clearly worse
than that to the first order [Eq. (D14)].

From Eq. (D21), the finite-size effect is negligible when
R � γ /

√
m, or equivalently, when the block size m satisfies

m �
(

�−1(δ2)
√

V ( �p)

1 − H ( �p) − r

)2

. (D24)

In Fig. 12, we plot the right-hand side of Eq. (D24) for the
Pauli noise with pX = pY = pZ = p/3 and pI = 1 − p for the
encoding rates r = 1/3 and 1/2. It is observed that, when p
is small, the block size m of a few tens may suffice for the
finite-size effect to be negligible, while m should be drastically
large when p approaches the hashing bound. This provides
estimations of the block size for the block model with loga-
rithmic block sizes to work.
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