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We study the entanglement spectra of surface states of symmetry-protected topological phases. The topolog-
ical bulk imprints the surface with an anomaly that does not permit it to form a trivial “vacuum” state that is
gapped, unfractionalized, and symmetry preserving. Any surface wave function encodes the topology of the
underlying bulk in addition to a specific surface phase. We show that the real-space entanglement spectrum
of such surface wave functions are dominated by the bulk topology and do not readily permit identifying the
surface phase. We thus use a modified form of entanglement spectra that incorporates the anomaly and argue
that they correspond to physical edge states between different surface states. We support these arguments by
explicit analytical and numerical calculations for free and interacting surfaces of three-dimensional topological
insulators of electrons.
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I. INTRODUCTION

Over the past years, entanglement has surpassed the notion
of correlations for characterizing and identifying quantum
many-body systems. Famously, the entanglement entropy of
two-dimensional gapped systems contains a universal con-
tribution that is nontrivial for topologically ordered states
[1,2]. This contribution vanishes for symmetry-protected
topological states (SPTs), which do not host any fractional
quasiparticles in the bulk. Still, their nontrivial topological
nature can be deduced by resolving the entanglement entropy
according to symmetries [3–5].

More refined information about topological states can be
obtained from entanglement spectra (ES). In a seminal work,
Li and Haldane [6] showed that the ES of certain quantum
Hall states and their energy spectra at a physical edge are
describable by the same conformal field theory. They ar-
gued that topological phases can thus be identified by their
ES. Subsequently, such an ES-edge state correspondence has
been proven for a broad class of two-dimensional topological
states [7,8]. Additionally, the agreement of ES and physi-
cal edge spectra has been confirmed empirically for various
other systems, including topological insulators [9,10], p-wave
superfluids in the continuum [11] and on a lattice [12,13],
fractional quantum Hall states [14–16], spin chains [17], and
the Kitaev honeycomb model [18].
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The conjectured ES-edge correspondence is a consequence
of bulk-edge correspondence in gapped systems [7]. How-
ever, this bulk-edge correspondence does not directly apply
to an essential and widely studied class of condensed-matter
systems: Surface states of topological insulators or super-
conductors. Such states are characterized by bulk topological
invariants that are different from the vacuum, i.e., they change
discretely across the surface. Any SPT surface state must
encode this change in topological invariants. When viewed
as effective D-1 dimensional systems, the information about
their topological origin yields an anomaly. They cannot be
regularized in D-1 dimensions without breaking one of the
symmetries protecting the SPT. Similarly, one cannot have a
symmetric boundary between states with different anomalies
(e.g., between a surface state and a trivial state).

These distinctive states, referred to as anomalous surface
states in the literature [19,20], have been the subject of exten-
sive investigation in the context of topological classification
[21–24]. Some of the phases hosted by SPT surfaces have
also been realized experimentally [25–27]. In fact, exper-
imentally probing the surface states is typically the most
efficient method for identifying the underlying bulk topology.
Similarly, most theoretical analyses are based on effective sur-
face theories. In particular, the interface between two gapped
surface phases hosts topologically protected states, uniquely
identifying one provided the other is known.

The basic problem with using entanglement spectra to
identify surface states is illustrated in Fig. 1. When a conven-
tional 2D system on a hollow sphere is physically cut along
the equator, a 1D edge to vacuum is exposed, cf. Fig. 1(a). De-
pending on the 2D state, there may be topologically protected
edge states. The same states can be obtained by a real-space
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FIG. 1. (a) In a strictly two-dimensional system—represented
here by a hollow spherical shell—a real-space entanglement cut
mimics a physical cut: The entanglement spectrum matches the
physical energy spectrum of one subsystem, which is dominated
by one-dimensional edge channels [6–16]. (b) Surface states of a
topological phase cannot be stripped off the bulk. An entanglement
cut, on the surface only, mimics a physical cut on the surface layer
but not on the bulk. Both expose the underlying topological bulk.
Hence, the entanglement cut of a surface state does not isolate a
one-dimensional edge.

entanglement cut between the two hemispheres. By contrast,
an anomalous 2D surface state requires a 3D bulk, i.e., a
solid sphere. In this case, it is not possible to separate the
surface states into two hemispheres via a physical cut. Cutting
the surface layer instead exposes part of the underlying bulk,
revealing a new anomalous state that extends over the entire
sphere. Similarly, we expect that the ES obtained after an
entanglement cut of the anomalous surface wave function gets
contaminated by the bulk, cf. Fig. 1(b). In this paper, we con-
firm this reasoning and show how entanglement spectroscopy
can nevertheless identify the edge states between an arbitrary
surface state and any known free-fermion state on the same
surface.

As a concrete system for our numerical calculations, we
use an electronic topological insulator (TI) with time-reversal
symmetry T 2 = −1 [28–30] as the paradigmatic example of
a 3D SPT. When its two-dimensional surface is symmetric
and noninteracting, it hosts a single two-component Dirac
fermion [25,26]. This theory cannot arise in strictly two-
dimensional systems with the same symmetries due to the
parity anomaly [31,32] and can be seen as a consequence of
fermion doubling [33–35]. When time-reversal symmetry is
broken on the surface, the Dirac fermions become massive
and realize a surface Hall conductance of σxy = 1

2 [36,37]

(in units of e2

h ). By contrast, the Hall conductance of gapped
free fermion systems in strictly two-dimensions must be an
integer. Similarly, breaking charge conservation realizes a
time-reversal-invariant cousin of topological p + ip [38–40]
superconductors with Majorana modes in vortex cores. Fi-
nally, strong interactions may gap the surface while preserving

both symmetries by forming an anomalous topological order
[41–45].

II. ENTANGLEMENT SPECTRA
OF ANOMALOUS SURFACES

Any surface wave function of a free-fermion SPT may be
expressed as

|�〉� = �̂�(c†
E ,i )|0〉�. (1)

Here �̂� is an operator-valued function, and c†
E ,i creates an

electron in a single-particle eigenstate with energy E and ad-
ditional quantum numbers i. The “empty state” |0〉� denotes a
Fermi sea filled up to the top of the valence band at energy
−�. Below energy −�, the surface states merge with the
bulk bands, but between −� and �, the surface states are
separated from the bulk. A similar surface state can be found
in Ref. [46].

The symmetric, noninteracting surface is thus represented
by

|�〉0
� =

∏
i

μ∏
E=�

c†
E ,i |0〉�, (2)

with chemical potential μ, where |0〉� symbolizes the vacuum
state with cutoff � [47]. In general, |�〉� must reduce to |�〉0

�

for cE→� to describe a surface state that does not hybridize
with the bulk. The cutoff � is inevitable due to the anomalous
nature of the surface state, but its precise value does not affect
local observables.

To test our expectations for the ES of anomalous states, we
study the surface of a 3D TI, which hosts a single Dirac cone
governed by

HM =
∑

k

φ
†
k[k · σ + Mσz]φk. (3)

Here, φ
†
k creates electrons with momentum k = (kx, ky),

σx, σy, σz are Pauli matrices, and M is a time-reversal
symmetry-breaking mass. The unnormalized single-particle
eigenstates are

vk =
( √

ε + M√
ε − Me−iϕk

)
, uk =

(√
ε − Meiϕk

−√
ε + M

)
, (4)

where ε = √
k2 + M2 and k, ϕk are the magnitude and polar

angle of the two-dimensional momentum. The corresponding
single-particle energies are Ev = −Eu = ε, and the ground
state of HM is |�M〉� = ∏

k ukφ
†
k |0〉. In Appendix A, we show

the spectrum of Eq. (3) for spherical geometry. We obtain the
ES [6–8] by decomposing the Hilbert space of the surface into
two parts, H = Hα ⊗ Hβ . The Schmidt decomposition

|�〉 =
∑

n
e−ε′

n/2|�α,n〉 ⊗ |�β,n〉, (5)

with |�α(β ),n〉 ∈ Hα(β ) yields the “entanglement energies” ε′
n.

We numerically compute these numbers for |�〉� with α, β,
the two hemispheres of a sphere with radius R (Fig. 3). For
local observables, we would expect universal results when
R−1 � M � �. For the ES, we instead find that the num-

ber of low-lying λi (where λi = e−ε′i
1+e−ε′i

) grows linearly with
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FIG. 2. The entanglement spectra of anomalous surface states are
strongly sensitive to the short-distance cutoff. Panels (a)–(f) show
the entanglement spectra for 3D topological insulator surfaces with
a magnetic mass M = 2 and cutoff values � = 1, 2, 6, 10, 15, 30,
respectively.

the cutoff � (cf. Fig. 2). In Fig. 3 panel (c), we show the
number of pseudoenergy states as a function of the cutoff for
massless and massive Dirac fermions. We attribute this cutoff
dependence and the large number of low-lying states to the
exposure of the underlying bulk (cf. Fig. 1). As anticipated in
the introduction, straightforward computation of the ES of a
surface state is not suitable for its identification.

III. RELATIVE ENTANGLEMENT SPECTRA

Our goal is to construct an ES that is cutoff independent
and permits the distinction between various surface states.
To achieve this, we draw insights from physical surface

FIG. 3. The entanglement spectra of anomalous surface states
exhibit a large number of low-lying states (λi ≈ 0.5) that increase
with the cutoff. In the x axis, � is the z component of the angular
momentum and in the y axis λ = e−ε′

/(1 + e−ε′
), where ε ′ is the

entanglement energy. λ is also the eigenvalue of the correlation
matrix [48]. Panels (a) and (b) show the spectra for a gapless and
massive Dirac cone, respectively, with cutoff � = 10. In both cases,
the number of states within the shaded low-energy window scales
linearly with the cutoff and is thus nonuniversal (c).

FIG. 4. Physical edge spectra of spherical 3D topological insula-
tor surfaces. In panels (a) and (b), both hemispheres are magnetically
gapped. When the masses have equal signs, the spectrum is gapped
(a). When they have opposite signs, it hosts a gapless chiral complex
fermionic edge mode (b). In panel (c), the lower hemisphere is a
proximity-induced s-wave superconductor, hence the spectrum hosts
a chiral Majorana mode. In panel (d), both the systems are s-wave
superconductors with a phase difference of π . The spectrum hosts
two counter-propagating gapless Majorana channels.

spectra. Specifically, the interface between two distinct sur-
face phases hosts gapless edge channels whose states are
entirely dictated by the neighboring surface phases. Figure 4
shows the energy spectra for a spherical topological insulator
with different free-fermion surface states on the upper and
lower hemispheres.

Building on this understanding, our strategy is to craft
nonanomalous wave functions that encode the boundary be-
tween two surface states, labeled A and B. This foundation sets
the stage for a more detailed examination of specific surface
states. For instance, we begin with a gapped free-fermion
surface Hamiltonian

HA =
∑

k,σ=±
σεA(k)cA,†

k,σ cA
k,σ , (6)

where cA
k,± are the linear combinations of cE ,i that diagonalize

Eq. (3) with eigenvalues ±εA. The ground state wave function
of this Hamiltonian is the free-fermion surface state A, repre-
sented by

|�〉A
� =

∏
i

cA,†
k,i |0〉�. (7)

In |�〉A
�, the lower band is completely filled. It can be viewed

as a fully gapped vacuum state for the excitations cA,†
k,+ and

cA
k,−. We note that linear combinations ψ

†
A(r) of the particle

excitations cA,†
k,+ can be localized in real space. By contrast,

linear combinations formed by Dirac particles cE ,i with E > 0
can only be quasilocalized with power-law decay. As such,
{ψA} can be used to create a local puddle of a different surface
state B, i.e.,

|�〉Puddle
� = �̂Puddle

A,� (ψA) |�〉A
� . (8)
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The spatial boundary between A and B is fully encoded in
�̂Puddle

A,� , which is “conventional,” i.e., expressed in terms of
local orbitals. Following the logic of entanglement spectra,
we expect the same boundary can be inferred by letting the
B puddle cover the entire surface and then computing the
entanglement spectrum of the resulting �̂Puddle

A,� (ψA).
To implement this reasoning technically, we replace the

particle creation operator cA,†
k,− with the annihilation operator

of a hole dA
−k,−. The reference state �A

� then satisfies

cA
k,+ |�〉A

� = 0, dA
k,− |�〉A

� = 0, (9)

and the empty state is |0〉� = ∏
i dA,†

k,− |�〉A
�. Next, we intro-

duce a gapped surface state B, which need not be one of free
fermions. Its general form is given by Eq. (1), i.e., |�〉B

� =
�̂B,�(cE ,i ) |0〉�. Next, we express cE ,i in terms of cA,†

k,−, dA
−k,−

and use the expression for |0〉� given below Eq. (9) to obtain

|�〉B
� = �̂B,�

({cE ,i} → {
dA

−k,−, cA,†
k,+

})∏
i

dA,†
−k,− |�〉A

�

≡ �̂A
B

(
dA,†

−k,−, cA,†
k,+

) |�〉A
� . (10)

Notice that we have used normal ordering to reach from the
first to the second line. The second line defines the wave
function �̂A

B , which does not depend on the cutoff directly
so long as A, B are both surface states by the definition of
Sec. II. Since �̂A

B depends on both A and B, we dub it relative
wave function. We can now treat it as any conventional wave
function and compute its ES as usual; the result is the rela-
tive entanglement spectrum between states A and B. We now
proceed by numerically calculating the relative ES of various
3D TI surface states and comparing them with the physical
edge spectra. Subsequently, we elaborate on the relative wave
functions and provide an analytical perspective on their ES.

IV. NUMERICAL RESULTS

A. Free fermions

We compute the relative ES described above for various
surface states of a spherical 3D TI. For |�A〉�, we take states
with a magnetic or superconducting gap, i.e., the ground states
of Eq. (3) or of

HSC
�s

= H0 + �s

∑
k

[φk,↑φ−k,↓ + H.c.]. (11)

To establish that the relative ES reproduces the boundary
between anomalous surfaces and is cutoff independent, we
also take the second state to be one of free fermions. In
this case, the ES can be efficiently computed using the cor-
relation matrix of particles and holes [13,48–54] (see also
Appendix B). The corresponding physical energy spectra are
well known. They are summarized, e.g., in Sec. V of the
review Ref. [28] and shown for the spherical geometry in
Fig. 4.

Figure 5 shows the relative ES for various choices of the
gapped free-fermion systems A, B. In Fig. 5(a), we take A
and B to be different representatives of the same phase. Their
relative ES is gapped, as expected. In (b), we take both A and B
as magnetically gapped, but with opposite signs. Here, the ES
describes a chiral Dirac fermion, matching a physical bound-

FIG. 5. The relative entanglement spectra of different 3D topo-
logical insulator surface states match the energy spectra at a physical
boundary between the same states. For magnetically gapped states
with the same sign, the entanglement spectrum is gapped, as shown
in (a) for MA = 4 and MB = 6. For opposite signs, there is a chiral
edge state, shown in (b) for MA = 4 and MB = −4. The edge state
corresponds to a complex fermion and is split by breaking charge
conservation (inset). Similarly, the relative entanglement spectrum
of a magnetically gapped and a paired state exhibits a single chiral
Majorana mode, shown in (c) for MA = 4,�B = −4. For two paired
states with π phase difference we find a nonchiral state with helical
Majorana fermions, see (d) where �A = 2, �B = −8.

ary between the same phases. Panel (c) depicts the relative
ES between a state with a magnetic gap and a state with a
superconducting gap. The Majorana mode in the ES matches
the physical energy spectrum at such a boundary. Finally,
panel (d) shows the case where A and B are superconductors
with a phase difference π . Again, the ES correctly reproduces
the expected helical Majorana edge states. Additional data
about the dependence of the spectra on the magnitude of the
masses are shown in Appendix D. In Appendix E, we show
the relative ES for a 1D anomalous edge state.

B. Interacting states

We verify that the relative ES extends beyond free-fermion
states by studying Dirac electrons with contact interactions U ,
i.e., the model

HInt = H0 + U
∫

r∈S2
φ

†
↓(r)φ↓(r)φ†

↑(r)φ↑(r). (12)

This model preserves time-reversal symmetry and the z com-
ponent of the total angular momentum LT

z = ∑
i �i. Its phase

diagram was obtained in Ref. [55] using exact diagonaliza-
tion, and we also use the same method to obtain the ground
state.

For strong repulsive interactions, the system is in a fer-
romagnetic phase with a twofold degenerate ground state
(weakly split in a finite system). We use the even combi-
nation with negative magnetization as state B and massive
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FIG. 6. The relative entanglement spectra between repulsive
Dirac electrons and massive noninteracting electrons clearly identify
the phase of the former. When the sign of the spontaneous magneti-
zation matches the mass of the free-fermion state, the entanglement
spectrum is gapped (a). When they are opposite, there is a single
chiral state (b). Panels (c) and (d) show the corresponding many-body
entanglement spectra for free-fermion wave functions with the same
cutoff. The degeneracies of the pseudoenergies are indicated in red.

Dirac fermions with MA = −2 or MA = 2 for A. Our results
for 12 particles and 24 single-particle states are shown in
Fig. 6. Despite the relatively small system size, the ES clearly
identifies state B. If its magnetization matches the sign of
the mass in A, there is a large gap in the ES [Fig. 6(a)]. For
opposite signs, it is gapless and exhibits a left-moving chiral
mode [Fig. 6(b)]. These spectra qualitatively agree with the
analogous free-fermion spectra [Figs. 6(c) and 6(d)].

C. Cutoff dependence

The cutoff dependence of the ES for a magnetically gapped
TI surface is shown in Fig. 2. The number of low-lying
entanglement-energy levels (λ ≈ 0.5) increases linearly with
the cutoff. As such, the ES is dominated by nonuniversal
features. By contrast, the low-lying states in the relative ES
quickly converge to their � → ∞ values, see Fig. 7. There is
an appreciable entanglement gap already for a cutoff as small
as � = 3.

V. RELATIVE HAMILTONIANS

Having established the utility of relative ES numerically,
we return to its analytical interpretation. It is illuminating to
construct a parent Hamiltonian whose ground state is the rel-
ative wave function. We thus define the relative Hamiltonian
as the parent Hamiltonian HB of a surface phase B expressed
in terms of the excitations cA

i,±. Since A and B are surface
states by assumption, the relative Hamiltonian is bounded
from below [56].

As a concrete example, we consider massive Dirac
fermions, described by Eq. (3) for A. Using Eq. (4), we write

HMA =
∑

k
εAcA,†

k,±cA
k,±, cA

k,± = 1

2
√

εA
[v∗

kφk ± u∗
kφ

†
−k],

(13)
and the ground state satisfies cA

k,±|�MA〉 = 0. For B, we take
Dirac fermions with a mass MB, also described by Eq. (3).

FIG. 7. The relative entanglement spectra of anomalous surface
states depend only weakly on the cutoff. Panels (a)–(f) show the spec-
tra for MA = 2, MB = −2, and � = 1, 2, 3, 6, 10, 20, respectively.
The low-lying states become insensitive to the cutoff for � � 3.

Expressing their Hamiltonian in terms of cA
k,±, we find HMB =

H+ + H− with

H± =
∑

k

E±
k cA,†

k,±cA
k,± +

∑
k

[
�±

k cA
k,±cA

−k,± + H.c
]
, (14)

where

E±
k = εA + MA(MB − MA)/εA,

�±
k = ±(MA − MB)keiϕk/εA. (15)

For either choice of sign, Eq. (14) describes a supercon-
ductor of spinless fermions with chiral p-wave pairing. The
U(1) symmetry of the surface states A and B is reflected in
E+ = E− and |�+| = |�−|. For an equal sign of the masses
MA and MB, the functions E±

k are positive for all k. The chem-
ical potential of cA

k,± thus lies beyond the bottom of the band
and H± each describes a topologically trivial strongly paired
superconductor. For opposite signs, the chemical potential
lies within the band, and the superconductors are topological.
A boundary where the mass changes sign hosts two chiral
Majorana fermions or, equivalently, one chiral complex
fermion.

A more detailed derivation for this relative Hamiltonian is
given in Appendix C.

As a second example, we take A as before and choose B
as a superconducting surface state described by Eq. (11). We
find

HSC
�s

= H+ + H−,

E±
k = k2/εA ± �s,

�± = ke±iϕk�s. (16)

For any nonzero �s, one of the flavors is strongly paired, and
the second is weakly paired. Thus, there is always a single
chiral Majorana at the interface of H�s with the reference
vacuum.

Alternatively, a superconducting surface can also serve as
a reference system. To identify its excitations, we diagonalize
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the model of Eq. (11), i.e., the Hamiltonian

HSC
�s

=
∑

k

[φ†
k,↑(ke−iϕkφk,↓ + �sφ

†
−k,↓) + H.c.]. (17)

We begin with a Bogoliubov transformation to introduce new
fermions ζk,↓:

ζk,↓ = 1

ε�

(ke−iϕkφk,↓ + �sφ
†
−k,↓), (18)

with ε� =
√

k2 + |�s|2. They satisfy the usual anticommuta-
tion relations:

{ζ †
k,↓, ζk′,↓} = δk,k′ ,

{ζk,↓, ζk′,↓} = {ζ †
k,↓, ζ

†
k′,↓} = 0,

{φ†
k,↑, ζk′,↓} = {φ†

k,↑, ζ
†
k′,↓} = 0. (19)

Substituting Eq. (18) into Eq. (17) yields

HSC
�s

=
∑

k

ε�(φ†
k,↑ζk,↓ + ζ

†
k,↓φk,↑). (20)

Introducing another set of fermion operators as

χk,+ = 1√
2

(φk,↑ + ζk,↓), χk,− = 1√
2

(φ†
−k,↑ − ζ

†
−k,↓),

(21)
we finally obtain

HSC
�s

=
∑

k

ε�(χ†
k,+χk,+ + χ

†
k,−χk,−). (22)

Consider now a surface state with different pairing �′
s. In

terms of the operators defined by Eq. (21), its Hamiltonian is

HSC
�′

s
= H± +

∑
k

(
�M

k χ
†
k,+χ

†
−k,− + H.c.

)
, (23)

where H± is given by Eq. (14) with dispersion

E±
k =

(
k2 + �′

s�
∗
s + �′

s
∗�s

2

)/
ε�, (24)

and mean-field pairing

�−
k = keiϕk (�s − �′

s)/2ε�, (25)

where �+
k = (�−

k )∗. The final term

�M
k = (�′

s
∗�s − �′

s�
∗
s )/ε� (26)

vanishes when the phases of �′
s and �s differ by π . In that

case, H+ and H− decouple. Each describes a superconduc-
tor with kx ± iky pairing and negative “chemical potential”
(�′

s�
∗
s + �′

s
∗�s)/2. The boundary of this system hosts a pair

of counter-propagating Majorana modes. For other phase dif-
ferences, the two Majorana modes gap out.

Table I summarizes the possible relative Hamiltonians for
various choices of A, B. We note that a simple analytical ex-
pression for the ES of H+ on an infinite cylinder was obtained
in Ref. [11] for a particular choice of the functions E+

k ,�±
k

[57]. For generic parameters and different geometries, a simi-
lar expression is unavailable. Still, for free-fermion states, the
ES can be efficiently obtained from correlation matrices.

TABLE I. The relative Hamiltonians realize topological p ± ip
superconductors or topologically trivial strongly paired (SP) super-
conductors depending on the type and sign of the mass terms. The
helical edge state arising for opposite superconducting mass terms is
protected by time-reversal symmetry.

Magnetic gap MA > 0 Pairing gap �A > 0

MB > 0 SP and SP p − ip and SP
MB < 0 p + ip and p + ip p + ip and SP
�B < 0 p + ip and SP p + ip and p − ip
�B > 0 p − ip and SP SP and SP

VI. DISCUSSION AND CONCLUSIONS

We have generalized entanglement spectroscopy as a tool
for identifying phases of matter to SPT surface states. Map-
ping the boundary between two surface states onto the
analogous edge of a nonanomalous state allowed us to invoke
the standard ES-edge correspondence. We have demonstrated
the utility of relative ES via large-scale numerical simulations
of free-fermion and interacting systems.

The most immediate applications of our analysis arise in
numerical studies of SPT surfaces, where it may identify
nontrivial phases. For example, symmetry preserving surface
topological orders are known to be possible on 3D TI and
3D topological superconductor surfaces [41–45,58–61]. Rel-
ative ES and the corresponding relative entanglement entropy
would be the natural tools for their numerical identification in
candidate systems.

Anomalies also arise in systems other than SPT sur-
faces. For example, in fractional quantum Hall systems at
half-filling, an anomalous particle-hole symmetry plays an
analogous role to time reversal on the 3D TI surface [62].
Specifically, the orbital ES is mirrored under a particle-hole
transformation. As such, it must be nonchiral for a particle-
hole symmetric state and cannot represent its edge with a
trivial vacuum. We expect that a variant of the relative ES may
be advantageous in the context of such states.

Additionally, the methods developed here can prove bene-
ficial for analyzing various one-dimensional spin systems. It
is often convenient to fermionize these models via a Jordan-
Wigner transformation. The nonlocality of this mapping
results in an anomalous theory of fermions [63], suggesting
that relative ES will be the appropriate tool.

Finally, relative ES may also be valuable for non anoma-
lous systems. We note that for a band insulator, the relative
ES between states with n-1 and n filled band encodes exactly
the contribution of the nth band. More generally, relative ES
may help identify interacting states with complex edge struc-
tures that are not readily deduced from their (many-body) ES.
In fact, a variant of this is already known in quantum Hall
systems. There, performing a particle-hole transformation
prior to a real-space cut [64–66] amounts to computing the
relative ES with a ν = 1 quantum Hall state. As a con-
sequence, the ES of “hole conjugate states,” such as the
anti-Pfaffian, greatly simplify. More generally, obtaining the
boundary of an unknown state with multiple two-dimensional
phases may help disentangle the contributions from multiple
edge modes.
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APPENDIX A: SURFACE STATES OF SPHERICAL
TOPOLOGICAL INSULATORS

The single-particle eigenstates on a spherical TI surface
[55,67] are given by

φn,�,λ = 1√
2

(
Y1/2,n+1/2,�

λY−1/2,n+1/2,�

)
, (A1)

where Y are the monopole harmonics [68,69]. The corre-
sponding energies are εn,�,λ = λn, where λ = ±1 and n is
a positive integer. The angular momentum � takes half-odd
integer values in the interval [−n + 1/2, n − 1/2]. For any
numerical calculation, we implement a cutoff by retaining
only n � �. The spectrum for � = 3 is shown in Fig. 8.

APPENDIX B: ENTANGLEMENT SPECTRA
OF CONTINUUM SYSTEMS FROM THEIR

CORRELATION MATRIX

The ES of a free fermion system is fully encoded in the
correlation matrix [13,48–54]. The latter can be efficiently
obtained by inverting the single-particle Hamiltonian H . In
continuum models, such as the one describing the 3D TI
surface, there is a minor subtlety that is absent on lattice
systems. To illustrate this issue, let ψi(x) with i = 1, . . . , N
be an orthonormal basis of single particle states for the full
system. The projections of ψi onto any subsystem are gener-
ically not orthonormal. Still, standard methods readily obtain
orthonormal functions ψA

i in A and ψB
i in B for the projected

FIG. 8. Spectrum of a spherical 3D topological insulator surface.
States are labeled by the positive integer n, the angular momentum
� ∈ [−n + 1/2, n − 1/2], and the particle-hole index λ = ±. A cut-
off in the n quantum number preserves angular momentum.

ψi. As a result, we obtain the decomposition

ψi(r) =
∑

j

[
αi jψ

A
j (r) + βi jψ

B
j (r)

]
. (B1)

Notice that the N states of the original system are encoded
in 2N states after this decomposition. Consequently, Eq. (B1)
is not invertible, and the correlation matrix for states within A,
cannot be directly obtained from the full Hamiltonian. Equiv-
alently, inserting Eq. (B1) into any Hamiltonian enlarges the
Hilbert space by N single-particle states with zero eigenvalue.

To circumvent this problem, we enlarge the original Hilbert
space by N single-particle states at infinite energy. Specifi-
cally, let vi = (α0

i,1 . . . α0
i,N β0

i,1 . . . β0
i,N ) be the null vectors of

the matrix

M =

⎛
⎜⎝α11 . . . α1N β11 . . . β1N

...
...

...
...

...
...

αN1 . . . αNN βN1 . . . βNN

⎞
⎟⎠. (B2)

Then the wave functions

ψ0
i (r) ≡

∑
j

[
α0

i jψ
A
j (r) + β0

i jψ
B
j (r)

]
(B3)

supplement Eq. (B1) to yield an invertible transformation be-
tween ψi, ψ

0
i and ai, bi. Finally, we modify the single particle

Hamiltonian according to H → H + H ′ with 〈ψi|H ′|ψ j〉 =
〈ψ0

i |H ′|ψ j〉 = 0, and 〈ψ0
i |H ′|ψ0

j 〉 = mδi j with m → ∞ to en-
sure that the additional states do not affect the spectrum or the
correlations. After these modifications, the correlation matrix
and ES can be computed as in lattice systems.

APPENDIX C: DETAILED DERIVATION
OF RELATIVE HAMILTONIAN

We start with two gapped surface states A and B which
correspond to the following two Hamiltonians:

HA =
∑

k

|k|c†
k,+ck,+ − |k|c†

k,−ck,− + mAc†
k,−ck,+,

HB =
∑

k

|k|c†
k,+ck,+ − |k|c†

k,−ck,− + mBc†
k,−ck,+, (C1)

where c†
k,± creates particles in the upper (or lower) band of the

Dirac system with momentum k = k(cos ϕ, sin ϕ). The eigen-
values of the Hamiltonian of system A (reference system) are
±εA = ±√

k2 + m2
A and the diagonal operators are given by

d†
k,− = 1√

2εA
(
√

εA − mAeiϕk c†
k,+ − √

εA + mAc†
k,−),

d†
k,+ = 1√

2εA
(
√

εA + mAc†
k,+ + √

εA − mAe−iϕk c†
k,−). (C2)

The reference Hamiltonian in the diagonal basis is HA =∑
k

√
k2 + m2

Ad†
k,+dk,+ − √

k2 + m2
Ad†

k,−dk,− and the ground

state wave function is given by |�〉G
A = ∏

k d†
k,− |0〉. Our goal

is to shift the vacuum to the ground state of the reference
Hamiltonian. We replace the creation operator d†

k,− of an elec-
tron in the filled Fermi sea with the annihilation operator f−k,−
of a hole. Previously, the creation operators were creating
electrons, now the operators d†

k,+ ( f †
k,−) create particle (hole)
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excitation on top of the reference ground state |�〉G
A . After the

transformation, the reference Hamiltonian becomes

HR =
∑

k

√
k2 + m2d†

k,+dk,+ +
√

k2 + m2 f †
k,− fk,−, (C3)

and the ground state is annihilated by both the operators
d and f , i.e.,

dk,+ |�〉G
A = 0, fk,− |ψ〉G

A = 0. (C4)

The original creation operators c†
k,+ and c†

k,− in terms of d†
k,+

and f−k,− are given by

c†
k,+ = 1√

2εA
(
√

εA − md†
k,+ − √

εA + me−iϕk f−k,−),

c†
k,− = 1√

2εA
(
√

εA + meiϕk d†
k,+ + √

εA − m f−k,−). (C5)

Inserting Eq. (C5) in HB yields

HB =
∑

k

ke−iϕk c†
k,+ck,− + keiϕk c†

k,−ck,+

+ MBc†
k,+ck,+ − MBc†

k,−ck,−

=
∑

k

k2 + MAMB

εA
d†

k,+dk,+ + k2 + MAMB

εA
f †
−k,− f−k,−

+ (MB − MA)keiϕk

εA
d†

k,+ f †
−k,− + H.c. (C6)

This is a Hamiltonian with pairing terms. The pairing term of
the Hamiltonian couples the operators dk,+ and f−k,−, but we
decouple them by taking even and odd combinations of these
operators,

pk,+ = 1√
2

(dk,+ + fk,−),

pk,− = 1√
2

(dk,+ − fk,−). (C7)

Replacing (C7) in (C6), we obtain

H = H+ + H−, (C8)

where

H± =
∑

k

E±
k p†

k,± pk,± + �±
k p†

k,± p†
−k,± + H.c., (C9a)

E±
k = k2 + MAMB

εA
, �±

k = ± (MB − MA)keiϕk

εA
. (C9b)

Each of H± describes a chiral p-wave SC of spinless fermions.

APPENDIX D: EVOLUTION OF RELATIVE
ENTANGLEMENT SPECTRA WITH MAGNETIC MASS

We show the relative ES for MA = 3 as a function of MB in
Fig. 9. For equal signs of MA and MB, the gap in the relative ES
begins to close as MB → 0. For opposite signs, the edge state
emerges and becomes better resolved with increasing MB.

FIG. 9. Evolution of relative entanglement spectra between
MA = 3 and different choices of MB. For opposite signs of the
masses, a gapless edge crosses the entanglement gap.

APPENDIX E: RELATIVE ENTANGLEMENT SPECTRA
FOR QUANTUM SPIN HALL BOUNDARY STATES

The relative ES applies to any system that permits a gapped
free-fermion reference state. As an additional example, we
provide results for the two-dimensional quantum spin Hall
(QSH) phase on a circular disk. Its physical boundary hosts
a single one-dimensional Dirac fermion. In Fig. 10, we show
the zero-dimensional relative ES when this boundary be-
comes gapped by magnetic masses MA, MB. The relative ES
is gapped for equal signs of the two masses and exhibits
a state at zero entanglement energy (λ = 0.5) for opposite
signs. Adding a small pairing term splits this zero mode, see
Fig. 10(c). These properties correctly reproduce the known
behavior of QSH edge states, where the interface between
opposite masses hosts a complex fermion zero mode.

FIG. 10. A 2D quantum spin Hall system on a disk hosts a
gapless Dirac fermion on its boundary, i.e., a one-dimensional ring.
Breaking time-reversal symmetry opens a gap, as for the 3D topo-
logical insulator. The relative entanglement spectrum for a massive
edge with the equal sign is gapped, as shown in (a) for MA = 2 and
MB = 4. By contrast, there is a zero mode (state with λ = 0.5) for
opposite masses, as shown in panel (b) for MA = 2 and MB = −4.
This zero mode splits when a small pairing term is added to the
probing system of panel (c).
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