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Supercurrent-carrying supersolid in spin-orbit-coupled Bose-Einstein condensates
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One of brilliant achievements in spin-orbit-coupled Bose-Einstein condensates is the discovery and obser-
vation of the supersolid stripe states. So far, all studied supersolid stripe states do not carry supercurrent. In
this paper, we reveal the existence of supercurrent-carrying supersolids in spin-orbit-coupled Bose-Einstein
condensates. The supersolid family has a parabolic-like dispersion and carries supercurrent, which is proportional
to the quasimomentum. Energetic and dynamical instabilities can break supercurrent-carrying ability of this
supersolid family. An insightful interpretation of the dynamical instability of supercurrent-carrying supersolids
from the pure plane-wave phase is provided.
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I. INTRODUCTION

In the recent years, synthetic spin-orbit coupling in ultra-
cold atoms has been recognized as a powerful tool to simulate
many-body physics and explore exotic superfluids [1–3]. The
spin-orbit coupling can be artificially introduced in neutral
atoms by coupling two hyperfine states via a pair of Raman
lasers, where the two states are treated as pseudospin [4–6].
The celebrated spin-orbit-coupled Bose-Einstein condensates
(BECs) possess unconventional and rich ground-state phase
diagrams [7–16]. Outstanding exotic ground states of such
a system include the plane-wave phase and the stripe phase.
The plane-wave phase breaks the time-reversal symmetry so
that it is spin polarized [8,17]. The fundamental feature is
that the plane-wave phase supports a phonon-maxon-roton
structure in its elementary excitation spectrum [18,19]. This
phase provides a unique route to generate rotons [20–22].
The stripe phase simultaneously breaks the continuous trans-
lational symmetry and the gauge symmetry and accordingly
possesses supersolidity [23–27]. In the stripe phase, the den-
sity crystalline structure offers an intriguing approach for
experimental observation, while the elementary excitation
spectrum has Bloch band-gap structures, which includes two
gapless Nambu-Goldstone modes in the long wave-length
regime. The theoretical discovery [23–25] and experimental
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observation [27] of the supersolid stripe phase constitute a
main achievement in the field of spin-orbit-coupled BECs.
Rich physics relevant to supersolid stripes have been revealed,
including dynamics and excitations in these exotic states
[28–33]. On the other hand, atomic BECs with long-range in-
teractions are active platforms to support roton excitations and
to generate supersolid phases [34–36]. Superfluid properties
of long-range-interaction-induced supersolids have attracted
a great deal of research attention [37–40]. The spin-orbit-
coupling-induced supersolid stripes provide an alternative
means to detect the exotic superfluidity.

The fundamental property of superfluids is that they can
carry current flow without dissipation. The supercurrent-
carrying ability is limited by two different instabilities [41].
Energetic instability happens when elementary excitations
of a supercurrent-carrying superfluid have negative energies.
The instability physically relates to the Landau’s criterion of
superfluidity. When the velocity of the superfluid is larger
than a critical velocity, the superfluid becomes energeti-
cally unfavorable and then loses the supercurrent-carrying
ability. Dynamical instability emerges when imaginary en-
ergies appear in elementary excitations [42]. The instability
causes the exponential growth of excitation perturbations and
therefore breaks superfluidity. Immediately after the first ex-
perimental realization of spin-orbit-coupled BECs [4], the
existence of supercurrent-carrying plane-wave states are pro-
posed [7,20,43]. Dynamical instability of these states is
caused by their negative effective mass, and the energetic
instability is shown to relate to the negative-energy phonon
or negative-energy roton [20]. So far, all studied supersolid
stripe phases in spin-orbit-coupled BECs in literature do not
carry supercurrent. Whether there exist supercurrent-carrying
supersolid stripes becomes an intriguing question. The main
intuitive concern is that the density crystalline structure of
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stripes is not in favor of current flow. If they exist, the instabil-
ities of their superfluidity naturally arise as a further question.

In this paper, we address the above two questions by
constructing supercurrent-carrying supersolid stripes and an-
alyzing their stabilities. The construction is inspired by Bloch
waves in optical lattices [44–47]. In a one-dimensional optical
lattice, the Bloch wave function is exp(ikx)φ(x), where k
is the quasimomentum, and φ(x) is a periodic function. It
is well known that the Bloch waves carry current flow if
k �= 0. Therefore, the plane-wave prefactor exp(ikx) becomes
the source of the current carried by the Bloch waves. We
assume the wave function of supersolids to have a similar form
as Bloch waves. The obvious difference is that the periods
of the supersolid wave functions should be determined by
minimizing the associated energy functional, while the pe-
riod of the Bloch waves in optical lattice has a fixed value
related to the wave length of the lattice beams. The supersolid
family we found has the same density period and carries
current flow that is proportional to the quasimomentum. The
features of the supersolid family, including contrasts and spin
polarizations, are identified. Energetic and dynamical insta-
bilities are revealed, which can lead to the breakdown of
their supercurrent-carrying ability. We calculate the relevant
elementary excitations of the supersolid family, from which
the energetic and dynamical instabilities are identified. The
energetic instability relates to the well-known Landau’s crite-
rion of superfluidity. The dynamical instability is qualitatively
understood from the pure plane-wave phase. In spin-orbit-
coupled BEC experiments, the detuning is a tunable and
important parameter. We also study the supercurrent-carrying
supersolid stripes in the presence of the detuning.

The outline of the paper is as follows. In Sec. II, we present
our theoretical frame for investigating supercurrent-carrying
supersolids and their instabilities. In Sec. III, we reveal the
existence of the supercurrent-carrying supersolid family in
the absence of detuning. Important features of the supersolid
family are identified. The reasons of their energetic and dy-
namical instabilities are explained. The supercurrent-carrying
supersolid stripes in the presence of detuning are considered
in Sec. IV. In Sec. V, we discuss experimental accessibility
of the novel supercurrent-carrying supersolids. Finally, the
conclusions follow in Sec. VI.

II. THEORETICAL MODEL

We consider a spin-orbit-coupled spin-1/2 BEC. The spin-
orbit coupling can be induced between two hyperfine states
of the atoms via a two-photon transition process induced by
a pair of Raman beams [4]. The system is described by the
Gross-Pitaevskii (GP) equations,

i
∂ψ

∂t
= (HSOC + Hint )ψ, (1)

where ψ = (ψ1, ψ2)T is the two-component wave function.
The GP equations are dimensionless. We choose the units
of momentum, length, and energy as h̄kRam, 1/kRam, and
h̄2k2

Ram/m, respectively. Here, kRam = 2π/λRam is the wave
vector of the Raman lasers with λRam being the corresponding
wave length, and m is the atom mass. The spin-orbit-coupled

single-particle Hamiltonian is

HSOC = −1

2

∂2

∂x2
− i

∂

∂x
σz + �

2
σx + δ

2
σz, (2)

with σx,z being Pauli matrices. � is the Rabi frequency, which
depends on Raman laser intensities, and δ is the detuning
of the two laser beams with respect to the energy difference
between the two hyperfine levels. Hint denotes the contact
interactions,

Hint[ψ] =
(

g|ψ1|2 + g12|ψ2|2 0

0 g|ψ2|2 + g12|ψ1|2
)

.

g and g12 are nonlinear coefficients for intra- and intercom-
ponent interactions respectively, which are proportional to the
corresponding s-wave scatting lengths.

At the first stage, we search supercurrent-carrying super-
solid solutions to the GP equations. The wave function of
supersolids can be constructed as

ψ (x, t ) = √
n0eikx−iμt

[
φ1(x)
φ2(x)

]
,

φ1,2(x) =
L∑

j=−L

ei jξxφ
( j)
1,2, (3)

where n0 denotes the mean atom density and μ is the chemical
potential. The plane-wave prefactor exp(ikx) is introduced for
the generation of current and k is the quasimomentum. φ1,2(x)
are periodic functions and are expressed as a superposition
of plane-wave modes exp(i jξx) with coefficients φ

( j)
1,2. L is

the cutoff of the mode number and ξ determines the period
of supersolids. The coefficients φ

( j)
1,2 satisfy the normalization

condition,

L∑
j=−L

[∣∣φ( j)
1

∣∣2 + ∣∣φ( j)
2

∣∣2] = 1.

For a given quasimomentum k, the constructed wave functions
are fully determined by minimizing the energy functional
associated to the GP equations,

E[ψ] =
∫

dxψ†HSOCψ + g

2

∫
dx(|ψ1|4 + |ψ2|4)

+ g12

∫
dx|ψ1|2|ψ2|2. (4)

After the minimizing procedure, the unknown quantities, i.e.,
ξ and φ

( j)
1,2, can be obtained. The dependence of the resultant

minimized energy E on the quasimomentum k, i.e., E (k),
constitutes the dispersion relationship of supersolid stripe
family. Then substituting the resultant wave function into the
GP equations, we can calculate the corresponding chemical
potential,

μ =
∫

dxψ†HSOCψ + g
∫

dx(|ψ1|4 + |ψ2|4)

+ g12

∫
dx|ψ1|2|ψ2|2. (5)
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Whether the states carry supercurrent can be checked by cal-
culating the current density J ,

J = 〈ψ |v̂|ψ〉

= n0k + n0

L∑
j=−L

[
jξ

(∣∣φ( j)
1

∣∣2 + ∣∣φ( j)
2

∣∣2)

+ (∣∣φ( j)
1

∣∣2 − ∣∣φ( j)
2

∣∣2)]
, (6)

where v̂ = −i∂x + σz is the velocity operator resulting from
the the spin-orbit coupling [48–51]. We can see that the cur-
rent density is the product of the velocity and the density.
The nonzero quasimomentum k plays an important role in the
generation of current flow.

The elementary excitation spectrum can be calculated once
we know the wave function ψ and associated chemical poten-
tial μ. When the system is perturbed, the total wave functions
can be written as the sum of the ground-state supersolid stripe
ψ and perturbations δψ ,

�(x, t ) = √
n0eikx−iμt

{[
φ1(x)
φ2(x)

]
+ δψ (x, t )

}
, (7)

with

δψ (x, t ) =
[

u1(x)e−iωt + v∗
1 (x)eiω∗t

u2(x)e−iωt + v∗
2 (x)eiω∗t

]
. (8)

Here, ω is the excitation energy, and u1,2(x) and v1,2(x)
are perturbation amplitudes, satisfying the normalization
condition, ∑

j=1,2

∫
dx[|u j (x)|2 − |v j (x)|2] = 1.

By substituting the total wave functions into the GP equa-
tions [Eq. (1)] and keeping the linear terms with respect
to perturbation amplitudes u1,2 and v1,2, we obtain the
Bogoliubov–de Gennes (BdG) equation [52],

M = ω, (9)

with

 = (u1, u2, v1, v2)T , M =
( A B

−B∗ −A∗

)
.

The matrices A and B are

A = �

2
σx +

(
H1 − i(∂x + ik) n0g12φ1φ

∗
2

n0g12φ
∗
1φ2 H2 + i(∂x + ik)

)
,

B = n0

(
gφ2

1 g12φ1φ2

g12φ1φ2 gφ2
2

)
,

with

H1 = −1

2

(
∂

∂x
+ ik

)2

+ δ

2
+ 2n0g|φ1|2 + n0g12|φ2|2 − μ,

H2 = −1

2

(
∂

∂x
+ ik

)2

− δ

2
+ 2n0g|φ2|2 + n0g12|φ1|2 − μ.

By diagonalizing the BdG equation, we can get the excitation
energy ω. Since the wave functions φ1,2(x) have the period
of 2π/ξ , the matrices M depending on quadratic terms of

φ1,2 are also periodic with the period π/ξ . Therefore, the
excitation spectrum will have Bloch band-gap structures and
perturbation amplitudes are in the form of Bloch waves. To
proceed the diagonalization of the BdG equation, we set the
perturbation amplitudes as Bloch waves and expand them by
the plane-wave basis,

u1,2(x) = eiqx
L∑

j=−L

U ( j)
1,2 ei(2 j+1)ξx,

v1,2(x) = eiqx
L∑

j=−L

V ( j)
1,2 ei(2 j+1)ξx, (10)

where q is the perturbation quasimomentum, and U ( j)
1,2 and

V ( j)
1,2 are expansion coefficients. The excitation spectrum ω(q)

can be straightforwardly obtained by substituting Eq. (10) into
Eq. (9) and diagonalizing the resultant BdG equation. It was
shown that the excitation spectrum has two gapless Nambu-
Goldstone modes in the long wave-length regime (q → 0) for
a ground-state supersolid stripe phase and their appearance
characterizes the superfluidity of the stripe phase [25]. Based
on the elementary excitations, the properties such as quantum
depletion [26] and structure factors [25,53] can be analyzed.

The matrix M is non-Hermitian, allowing for the existence
of imaginary excitation energies. In the case of imaginary
energies, the perturbations in Eq. (8) grow exponentially, so
that the associated supersolid stripe is dynamically unstable.
Such dynamical instability will destroy the associated super-
solid stripe. The ground-state supersolid stripes are always
dynamically stable. Recently, it is proposed that dynamical
instability can be induced in a metastable supersolid stripe in
spin-orbit-coupled BECs [54].

The energetic instability is associated with the excitation
spectrum corresponding to τM [42], with

τ =
(

I
−I

)
,

where I is a 2 × 2 identical matrix. The eigenvalue equa-
tion can then be written as

τM = ω′. (11)

The matrix τM is Hermitian so that it always has a real
spectrum. The energetic instability is featured with negative
values of the energy spectrum. The appearance of negative
energy modes in ω′ means that the associated BEC state is
energetically unfavorable. It was shown that the negative en-
ergies may happen around phonon and roton excitations for a
supercurrent-carrying plane-wave state in spin-orbit-coupled
BECs [20].

III. SUPERCURRENT-CARRYING SUPERSOLID STRIPES
WITHOUT THE DETUNING

In spin-orbit-coupled BEC experiments, the detuning δ is
an important tunable parameter. With or without the detuning,
the symmetries of HSOC changes dramatically, which will lead
to a profound impact on relevant physics. We first study the
existence and stability of supercurrent-carrying supersolids
in the absence of the detuning. It is already known that the
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FIG. 1. Supercurrent-carrying supersolids in the absence of the detuning (δ = 0). The parameters are � = 0.4, n0g = 0.5, and n0g12 = 0.2.
(a) The energy of the supercurrent-carrying supersolids. In the region of |k| < 0.38 (green line) the states are stable, in 0.38 � |k| � 0.58
(blue line) they are energetically unstable, and in 0.58 < |k| < 0.78 (red line) they are both dynamically and energetically unstable. Beyond
|k| = 0.78 (purple-dotted line), the states become the plane waves. Several typical wave functions represented by labeled dots at k = 0, 0.4, 0.7
are shown in (b)–(d), where the red-solid and blue-dashed lines denote the density of the first [n1 = |ψ1(x)|2] and second [n2 = |ψ2(x)|2]
components, respectively. (e) The current density of corresponding supersolids in Eq. (6). (f) The contrasts of corresponding supersolids. The
red-solid and blue-dashed lines are the contrasts for the first and second components, respectively. (g) The spin polarizations of corresponding
supersolids. The red-solid and blue-dashed lines represent 〈σz〉 and 〈σx〉, respectively. (h) The density distribution of the plane wave at k = 1.

ground-state supersolid stripe phase, which does not carry
supercurrent only exists in the miscible interactions g > g12

[9,27,55]. This motivates us to study the supercurrent-carrying
analogs in this interaction regime with an intuitive expectation
that they may share the same stability with the ground states if
they exist. We choose n0g = 0.5, n0g12 = 0.2, and � = 0.4 in
all the numerical calculations, and thus the supersolid stripe at
k = 0 is the ground state of the system.

By applying the trial wave functions in Eq. (3) and the
minimization procedure illustrated in the previous section, we
get the supercurrent-carrying supersolid states, whose disper-
sion relation E (k) is shown in Fig. 1(a). The dispersion of the
stripe family has a parabolic-like shape. The supersolid stripe
with k = 0 has the lowest energy, corresponding to the ground
state of the system, which is widely studied in literature. Its
density crystalline structures are demonstrated in Fig. 1(b).
The two components have the same periodic structure, i.e.,
|ψ1(x)|2 = |ψ2(x)|2. Therefore, its spin polarization is 〈σz〉 =∫

dx(|ψ1|2 − |ψ2|2) = 0. The period of crystalline densities
is π/ξ with ξ = 0.98. Such value of ξ is very close to the
spin-orbit-coupling strength, which is 1 in our dimensionless
units. The supersolid family demonstrated by the solid line
in Fig. 1(a) has the same period with the k = 0 supersolid.
Two typical density profiles at k = 0.4 and 0.7 are depicted
in Figs. 1(c) and 1(d), respectively. Compared with the k = 0
supersolid, the family has three distinguished features.

(1) The supersolid family does carry current flow. The
calculated current density from Eq. (6) for the associated
supersolids with different k is shown in Fig. 1(e). Only the
k = 0 supersolid has a zero-current density, and all others
are nonzero. The sign of the current density is same as the
quasimomentum k. For k > 0 states, the current flows in the

positive direction. In contrast, for k < 0 states, the current
density is negative, which means that it flows towards the
negative direction. The nonzero current witnesses that it is
essentially important to introduce the plane-wave prefactor
exp(ikx) in the construction of supersolid wave functions.

(2) The contrasts of crystalline densities are spin dependent
and vary obviously depending on the quasimomentum k. The
contrast is defined as

C = nmax − nmin

nmax + nmin
, (12)

where nmax (nmin) is the maximum (minimum) of the density.
From the density profiles in Figs. 1(c) and 1(d), we can see
that two components still overlap with each other, while they
have apparently different contrasts. The contrasts of the two
components as a function of the quasimomentum k are shown
in Fig. 1(f). For k > 0, the contrast of the first component de-
creases (the red-solid line), and that of the second component
increases (the blue-dashed line) by raising k. However, the
dependence of C on k changes oppositely for k < 0. When |k|
reaches a critical value, the contrast of the one of two compo-
nents completely disappears, and this component turns into a
plane wave. A bit beyond the critical |k|, the supersolid family
can not exist and the solutions become the plane-wave phase,
which is represented by the purple-dotted line in Fig. 1(a). A
typical plane-wave density distribution is plotted in Fig. 1(h).
The obvious feature of the plane-wave phase is its spin po-
larization, which is a result of the spontaneous breakdown of
time-reversal symmetry.

(3) Most of the supercurrent-carrying supersolid states are
spin balanced. At first glance on Figs. 1(c) and 1(d), two
components may be spin imbalanced. However, the density
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FIG. 2. Elementary excitation spectrum ω(q) and instabilities of supercurrent-carrying supersolids in the absence of the detuning (δ = 0).
The parameters are � = 0.4, n0g = 0.5, and n0g12 = 0.2. [(a1)–(a4)] Elementary excitation spectrum of the associated supersolids at k =
0, 0.2, 0.5, 0.7. Only the four lowest bands are shown. The solid and dashed lines are the real and imaginary parts of the spectra, respectively.
(b) The instability regions in the (k, q) plane. The white, light-green, and dark-green regions represent stable, energetically unstable, and
dynamically unstable modes, respectively.

oscillating centers of the two components are not coincident,
resulting in the spin balance between the two components.
The calculated spin polarization 〈σz〉 and 〈σx〉 are demon-
strated in Fig. 1(g). It is shown that the two components
are spin-balanced (〈σz〉 ≈ 0) in the dominated region of the
quasimomenta (|k| < 0.7). When |k| > 0.7, the supersolids
change dramatically to adjust distributions including contrast
and spin polarization for the preparation of transition to the
plane-wave phase.

The three features are intrinsically correlated, which
can be understood in the following way. We start from
the GP equation and neglect the nonlinear interactions,
HSOC|ψ〉 = E |ψ〉, with |ψ〉 being the supersolid stripe state
and the associated energy E . The stripe wave function is
Bloch-wave-like, i.e., |ψ〉 = eikx|φ〉 with |φ〉 being a pe-
riodic function. Then the GP equation becomes H ′|φ〉 =
E |φ〉. Here, H ′ = e−ikxHSOCeikx = −(∂x + ik)2/2 − i(∂x +
ik)σz + �σx/2. By applying the Hellman-Feynman theo-
rem, we get ∂E/∂k = 〈φ|∂H ′/∂k|φ〉 = k + 〈φ|(−i∂x )|φ〉 +
〈φ|σz|φ〉 = J [56]. Meanwhile, the spin polarization of the
supersolids is zero, 〈φ|σz|φ〉 = 0, as shown in Fig. 1(g),
and 〈φ|(−i∂x )|φ〉 ≈ 0. We then have J ≈ k and ∂E/∂k ≈ k.
Therefore, the current density linearly depends on the quasi-
momentum k and its sign is relevant to the sign of the latter.
This provides an insight for the understanding of the results
in Fig. 1(e). ∂E/∂k ≈ k leads to E ∝ k2, which explains the
parabolic-like shape of dispersion relation shown in Fig. 1(a).
On the other hand, when k = 0, the Hamiltonian H ′ has the
time-reversal symmetry, i.e., T H ′T −1 = H ′, with T = Kσx

and K being the complex conjugate operator. The k = 0 su-
persolid inherits the time-reversal symmetry, giving rise to

|ψ1(x)|2 = |ψ2(x)|2. Therefore the two components have the
same contrast. However, the presence of nonzero quasimo-
mentum breaks the time-reversal symmetry. Consequently, the
two components in the supercurrent-carrying supersolids have
different contrasts.

Given that the supercurrent-carrying supersolid stripes can
exist, we study their elementary excitations by solving the
BdG equations [Eq. (9)] with the purpose for examining their
dynamical instabilities, and we also calculate Eq. (11) to ex-
amine energetic instabilities. The elementary excitations ω(q)
for the supersolid states with k = 0, 0.2, 0.5, 0.7 are shown in
Figs. 2(a1)–2(a4). As the supersolids are periodic in densities
with the period of π/ξ , the elementary excitation spectra
have Bloch band-gap structures with the Brillouin zone size
2ξ . For the supersolid with k = 0, the excitation spectrum
is symmetric with respect to the Brillouin zone centered at
q = 0 [Fig. 2(a)]. The typical feature is that the lowest two
bands have two gapless Nambu-Goldstone modes in the long
wave-length region (q → 0). The time-reversal symmetry is
broken by the nonzero quasimomentum k. Consequently, the
excitation spectrum losses the symmetry with respect to the
Brillouin center. The excitation spectrum of the k = 0.2 su-
persolid in Fig. 2(a2) shows such an asymmetry. The energy
of two gapless modes softens in the q < 0 region (i.e., around
q/ξ = 2 in the figure). There is no imaginary-energy excita-
tion in both k = 0 and k = 0.2 supersolids, which means that
these two supersolids are dynamically stable. For the super-
solid with k = 0.5, the softening of the gapless modes around
q/ξ = 2 leads to the lowest mode becoming energy-negative
[see Fig. 2(a3)]. It was proved that the energetic instability can
also be indicated from the existence of negative-energy modes
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in elementary excitation based on the BdG equation instead of
calculating Eq. (11) [57]. The appearance of negative-energy
modes shown in Fig. 2(a3) is a signal that the corresponding
k = 0.5 supersolid is energetically unstable. However, this
supersolid is dynamically stable since there is no imaginary
energy excitation. The excitation spectrum demonstrated in
Fig. 2(a4) for the k = 0.7 supersolid is very different from
others in Figs. 2(a1)–2(a3). There are imaginary-energy ex-
citations (represented by dashed lines in the figure), which
indicates the k = 0.7 supersolid dynamically unstable.

The imaginary-energy and negative-energy excitations
emerge in the lowest two bands of the elementary excitation
spectra, and they are confined in a finite quasimomentum
q region. We systematically identify the region of the quasi-
momentum q where imaginary-energy and negative-energy
excitations happen by calculating Eqs. (9) and (11), respec-
tively. The results are shown in the (k, q) plane in Fig. 2(b).
In this figure, the white region represents that there is no
imaginary-energy and negative-energy excitation, there are
negative-energy excitations in the light-green region, and in
the dark-green region there are imaginary-energy excitations.
The structures in Fig. 2(b) have an exact symmetry (k, q) →
(−k,−q). This is because the BdG equations in Eq. (11)
possess the symmetry M(k, q) = M(−k,−q). Appearance
of imaginary-energy (negative-energy) excitations means that
the associated supersolids are dynamically (energetically) un-
stable. From Fig. 2(b), we can demarcate instability regions:
the supersolids in |k| < 0.38 are stable, in 0.38 � |k| < 0.58
are energetically unstable, and in 0.58 � |k| < 0.78 are dy-
namically and energetically unstable. We also incorporate the
instability regions by different colored lines in Fig. 1(a).

The above identified energetic instability can be under-
stood straightforwardly. The velocity of carried supercurrent
in supersolids is proportional to the current density, which
is approximately J ≈ n0k. As the quasimomentum |k| in-
creasing from zero, the supercurrent velocity also increases.
When |k| reaches a critical value, the supercurrent-carrying
ability is broken according to Landau’s criterion of super-
fluidity, which leads to energetic instability. Therefore, the
supercurrent-carrying supersolids are energetically stable only
within a certain quasimomentum k region around k = 0.

The dynamical instability of the supercurrent-carrying
supersolids identified above is of interest. We provide an in-
sightful picture to qualitatively understand its emergence. It
is noticed that the supersolids are composed of plane waves
exp[i(k + jξ )x] with j being an integer [see Eq. (3)]. This
motivates us to study the pure plane-wave solutions firstly.
The wave function of plane-wave phase is [20]

ψ = √
n0eik′x−iμ′t

(
ϕ1

ϕ2

)
. (13)

Here the spinor (ϕ1, ϕ2)T is spatially independent and satis-
fies |ϕ1|2 + |ϕ2|2 = 1. The spinor together with the chemical
potential μ′ can be determined by minimizing the associated
energy functional. The resultant energy E ′(k′) of the plane-
wave phase is shown in Fig. 3(a), which has a similar structure
to the single-particle spin-orbit-coupled energy. The analy-
sis of dynamical instability of the plane-wave phase can be
performed by solving the associated BdG equations similar

FIG. 3. (a) Energy of the plane-wave phase in the absence of
detuning (δ = 0). The parameters are the same as Figs. 1 and 2.
The red-dashed line in the region of |k′| < 0.51 indicates that the
corresponding plane waves are dynamically unstable. Dynamically
stable plane waves are represented by the blue solid line. (b) Energy
of the plane-wave phase in the presence of the detuning (δ = 0.1).
The parameters are the same as Figs. 4 and 5. The plane waves
in the region −0.56 < k′ < 0.46 (red-dashed line) are dynamically
unstable. Superposition of two plane waves (labelled by green dots)
may give a main contribution to the corresponding supersolid.

to Eq. (9). The result is that the plane waves in the region
of |k′| < 0.51 are dynamically unstable [represented by the
red-dashed line in Fig. 3(a)], and others are dynamically
stable. Such dynamical instability of the plane-wave phase
was revealed to relate with the negative effective mass [20].
We interpret the dynamical instability of the supercurrent-
carrying supersolids from the instability of the plane-wave
phase. In the wave function of the supersolids

∑
j exp[i(k +

jξ )x](φ( j)
1 , φ

( j)
2 )T , the j = ±1 plane waves have a dominant

occupation, which can be seen from the numerically calcu-
lated wave function. When k � 0.47, the j = −1 plane wave
exp[i(k − ξ )x] enters into the dynamically unstable region of
the pure plane-wave phase (since ξ = 0.98) [see the green
dots in Fig. 3(a)], the consequence of which is that the whole
wave function of the supersolids may become dynamically
unstable. In the same way, when k � −0.47, the j = 1 plane
wave exp[i(k + ξ )x] accesses to the dynamically unstable re-
gion of the pure plane-wave phase. Therefore, the supersolids
are expected to be dynamically unstable when |k| � 0.47.
This predicted region is different from the previous numerical
result (|k| � 0.58). This indicates that the interpretation of the
dynamical instability of the supersolids by that of the pure
plane-wave phase is not exact. After all, the supersolids are
an assembly of many plane waves. Nevertheless, it provides
a profound insight to understand the dynamical instability of
the supercurrent-carrying supersolids.

Finally, we emphasize that it is the plane-wave factor
exp(ikx) that induces supercurrent and instability in super-
solid stripes. The stripe at k = 0 is the ground state of the
system, which does not carry current and is always dy-
namically and energetically stable. The energetic instability
indicates that the associated supersolid stripe is energetically
unfavorable, and the system actually prefers the plane-wave
phase [3]. The dynamical instability breaks the associated
supersolid stripe to give rise to complicate and random density
patterns. The fate of such an unstable stripe is similar to
that of a dynamically unstable Bloch wave in optical lattices
[58,59], where the loss of atoms and random density patterns
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FIG. 4. Supercurrent-carrying supersolids in the presence of the detuning (δ = 0.1). The parameters are � = 0.4, n0g = 0.5, and n0g12 =
0.2. (a) The energy of the supercurrent-carrying supersolids. In the region of −0.33 < k < 0.35 (green line) the states are stable, in −0.52 �
k � −0.33 and 0.35 � k � 0.58 (blue line) they are energetically unstable, and in k > 0.58 and k < −0.52 (red line) they are both dynamically
and energetically unstable. Typical wave functions labeled by dots at k = 0 and 0.5 are shown in (b) and (c), where the red-solid and blue-
dashed lines denote the density of the first [n1 = |ψ1(x)|2] and second [n2 = |ψ2(x)|2] components respectively. (d) The current density of
corresponding supersolids in Eq. (6). (e) The contrasts of corresponding supersolids. The red-solid and blue-dashed lines are the contrasts of
the first and second components, respectively. (f) The spin polarizations of corresponding supersolids. The red-solid and blue-dashed lines
represent 〈σz〉 and 〈σx〉, respectively.

have been experimentally observed [60,61]. Meanwhile, the
dynamical instability of the Bloch wave is used as a signal for
the existence of solitonic solutions [62,63].

IV. SUPERCURRENT-CARRYING SUPERSOLID STRIPE
WITH THE DETUNING

In the presence of the detuning term (δ/2)σz, HSOC does not
have the time-reversal symmetry, and the system prefers spin-
polarized solutions with nonzero 〈σz〉. The experimentally
tunable detuning brings novel physics in spin-orbit-coupled
BECs [10,11]. We will show that supercurrent-carrying su-
persolid stripes can still exist in the presence of the detuning.
Using the same constructed wave functions in Eq. (3) and
following the procedure of minimizing the associated energy
functional, we obtain the supersolid stripes in the parameter
regime of δ = 0.1, � = 0.4, n0g = 0.5, and n0g12 = 0.2.

The dispersion relation E (k) is demonstrated in Fig. 4(a).
The whole family has the same density period π/ξ with
ξ ≈ 0.98, which is nearly the same as the zero-detuning case
in the previous section. The density distributions for the k = 0
and k = 0.5 supersolids are described in Figs. 4(b) and 4(c),
respectively. The outstanding feature is that the two com-
ponents are spin imbalanced. The second component has a
larger occupation when δ > 0. The family carries supercurrent
and the current density is shown in Fig. 4(d). It is obvious
that the current density is still linearly dependent on the

quasimomentum, J ∝ k. The contrast of each component as a
function of the quasimomentum is demonstrated in Fig. 4(e).
In the positive quasimomentum region, the contrast of the
first component decreases with k increasing, and it completely
disappears after k reaching a critical value, indicating that the
first component turns to be a plane wave. Beyond the criti-
cal quasimomentum, the supersolids can not exist. Similarly,
in the negative quasimomentum region, the contrast of the
second component gradually disappears. Therefore, the super-
solids can only exist in a finite quasimomentum region, which
is −0.72 � k � 0.85. Such an asymmetric existence region
with respect to k = 0 becomes a main difference compared
with the zero-detuning case shown in Fig. 1(a). In the main
part of the existence region, the spin polarizations 〈σz〉 and
〈σx〉 are almost constant and negative [see Fig. 4(f)]. Around
the existence region boundaries, the spin polarizations change
dramatically.

The breakdown of supercurrent-carrying ability may
be induced by energetic and dynamical instabilities. In
order to analyze the instability, we calculate elementary
excitations of supercurrent-carrying supersolid stripes. The
elementary excitation spectrum ω(q) for the supersolids
with k = 0, 0.2, 0.5, 0.7 are shown in Figs. 5(a1)–5(a4),
respectively. All the spectra show the asymmetry with respect
to q = 0 due to the lack of the time-reversal symmetry, which
is a result of the nonzero detuning. The structures of the
spectra are similar to these in the zero-detuning cases shown in
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FIG. 5. Elementary excitation spectrum ω(q) and instabilities of supercurrent-carrying supersolids in the presence of the detuning (δ =
0.1). The parameters are � = 0.4, n0g = 0.5, and n0g12 = 0.2. [(a1)–(a4)] Elementary excitation spectrum of the associated supersolids at
k = 0, 0.2, 0.5, 0.7. Only the four lowest bands are demonstrated. The solid and dashed lines are the real and imaginary parts of the spectra,
respectively. (b) The instability regions in the (k, q) plane. The white, light-green, and dark-green regions represent stable, energetically
unstable, and dynamically unstable modes, respectively.

Figs. 2(a1)–2(a4). The negative-energy excitations
[Fig. 5(a3)] and the imaginary-energy excitations [Fig. 5(a4)]
happen in the lowest two bands. From the elementary
excitation spectrum, we capture instability regions
and show them in the (k, q) plane in Fig. 5(b). The
instability regions (shadowed areas in the figure) lose
the symmetry of (k, q) → (−k,−q) since in the BdG
equations M(k, q) �= M(−k,−q) in presence of the
detuning. From boundaries of light-green regions (for
energetic instability) and dark-green regions (for dynamical
instability), we conclude that in the region −0.33 < k < 0.35
[shown by the green line in Fig. 1(a)] the supersolids are
stable, in −0.52 � k � −0.33 and 0.35 � k � 0.58 [the
blue line in Fig. 1(a)] they are energetically unstable, and in
k > 0.58 and k < −0.52 [the red line in Fig. 1(a)] they are
both dynamically and energetically unstable.

The onsets of the dynamical instability are at k = 0.58
and k = −0.52, which are not symmetric with respect to
k = 0. The occurring of the dynamical instability as well as
its asymmetric parameter region can be explained from the
pure plane-wave phase. The energy of the plane-wave phase
shown in Fig. 3(b) still has a double-well structure. However,
in comparison with the zero-detuning case shown in Fig. 3(a),
the nonzero detuning biases the double wells, so that the
dispersion loses the symmetry with respect to k′ = 0. Further-
more, the region of the dynamical instability in the plane-wave
phase also loses the symmetry with respect to k′ = 0, and it
is −0.56 < k′ < 0.46 [represented by the red-dashed line in
Fig. 3(b)]. Even in the presence of the detuning, the j = ±1
plane waves in the wave function of supercurrent-carrying
supersolids

∑
j exp[i(k + jξ )x](φ( j)

1 , φ
( j)
2 )T still have a

dominant occupation. Considering ξ ≈ 0.98 in the supersolid
family, when k > 0.42, the j = −1 plane wave exp[i(k − ξ )x]
enters into the dynamically unstable region of the pure plane-
wave phase [see the green dots in Fig. 3(b)]. Similarly, when
k < −0.52, the j = 1 plane wave exp[i(k + ξ )x] enters into
the dynamically unstable region of the pure plane-wave phase.
Therefore, intuitively following the dynamical instability of
the pure plane-wave phase, we predict the supersolid family
becomes dynamically unstable in the region of k > 0.42 and
k < −0.52. The predicted onsets are at k = 0.42 and k =
−0.52, which are not symmetric with respect to k = 0. The
reason of such asymmetry is that the dispersion relation of
the pure plane-wave phase does not have the symmetry with
respect to k′ = 0 as shown in Fig. 3(b) due to the detuning.
It is noticed that the predicted onsets are not exact to the
numerically calculated values.

V. EXPERIMENTAL CONSIDERATIONS

We have uncovered the existence of supercurrent-carrying
supersolid stripes. Now we discuss their experimental acces-
sibility. Experiments may start from a two-component BEC
with miscible interactions in an elongated trap. Dressing
the two-component BEC along the longitudinal direction by
adiabatically ramping up two Raman lasers can prepare a
supersolid stripe [27]. Such an implementation of supersolid
stripes corresponds to the ground state, i.e., the k = 0 su-
persolid, which does not carry supercurrent. Then the k = 0
supersolid may be accelerated by applying an external force F
along the longitudinal direction, such as the gravity-induced
force [64,65]. The quasimomentum of the supersolid will
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increase linearly with the time t , i.e., k = Ft/h̄ [66]. By
controlling the duration of the applied force, we can pre-
pare the supersolid with a desired quasimomentum. Once the
supercurrent-carrying supersolids are prepared, their dynami-
cal instability can be observed by holding the supersolids for
a certain time and measuring the loss of condensed atoms
[12,60]. In the spin-orbit-coupled supersolid stripe experi-
ment in Ref. [27], the excitations in the transverse directions
are completely irrelevant to the observed results. We expect
that the transverse degrees of freedom may not qualitatively
change the predicted instability results of the supercurrent-
carrying supersolids, which are reminiscent of Bloch states
in a longitudinal optical lattice. It has been shown that the
transverse degrees of freedom do not qualitatively modify the
instabilities of the Bloch states existing along the longitudinal
direction [67].

VI. CONCLUSIONS

By constructing Bloch-wave-like supersolid wave func-
tions, we revealed the existence of supercurrent-carrying
supersolid stripes in spin-orbit-coupled BECs. The family
of supersolid stripes has the same density period and pos-
sesses a parabolic-like dispersion. The current carried by these
supersolids is proportional to the quasimomentum. Energetic

and dynamical instabilities emerge with a large current, which
limit the supercurrent-carrying ability of the supersolids and
even destroy them. The energetic instability relates to the
well-known Landau’s criterion of superfluidity. The dynam-
ical instability is interpreted as that the supersolid stripes
involve a dynamically unstable plane wave. These results pro-
vide a possible route to exploring exotic supersolids carrying
supercurrents and their instabilities.
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