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Boson peak in the vibrational spectra of glasses
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A hallmark of glasses is an excess of low-frequency, nonphononic vibrations. It is manifested as a terahertz
peak—the boson peak—in the ratio of the vibrational density of state (VDoS) and Debye’s VDoS of phonons.
Here, using experimental data, extensive computer simulations, and a mean-field model, we show that the
nonphononic part of the VDoS itself features both a universal power-law tail and a peak at higher frequencies,
entirely accounted for by quasilocalized nonphononic vibrations, whose existence and spectra power-law tail
were recently established in computer glasses. We rationalize the variation of the peak’s frequency and magnitude
with glasses’ thermal history, which is much weaker than the variation of the tail and may follow an opposite
trend, and show that the peak’s modes are composed of many spatially coupled quasilocalized nonphononic
vibrations. Our results shed light on the origin, nature, and properties of the boson peak in glasses.
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I. INTRODUCTION

The glassy state of matter, generically formed by quickly
cooling a liquid to avoid crystallization, still poses funda-
mental scientific challenges [1–5]. The fast cooling leads
to a self-organized disordered solid—a glass—that lacks the
long-range order of crystalline solids [6]. The disordered
and nonequilibrium nature of glasses endows them with
unique physical properties, different from their crystalline
counterparts. Of particular importance are the low-frequency
vibrational spectra, which control various mechanical, trans-
port, and thermodynamic properties of solids [7–13].

The low-frequency vibrational spectra of solids—either
crystalline or glassy—contain phonons, which are extended
vibrations emerging from global symmetries, independently
of the underlying material structure [14]. Low-frequency
phonons are well described by Debye’s vibrational density of
state (VDoS), DD(ω) = AD ω2 (in three dimensions), where
ω is the vibrational (angular) frequency and AD is a prefactor
that depends on the elastic properties of the solid.

The low-frequency vibrational spectra of glasses, how-
ever, are known to universally feature also other, non-
phononic, modes. This is commonly—yet not exclusively
(see [15,16])—established by dividing the VDoS (measured
by various scattering techniques [17,18]), D(ω), by Debye’s
phononic VDoS, DD(ω) ∼ ω2. The reduced VDoS D(ω)/ω2

universally deviates from a constant at low frequencies and
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features a peak in the terahertz regime, known as the boson
peak—a hallmark of glasses [19–31]. Yet, despite extensive
efforts, the origin, nature, and properties of the nonphononic
boson peak vibrations remain highly debated [32–39].

Significant recent progress [40–45] elucidated the nature
and properties of the low-frequency tail, ω → 0, of the non-
phononic part of the VDoS DG(ω). By disentangling extended
phononic and quasilocalized nonphononic vibrations in com-
puter glasses, the latter were shown to follow a universal
non-Debye VDoS DG(ω) = Ag ω4 in the ω → 0 limit, below
the boson peak [40,45]. Here, Ag is a nonuniversal prefac-
tor that depends on the glass nonequilibrium history and its
emerging disordered state [45,46]. These quasilocalized non-
phononic vibrations feature a localized core of linear size of
about ten atoms, where displacement amplitudes are large and
highly disordered in orientation (i.e., nonaffine), and power-
law decaying displacements away from the core [45] [see
Fig. 1(a)].

Very recent numerical evidence in two-dimensional com-
puter glasses indicates that quasilocalized nonphononic vibra-
tions also populate the boson peak regime [38], at frequencies
significantly larger than those of the ω → 0 tail. These prelim-
inary observations mark the need to understand the properties
of the nonphononic VDoS DG(ω) in a unified manner based
on quasilocalized nonphononic vibrations, over a larger range
of vibrational frequencies ω, extending to the boson peak
regime.

Here, using experimental data, extensive atomistic com-
puter simulations, and solutions of a mean-field model of
interacting glassy vibrations, we show that the nonphononic
part of the VDoS DG(ω) features both a universal ∼ω4 tail
and an intrinsic peak, entirely accounted for by quasilocalized
nonphononic vibrations. The peak’s frequency and magnitude
mildly increase with decreasing state of glassy disorder (e.g.,
controlled by thermal annealing and quantified as explained
in detail in Appendix B 2), while the ∼ω4 tail is strongly sup-
pressed, in qualitative agreement with the predictions of the
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FIG. 1. (a) A quasilocalized vibration extracted from the universal ∼ω4 tail of the nonphononic VDoS of a two-dimensional computer
glass [45]. The arrows represent the atomic displacements within the vibrational mode, which features a localized core of linear size of about
ten atoms, where displacement amplitudes are large and highly disordered in orientation. Away from the core, displacements decay as a power
law and feature a quadrupolar azimuthal dependence. A two-dimensional example is used for visual clarity. (b) The nonphononic VDoS
DG(ν ) ≡ D(ν ) − AD ν2 of B2O3 glass samples, reported in [25] for different thermal annealing conditions and water content. Shown are the
data for the as quenched and most annealed samples [see legend on panel (c)]. In [25], D(ν )/ν2 [note D(ν ) is denoted as g(ν ) therein] and
AD are separately reported, but not DG(ν ) itself. DG(ν ) reveals a peak, which increases in magnitude and shifts to higher frequencies with
increased thermal annealing (corresponding to less disordered glassy states). Data for intermediate annealed samples are added in the inset
[see legend in panel (c)]. (c) The same as the inset of panel (b), but on a double-logarithmic scale. The small ν tail approximately reveals
the universal ∼ν4 behavior (see power-law triangle), in the most pronounced manner for the two intermediate annealed samples. Moreover,
the amplitude of the tail is strongly suppressed upon annealing, in sharp contrast to the mild increase νp and DG(νp) observed in panel (b).
(d) DG(ω) = D(ω) − 3ω2/ω3

D using a canonical computer glass made of 4 × 106 atoms (see Appendix A 2), where ωD is Debye’s frequency
and AD = 3/ω3

D. The two curves correspond to different thermal histories—one to an instantaneous quench through the glass transition, Ṫ = ∞,
and the other to a smaller quench rate, Ṫ = 10−3 [see legend in panel (e)]. All quantities are reported in simulational units (Appendix A 2).
(e) The same as panel (d), but on a double-logarithmic scale. The dashed lines of slope 4 (see power-law triangle) are guides to the eye that
indicate the universal ∼ω4 tail. At the lower end of the VDoS, relics of discrete phonon bands are observed, which are a finite-size effect [47].
Comparing the simulational results in panels (d) and (e) to the experimental results in panels (b) and (c) reveals clear similarities, despite the
inherent size limitation in the former.

mean-field model of interacting quasilocalized vibrations. The
model thus provides a unified picture of the low-frequency
properties of the nonphononic VDoS DG(ω), both the uni-
versal ∼ω4 tail and the peak regimes. Finally, the number of
spatially coupled quasilocalized nonphononic vibrations that
compose the peak’s modes is predicted as a function of ω,
and found to be in qualitative agreement with very recent
observations. Overall, our results shed important light on the
origin, nature, and salient properties of the boson peak in
glassy solids.

II. FORM OF THE NONPHONONIC PART OF THE VDOS

The common practice for characterizing the boson peak
is through the reduced VDoS D(ω)/ω2, where DD(ω) ∼ ω2

stands for Debye’s VDoS of phonons. However, in view
of the major recent progress in understanding the universal
∼ω4 tail of the nonphononic VDoS DG(ω), populated by
quasilocalized vibrations [see Fig. 1(a)], we follow [15,16]
and shift the focus to DG(ω), aiming to understand its generic
properties also above the ∼ω4 tail. DG(ω) is proposed to be
extracted according to DG(ω) = D(ω) − AD ω2, suggesting
that as far as the number of vibrational modes per frequency
ω is concerned, quasilocalized nonphononic vibrations and
phonons make additive contributions to D(ω) (while it is
well established that phononic and nonphononic modes do
hybridize/mix in space [38,47]).

The importance of considering DG(ω) (termed e-VDoS
in [15]) instead of D(ω)/ω2 has been highlighted in [15],
along with the associated experimental difficulties. In particu-
lar, the challenge is to obtain experimental measurements in
glassy samples where disorder is systematically controlled,
and where the prefactor AD in Debye’s VDoS of phonons
DD(ω) = AD ω2 is extracted. Moreover, if the ∼ω4 tail of
DG(ω) is to be revealed, then D(ω) should be measured down
to sufficiently small ω. Meeting these challenges is rare. Con-
sequently, our next goal was to perform an extensive literature
search for such experimental data, aiming to reanalyze them
in view of the above ideas.

The experiments of [24,25] report on the VDoS of boron-
oxide (B2O3) glass samples for different thermal histories
and water content, as well as on Debye’s prefactor AD, and
hence are particularly important here. The vibrational spectra
therein are reported in terms of the (Raman) wave-number
shift ν (in units of cm−1), rather than in terms of ω, i.e.,
D(ν) [in [25] the notation g(ν), not used here, is employed].
Note that ω and ν are linearly related, and in particular that
ω = 1 THz corresponds to ν = 33.3 cm−1. Different thermal
histories are realized by subjecting as quenched B2O3 glass
samples to various annealing treatments, i.e., annealing at
different temperatures in the vicinity of the glass temperature
Tg for different times. The annealed samples give rise to less
disordered, denser glassy states compared to the as quenched
sample. Moreover, water content (“wet samples”) gives rise
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to even denser and more rigid glassy states, effectively corre-
sponding to deeper annealing.

Importantly, in addition to measuring D(ν) for each
glass sample, Debye’s prefactor AD was also extracted (Ap-
pendix A 1). In Fig. 1(b), we present DG(ν) ≡ D(ν) − AD ν2

for the as quenched and most annealed samples [see legend
in Fig. 1(c) and Appendix A 1]. First, we observe that DG(ν)
features a rather symmetric peak in agreement with [15]. Sec-
ond, the peak’s frequency νp and magnitude DG(νp) mildly
increase with annealing (by 20% and 11% relative to the as
quenched sample, respectively; see Appendix A 1). The inset
also presents data for two intermediate annealed samples [see
legend in Fig. 1(c)].

In Fig. 1(c), we present the experimental data shown in
the inset of Fig. 1(b) on a double-logarithmic scale. Inter-
estingly, the small ν tail approximately reveals the universal
∼ν4 behavior, in the most pronounced manner for the two
intermediate curves. We present direct experimental evidence
for the universal ∼ω4 tail of the nonphononic VDoS of glasses
[48], previously established in computer glasses. Moreover,
the tail is strongly suppressed upon annealing. In particular,
DG(ν) of the most annealed sample is an order of magnitude
smaller than that of the as quenched sample at the lowest
ν available, in sharp contrast to the mild increase in νp and
DG(νp).

We next set out to test whether these experimental obser-
vations are reproduced in atomistic computer glasses. This is
a challenge since computer glasses are significantly smaller
than laboratory glasses and consequently reveal some finite-
size effects, especially in the low-frequency end of vibrational
spectra. To try to address this challenge, we considered a
canonical computer glass-forming model in three dimensions
(see Appendix A 2 for details), composed of 4 × 106 particles.
We chose three-dimensional computer glasses due to their rel-
evance to glasses used in laboratory experiments [in contrast
to the example presented in Fig. 1(a), and later on in Fig. 4(a),
where two-dimensional computer glasses are used for visual
clarity].

The size of the computer glasses is chosen to be large
enough to restrict the emergence of discrete phonon bands
in the VDoS D(ω)—which are a finite-size effect [47] [the
relics of which are seen in Fig. 1(e)] entirely absent from
experimental spectra—yet small enough to be computation-
ally feasible and to induce some variability in their degree
of structural disorder (Appendixes A 2 and B 1). The latter is
achieved by considering an instantaneous quench, leading to
more disordered glassy states, and a finite quench, leading to
more ordered glassy states (see figure legend). In Figs. 1(d)
and 1(e), we present D(ω) − 3ω2/ω3

D (where AD = 3/ω3
D,

with ωD being Debye’s frequency) in double-linear [Fig. 1(d)]
and double-logarithmic [Fig. 1(e)] scales. The salient features
of the experimental observations in Figs. 1(b) and 1(c) are
reproduced by the computer simulations, despite the inherent
size limitation (e.g., setting a bound on the lowest cooling
rate); see Appendix B 1.

Our next goal is to gain some theoretical understanding of
the main experimental (and simulational) observations. These
include the existence of a peak in DG(ω) above the ∼ω4 tail,
the mild increase in the peak’s frequency ωp and its magnitude
DG(ωp) with thermal annealing, along with the corresponding

strong suppression of the ∼ω4 tail. Achieving this goal is a
major challenge as we currently lack a fundamental theory
of glasses in general, and of their low-frequency vibrational
spectra in particular. Yet, some very recent developments in
formulating and studying mean-field models of quasilocalized
nonphononic vibrations may be useful in this context, as we
discuss next.

III. MEAN-FIELD MODEL OF QUASILOCALIZED
NONPHONONIC VIBRATIONS

We build on a recently formulated mean-field model of
quasilocalized nonphononic vibrations [49,50], termed the
KHGPS model therein, that reproduced the DG(ω) = Agω

4

VDoS in the ω → 0 tail below the boson peak, as well as
the dependence of the prefactor Ag on the disorder param-
eters of the model. The model envisions small groups of
atoms/molecules in an instantaneous snapshot of the liquid
state, prior to cooling/quenching through the glass tempera-
ture, which feature a collective vibration characterized by a
stiffness (spring constant) κi, where i is an index of the group
(for κi > 0, the vibrational frequency is ωi = √

κi). Since an
instantaneous liquid state features both negative (unstable)
and positive local stiffnesses, the probability to find a van-
ishing κi is finite. Consequently, at small positive stiffnesses
(frequencies), e.g., within [0, κ0], the probability to observe
a stiffness κ is given by p(κ ) = 1/κ0, to leading order. The
latter implies a liquidlike VDoS g0(ω) = 2ω/κ0 ≡ 2ω/ω2

0.
Describing every liquidlike vibration by a single collective

coordinate xi, and considering the lowest stabilizing anhar-
monicity [49,50], each vibration i is effectively an anharmonic
oscillator with energy κix2

i /2 + x4
i /24. Here, κi = ω2

i follows
the liquidlike VDoS g0(ω) = 2ω/ω2

0 and the amplitude of
anharmonicity is the same for all oscillators. The oscillators
interact among themselves and with the surrounding material,
especially as the liquid is quickly cooled/quenched through
the glass transition and long-range elasticity builds up. The
interactions are random, reflecting the structural disorder in
the emerging glass. Moreover, the quench self-organization
also gives rise to internal stresses, reflecting glassy frustra-
tion, which would tend to displace the oscillators from their
reference position.

At the mean-field level, i.e., assuming each oscillator in-
teracts with all of the others, the above physical picture
corresponds to the Hamiltonian [33,49–51]

H = 1

2

∑
i

κix
2
i + 1

24

∑
i

x4
i +

∑
i< j

Ji jxix j − h
∑

i

xi , (1)

of N interacting anharmonic oscillators, with i = 1 − N .
Here, Ji j are Gaussian independent and identically distributed
random variables of variance J2/N for i �= j, representing
random bilinear interactions between the oscillators due to
structural disorder. h represents internal stresses, which also
emerge due to structural disorder, though h itself is taken
to be the same for all oscillators. κi, as explained above,
is drawn from a rather “featureless” liquidlike probability
distribution. The minimization of the Hamiltonian in Eq. (1)
mimics the quench self-organization process, upon which the
oscillators experience displacements and new frequencies ω at
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FIG. 2. (a) A representative nonphononic VDoS DG(ω) of the
mean-field model of Eq. (1), in the small y = J/(h1/3κ

1/2
0 ) regime

(thick solid line); see Appendix A 3 for details. Here and elsewhere
in this paper, we set κ0 = 1 (which implies that the largest frequency
is ω0 = √

κ0 = 1, as shown). DG(ω) attains a local maximum at ωp,
as marked (orange diamond). The thin dashed line corresponds to the
initial liquidlike VDoS g0(ω) = 2ω/ω2

0 (see legend). ω× [orange star,
corresponding to the local minimum of DG(ω)] marks the frequency
above which g0(ω) and DG(ω) approximately coincide. ωg (orange
triangle) is a lower intersection frequency of the two curves. The
two (blue and green) light shaded regions are discussed in the text.
(b) The corresponding averaged participation ratio ē(ω); see text for
discussion.

the attained minima. The statistics of the latter represent the
physical nonphononic VDoS DG(ω).

By studying the statistics of energy minima of Eq. (1)
for many independent realizations of the disorder, κi and Ji j ,
one obtains the resulting VDoS DG(ω), which represents the
VDoS of low-frequency quasilocalized vibrations in glasses
in the framework of the model. As such, the minimization
of Eq. (1) is viewed as a procedure that transforms a fea-
tureless liquidlike VDoS g0(ω) into a glassy VDoS DG(ω).
In Fig. 2(a), we plot the initial liquidlike VDoS g0(ω) (thin
dashed line) along with a representative example of the re-
sulting VDoS DG(ω) (thick solid line). The latter features a
peak at ωp of magnitude DG(ωp), in qualitative agreement
with the experimental and simulational observations presented
in Fig. 1. Next, we aim at deriving scaling relations for ωp

and DG(ωp), along with the corresponding properties of the
prefactor Ag of the universal ∼ω4 tail, also observed in Fig. 1.

It has been recently shown in [49] that Ag ∼
exp(−cgκ0 h2/3/J2) (with cg � 0.2), for y ≡ J/(h1/3κ

1/2
0 ) 	

1. This exponential variation of Ag with −y−2 is reminiscent
of the exponential variation of Ag with −1/Tp [46], where

Tp is the temperature at which a supercooled liquid falls
out of equilibrium during a quench, i.e., it determines the
degree of supercooling. The correspondence between the two
exponential variations of Ag supports the physical relevance
of the model and indicates that a decreasing y implies less
disordered glassy states. Moreover, the strong depletion
of nonphononic vibrations in the DG(ω) ∼ ω4 tail with
decreasing y is similar to the strong reduction in the tail of
DG(ω) with thermal annealing, experimentally observed in
Fig. 1(c). Consequently, we next focus on the variation of
ωp and DG(ωp) with the disorder parameters, in the same
physically relevant regime of y 	 1.

To derive scaling relations for ωp and DG(ωp) in the small
y regime, we need to better understand how DG(ω) emerges
from g0(ω). First, we note that there exists a frequency scale
ω× ∼ h1/3 such that liquidlike vibrations with ω > ω× are
weakly affected by the disorder parameters h and J , while for
ω < ω× liquidlike vibrations undergo significant modification
(“reconstruction”), as shown in Fig. 2(a). Second, the vast
majority of the reconstructed vibrations are added on top of
g0(ω) in the frequency range [ωg, ω×] [marked by light-blue
shading in Fig. 2(a)], where ωg is also marked therein. These
vibrations constitute the peak at ωp. A small fraction of the
reconstructed vibrations populate the frequency range [0 , ωg]
[marked by light-green shading in Fig. 2(a)], including those
in the universal ∼ω4 tail.

The number of vibrations in the frequency range [0, ω×] is
conserved upon reconstruction. This, together with neglecting
the number of reconstructed vibrations in [0 , ωg] compared
to those that populate the peak region in [ωg, ω×], yields
(Appendix A 3)

ωp ∼ h1/3 and DG(ωp) ∼ h1/3/ω2
0 . (2)

The scaling predictions in Eq. (2) suggest that while J > 0
(accounting for interactions between vibrations) is essential
for the emergence of the universal ∼ω4 tail (recall that Ag →
0 as J → 0), it contributes only to subleading orders in the
peak properties, in the y = J/(h1/3κ

1/2
0 ) 	 1 limit of interest.

In Fig. 3, the scaling predictions in Eq. (2) are quantita-
tively verified by numerical solutions of the mean-field model.
Importantly, Eq. (2), along with Ag ∼ exp(−cgκ0 h2/3/J2), in-
dicates that an increase in the disorder parameter h at fixed
J gives rise to strong (exponential) reduction in the ∼ω4 tail,
but to weak (power-law) increase in ωp and DG(ωp). These
predictions are in qualitative agreement with the experimental
trends presented in Fig. 1.

IV. NATURE OF THE BOSON PEAK MODES AND THEIR
LOCALIZATION PROPERTIES

Up to now, we focused on the VDoS DG(ω) and its prop-
erties, but not on the nature of the boson peak vibrational
modes themselves, in particular their spatial structure. Current
experimental techniques entirely lack the spatial resolution to
address this issue, and hence we approach it in the framework
of the mean-field model and atomistic computer simulations.
In the context of the former, the question boils down to quan-
tifying how many oscillators are taking part in each vibration
at minima of the Hamiltonian, i.e., the degree of localiza-
tion of vibrations, commonly quantified through the averaged
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FIG. 3. (a) The prediction ωp ∼ h1/3 of Eq. (2) is verified using
numerical solutions of the mean-field model with J = 0.05 and h =
[0.1, 0.08, 0.05, 0.02, 0.01, 0.008] (recall that κ0 = 1), correspond-
ing to small y = J/(h1/3κ

1/2
0 ) values (between ≈ 0.11 and 0.25).

The color corresponds to the different h values. (b) The prediction
DG(ωp) ∼ h1/3 of Eq. (2) is verified using the same numerical so-
lutions of the mean-field model used in panel (a). The dashed lines
are guides to the eye. Note that while ωp and DG(ωp) increase by
approximately a factor of 2 over the presented range of disorder, Ag

decreases by many orders of magnitude (not shown).

participation ratio ē(ω) (Appendix A 4). A vibration that is
fully localized at a single oscillator features a participation
ratio of 1/N (recall that N is the total number of oscillators).
On the other hand, a fully delocalized vibration features a
participation ratio of unity.

In Fig. 2(b), we present ē(ω), corresponding to DG(ω)
shown in Fig. 2(a). ē(ω) attains a peak near ωp, i.e., ē(ω) is
peaked in the boson peak region [52]. In addition, Fig. 2(b)
shows that Nē(ωp) � 1, i.e., it suggests that boson peak vibra-
tional modes feature many coupled quasilocalized vibrations,
while modes in the ∼ω4 tail feature Nē(ωp) that is orders of

magnitude smaller [40]. Finally, ē(ω) plateaus at frequencies
above the peak.

The prediction that boson peak vibrational modes fea-
ture many coupled quasilocalized vibrations poses serious
challenges. Testing it in computer glasses requires tools for
identifying quasilocalized vibrations inside boson peak vi-
brational modes, possibly featuring many hybridized/mixed
quasilocalized vibrations and extended phonons [32–34,38].
Such tools have just began to emerge [38,45], and Fig. 4(a)
presents a preliminary example [corresponding to Fig. 3(d)
in [38]]. As stressed above, we use here an example in two
dimensions for visual clarity. The figure shows a superposi-
tion of identified quasilocalized vibrations in a boson peak
vibrational mode in a two-dimensional computer glass [the
full boson peak vibrational mode is shown in Fig. 3(c) in [38]],
clearly supporting the prediction of the existence of many
coupled quasilocalized vibrations.

We next derive scaling relations for ē(ω), shown in
Fig. 2(b), in the framework of the mean-field model. In
Fig. 4(b), we present ē(ω) for several combinations of the
disorder parameters J and h (we set κ0 = 1, as done else-
where in this paper), all in the y = J/(h1/3κ

1/2
0 ) 	 1 regime

of interest. In the ∼ω4 tail region, vibrations in the mean-field
model are rather localized [50], corresponding to the very
small observed values of ē(ω → 0) [see Fig. 4(b)]. We do not
discuss the tail region here, but rather focus on the peak region
and the plateau that follows it.

The averaged participation ratio ē(ω) emerges from in-
teractions between the oscillators, mediated by the bilinear
coupling coefficients Ji j , i.e., one trivially has Nē(ω) = 1 for
J = 0. Moreover, since we consider the y = J/(h1/3κ

1/2
0 ) 	 1

regime (and set κ0 = 1), we can treat the effect of weak

FIG. 4. (a) A superposition of quasilocalized nonphononic vibrations identified inside a boson peak vibrational model in the same canonical
computer glass model (in two dimensions) used in Fig. 1 (see [38] for details). (b) The averaged participation ratio ē(ω) for a few sets
of the disorder parameters (see legend). (c) The prediction max[ē(ω)] ∼ h1/3J (see text for details) is verified using numerical solutions
of the mean-field model with J = 0.05 and h = [0.1, 0.08, 0.05, 0.02, 0.01, 0.008] (circles, the same as in Fig. 3), and with h = 0.01 with
J = [0.04, 0.042, 0.045] (squares), all corresponding to small y = J/(h1/3κ

1/2
0 ) values. max[ē(ω)] is the maximum of ē(ω), attained very close

to ωp (cf. Fig. 2). Inset: The prediction ēplateau ∼ J (see text for details) is verified using the same numerical solutions as in the main panel
(same symbols and colors). ēplateau corresponds to the plateau value of ē(ω), above the maximum. The dashed lines are guides to the eye.
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interactions of characteristic size J as perturbations on top of
the J = 0 and h > 0 case. The latter is fully described by the
single-oscillator Hamiltonian κx2/2 + x4/24 − hx, implying
that liquidlike vibrations below κ ∼ h2/3 are blueshifted and
accumulate in a narrow stiffness range near κ ∼ h2/3, while
those above κ ∼ h2/3 are weakly affected (Appendix A 4).
When weak random interactions are introduced, J > 0, the
number of oscillators that contribute to reconstructed vibra-
tions must scale with J to leading order. Near ωp ∼ h1/3, there
are ∼Nh2/3 blueshifted vibrations and hence the participation
ratio after reconstruction satisfies Nē(ωp) ∼ √

Nh1/3J , imply-
ing max[ē(ω)] ∼ h1/3J/

√
N .

This scaling prediction is verified in Fig. 4(c) against a nu-
merical solution of the model. It shows that internal stresses,
represented by h, and disorder-mediated interactions between
the oscillators, represented by the standard deviation J/

√
N

of the random variables Ji j , lead to Nē(ω) � 1 near the bo-
son peak. That is, the mean-field model predicts that boson
peak modes feature many coupled quasilocalized vibrations
(in terms of the oscillators participation ratio), which mirrors
the same physical picture demonstrated in space in Fig. 4(a).
Moreover, note that ē(ωp) ∼ h1/3J , together with Eq. (2) (ver-
ified in Fig. 3), implies ē(ωp) ∼ D(ωp)J . Finally, above ωp ∼
h1/3, the stiffnesses are uniformly distributed and weakly af-
fected by h, hence we have ēplateau ∼ J/

√
N , where ēplateau is

the plateau level of ē(ω) [see Fig. 4(b)]. This prediction is
verified in the inset of Fig. 4(c).

Overall, while the mean-field model is not yet quanti-
tatively compared to experimental and simulational data, it
appears to offer a physical picture of the low-frequency vi-
brational spectra of glasses. This emerging physical picture is
consistent with all of the trends observed in the experimental
and simulational data.

V. SUMMARY AND DISCUSSION

Our results shed basic light on the origin, nature, and prop-
erties of the universally observed boson peak in glasses. We
followed [15] and showed that the nonphononic part of the
VDoS DG(ω) features an intrinsic peak at ωp, which is distin-
guished from the conventionally defined peak in the reduced
VDoS D(ω)/ω2, commonly denoted by ωBP . Generically, it
is observed that ωp > ωBP (Appendix A 1), even though the
two frequencies are comparable, both being in the terahertz
range. While the definition of ωBP involves Debye’s VDoS
of phonons, ωp is an intrinsic property of the nonphononic
VDoS. Moreover, our results indicate—at the fundamental on-
tological level—that the excess vibrations that constitute the
boson peak are the very same quasilocalized nonphononic vi-
brations that populate the universal ∼ω4 tail of DG(ω), in line
with the preliminary recent observations in two-dimensional
computer glasses [38].

The latter findings are also consistent with suggestions in
earlier modeling efforts [33], which inspired the formulation
of the mean-field Hamiltonian in Eq. (1); see discussion in
[49,50]. The relations between the predictions of our model
in the context of the boson peak and those of [33] are
discussed in Appendix B 3 (see Fig. 8 in particular). The
differences between the predictions of the models further
highlight the importance of extracting the intrinsic properties

of the nonphononic VDoS DG(ω) = D(ω) − AD ω2, rather
than considering the reduced VDoS D(ω)/ω2, which involves
different pieces of physics (i.e., nonphononic and phononic
excitations); see Appendix B 3.

We further showed that vibrational modes near the boson
peak feature many more coupled quasilocalized nonphononic
vibrations than modes in the universal tail. Moreover, the
peak frequency ωp and its magnitude DG(ωp) mildly increase
upon thermal annealing (i.e., with decreasing degree of glassy
disorder), while DG(ω) is strongly reduced in the tail region
under the same conditions. Taken together, these findings
provide a unified picture of the low-frequency properties of
the nonphononic VDoS DG(ω). This picture is also expected
to be valid in disordered crystals, especially in view of the
recent results of [53], an issue that should be further explored
in future work.

Future work, both experimental and simulational, should
further test these predictions for a broader range of glasses
and disordered crystals under different nonequilibrium his-
tories. Future work should also explore the implications of
our findings to other glass properties, such as the specific
heat, not discussed here. Finally, all of our findings are shown
to be in qualitative agreement with a mean-field model of
interacting quasilocalized vibrations, which also predicts the
universal ∼ω4 tail of DG(ω). As such, future work should
further explore the predictive powers of the model in relation
to other properties of glasses.
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APPENDIX A: METHODS

1. Reanalysis of thermal annealing experimental data

The data presented in Figs. 1(b) and 1(c) correspond to the
experimental data digitized from Fig. 3 in [25], reproduced
here in its original form in Fig. 5, and to the values of AD

appearing therein. In Fig. 5 (i.e., Fig. 3 in [25]), the measured
VDoS g(ν) [denoted by D(ν) in the paper and obtained as
explained in [25], also using the specific heat data of [24]]
divided by ν2 was plotted (ν is the Raman wave-number shift
in units of cm−1) for B2O3 glass samples of different thermal
histories and water content. The different samples were given
names and the corresponding data were denoted by different
symbols, as indicated in Fig. 5. The names and symbols, from
the top curve to the bottom one, are D1 and circles, D3 and
down triangles, D5 and up triangles, and W2 and squares. The
thermal history and water content of each sample are detailed
in Table I.

The D1 sample is termed “as quenched” in the manuscript,
D3 is termed “annealed I,” and D5 is termed “annealed II.”
All of these samples do not contain water (“D” stands for
“dry”). The W2 sample is termed “most annealed,” which is
the only wet sample we considered (“W” stands for “wet”).
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TABLE I. The thermal history (annealing treatment) and water content (dry/wet) of the different B2O3 glass samples of [23–25], and all
physical quantities that characterize them. The thermal history, except for the as quenched sample, is characterized by the annealing temperature
(in Kelvin) and annealing time (in hours) applied to the as quenched sample (see second column). AD, ρ, and μ are extracted from the existing
literature (see text for details), while νp and D(νp) are obtained from Fig. 1(b). νBP , which is added for completeness, is extracted from the data
shown in Fig. 5. The relative variation with annealing of each quantity, relative to the as quenched sample (D1), is reported in brackets in each
column.

Symbol Thermal history AD (a.u.) νp (cm−1) DG(νp) (a.u.) ρ (g/cm3) μ (GPa) νBP (cm−1)

D1 (as quenched, dry) As quenched 1.639 (1) 30.02 (1) 1365.91 (1) 1.804 (1) 6.14 (1) 15.0 (1)
D3 (annealed I, dry) 530 K, 50 h 1.514 (0.92) 30.37 (1.01) 1529.48 (1.12) 1.826 (1.01) 6.52 (1.06) 16.5 (1.10)
D5 (annealed II, dry) 480 K, 170 h 1.417 (0.86) 31.44 (1.05) 1563.07 (1.14) 1.834 (1.02) 6.89 (1.12) 17.5 (1.17)
W2 (most annealed, wet) 490 K, 100 h 1.292 (0.79) 36.16 (1.20) 1520.80 (1.11) 1.866 (1.03) 7.50 (1.22) 19.0 (1.27)

B2O3 glasses are hygroscopic and water inclusion tends to
rigidify them. Consequently, while the W2 sample is roughly
as annealed as the D5 sample in terms of thermal annealing, it
is the densest and hence effectively the most annealed sample
[see the density column in Table I, but note that the peak
value, DG(νp), is a bit reduced due to the effect of water on
the material].

We also follow the same symbols scheme in Figs. 1(b)
and 1(c), except that we replaced the down triangles for the
D3 sample data by diamonds for improved visual clarity (as
well as colors). We digitized the data for g(ν)/ν2 shown in
Fig. 5 and multiplied it by ν2 to obtain D(ν) = g(ν). The
horizontal solid lines in Fig. 5 correspond to the values of
AD for each sample, which we digitized as well; the values
are also reported in Table I. We then plotted the nonphononic
VDoS DG(ν) ≡ D(ν) − AD ν2 in Figs. 1(b) and 1(c).

The position of the peak of DG(ν), denoted by νp, is re-
ported in Table I for the different thermal histories and water
content, as well as the peak value, DG(νp). For completeness,
we added in Table I the mass density ρ of each sample (ex-
tracted from Table 1 of [25]). Moreover, we used Debye’s
velocity values vd from [25], together with the longitudinal
(dilatational) wave speed vl values from [23], to extract the

FIG. 5. The experimental data of [25], adapted as originally re-
ported in Fig. 3 therein. See text for extensive discussion. Note that
the variation (with annealing and water content) of the properties of
the peak—i.e., its frequency νBP and magnitude—in the conventional
reduced-VDoS presentation is just opposite to the variation shown in
Fig. 1(b), using the nonphononic VDoS DG(ν ). Similar qualitative
differences associated with the two presentations were highlighted in
[15,16].

transverse (shear) wave speed vt using the relation 3v−3
d =

v−3
l + 2v−3

t [23]. Then, we used the density ρ to extract the
shear modulus μ = ρ v2

t , as reported in Table I. The obtained
μ values are consistent with those of [54]. To highlight the
variability of all physical quantities with annealing and water
inclusion, we added to each column in Table I the relative
variation with respect to the as quenched sample (in brackets).

Finally, we add for completeness the conventional νBP

to Table I, as extracted from the data shown in Fig. 5.
It is observed that νBP is smaller than νp due to the di-
vision by the phononic ν2 VDoS. This is theoretically
expected since νBP is the solution of d[D(ν)/ν2]/dν = 0, im-
plying D′

G(νBP ) = 2DG(νBP )/νBP > 0 [recall that D(ν)/ν2 =
DG(ν)/ν2 + AD based on the additive decomposition D(ν) =
DG(ν) + ADν2]. On the other hand, νp is determined by
D′

G(νp) = 0. Since DG(ν) is an increasing function for ν <

νp, we obtain νBP < νp. In quantitative terms, the two frequen-
cies are comparable (within a factor of 2 for these data), both
being in the terahertz range.

We note that both the conventional reduced VDoS D(ν)/ν2

and the additive decomposition for extracting the non-
phononic VDoS DG(ν), DG(ν) = D(ν) − ADν2 assume that
Debye’s VDoS D(ν) = ADν2 of phonons extends to frequen-
cies above the estimated boson peak in both procedures. In
view of the relation νBP < νp, one should be even more aware
of this issue—and the possible quantitative uncertainties in-
volved (for a given material)—in relation to the additive
decomposition procedure.

2. Atomistic computer glasses

We employ a simple glass-forming model in three dimen-
sions [55] in which half of the particles are “large” and half
are “small.” The particles of both species have equal mass m.
The pairwise potential of this model is given by

ϕ(r, λ)/ε =
(

λ

r

)10

+
3∑

	=0

c2	

( r

λ

)2	

, (A1)

where ε denotes our microscopic units of energy, r is the pair-
wise distance between two particles, and c2	 are coefficients
(reported in Table II below) that guarantee the smoothness of
the potential at the dimensionless cutoff distance rc = 1.48λ,
where λ = 1.4λ̄ for large-large pairs, λ = 1.18λ̄ for large-
small pairs, and λ = 1.0λ̄ for small-small pairs. λ̄ denotes
the microscopic units of length. We fix the number density at
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TABLE II. The coefficients c2	 appearing in Eq. (A1).

Parameter Value

c0 −1.1106337662511798
c2 1.2676152372297065
c4 −0.4960406072849212
c6 0.0660511826415732

N/V = 0.82 for all simulations (N denotes the total number of
particles and V denotes the volume). All dimensional observ-
ables reported in the paper should be understood as expressed
in terms of the aforementioned microscopic units m, ε, and λ̄.

We prepared glassy samples following two protocols; for
both protocols, we first equilibrate high temperature liquid
states at T = 1.0. Then, in the first protocol, we perform an
instantaneous quench (hyperquench) using a standard con-
jugate gradient minimization algorithm, corresponding to an
infinite quench rate Ṫ → ∞. In the second protocol, we cool
the system at a finite cooling rate Ṫ = 10−3, removing any
remnant heat deep in the glass phase with a potential-energy
minimization. Using these two glass-formation protocols,
we prepared 40 independent realizations of N = 4 × 106

particles.

VDoS calculations

The VDoS of large computer glasses of several million
particles can be obtained using the kernel polynomial method
(KPM) [56]. We followed exactly the procedure as described
in detail in [57]. The KPM requires choosing the truncation
degree K , and the number R of initial random vectors used in
the calculation. We chose K = 3000 and R = 10, in addition
to carrying out this analysis over 40 independent glasses.

3. Mean-field model: Numerical solutions and scaling
relations for DG(ω)

The main properties of the nonphononic VDoS DG(ω) in
the framework of the mean-field model, defined in Eq. (1) are
extensively discussed in the paper. Here, we provide details of
the numerical solution procedure and some supporting results
in relation to the scaling predictions discussed in the paper.

Numerical solutions for the statistics of energy minima of
the Hamiltonian in Eq. (1) in the paper are obtained as follows.
We initiated M = 2000 different realizations of N = 16 000
coupled oscillators each. The initial oscillators’ positions x(0)

i

were set randomly in the range x(0)
i ∈ [−0.005, 0.005]. These

initial positions generate nonvanishing net forces on the oscil-
lators. After initiation, we used a gradient descent algorithm
to relax the oscillators to the closest mechanically stable en-
ergy minimum, resulting in displacements xi. Following this
minimization procedure, we calculated the Hessian matrix
Mi j ≡ ∂2H

∂xi∂x j
at this newly attained energy minimum, and

diagonalized it to find the eigenmodes ψ and their corre-
sponding eigenvalues ω2, according to M · ψ = ω2ψ (ψ is
normalized,

∑
i |ψi|2 = 1). DG(ω) is obtained by generating

a histogram over the vibrational frequencies collected from
all realizations, as presented in Fig. 2(a). This procedure was
repeated for every pair of J and h values.

As we exclusively focused on the y ≡ J/(h1/3κ
1/2
0 ) 	 1

regime, we followed [49] and treated the characteristic in-
teractions strength J as a small perturbation on top of the
characteristic internal force h. It was shown in [49] that
there exists a characteristic frequency scale ω× that splits
the entire frequency domain [0, ω0] into two parts, one in
which the VDoS undergoes “reconstruction,” 0 < ω < ω×,
and another in which it mostly does not, ω× < ω < ω0. The
scaling prediction for ω× takes the form ω× ∼ h1/3(1 + c×y)
[49], where the two leading orders in y are included (note that
in the paper only the leading order ω× ∼ h1/3 is discussed).

Focusing on the reconstructed domain 0 < ω < ω×, we
considered the frequency ωg defined according to the lowest
ω > 0 solution to DG(ω) = g0(ω) [see Fig. 2(a)]. Modes be-
low ωg are blueshifted (by amount ∼h1/3) to the frequency
domain ωg < ω < ω× (see [49] and Fig. 7). A tiny frac-
tion of these blueshifted modes are “pushed back” to the
frequency domain 0 < ω < ωg by interaction-induced fluc-
tuations, forming the gapless (or pseudogapped) DG(ω) =
Ag ω4 tail. The latter implies

∫ ωg

0 DG(ω) dω 	 ω2
g/ω

2
0. Since

the reconstruction of DG(ω) in the frequency domain 0 <

ω < ω× only redistributes the modes, conservation of modes
then implies

∫ ω×

ωg

[DG(ω) − g0(ω)]dω � ω2
g/ω

2
0 , (A2)

which is verified in Fig. 6(a).
The validity of Eq. (A2) justifies neglecting the light-green-

shaded area in Fig. 2(a) compared to the light-blue-shaded
area therein, as done in the paper. In addition, we estimate∫ ω×
ωg

DG(ω) dω as DG(ω×)(ω× − ωg), which implies ωg ∼
ω× ∼ h1/3 to leading order in small y. This prediction is
verified in Fig. 6(b). Since scalingwise we have ωp ∼ (ωg +
ω×)/2, we end up with

ωp ∼ ωg ∼ ω× ∼ h1/3(1 + c×y) , (A3)

which is verified in Fig. 6(c). Finally, by estimat-
ing Eq. (A2) as

∫ ω×
ωg

[DG(ω) − g0(ω)]dω � [DG(ωp) −
2ωp/ω

2
0](ω× − ωg) ∼ ω2

g/ω
2
0, Eq. (2) is obtained.

4. Mean-field model: The average participation ratio ē(ω)

The averaged participation ratio ē(ω) and its scaling prop-
erties are extensively discussed in the paper. Here, we provide
the relevant definition, the numerical averaging procedure,
and some supporting data referred to in the paper.

The participation ratio of an eigenmode ψ(j), which
is a normalized solution to M · ψ(j) = [ω(j)]2 ψ(j) (i.e.,∑

i |ψ (j)
i |2 = 1), is defined as

e(j) ≡ 1

N
∑N

i=1

[
ψ

(j)
i

]4 (A4)

where the index i corresponds to the projection on the ith
oscillator. Finding the complete set of eigenmodes ψ(j) per
realization of the disorder (with fixed J , h, and κ0), we sort
e(j) according to their corresponding frequencies ω(j), collect
data from all M realizations, and average over bins of size �ω
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FIG. 6. (a) Verification of Eq. (A2). Circles correspond to fixed
J = 0.05 with h = [0.1, 0.08, 0.05, 0.02, 0.01, 0.008] and squares
correspond to fixed h = 0.01 with J = [0.04, 0.042, 0.045]. We
used ω0 = 1 as done throughout this paper. (b) Verification of
the ∼h1/3 scaling of ωg and ω× (see text) for J = 0.05 and
h = [0.1, 0.08, 0.05, 0.02, 0.01, 0.008]. The corresponding predic-
tion for ωp is verified in Fig. 3(a). (c) Verification of the subleading
(linear) contribution in y in the prediction ω• ∼ h1/3(1 + c×y) for ωg,
ωp, and ω×, for fixed h = 0.01 with J = [0.04, 0.042, 0.045, 0.05].

to obtain ē(ω). That is, we define

ē(ω) ≡ 〈e(ω)〉ω,ω+�ω , (A5)

where 〈•〉ω,ω+�ω denotes averaging over modes with fre-
quencies in the range [ω,ω + �ω]. In particular, we used
�ω = 0.01 to produce the averaged participation ratio
curves in Figs. 2(b) and 4. In the paper, the main scal-
ing predictions for ē(ω)—i.e., ē(ωp) ∼ h1/3J and ēplateau ∼
J—are derived using a perturbative approach in which the
J = 0 and h > 0 case is considered first, and then weak
interactions J > 0 are considered. It is stated therein that
for J = 0 and h > 0 (described by the noninteracting single-

FIG. 7. (a) The transformation of the initial liquidlike distri-
bution p(κ ) = κ−1

0 (for 0 � κ � κ0, with κ0 = 1) into p(κ̃ ) upon
the introduction of internal stresses represented by h > 0, in the
absence of interactions between oscillators, J = 0 (i.e., when the
single-oscillator Hamiltonian reads κx2/2 + x4/24 − hx). p(κ̃ ) is
plotted for three values of h (indicated in the legend), revealing a
gap that increases as ∼h2/3 and leads to the accumulation of ∼Nh2/3

blueshifted oscillators in a narrow stiffness range near κ̃ ∼ h2/3. Note
that κ̃ = ω2 (as indicated in the x-axis label) and that the correspond-
ing distribution for ω is shown in panel (b) for completeness. (b) The
same as panel (a), but for the frequency ω. That is, DG(ω) for the
noninteracting case of J = 0 and h > 0 is shown.

oscillator Hamiltonian κx2/2 + x4/24 − hx), the liquidlike
vibrations below κ ∼ h2/3 are blueshifted and accumulate in
a narrow stiffness range near κ ∼ h2/3, while those above
κ ∼ h2/3 are weakly affected. This is explicitly demonstrated
in Fig. 7.

APPENDIX B: ADDITIONAL INFORMATION
AND SUPPORTING RESULTS

1. Thermal history variability of various physical quantities

The experimental results summarized in Table I demon-
strate the annealing and water content variability of various
basic physical quantities. It is observed that Debye’s prefac-
tor AD decreases with annealing, which mostly reflects the
stiffening of the elastic moduli. Indeed, the shear modulus μ

increases with annealing (by 22% between the most annealed
and as quenched samples). As discussed extensively in this
paper, both νp and DG(νp) mildly increase with annealing.
Finally, samples undergo densification (i.e., increase of the
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TABLE III. The symbols of the different computer glass samples and the physical quantities that characterize them. The thermal history
is characterized by the quench rate used (see the “Thermal history” column). μ is directly computed, and AD = 3/ω3

D. ωp and DG(ωp) are
extracted from Fig. 1(d). Since the simulations are performed at a fixed volume, we report the hydrostatic pressure p of the glasses (the
counterpart of the density ρ in Table I). The variation of each quantity, relative to the Ṫ = ∞ samples, is reported in brackets in each
column.

Thermal history AD ωp DG(ωp) p μ

Ṫ = ∞ 6.9 × 10−4 (1) 4.15 (1) 0.0075 (1) 18.88 (1) 12.75 (1)
Ṫ = 10−3 5.8 × 10−4 (0.85) 4.89 (1.18) 0.009 (1.2) 18.67 (0.99) 14.25 (1.12)

mass density ρ) with annealing and water inclusion. Note in
this context that the experiments are done under NPT condi-
tions (constant pressure) such that the thermal history affects
the volume.

It would be interesting to consider also the covariation of
various physical quantities. The frequency scale νp that is
associated with the peak of DG(ν) defines a stiffness scale
∼ν2

p . The latter characterizes the stiffness of quasilocalized
vibrations in the boson peak region, i.e., it is a mesoscopic
elastic response coefficient. According to Table I, ν2

p increases
(stiffens) by 45% (obtained from (36.16/30.02)2) between the
most annealed and as quenched samples. It would be natural
and interesting to compare this observation to the annealing
variability of the macroscopic elastic coefficient, i.e., the shear
modulus μ. Previous work indicated that the degree of stiff-
ening with annealing of μ is smaller compared to that of the
mesoscopic elastic coefficient associated with quasilocalized
vibrations [55,58,59]. Indeed, the annealing variability of μ in
the experimental data summarized in Table I is 22%, a factor
of 2 smaller than that of ν2

p , as expected. These experimental
observations are also consistent with the ideas and analysis
of [60].

The thermal history variability of DG(ω) in the computer
glass data, presented in Figs. 1(d) and 1(e), bears close resem-
blance to the corresponding experimental data, presented in
Figs. 1(b) and 1(c). In Table III, we provide the actual values
of the peak’s location ωp and its magnitude DG(ωp), along
with Debye’s prefactor AD = 3/ω3

D, the hydrostatic pressure
p, and the shear modulus μ. AD is obtained using Debye’s

frequency ωD, computed using ω3
D = 18π2ρN

2v−3
t +v−3

l
, where ρN is the

number density (to be distinguished from the mass density
ρ). Here, vt = √

μ/ρ is the transverse (shear) wave speed
and vl =

√
(K + 4

3μ)/ρ is the longitudinal (dilatational) wave
speed, where K is the bulk modulus. Note that the simulations
are done under NVT conditions (constant volume) such that
the thermal history affects the pressure p, which we reported
instead of the fixed mass density ρ.

The relative thermal history variability of the various phys-
ical quantities in Table III is reported in brackets in each
column. These values make it easy to compare the relative
thermal variability of various quantities in computer glasses
presented in Table III to their experimental counterparts in
Table I. The comparison reveals that despite the differences in
composition and underlying interaction potential, and despite
the different thermal history protocols (variable annealing in
the experiments and variable quench rate in the computer sim-
ulations), the similarities in the nonphononic VDoS observed
in Fig. 1 are semiquantitatively echoed in the two tables.

2. Thermal history variability of dimensionless quantifiers
of mechanical disorder

Computer glass simulations, in view of their atomistic
resolution, provide access to physical quantities that are cur-
rently not accessible experimentally. In recent years, several
dimensionless quantifiers of mechanical disorder in glasses
have been developed and substantiated [61–64]. These dimen-
sionless quantifiers allow one to put on equal footing different
glasses and compare their degree of mechanical disorder. It
would therefore be useful to report the values of these dimen-
sionless quantifiers for the computer glasses that have been
compared to experiments in the previous subsection.

To that aim, we prepared ensembles of a few thousand glass
samples of a few thousand particles each. These are needed
for statistical convergence and were used to compute three
dimensionless quantifiers of mechanical disorder, as reported
next. The first quantifier—studied and discussed in detail in
[61,62]—captures the sample-to-sample fluctuations of the
macroscopic shear modulus μ; it is defined as

χ ≡
√

N
STD(μ)

MEAN(μ)
, (B1)

where the standard deviation and mean appearing above re-
fer to ensemble averages. We find χ (Ṫ = 10−3) ≈ 2.6 and
χ (Ṫ = ∞) ≈ 3.9 (see [62] for a comparison of these values
with a wide variety of disordered solids).

The second quantifier is the ratio of the nonaffine con-
tribution to the shear modulus that emerges due to glasses’
structural disorder/frustration [63,64], and the total shear
modulus, namely μna/μ. Detailed definitions of μna and μ

can be found, e.g., in [63,64], and some representative values
of generic computer glasses can be found in [53]. We find
μna/μ ≈ 1.05 for our Ṫ = 10−3 ensembles, and μna/μ ≈
1.32 for our hyperquenched Ṫ = ∞ samples.

The third and last dimensionless quantifier of mechanical
disorder we report for our computer glasses is the product
Ag ω5

� , where Ag is the prefactor of the ∼ω4 scaling regime
of the nonphononic VDoS, and ω� ≡ vt/a0 is a characteristic
elastic frequency. Here, a0 ≡ (V/N )1/3 is a characteristic in-
terparticle distance. Typical values for the product Ag ω5

� can
be found in, e.g., [46,53,59,62]. Here, we find Ag ω5

� ≈ 0.50
for our Ṫ = 10−3 ensembles, and Ag ω5

� ≈ 1.35 for our hyper-
quenched Ṫ = ∞ samples.

3. Comparison to the GPS model

In order to highlight additional aspects of the theoretical
predictions of our model in relation to the boson peak in
glasses, we compare its predictions to the model originally
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FIG. 8. The nonphononic VDoS DG(ω) of the GPS model in [33]
(green dashed-dotted line). It is obtained by multiplying g(ω)/ω2

of Eqs. (1) and (2) in [33] by ω2 and setting ω� = 0.45 [ω� is the
only parameter therein, not to be confused with ω� of the previous
subsection, and the overall amplitude C is selected such that DG(ω)
is normalized over the plotted range, 0 � ω � 1]. For comparison,
the corresponding prediction of our model is superimposed (solid
black line), revealing a qualitative difference between the two (see
text for discussion). Inset: DG(ω)/ω2 using DG(ω) in the green
dashed-dotted line in the main panel. See also Fig. 1 in [33] and text
for discussion.

presented in [33], termed the GPS model after its originators.
This model, along with the model of [51], inspired the formu-
lation of the model we studied, recently introduced in [49,50].
The GPS model assumes the existence of localized anhar-
monic vibrations/oscillators that are embedded in three di-
mensions, which feature 1/r3

i j interactions (ri j is the distance
between pairs of oscillators with indices i and j) of random
amplitudes Ji j .

The main difference compared to our model is not
dimensionality—our mean-field model formulated in the

Hamiltonian of Eq. (1) is infinite dimensional—but rather the
existence of finite internal stresses, encapsulated in the term
−h xi per oscillator in Eq. (1), which breaks the xi → −xi

symmetry of the Hamiltonian. The finite h allowed us to
identify a regime of weak interactions, quantified by y ≡
J/(h1/3κ

1/2
0 ) 	 1, where the prefactor of the ω4 tail of the

nonphononic VDoS, Ag, features an exponential variation of
−y−2, as mentioned above [49,50]. This regime does not exist
in the GPS model, though the universal tail ∼ω4 does exist
therein in the ω → 0 limit [33].

Here, we are not interested in the asymptotic tail, ω → 0,
but rather in the boson peak regime, which exists at signifi-
cantly higher frequencies. The prediction of the GPS model
for the nonphononic VDoS DG(ω) is provided in Eqs. (1)
and (2) in [33], where it is denoted as g(ω). We plot DG(ω)
corresponding to Eqs. (1) and (2) in [33] in Fig. 8 (green
dashed-dotted line). The striking observation is that DG(ω) of
the GPS model is a monotonically increasing function of ω,
with no peak (local maximum) at all. This is in sharp contrast
to the simulational and experimental observations presented in
Fig. 1, and the prediction of our model. The latter, a represen-
tative example of which is added to Fig. 8 (black solid line),
features a peak, similarly to simulational and experimental
observations, as discussed extensively above.

Only when DG(ω) of the GPS model is divided by
Debye’s scaling DD(ω) ∼ ω2, DG(ω)/ω2, a peak emerges, as
demonstrated in the inset of Fig. 8, originally presented in
Fig. 1 of [33] [note that conventionally the total VDoS D(ω)
is used in such boson peak plots, as discussed above]. This
result not only highlights yet another important difference
between our predictions and those of the GPS model, but also
demonstrates the importance of the subtraction procedure of
DG(ω) = D(ω) − AD ω2 in revealing the intrinsic properties
of the nonphononic VDoS DG(ω). In particular, it shows
that dividing two functions, each corresponding to different
pieces of physics (i.e., nonphononic and phononic VDoS), can
generate a peak, even if the nonphononic part does not feature
an intrinsic peak itself.
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