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Inspired by the persistent thermal Hall effects at finite temperatures in various quantum paramagnets, we
explore the origin of the thermal Hall effects from the perspective of the upper branch parts by invoking
dispersive and twisted crystal field excitations. It is shown that the upper branches of the local energy levels
could hybridize and form dispersive bands. The observation is that, upon time-reversal symmetry breaking by
the magnetic fields, these upper branch bands could acquire a Berry curvature distribution and contribute to the
thermal Hall effect even in the paramagnetic regime. As a proof of principle, we consider the setting on kagomé
lattice with one ground-state singlet and an excited doublet, and show this is indeed possible. We expect this
effect to be universal and that it has no strong connection with the underlying lattice. Although the thermal Hall
signal can be contributed from other sources such as phonons and their scattering in the actual materials, we
discuss the application to the relevant quantum materials.
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I. INTRODUCTION

Recently, thermal Hall transports have been widely used to
explore the properties of elementary excitations in correlated
quantum materials. In Mott insulating systems where the rel-
evant excitations are charge neutral, the thermal Hall effect
plays an important role in deciphering the Berry curvature
properties of the excitations [1]. For quantum spin liquids,
half-quantized thermal Hall conductivity is one smoking-
gun result for the gapped Kitaev spin liquid with the chiral
Majorana edge mode [2], and might have been observed in α-
RuCl3 [3,4]. The thermal Hall effects could reflect the intrinsic
matter-gauge coupling and the Berry curvature properties of
the emergent exotic quasiparticles in different spin liquids [1].
As a probe of the magnetic excitations, the thermal Hall
effect is found to be useful in more conventional magnets.
The magnon thermal Hall effects [5–9] were widely studied
in many ordered magnets. In a class of magnets known as
“dimerized magnets” where the ground state is approximately
given as the product of the spin-singlet dimers on the bonds
with stronger exchanges, the spin-triplet excitations, known
as “triplons,” can propagate via interdimer couplings and
form triplon bands. These triplon bands can acquire non-
trivial Berry curvatures and even finite Chern numbers once
the anisotropic interaction such as the Dzyaloshinskii-Moriya
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interaction is introduced [10,11]. This leads to interesting
behaviors in the triplon thermal Hall effect.

Thermal Hall conductivity has been measured in sev-
eral representative quantum magnets such as Tb2Ti2O7 [12],
Pr2Zr2O7 [13], Pr2Ir2O7 [14], and Na2Co2TeO6 [15,16]. One
common feature of these quantum magnets is that, due to
the combination of the crystal electric field (CEF) and the
spin-orbit coupling (SOC), the magnetic ions have a relatively
large local physical Hilbert space with a series of local energy
levels [17]. We take the well-known compound Tb2Ti2O7 as
an example [12,18,19]. Via the SOC, the Tb3+ ion has a
J = 6 local moment. The 13-fold degeneracy is further split
by the CEF into multiple singlets and doublets. As the thermal
Hall transport in Tb2Ti2O7 was measured up to 142 K and
10 T [12], at this temperature scale, the second excited doublet
(at 1.41 meV) has already been thermally activated. The CEF
multiplets could then make a significant impact on the physics
of those quantum magnets [20]. In addition, the CEF levels at
10–20 meV would be thermally populated. The 10 T magnetic
field reorganizes these CEF states and splits the doublets. For
the activated CEF states, the 10 T field could create a Zeeman
splitting of about 20–40 K. The previous work that studies
the monopole thermal Hall effect [21] from the ground-state
doublets in the quantum ice regime [19] certainly cannot be
extended to such high temperatures and large magnetic field
regimes. Thus, these two ingredients, i.e., the thermal activa-
tion and the field splitting or hybridization of the CEF states,
indicate that one should seriously consider the involvement of
these excited CEF states in thermal transports. Similar physics
should generally occur in other rare-earth magnets as well as
other multiflavor Mott insulators [1,22]. This aspect for the
multiflavor Mott insulators is quite different from the cuprate
system where the local Hilbert space in a large range of energy
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scale is a spin-1/2 local moment from the eg electrons and the
large thermal Hall signal was observed in cuprate [23,24].

If one views the CEF excitations in the multiflavor Mott in-
sulators as generalized triplons with respect to the CEF ground
state, this view bridges this series of quantum magnets with
the dimerized magnets. One immediate outcome is that these
generalized triplons, similar to the topological excitations in
the excitonic magnets [25], should in principle possess the
Berry curvatures in the magnetic field and contribute to the
thermal Hall conductivity at the relevant temperature regime.
In Ref. [26], the upper branch magnetism from the excited
CEF states was understood when the CEF gap is comparable
to the exchange interaction between the CEF states of the
neighboring sites. Therefore, the thermal Hall effect from the
generalized triplons is dubbed “upper branch thermal Hall
effect.”

The remaining parts of the paper are organized as follows.
In Sec. II, we formulate the effective spin model for the
kagomé lattice. In Sec. IV, we perform the flavor wave theory
analysis in the quantum paramagnetic phase and establish the
excitations in this phase. In Sec. V, we explain the topolog-
ical properties of the bands and establish the thermal Hall
transports of the generalized triplons. Finally, we discuss the
experiments in the relevant materials.

II. EFFECTIVE SPIN MODEL FROM CRYSTAL FIELD
STATES

We begin from the single-ion limit of the spin-orbit-
coupled Mott insulators, where the 2J + 1 states of the local
J moment of the magnetic ions naturally split into the ground
state and the excited multiplets under the CEF effects. Since
we are mostly concerned about the excited CEF states, to sim-
plify the problem, we assume the CEF ground state is a singlet
and the first excited CEF states form a doublet, and neglect
the effects from other higher excited CEF states. The three
states of the local moment are then described by an effective
spin S = 1 with an on-site anisotropic term

∑
i η(ẑi · Si )2 and

η > 0, where ẑi is defined along the local coordinate of the
CEF environment for each sublattice. The spin-1 moment
differs from the pseudospin-1/2 moment that is often used
to describe Kramers or non-Kramers doublets in many rare-
earth magnets. In our design, the lower singlet corresponds
to Szi

i = 0, and the upper doublet correspond to Szi
i = ±1. In

most cases in which we are interested, the lower singlet and
the upper doublet can be connected by the ladder operator of
the original Ĵ operators, i.e., the local ladder operators have
nonvanishing matrix elements between the singlet and the
doublet. Thus, all three local components of Si are odd under
time reversal.

Although the upper branch thermal Hall effect arises from
the CEF states whose interactions depend on the CEF wave
functions and lattice symmetries, the underlying lattice is
needed but usually not required to be unique, which is a bit
similar to the magnon or phonon thermal Hall effects. Thus,
for concreteness, we consider the setting on a kagomé lattice
as shown in Fig. 1, which shares many common features
with those actively investigated pyrochlore quantum magnets.
Experimentally, this kagomé setup can be established by ap-
plying the [111] magnetic field on the pyrochlore magnets, or

(a) (b)

FIG. 1. (a) The tripod kagomé lattice with the effective spins on
the red sites. The blue arrows denote the local Ising z axes. The red
vectors are the basis vectors a1 = a(1, 0) and a2 = a(1/2,

√
3/2).

(b) The tripod unit cell. The Ising z axes have a canting angle
θ with the kagomé plane. The green arrow normal to each bond
shows the DM vectors with in-plane component Dp and out-of-plane
component Dz. The neighboring bonds are δ1 = a(−1/4,

√
3/4),

δ2 = a(−1/4, −√
3/4), and δ3 = a(1/2, 0).

naturally occurs in the tripod kagomé magnets [27,28]. With
the symmetry of the kagomé lattice, for the three sublattices
denoted as m = 1, 2, 3, we have the easy axes with an out-of-
plane canting angle θ as

ẑm =
(

sin
2πm

3
cos θ,− cos

2πm

3
cos θ, sin θ

)
, (1)

which will be adopted in the anisotropic term for the local
effective spin-1 variables.

Under this effective spin-1 representation, the interaction
between the neighboring multiplets is expressed as spin ex-
change coupling. We thus consider an exchange model that is
quadratic in the effective spin-1 components as

Hex =
∑
〈i j〉

∑
αβ

Sα
i �

αβ
i j Sβ

j , (2)

where Sα
i denotes the α component of Si in the global coordi-

nate, and the exchange coupling matrix is given as

�i j =

⎛
⎜⎝

J Dz
i j −Dy

i j

−Dz
i j J Dx

i j

Dy
i j −Dx

i j J

⎞
⎟⎠, (3)

including both symmetric Heisenberg exchange coupling J
and the antisymmetric Dzyaloshinskii-Moriya (DM) interac-
tion [29,30] Di j = (Dx

i j, Dy
i j, Dz

i j ).
The full effective spin Hamiltonian under an out-of-plane

magnetic field can be written as

H =
∑
〈i j〉

[JSi · S j + Di j · (Si × S j )] +
∑

i

η
(
Szi

i

)2

−
∑

i

B(ẑ · ẑi )S
zi
i , (4)

with B the Zeeman splitting. Although the Zeeman coupling
could involve all the spin components, only the Zeeman
coupling to the local z component Szi

i ẑi is considered for sim-
plicity. Moreover, more complicated spin interactions, such as
pseudodipolar interactions, and higher-order spin interactions
could be present. This kind of interaction between the upper
doublets of thee neighboring sites has the form of a four-spin
interaction [26]. According to Moriya’s rule [29], the DM
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vectors are further constrained to be

D12 = −D21 = (0,−Dp, Dz ),

D23 = −D32 = (

√
3

2
Dp,

1

2
Dp, Dz ),

D31 = −D13 = (−
√

3

2
Dp,

1

2
Dp, Dz ), (5)

with Dz the out-of-plane component along global ẑ direction
and Dp = |Di j − Dzẑ| the in-plane component.

III. FLAVOR-WAVE THEORY FOR QUANTUM
PARAMAGNET

In the strong anisotropic limit with η > 0, the ground state
is a simple quantum paramagnet with Szi

i = 0. With the ex-
change interactions �

αβ
i j , the many-body ground state depletes

a bit from Szi
i = 0, which is analogous to the depletion of

superfluid weight in the Bose-Einstein condensation of inter-
acting bosons except the absence of the continuous symmetry
here. The excited doublets form dispersive bands. As the
ground state is a robust paramagnetic singlet, the picture does
not alter much in the presence of the external magnetic fields.
Since the ground state is paramagnetic without ordering, the
usual Holstein-Primakoff boson representation is not suitable
to describe the excitations. Instead, we regard Szi

i = 0,±1 as
three different flavors [31,32] in the spirit of the SU(3) flavors,
and invoke a linear flavor-wave representation of Si as [33]

Szi
i ≡ ẑi · Si = b†

i bi − b̄†
i b̄i,

S−
i ≡ (x̂i − iŷi ) · Si ≈

√
2(b̄†

i + bi ),

S+
i ≡ (x̂i + iŷi ) · Si ≈

√
2(b̄i + b†

i ), (6)

where (x̂i, ŷi, ẑi ) spans a local coordinate for site i. More
details can be found in Appendix A. For the quantum para-
magnet here, the boson operators b†

i and b̄†
i (bi and b̄i) create

(annihilate) a state with magnetic flavor Szi
i = +1 and −1,

respectively. As long as the ground state of the quantum para-
magnet is stable against fluctuation so that 〈b†

i bi〉, 〈b̄†
i b̄i〉 � 1,

the higher-order effects can be ignored and the linear flavor-
wave theory can remain applicable.

Due to the noncollinearity of the Ising axes of the three
sublattices, one needs to rotate the spin operators in Eq. (4)
into the local coordinate for different sites [34,35], and this
generates the pairing of the flavor bosons. More specifically,
for local Ising axis ẑi = (cos θi cos φi, cos θi sin φi, sin θi ), one
needs to rotate Si into the local coordinate by

Ri =
⎛
⎝sin θi cos φi − sin φi cos θi cos φi

sin θi sin φi cos φi cos θi sin φi

− cos θi 0 sin θi

⎞
⎠, (7)

as Si = Ri(x̂i · Si, ŷi · Si, ẑi · Si )T . Correspondingly, the cou-
pling matrix �i j transforms as �̃i j = RT

i �i jR j so that

Si�i jS j = (
x̂i · Si, ŷi · Si, ẑi · Si

)
�̃i j

⎛
⎝x̂ j · S j

ŷ j · S j

ẑ j · S j

⎞
⎠. (8)

FIG. 2. The band dispersion of the doublet excitations from the
linear flavor-wave theory. We set sin θ = 1/3, η/J = 7.0,

√
3Dp =√

3/2Dz = D = 0.9J , and B/J = 0.5 (0) for the solid (dashed) lines.
The color of the solid line shows the nonzero Berry curvature in
the log scale L(	z

n) = sgn(	z
n)ln(1 + |	z

n|). The inset shows the
hexagonal Brillouin zone.

To the quadratic order of the bosonic operators, we obtain

H =
∑
〈i j〉

[Ai j (b
†
i b j + b̄ib̄

†
j + b†

i b̄†
j + b̄ib j )

+ Bi j (bib j + b̄†
i b̄†

j + bib̄
†
j + b̄†

i b j ) + H.c.]

+
∑

i

[η(b†
i bi + b̄†

i b̄i ) − B(b†
i bi − b̄†

i b̄i )], (9)

with

Ai j = 1
2

(
�̃xx

i j + �̃
yy
i j + i�̃xy

i j − i�̃yx
i j

)
, (10)

Bi j = 1
2

(
�̃xx

i j − �̃
yy
i j + i�̃xy

i j + i�̃yx
i j

)
. (11)

Therefore, after the Fourier transform, the Hamiltonian Eq. (4)
needs to be written in a Bogoliubov–de Gennes (BdG) form
as

H = 1

2

∑
k



†
kHk
k (12)

with

Hk =
(

Ak Bk
B∗

−k A∗
−k

)
, (13)

and


k =(
b1k, b̄1k, ..., b3k, b̄3k, b†

1,−k, b̄†
1,−k, ..., b†

3,−k, b̄†
3,−k

)T
.

(14)
The explicit form of Ak and Bk can be found in Appendix B.
The dispersion of the flavor-wave excitations can be deter-
mined as the positive eigenvalues of �zHk [34,36], where we
have

�z = σz ⊗ I6, (15)

with σz the Pauli matrix and I6 the 6 × 6 identity matrix. In
Fig. 2, we depict the representative dispersions in the quantum
paramagnetic phase.

When B 
= 0, the bands are separated from each other
due to time-reversal symmetry breaking. If the band becomes
too dispersive so that the band bottom touches zero energy,
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the bosons begin to condensate, and the system develops a
corresponding magnetically ordered ground state other than
the quantum paramagnetic state [33]. To avoid that, we work
in the regime with �

αβ
i j , B < η such that the quantum para-

magnet remains stable throughout. The phase region of this
quantum paramagnetic state and detailed discussion can be
found in Appendix B.

IV. TOPOLOGICAL TRANSPORT OF TRIPLONS

A. Band topology

In magnetically ordered systems, the DM interaction
or/and the noncollinear spin configuration could give rise to
topological magnons with nonzero Chern numbers [7,37–39].
With the DM interactions and/or the noncollinear Ising axes
in the current model, the Berry curvature of the flavor-wave
excitation in the quantum paramagnet is also expected to
be nonzero. In the case of the bosonic BdG Hamiltonian, the
wave function of the nth band |ψnk〉 is determined by the
eigenequation

Enk|ψnk〉 = �zHk|ψnk〉. (16)

The corresponding Berry connection Ank and Berry curvature
�nk is then defined as [9]

Ank = i〈ψnk|�z∇k|ψnk〉, (17)

�nk = ∇k × Ank. (18)

In two-dimensional systems, the first Chern number can then
be calculated by integrating the z component of 	nk over the
Brillouin zone as

Cn = 1

2π

∑
k

	z
nk. (19)

The general analysis of the band topology with an arbitrary
choice of parameters is unnecessary for our purpose. Without
loss of much generality, we consider a simple case where the
Ising axes ẑi are all perpendicular to the kagomé plane, and
the DM vectors only have out-of-plane components as D12 =
D23 = D31 = Dzẑ. With this simplification, if we perform a
basis transformation as

umk = 1√
2

(bmk + b̄†
m,−k ), (20)

pmk = i
1√
2

(b̄†
m,−k − bmk ), (21)

the Hamiltonian can then be written as

H = 1

2(2η)−1

∑
k

(p†
k − iBη−1u†

k )(pk + iBη−1uk )

+ 1

2

∑
k

u†
k(4Mk − 2B2η−1)uk (22)

with

Mk = η

2
I3 +

⎛
⎝ 0 2J̃ cos k3 2J̃∗ cos k2

2J̃∗ cos k3 0 2J̃ cos k1

2J̃ cos k2 2J̃∗ cos k1 0

⎞
⎠, (23)

where J̃=J+ iDz=|J̃|e−iφ/3, km=k · δm, uk=(u1k, u2k, u3k ),
pk = (p1k, p2k, p3k ), and

[u†
mk, pm′k′ ] = iδmm′δkk′ . (24)

The Hamiltonian Eq. (22) is an analog of a phononic sys-
tem on the kagomé lattice with a mass (2η)−1 and a dynamical
matrix 4Mk − 2B2η−1. In Appendix C, we show that the wave
function of this phononic Hamiltonian remains unchanged
when B → 0+ and thus band Chern numbers can be fully
determined by Mk even with finite B. Interestingly, Mk is
topologically equivalent to the chiral spin Hamiltonian [40]
or topological magnonic Hamiltonian [6] on kagomé lattice,
where the inequivalence between the honeycomb plaquette
and the triangular plaquette leads to a nonzero φ flux. There-
fore, there is a SU(3)⊕SU(3) band topology where the Chern
numbers of the three bands with flavor ±1 are determined by
a SU(3) structure [41] as [∓sgn(sin φ), 0,±sgn(sin φ)] from
bottom to top.

In a more general situation with noncollinear Ising axes,
we choose η = 7J and assume the system further respects a
Oh point group symmetry that is inherited from the parent
pyrochlore lattice so that Dz = √

2Dp = √
2/3D. After nu-

merically computing the band Chern number in the discretized
momentum space [42], we obtain a topological phase diagram
for the lower three bands shown in Fig. 3. The full diagram
for all six bands can be found in Appendix B. We find that,
due to the mixing of the two flavors in the global coordinate,
the SU(3)⊕SU(3) topology is enriched with varying intrinsic
couplings as well as the external magnetic field.

From the analytical calculation and numerical study above,
we can see that nontrivial Berry physics of the excited dou-
blets in our model originates from the noncancellation of the
flux in the kagomé lattice, and thus we believe that similar
nontrivial topology for even more general multiplet excita-
tions will also occur in various lattices with inequivalent
plaquettes such as honeycomb [43], checkerboard [44,45],
and bulk [33] or thin-filmed [46] pyrochlore lattices.

B. Thermal Hall effects

Semiclassically, with the finite Berry curvature, the wave
packet of the excitations will experience an anomalous veloc-
ity from � as [47,48]

ṙn = 1

h̄

∂Enk

∂k
− k̇ × �nk, (25)

where rn is the packet center of the nth wave function. If a
longitudinal temperature gradient ∇yT is applied across the
material, the transverse motion of the excitations from the
anomalous velocity term will lead to some Hall-like transport
signals. In the case of thermal Hall effects, the excitations car-
rying different energies will experience different anomalous
velocities, and thus lead to a transverse temperature differ-
ence. From the theoretical side, the associated thermal Hall
conductivity κxy of bosonic excitations can be derived from
linear response theory as [49,50]

κxy = −k2
BT

h̄V

∑
n,k

{
c2[g(Enk )] − π2

3

}
	z

nk, (26)

023044-4



UPPER-BRANCH THERMAL HALL EFFECT IN QUANTUM … PHYSICAL REVIEW RESEARCH 6, 023044 (2024)

FIG. 3. Diagram of Chern number distributions for the lower three bands. The Chern numbers are listed from bottom to top. We set
sin θ = 1/3, η/J = 7.0,

√
3Dp = √

3/2Dz = D, and B < η. The red solid and black thick lines denote the band touching and the Chern
number change at high-symmetry points � and M, respectively. The outer boundary of the quantum paramagnet is determined when the band
bottom touches zero energy at �.

where c2(x) = (1 + x) ln2(1 + 1/x) − ln2 x − 2Li2(−x),
Li2(x) is the polylogarithm function, T is the average
temperature, V is the volume of the material, and
g(x) = [exp(x/kBT ) − 1]−1 is the Bose-Einstein distribution.
In Fig. 4(a), we show the dependence of κxy/kBT on the
temperature T with different DM interactions D. As we can
infer from Eq. (26), because of the distribution function,
the Berry curvature from lower bands contributes more to
the thermal Hall conductivity. Therefore, the thermal Hall
conductivity is large when D/J = 0.16, as the two lowest
bands both have negative Chern numbers. Meanwhile, the
thermal Hall conductivity is small in the case of D/J = 0.16,
where the second-lowest band with a large positive Chern
number +3 suppresses the contribution of negative Berry
curvature from the lowest band. Besides, if the temperature
is getting higher, the occupations of the excitations in all six
bands become more equally populated, and thus κxy goes
closer to zero owing to the fact that

∑
n,k 	z

nk = 0.
In experiments, the DM interaction is usually not tunable,

and we thus depict a density plot of κxy/kBT with respect
to the magnetic field B and the temperature T in Fig. 4(b).
With the lattice constant 10 Å of Tb2Ti2O7 as an estimate
for the interlayer distance l , κxy/kBT ∼ 109 K−1s−1 gives rise
to a bulk thermal Hall signal κxy/lT ∼ 10−5 WK−2 m−1, in
the same order as experimental measurements [12]. Due to
the change of lower-band Berry curvature, with the magnetic
field increasing, when the Chern numbers of the two low-
est bands change from (−1,+3) to (−1, 0), there is a sign
flip of the thermal Hall conductivity around the critical field
(denoted as the dotted black line). It should be pointed out
that the phononic or extrinsic contribution to the sign change
of thermal Hall effects in paramagnets is usually not tunable
by the magnetic field or can be tuned limitedly accompanied
by some magnetic phase transitions [51,52]. We expect the
observation of this sign change can indicate the presence of

the upper branch thermal Hall effect, while a delicate experi-
mental design may be needed to subtract the contribution from
phonons as their effects are usually within the same order [14].
As we stated in the previous section, though we obtain the
above results from a specific model on the kagomé lattice, the
tunable thermal Hall signal arising from the topology of
the excited multiplets can generally occur in various lattices.

V. DISCUSSION

In this work, we have addressed the question of whether
applying a Zeeman field to Mott insulators with multiple
local energy levels could generate the intrinsic thermal Hall
effect solely from the magnetic excitations in the quantum
paramagnetic phase at finite temperatures. In our simple mod-
eling, we have only considered the lowest a few CEF energy
levels, which is sufficient to provide a positive answer. In
reality, the candidate Mott insulators have many such CEF
energy levels, and as the temperature increases, these CEF
energy levels would be gradually thermally activated and
contribute to thermal Hall transports. Thus, a comprehensive
understanding of the thermal Hall signals in the candidate ma-
terials requires intrinsic components. Although here we focus
on only the contribution of CEF excitations to the thermal
Hall effects, we do not think phononic contribution should
be ignored in any real materials. Based on our calculation,
even in a simplified model, the thermal Hall conductivity
from CEF excitations themselves is within the same or-
der of the experimental result. We expect our results to be
complementary to the recent efforts in phonon thermal Hall
effects with the non-Kramers-like doublet systems [53,54].
The previous analysis on Pr2Ir2O7 has pointed out the res-
onant phonon-pseudospin scattering where the non-Kramers
pseudospin arises from the ground-state doublet of the Pr3+
ion [14,54]. The inclusion of the upper branch CEF states not
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FIG. 4. The thermal Hall conductivity with varying parameters.
We set η/J = 7.0,

√
3Dp = √

3/2Dz = D, and (a) B/J = 0.8 with
different values of D and the corresponding Chern numbers of
the lower three bands labeled in the plot; (b) D/J = 0.9 with the
white numbers and dashed lines denoting the values of κxy/(kBT )
(in units of 109 K−1s−1). The black dashed line shows the critical
field Bc/J ≈ 2.3 where the Chern numbers of the lower three bands
change between (−1, +3, −2) and (−1, 0, +1), resulting in a sign
change of the thermal conductivity.

only generates the intrinsic thermal Hall sign as the upper
branch thermal Hall effect, but may also induce a cascade
of resonant phonon scattering with the large local Hilbert
space [22].

In conventional ordered magnets, phonon-magnon hy-
bridization [55–57] is known to create Berry curvature
distribution for the hybridized excitations, and can also
lead to nonzero magnetophonon chirality with thermal Hall
effects [36,58]. This effect occurs even for the trivial
magnon band structure that is absent of finite magnon
Berry curvatures. For the exciton-like flavor-wave excita-
tion in the quantum paramagnets, similar phonon-exciton
hybridization could occur. Here, the flavor-wave excita-
tion already develops Berry curvature distribution on its
own. Thus, the hybridization could bring more interest-
ing aspects to the dynamical properties of the whole
system.
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APPENDIX A: LINEAR FLAVOR-WAVE THEORY

In this section, we give the flavor-wave representation of
effective spin. In the simple case that we discussed in the main
text, the Hilbert space is spanned by states | f 〉i ≡ |ẑi · Si =
| f 〉 with f = 0,±1 for each site i. Then, a set of SU(3)
generators can be constructed as G f ′

f (i) = | f 〉i〈 f ′|i with a
normalization condition

∑
f | f 〉i〈 f |i = 1.

Under this basis, the spin ladder operators can be written
as

S+
i =

∑
f f ′

〈 f |S+
i | f ′〉| f 〉〈 f ′| =

√
2
[
G0

1(i) + G1̄
0(i)

]
(A1)

S−
i =

∑
f f ′

〈 f |S−
i | f ′〉| f 〉〈 f ′| =

√
2
[
G0

1̄(i) + G1
0(i)

]
. (A2)

Similarly,

Sz
i =

∑
f f ′

〈 f |Sz
i | f ′〉| f 〉〈 f ′| = G1

1(i) − G1̄
1̄(i) (A3)

(Sz
i )2 =

∑
f f ′

〈 f |(Sz
i )2| f ′〉| f 〉〈 f ′| = G1

1(i) + G1̄
1̄(i). (A4)

In the spirit of the flavor representations, the SU(3) algebra
can be reproduced by two bosons b and b̄ as

G1
1(i) = b†

i bi, (A5)

G1̄
1̄(i) = b̄†

i b̄i, (A6)

G0
0(i) = 1 − b†

i bi − b̄†
i b̄i, (A7)

G1
1̄(i) = b̄†

i bi, (A8)

G0
1(i) = b†

i

√
1 − b†

i bi − b̄†
i b̄i ≈ b†

i , (A9)

G0
1̄(i) = b̄†

i

√
1 − b†

i bi − b̄†
i b̄i ≈ b̄†

i . (A10)

With the above equations and G f ′
f (i) = G f

f ′ (i)
†
, we imme-

diately obtain the linear-flavor wave representation Eq. (5) in
the main text.

APPENDIX B: BOGOLIUBOV–DE GENNES
HAMILTONIAN

In this section, we give the explicit form of the BdG Hamil-
tonian in the main text.

After the Fourier transform, we can obtain the BdG Hamil-
tonian that preserves particle-hole symmetry as

H = 1

2

∑
k



†
kHk
k = 1

2

∑
k



†
k

(
Ak Bk

B∗
−k A∗

−k

)

k (B1)
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with

Ak = − B sin θ I3 ⊗
(

1 0
0 −1

)
+

⎛
⎜⎜⎜⎜⎜⎜⎝

η 0 f3k g3k f ∗
2k g2k

0 η g3k f ∗
3k g2k f2k

f ∗
3k g3k η 0 f1k g1k

g3k f3k 0 η g1k f ∗
1k

f2k g2k f ∗
1k g1k η 0

g2k f ∗
2k g1k f1k 0 η

⎞
⎟⎟⎟⎟⎟⎟⎠

(B2)

and

Bk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 g3k f3k g2k f ∗
2k

0 0 f ∗
3k g3k f2k g2k

g3k f ∗
3k 0 0 g1k f1k

f3k g3k 0 0 f ∗
1k g1k

g2k f2k g1k f ∗
1k 0 0

f ∗
2k g2k f1k g1k 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B3)

where

fmk = J

[
1

2
(1 − 3 sin2 θ ) − i

√
3 sin θ

]
cos (k · δm) + Dz

[√
3

2
(1 + sin2 θ ) − i sin θ

]
cos (k · δm)

− Dp[
√

3 sin θ cos θ + i cos θ ] cos (k · δm), (B4)

gmk =
[

3

2

(
J − 1√

3
Dz

)
cos2 θ −

√
3Dp cos θ sin θ

]
cos (k · δm), (B5)

and I3 the 3 × 3 identity matrix.

Since the commutator gives

[
k, 

†
k] =

(
1 0
0 −1

)
⊗ I3×3 ≡ �z, (B6)

if we perform a Bogoliubov transformation 
k = Tkψk
to diagonalize Hk while preserving the commutator, i.e.,
[ψk, ψ

†
k ] = �z, then

�z = [
k, 

†
k] = Tk[ψk, ψ

†
k ]T †

k = Tk�zT
†

k , (B7)

T †
k HkTk =

(
Ek 0
0 E−k

)
, (B8)

where Ek is a 6 × 6 diagonal matrix whose elements are
the eigenenergies of the 6 bands respectively and E−k is the
particle-hole symmetric partner of Ek. As we mentioned in
the main text, for any Ek, the positiveness of the diagonal
elements determines the mean-field phase diagram of this
quantum paramagnetic phase, and we show the diagram in
Fig. 5 with parameters sin θ = 1/3,

√
3Dp = √

3/2Dz = D as
an example. Outside the yellow region, Ek < 0 for certain k0,
and the system transits from the quantum paramagnetic phase
into an ordered state with magnetic wave vector k0. In the
main text, we focus on the η/J = 7 cross section, as shown in
Fig. 3.

It can also be checked that

i
d

dt
ψk = [ψk, H] = �zHkψk, (B9)

and thus a proper Lagrangian should be

Lk = i
d

dt
− �zHk. (B10)

Therefore, a bosonic vector potential Ank and Berry curvature
�nk for ψnk can be defined as [59]

Ank = i〈ψnk|�z∇k|ψnk〉, and �nk = ∇k × Ank. (B11)

In Fig. 6, we illustrate the Berry curvature distribution 	z
nk

in the Brillouin zone with a specific parameter choice. These
finite values of Berry curvature lead to the nonzero bosonic
band Chern numbers that we discussed in the main text. We
show the full diagram for all six band Chern numbers in
Fig. 7.

FIG. 5. (Color online.) The quantum paramagnetic phase (shown
as yellow region) with sin θ = 1/3 and

√
3Dp = √

3/2Dz = D.
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FIG. 6. The distribution of Berry curvature (in log scale) in the momentum space from the lowest band (band 1) to the highest band (band
6) with a parameter choice as sin θ = 1/3, η/J = 7.0,

√
3Dp = √

3/2Dz = D, and B/J = 0.5.

APPENDIX C: COLLINEAR CASE

In this section, we derive Eq. (13) in the main text. We first take θ = π/2 and Dp = 0 into Eqs. (B1)–(B5), and to further
simplify the expression, we then perform a gauge transformation as bmk → ie−i 2πm

3 bmk and b̄mk → −iei 2πm
3 b̄mk. The 12 × 12

Hamiltonian matrix in the basis 
k = (b1k, b̄1k, ..., b3k, b̄3k, b†
1,−k, b̄†

1,−k, ..., b†
3,−k, b̄†

3,−k )T is expressed as

Hk = 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η − B

2
0 J̃ cos k3 0 J̃∗ cos k2 0 0 0 0 J̃ cos k3 0 J̃∗ cos k2

0
η + B

2
0 J̃∗ cos k3 0 J̃ cos k2 0 0 J̃∗ cos k3 0 J̃ cos k2 0

J̃∗ cos k3 0
η − B

2
0 J̃ cos k1 0 0 J̃∗ cos k3 0 0 0 J̃ cos k1

0 J̃ cos k3 0
η + B

2
0 J̃∗ cos k1 J̃ cos k3 0 0 0 J̃∗ cos k1 0

J̃ cos k2 0 J̃∗ cos k1 0
η − B

2
0 0 J̃ cos k2 0 J̃∗ cos k1 0 0

0 J̃∗ cos k2 0 J̃ cos k1 0
η + B

2
J̃∗ cos k2 0 J̃ cos k1 0 0 0

0 0 0 J̃∗ cos k3 0 J̃ cos k2
η − B

2
0 J̃∗ cos k3 0 J̃ cos k2 0

0 0 J̃ cos k3 0 J̃∗ cos k2 0 0
η + B

2
0 J̃ cos k3 0 J̃∗ cos k2

0 J̃ cos k3 0 0 0 J̃∗ cos k1 J̃ cos k3 0
η − B

2
0 J̃∗ cos k1 0

J̃∗ cos k3 0 0 0 J̃ cos k1 0 0 J̃∗ cos k3 0
η + B

2
0 J̃ cos k1

0 J̃∗ cos k2 0 J̃ cos k1 0 0 J̃∗ cos k2 0 J̃ cos k1 0
η − B

2
0

J̃ cos k2 0 J̃∗ cos k1 0 0 0 0 J̃ cos k2 0 J̃∗ cos k1 0
η + B

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(C1)
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FIG. 7. Diagram of all six band Chern numbers distributions.
The Chern numbers are listed from bottom to top. The parameters are
the same as Fig. 3 in the main text. In addition to the band touching
at � and M denoted by the red solid and black thick lines, there is
band-touching at K denoted by blue dashed lines that gives rise to
more complicated topological structures here.

Now, with the basis transformation that we mentioned in the
main text, umk = 1√

2
(bmk + b̄†

m,−k ) and pmk = i√
2
(b̄†

m,−k −
bmk ), we can obtain H = 1

2

∑
k �

†
kH̃k�k with �k =

(u1k, ..., u3k, p1k, ..., p3k, u†
1,−k, ..., u†

3,−k, p†
1,−k, ..., p†

3,−k )T ,
where

H̃k =

⎛
⎜⎜⎝

2Mk −iBI3 0 0
iBI3 ηI3 0 0

0 0 2M∗
k iBI3

0 0 −iBI3 ηI3

⎞
⎟⎟⎠, (C2)

or alternatively,

H = 1

2(2η)−1

∑
k

(p†
k − i

B

η
u†

k )(pk + i
B

η
uk )

+ 1

2

∑
k

u†
k(4Mk − 2B2

η
)uk − B (C3)

as written in Eq. (13) of the main text (up to a constant),
where we have used the fact that Mk = M−k = M†

k and
[u†

mk, pm′k′ ] = iδmm′δkk′ . Here, I3 is the 3 × 3 identity matrix.

Since Mk is Hermitian, we can diagonalize 2ηMk by a
unitary matrix Qk as

2ηQ†
kMkQk = Diag

(
Ẽ2

1k, Ẽ2
2k, Ẽ2

3k

) ≡ Ẽ2
k (C4)

with Q†
kQk = I3. Then, it can be found that

Q̃k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qk

√
η

2Ẽk
Qk

√
η

2Ẽk

Q∗
k

√
η

2Ẽk
Q∗

k

√
η

2Ẽk

−iQ∗
k

√
Ẽk
2η

iQ∗
k

√
Ẽk
2η

−iQk

√
Ẽk
2η

iQk

√
Ẽk
2η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C5)

can diagonalize H̃k as

Q̃†
kH̃kQ̃k =

⎛
⎜⎜⎝

Ẽk − B
Ẽk + B

Ẽ−k − B
Ẽ−k + B

⎞
⎟⎟⎠,

(C6)

while transforming the commutator

[�k,�
†
k] = I2 ⊗

(
0 i
−i 0

)
⊗ I3 (C7)

into

Q̃†
k[�k,�

†
k]Q̃k = �z =

(
1 0
0 −1

)
⊗ I6, (C8)

the canonical bosonic commutator with the particle (hole)
eigenenergy

E±k =
(

Ẽ±k − B
Ẽ±k + B

)
, (C9)

and thus Q̃k is the proper wave function for the phononic
Hamiltonian Eq. (C2). It can be noticed that Q̃k fully depends
on Mk and does not change with nonzero B. Therefore, we
have the conclusion in the main text that the topological prop-
erties of Hamiltonian H are fully determined by Mk.
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