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The quantum convolutional neural network (QCNN) is a promising quantum machine learning (QML) model
that is expected to achieve quantum advantages in classically intractable problems. However, the QCNN requires
a large number of measurements for data learning, limiting its practical applications in large-scale problems. To
alleviate this requirement, we propose an architecture called split-parallelizing QCNN (sp-QCNN), which ex-
ploits the prior knowledge of quantum data to design an efficient model. This architecture draws inspiration from
geometric quantum machine learning and targets translationally symmetric quantum data commonly encountered
in physics and quantum computing science. By splitting the quantum circuit based on translational symmetry,
the sp-QCNN can substantially parallelize the conventional QCNN without increasing the number of qubits and
improve the measurement efficiency by an order of the number of qubits. To demonstrate its effectiveness, we
apply the sp-QCNN to a quantum phase recognition task and show that it can achieve comparable classification
accuracy to the conventional QCNN while considerably reducing the measurement resources required. Due to
its high measurement efficiency, the sp-QCNN can mitigate statistical errors in estimating the gradient of the
loss function, thereby accelerating the learning process. These results open up possibilities for incorporating the
prior data knowledge into the efficient design of QML models, leading to practical quantum advantages.
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I. INTRODUCTION

Quantum computing is an innovative technology that is
expected to solve classically intractable problems and open
up new frontiers in scientific research and technological ad-
vancements [1]. Quantum machine learning (QML) is one of
the central research fields in quantum computing, allowing us
to solve various tasks such as classification, regression, and
clustering by discovering relationships and patterns between
data using quantum computers [2–5]. Recent studies have
demonstrated quantum speedups in QML beyond classical
machine learning for specific artificially engineered tasks,
suggesting the potential of QML [6–8]. While many studies
have been devoted to achieving quantum advantages of QML
for practical problems, the path to achieving this goal remains
unclear [9].

The quantum neural network (QNN) is a promising QML
model that combines the principles of quantum information
processing and artificial neural networks to enhance the ca-
pabilities of data-driven technologies [10–14]. The QNN is
represented by a parametrized quantum circuit, which is op-
timized via training data to solve a given task [15]. Since the
efficient simulation of quantum circuits is generally impossi-
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ble with classical computers, the QNN can learn the complex
features of data that are classically intractable [16,17]. Among
various QNN architectures, the quantum convolutional neural
network (QCNN) is a leading one that enables classification
tasks [18,19] [Fig. 1(a)]. For instance, the QCNN can clas-
sify the phases of matter in quantum many-body systems,
an important research object in the broad field of physics
[20–22]. Due to its high trainability and feasibility [23], the
QCNN is particularly suitable for noisy intermediate-scale
quantum (NISQ) devices with a limited number of possible
gate operations [24].

It is conjectured that achieving quantum advantages in
QML requires encoding the prior knowledge of a problem,
or inductive bias, into the learning models [25]. In QNNs,
the architecture design tailored to prior knowledge is con-
sidered crucial to take full advantage of its capabilities [26].
Geometric quantum machine learning (GQML) based on
equivariant QNNs, where the symmetry of a problem is en-
coded in a variational unitary circuit, is one of such prior
knowledge-tailored learning models, reducing the parameter
space to be searched and enhancing trainability and general-
ization [27–35]. For example, it was theoretically proved that
permutation-equivariant QNNs [36] do not suffer from barren
plateaus [37–40], the exponential vanishing of the gradient in
a loss function, due to the exponential reduction of parameters
to reach overparametrization [41]. This technique would be a
powerful tool to achieve quantum advantages with QNNs.

The high resource requirement of the measurement pro-
cess remains a practical barrier for QNNs to learn data on
real quantum computers [15]. During the learning process of
QNNs, a predefined loss function is minimized by adjusting
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(a) Conventional QCNN Prior knowledge of data (b) sp-QCNN
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FIG. 1. Basic structures of (a) conventional and (b) sp-QCNNs. C, P, and FC represent convolutional, pooling, and fully connected layers,
respectively. (a) In the conventional QCNN, some qubits are discarded at each pooling layer, and only one of the remaining qubits is measured
in the end to classify the quantum data. (b) In the sp-QCNN, the translational symmetry of data is used as prior knowledge to design an efficient
QML model. The circuit of the sp-QCNN (the left circuit) consists of translationally symmetric layers and splitting structures, allowing us to
substantially parallelize the nonsplitting QCNN (the right circuit) to improve the measurement efficiency.

the variational parameters of the circuit. This loss function
is computed from a training dataset by measuring specific
observables in the parametrized quantum circuit. Therefore,
the measurement cost scales with the number of parameters to
be optimized and the amount of data to be processed [42]. This
situation presents a significant bottleneck when considering
large-scale QML applications and the potential of practical
quantum advantages [9,43]. To mitigate this measurement
requirement, one possible solution is the multiprogramming
of quantum computation, which allows multiple circuits to
be executed in parallel on different regions of a quantum
processor [44–47]. Although this parallelization reduces the
total runtime, it increases the required qubit resources, which
are limited in current devices.

We address this issue by proposing a QNN architecture
called split-parallelizing QCNN (sp-QCNN). This archi-
tecture is inspired by GQML and targets translationally
symmetric data, such as solid state materials in condensed
matter physics. This model exploits the data symmetry
as prior knowledge to substantially parallelize the QCNN
without increasing the number of qubits, improving the mea-
surement efficiency [Fig. 1(b)]. The circuit of the sp-QCNN
consists of two elements: translationally symmetric layers
and circuit splitting. First, we impose translational symmetry
on the convolutional and fully connected layers to preserve
the symmetry of the input state. Second, we split the circuit
(rather than discarding some qubits) at the pooling layers and
then perform the same unitary operations on each branch in
parallel. The combination of this circuit structure and data
symmetry substantially parallelizes the conventional QCNN
consisting of the same unitary layers, improving the measure-
ment efficiency of local observables and their gradients by
a factor of O(n) (n is the number of qubits throughout this
paper).

For verification, we apply the sp-QCNN to a quantum
phase recognition task. The results show that the sp-QCNN
can improve the measurement efficiency by a factor of
O(n) while achieving sufficient classification performance to
recognize the symmetry-protected topological (SPT) phase
[48–51]. In training with limited measurement resources, the
sp-QCNN with high measurement efficiency can suppress
statistical errors in estimating the gradient of the loss function
to accelerate the learning process compared to the conven-

tional QCNN. Our model opens up a research direction in the
QNN architecture design, contributing to practical quantum
advantages in near-term quantum devices that lack sufficient
computational resources.

The remainder of this paper is organized as follows. First,
Sec. II briefly reviews the QCNN and discusses its compu-
tational cost. Section III introduces two key components of
the sp-QCNN, translationally symmetric layers and circuit
splitting, and clarifies the similarities and differences between
the sp-QCNN and the GQML. Section IV shows the advan-
tage of the sp-QCNN, i.e., the improvement of measurement
efficiency for local observables and their gradients, based on
symmetry. For verification, Sec. V presents the application of
the sp-QCNN to a quantum phase recognition task, showing
that it can solve the task with sufficient accuracy and im-
prove the measurement efficiency by a factor of O(n). Finally,
Sec. VI summarizes this paper and discusses potential future
research directions.

II. REVIEW OF QCNN

The convolutional neural network (CNN) is a celebrated
classical machine learning model that solves various tasks,
such as image classification [52–54]. The CNN consists of
three different types of layers: convolutional, pooling, and
fully connected layers. The convolutional layer filters the
input data to extract its local features, and the pooling layer
coarse-grains the data to leave only relevant information.
After the convolutional and pooling layers are alternately
applied, the fully connected transformation is applied to the
remaining data to produce a final output. For example, in
classification problems, the output indicates which class the
input data belongs to, and the CNN is trained to correctly
classify training data.

The QCNN is a CNN-inspired QNN model that can pro-
cess quantum data whose dimension is exponentially larger
than classical ones and is expected to achieve practical quan-
tum advantages [18,19]. Similar to the CNN, the QCNN
consists of convolutional, pooling, and fully connected layers
[Fig. 1(a)]. The convolutional layers apply local unitary gates
to extract the local features of the input data, and the pooling
layers discard some qubits to coarse-grain the quantum infor-
mation. After alternately applying the two types of layers, we
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perform the fully connected unitary, measure the remaining
qubits, and obtain an output indicating the data class. In the
QCNN, the quantum circuit is characterized by variational
parameters, which are optimized to correctly classify training
data. Such a variational algorithm is central in the NISQ era,
as it works even in a relatively shallow circuit [24].

The QCNN is promising for quantum advantages in NISQ
devices because of its two significant features. One is its
high feasibility. Since the number of qubits in the QCNN de-
creases exponentially in each pooling layer, the circuit depth
is O(log n). This logarithmic depth is advantageous for NISQ
devices where the number of possible gate operations is lim-
ited. The other feature of the QCNN is its high trainability.
In many variational quantum algorithms, the exponential van-
ishing of the gradient in a loss function, known as the barren
plateau phenomenon, prevents scalable optimization [37–40].
Meanwhile, Ref. [23] proved that the QCNN does not suffer
from barren plateaus due to the logarithmic depth and the
locality of unitary operations and observables. The absence
of barren plateaus leads to the high trainability of the QCNN,
which is crucial for achieving quantum advantages in QML
tasks.

However, the high resource requirement of measurements
for optimization presents practical difficulties in QNNs,
including QCNN [15]. Let us estimate the required measure-
ment cost in the QCNN. First, we suppose that half of the
qubits are discarded at each pooling layer and the number of
variational parameters is O(n) + O(n/2) + O(n/4) + · · · ∼
O(n) in total [in common QCNNs, gates acting in parallel
share the same parameters, thus the number of independent
parameters is O(log n), but measuring the gradient of the loss
function requires O(n) cost (see Sec. IV B for details)]. We
also let Ntrain, Nepoch, and Nshot denote the number of training
data, maximum epoch (one epoch refers to a complete itera-
tion through a dataset), and the number of measurement shots
used per observable, respectively. Then, the total required
number of shots during training is O(nNtrainNepochNshot ). In
terms of practicality, the QCNN is not easy to implement
for large-scale problems requiring many qubits and a large
dataset. Below, we present an architecture of the QCNN that
can ideally reduce the required number of shots by a factor of
O(1/n), bringing the QCNN closer to realization.

III. SPLIT-PARALLELIZING QCNN

In this section, we describe the two key components of
the sp-QCNN, translationally symmetric layers and circuit
splitting, and discuss the relationship between the sp-QCNN
and the GQML through symmetry. For simplicity, this work
focuses on the case where quantum data is defined on qubits
aligned on a one-dimensional lattice. The generalization to
arbitrary dimensional lattices is straightforward.

A. Translational symmetry

In the sp-QCNN, we exploit data symmetry as prior knowl-
edge to design an efficient QML model. The target of the
sp-QCNN is translationally symmetric data, which is repre-
sented by a density matrix ρi with the following property:

T ρiT
† = ρi, (1)

=

FIG. 2. Example of translationally symmetric unitary layer.
Single-qubit rotations are applied in parallel, followed by ZZ ro-
tations on the nearest neighboring qubits. These procedures are
repeated d times. The rotation angles are translationally symmetric,
and thus the number of independent parameters is 4d .

where T is the translation operator by one qubit (e.g.,
T |100 . . .〉 = |010 . . .〉). The most relevant field for the ap-
plication of sp-QCNN is condensed matter physics, in which
translationally symmetric materials such as solids are the
largest research topic [55–57]. In Sec. V, we will demonstrate
that the sp-QCNN can detect the quantum phases of transla-
tionally symmetric many-body states.

To ensure the equivalence of outputs in parallel computa-
tion of sp-QCNN, we also impose translational symmetry on
each of the convolutional and fully connected layers, whose
unitary is denoted by Vi, as follows:

TViT
† = Vi. (2)

As will be shown later, the translational symmetries of the
data and the circuit contribute to the substantial parallel com-
putation. We give an example of hardware efficient ansatz
respecting the translational symmetry (Fig. 2):

Vi =
d∏

k=1

Rsym
ZZ (δk )Rsym

X (γk )Rsym
Z (βk )Rsym

X (αk ), (3)

where we have defined

Rsym
X (θ ) =

n∏
j=1

e−iθXj , Rsym
Z (θ ) =

n∏
j=1

e−iθZj , (4)

Rsym
ZZ (θ ) =

n∏
j=1

e−iθZ j Z j+1, (5)

with the periodic boundary condition Zj+n = Zj . The ro-
tation angles, αk, βk, γk , and δk , are variational parameters
to be optimized and do not depend on the qubit position.
By construction, Vi is symmetric by one-qubit translation:
[Vi, T ] = 0 (and therefore [Vi, T m] = 0 holds for any integer
m). In contrast, the convolutional layer of the conventional
QCNN, V conv

i , is symmetric by two or more qubit translations:
[V conv

i , T ] �= 0 but, e.g., [V conv
i , T 2] = 0 [Fig. 1(a)].

We note the expressivity and classical simulability of our
ansatz. As for the expressivity, the ansatz in Eq. (3) is efficient
to implement in quantum hardware but is not general because
it cannot express all translationally symmetric unitaries due to
the extra inversion symmetry. In principle, the sp-QCNN al-
lows arbitrary translationally symmetric unitaries since we do
not impose any constraints on Vi other than translational sym-
metry (2). For example, unitary operators that break inversion
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symmetry, such as exp[−iθ
∑

j XjYj+1], can be implemented
using Trotter decomposition [1]. Then, however, the circuit
tends to be deeper and therefore more difficult to imple-
ment in near-term devices. Also, extra symmetries of local
gates can limit the circuit expressivity [58]. Finding a more
expressive and compact ansatz is an important open issue.
Meanwhile, it is known that strong symmetry constraints on
quantum circuits can lead to classical simulability [59–61].
For example, permutation symmetric quantum circuits are
classically simulable in many situations because the dimen-
sions of permutation invariant subspaces are polynomial [62].
Nevertheless, since the translation symmetry is much weaker
than the permutation symmetry, we suggest that the translation
symmetry does not lead to classical simulability in general.
In support of this suggestion, the dimensions of the transla-
tionally invariant subspaces are exponentially large. We leave
further analysis on it as a future research problem.

B. Circuit splitting

Another key component of the sp-QCNN is circuit split-
ting. In the conventional QCNN, the pooling layer discards
some qubits to coarse-grain the quantum data. In contrast, the
sp-QCNN splits the circuit at the pooling layers instead of
discarding the qubits, as shown in Fig. 1(b). After splitting,
we perform the same operations on each branch and finally
measure all the qubits in the computational basis. In some
types of quantum computers, such as superconducting [63]
and ion-trap devices [64], unitary operations can be performed
in parallel, and thus this parallel computation does not signif-
icantly increase the runtime.

In this model, we split the circuit such that it is invari-
ant under the translation operation. Figure 3(a) shows an
illustrative example of circuit splitting, where the translation
operation only swaps the two branches (red and blue lines) but
does not modify the overall circuit structure. Here, we give
a specific circuit-splitting method for one-dimensional lattice
cases. With n as the number of qubits, we choose a prime
factor of n, denoted by p, and define q = n/p. Then, we intro-
duce splitting in which n = pq qubits are split into p branches
[Fig. 3(b)]. First, we divide the qubits into q miniblocks each
comprising p qubits in order from top to bottom. Next, we
split the circuit such that the jth qubit of the ith miniblock
is connected to the ith qubit of the jth branch. By repeating
this procedure on each new branch until the number of qubits
becomes one, we obtain the entire sp-QCNN circuit. Note
that this splitting procedure requires SWAP gates to rearrange
the qubits in quantum hardware without all-to-all connectivity
(see Appendix A for details).

Due to the translational symmetry of Vi and circuit split-
ting, the sp-QCNN substantially parallelizes the nonsplitting
QCNN that consists of the same Vi [Fig. 1(b)]. For conve-
nience, we define 〈A〉ns and 〈A〉 as the expectation values of an
operator A in the nonsplitting and sp-QCNNs. In the nonsplit-
ting QCNN, we measure one of the remaining qubits in the
computational basis and consider its expectation value (i.e.,
〈Z1〉ns) as the output of the QCNN. On the other hand, in the
sp-QCNN, we measure all the qubits and regard the average
of the n expectation values (i.e., 〈Zavg〉 = ∑

j 〈Zj〉 /n) as the

... ...
...
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..
.

...
...

...
...

...

...
...

...
...

Translation

(a)

(b)

FIG. 3. (a) An illustration of translationally symmetric circuit
splitting. In this circuit, the entire circuit structure is invariant un-
der the translation operation. (b) A specific circuit-splitting method.
We first divide the qubits into q miniblocks consisting of p qubits
and split the circuit such that the jth qubit of the ith miniblock is
connected to the ith qubit of the jth branch.

output. In the next section, we will discuss the mechanism
and validity of this parallelization in more detail.

C. Relation with geometric quantum machine learning

We consider the sp-QCNN from the viewpoint of GQML
or equivariant QNNs [27–36]. The concept of GQML has
recently emerged as a potential solution to some critical QML
issues associated with trainability and generalization. It lever-
ages the symmetry of a problem as inductive bias and provides
a problem-tailored circuit architecture. For example, let us
consider the classical task of recognizing whether an image
represents a cat. If an image represents a cat, then its rotated
image should also represent a cat. In this sense, this task has
rotation symmetry. In GQML, such symmetry is encoded in
the network architecture. Formally, given a symmetry opera-
tion S and an output function f (ρ), the S-invariance of GQML
is defined as follows:

f (ρ) = f (SρS†) ∀ρ. (6)
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In other words, the symmetry operation S on the input data
never changes the output of GQML. In GQML, the neural
network is usually designed based on the equivariant circuit
to satisfy this invariance. In theory, GQML significantly en-
hances the capability of machine learning in several tasks
[29,36].

The circuit of the sp-QCNN has the same invariant prop-
erty as GQML. Let us consider the unitary transformation U
of the entire sp-QCNN. Due to the translational symmetry of
each Vi and the splitting structure, U itself is translationally
symmetric:

TUT † = U . (7)

This symmetry leads to the equivariant relation between input
and output, U (T ρT †)U † = T (UρU †)T †. That is, the transla-
tion operation applied to the input is identical to that applied to
the output. We also define f (ρ) = tr(UρU †Zavg) with an ob-
servable Zavg = ∑

j Z j/n. Then, the equivariant relation and
[Zavg, T ] = 0 result in

f (ρ) = f (T ρT †) ∀ρ, (8)

which is the T -invariance of GQML (6). Therefore, the sp-
QCNN can be seen as applying GQML to the QCNN. This
insight suggests that the sp-QCNN can be used to enhance
QML capability in tasks where the translation operation on
the input data should not change the output. Here, let us
clarify the difference between our model and the previously
proposed equivariant QCNN [35]. In Ref. [35], the equiv-
ariance of the pooling layer in the QCNN is achieved by
randomly selecting which qubits to discard based on a given
symmetry. The advantage of this conventional model lies in
its applicability to various symmetries, while the sp-QCNN
is specifically tailored to translational symmetry, imposing
equivariance by splitting the circuit. In terms of the number
of shots required, our model should be more efficient than the
conventional equivariant QCNN by maximizing the utilization
of qubit resources.

Our work also provides a different direction for exploiting
data symmetry to improve the potential of QML. A critical
difference between our problem setting and common ones in
GQML is that the input data itself is symmetric in our problem
[Eq. (1)], but not in GQML (e.g., the cat image is not rotation
invariant). Therefore, each approach brings different benefits.
Although the usual GQML improves trainability and gen-
eralization, our method reduces measurement costs through
substantial parallelization. Thus, the sp-QCNN is particularly
advantageous for near-term quantum devices where computa-
tional resources are limited.

IV. MEASUREMENT EFFICIENCY IN SP-QCNN

In this section, we describe the parallelization mechanism
in the sp-QCNN and show that it can improve the measure-
ment efficiency of local observables and their gradients. We
also analytically prove that the improvement factor is O(n)
for a random input state.

A. Measurement efficiency of local observable

First, we show that the translational symmetry of Vi and
circuit splitting allow for parallel computation and improve
the measurement efficiency of local observables. A key prop-
erty of the sp-QCNN is the equivalence of expectation values
for all the qubits. We recall that the unitary transformation U
of the entire sp-QCNN is translationally symmetric [Eq. (7)].
This symmetry leads to

〈Z1〉 = tr(UρU †Z1)

= tr(U (T †) j−1ρT j−1U †Z1)

= tr(UρU †Zj )

= 〈Zj〉 , (9)

where ρ is an input state satisfying Eq. (1), and we have
used ρ = (T †) j−1ρT j−1 and T j−1Z1(T †) j−1 = Zj . This equa-
tion indicates the equivalence of the expectation values for
all the qubits, i.e., 〈Zi〉 = 〈Zj〉 for any i and j. This argument
can be applied to other single-qubit Pauli operators, leading to
〈Xi〉 = 〈Xj〉 and 〈Yi〉 = 〈Yj〉. Figure 4(a) graphically illustrates
this equivalence, which can also be proved by translating the
circuit.

This equivalence tells us that the sp-QCNN substantially
parallelizes the nonsplitting QCNN that consists of the same
Vi, as shown in Fig. 1(b). As mentioned above, we regard the
average of the expectation values for all the qubits, 〈Zavg〉 =∑

j 〈Zj〉 /n, as the output in the sp-QCNN. Meanwhile, we
consider the expectation value for only one qubit, 〈Z1〉ns, as
the output in the nonsplitting QCNN. Given the equivalence
in Eq. (9), the nonsplitting and sp-QCNNs produce the same
results if statistical errors are absent:

〈Z1〉ns = 〈Zavg〉 . (10)

Here, we have used 〈Z1〉ns = 〈Z1〉, which can be proved by
noticing that the nonsplitting QCNN is a part of the sp-QCNN.
In the sp-QCNN, we estimate the output from T measurement
shots as follows:

〈Zavg〉est = 1

T

T∑
�=1

z(�)
avg = 1

nT

T∑
�=1

n∑
j=1

z(�)
j . (11)

Here, z(�)
j = ±1 is the �th measurement outcome at the jth

qubit, and we have defined the average of the �th mea-
surement outcomes as z(�)

avg = ∑
j z(�)

j /n. The value of z(�)
avg

can be a/n (a ∈ {−n,−n + 2, . . . , n}), corresponding to the
measurement outcome of Zavg. We note that the number of
outcomes in the sp-QCNN is n times greater than that in
the nonsplitting QCNN, where the output is estimated as∑T

�=1 z(�)
1 /T . Therefore, the sp-QCNN can reduce the number

of shots required to achieve a certain estimation accuracy.
Since this argument only relies on the symmetry property of
data, the sp-QCNN is general and can be applied to broad
tasks with translationally symmetric data.

It is worth noting that the sp-QCNN does not nec-
essarily improve the measurement efficiency by a factor
of O(n). This is because, in each shot, n measurement
outcomes are correlated to each other via quantum en-
tanglement. For example, if the output state is the GHZ
state |ψ〉 = (|000 . . .〉 + |111 . . .〉)/

√
2, then the sp-QCNN
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Measure

(b)

Translation

Translation

=

=

(a)

Measure

Measure

FIG. 4. Mechanism of parallelization in the sp-QCNN. (a) In the sp-QCNN, the expectation value of a local observable is equivalent
for all the qubits. This can be proved by virtually translating the entire circuit. The translation does not change the input state and quantum
circuit due to their translational symmetry but shifts the position of the measured qubit, showing the equivalence of expectation values at
different qubits. (b) The gradient measurement can be parallelized in the sp-QCNN. In accordance with the chain rule, the gradient is the
sum of several derivatives, ∂ 〈Z1〉 /∂θ = ∑

j ∂ 〈Z1〉 /∂θ j . For example, we suppose that the parameter θ is in the first convolutional layer
as shown in the figure (the red boxes denote ∂/∂θ2 and ∂/∂θ1). Then translating the circuit proves ∂ 〈Z1〉 /∂θ j = ∂ 〈Zj−2〉 /∂θ1 and thus
∂ 〈Z1〉 /∂θ = ∑

j ∂ 〈Zj〉 /∂θ1, which can be computed with only two circuits by measuring all the qubits.

does not improve the measurement efficiency at all because
the n outcomes are completely correlated and can only
provide one bit of information. In contrast, if the output
state is the W state |ψ〉 = (|100 . . . 00〉 + |010 . . . 00〉 + · · · +
|000 . . . 01〉)/

√
n, then the exact expectation value can be

obtained with only one shot by measuring all the qubits in
the sp-QCNN, whereas many measurements are required in
the nonsplitting QCNN. Therefore, how well the sp-QCNN
improves the measurement efficiency depends on the details
of the problem, such as input data and circuit parameters.
Later, we will analytically prove that the sp-QCNN can im-
prove the measurement efficiency by a factor of O(n) for a
typical random input state.

The advantage of the sp-QCNN is illustrated in Fig. 5(a).
In actual experiments, we cannot obtain the exact expectation
value because of statistical errors. Therefore, it is usually
estimated from the mean value of a finite number of mea-
surement outcomes. In the nonsplitting QCNN, the estimated
value is generally drawn from the Gaussian distribution with
a variance of O(1/Nshot ) in accordance with the central limit
theorem. In the sp-QCNN, we obtain n measurement out-
comes at once and thus expect that the variance scales as
O(1/nNshot ), indicating the O(n) times improvement of mea-
surement efficiency. We note that the sp-QCNN can improve
the measurement efficiency of the conventional QCNN, not
necessarily other QNNs. Our model further enhances the fea-
sibility of QCNNs, bringing its practical quantum advantages
closer to realization.

To quantify the effectiveness of the sp-QCNN, we intro-
duce the relative measurement efficiency:

r ≡
(

σ0

σsp

)2

. (12)

Here, σ0 and σsp are the standard deviations (i.e., square root
of variance) of the Gaussians, followed by estimated expecta-
tion values in the nonsplitting and sp-QCNNs with the same
number of shots. This quantity means that the shot number
required to achieve a certain estimation accuracy using the
sp-QCNN is 1/r times fewer than that using the nonsplitting
QCNN. In the next section, we will demonstrate the efficiency
of the sp-QCNN for a concrete task using this quantity.

B. Measurement efficiency of gradient

In general, the most costly part of machine learning is the
optimization of neural networks using a training dataset, in
which the loss function is minimized by tuning the network
parameters. In classical machine learning, gradient-based
methods are often used for optimization and work well for
large-scale problems. Even in QML, gradient-based opti-
mizers are important and powerful tools. However, many
measurements are necessary to estimate the gradient in quan-
tum computing [42]. Our architecture makes such gradient
measurements efficient.

We first describe a conventional way of measuring the
gradient of 〈Z1〉. In many QCNNs, including the sp-QCNN,
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FIG. 5. (a) Quantification of measurement efficiency. In actual
experiments, statistical errors arise in estimating the expectation
value of an observable. This figure shows the probability distribution
of the estimated expectation value. Here, we define the relative mea-
surement efficiency r as the ratio of the variances in the sp-QCNN
and the nonsplitting QCNN. (b) Number of eigenstates of Z1 and Zavg

with an eigenvalue s. While the possible measurement outcome is ±1
in the nonsplitting QCNN (left panel), it is widely distributed in the
range of −1 to 1 with a width of O(1/

√
n) in the sp-QCNN (right

panel).

multiple quantum gates share a single variational parame-
ter θ . Here, let mθ be the number of gates sharing θ in a
branch. To calculate the gradient by θ , we suppose that the mθ

gates have different variational parameters from each other,
θ j ( j = 1, . . . , mθ ). Thereby, we calculate the gradient with
the chain rule as ∂ 〈Z1〉 /∂θ = ∑

j (∂θ j/∂θ )(∂ 〈Z1〉 /∂θ j ) =∑
j ∂ 〈Z1〉 /∂θ j , where we have used ∂θ j/∂θ = 1. When

each gate is parametrized as e−iθ j P (P is a Pauli operator),
∂ 〈Z1〉 /∂θ j can be measured using the parameter-shift rule,
∂ 〈Z1〉 /∂θ j = 〈Z1〉θ j=θ+π/4 − 〈Z1〉θ j=θ−π/4 [12,65]. Thus, in
the sp-QCNN, we can compute the gradient as follows:

∂ 〈Z1〉
∂θ

=
mθ∑
j=1

tr(Ũj+ρŨ †
j+Z1) − tr(Ũj−ρŨ †

j−Z1), (13)

where Ũj± is the unitary transformation of the sp-QCNN in
which θ j = θ is replaced with θ j = θ ± π/4. This formula
has 2mθ terms, each of which is usually measured in a dif-
ferent circuit.

The circuit splitting and translational symmetry in the sp-
QCNN allow us to compute ∂ 〈Z1〉 /∂θ j in parallel, improving

the gradient measurement efficiency. For simplicity, we sup-
pose that each Vi has the form in Eq. (3) and that θ is in the
first convolutional layer [Fig. 4(b)]. By translating the entire
circuit, we can rewrite each term in Eq. (13) as

tr(Ũj±ρŨ †
j±Z1) = tr(Ũj±T j−1ρ(T †) j−1Ũ †

j±Z1)

= tr(Ũ1±ρŨ †
1±Z2− j ). (14)

Here, we have used ρ = T j−1ρ(T †) j−1, (T †) j−1Z1T j−1 =
Z2− j , and (T †) j−1Ũj±T j−1 = Ũ1± . This relation tells us that
the derivative of Z1 by θ j is identical to that of Z2− j by θ1, as
illustrated in Fig. 4(b). Thereby, Eq. (13) is reduced to

∂ 〈Z1〉
∂θ

=
mθ∑
j=1

tr(Ũ1+ρŨ †
1+Zj ) − tr(Ũ1−ρŨ †

1−Zj ), (15)

where we have replaced Zj−2 with Zj in the summation. Ac-
cording to this equation, we can obtain the gradient ∂ 〈Z1〉 /∂θ

with just two circuits Ũ1± by measuring all the qubits, instead
of using 2mθ circuits that are conventionally necessary.

By generalizing this argument and using the equivalence
〈Zavg〉 = 〈Z1〉, we estimate the gradient of the output as fol-
lows: (

∂ 〈Zavg〉
∂θ

)
est

= mθ

nT

T∑
�=1

n∑
j=1

[
z(�)

j+ − z(�)
j−

]
, (16)

where z(�)
j± is the jth qubit measurement outcome of the �th

shot in the parameter-shifted circuit with θ1 = θ ± π/4. In
our ansatz [Eq. (3)], the factor mθ /n appears when θ is in the
second or later layer. We emphasize that the sp-QCNN enables
us to execute n parallel computations even for the gradient
estimation, thus accelerating the gradient-based training. Sim-
ilar to the previous case, the relative measurement efficiency
r for the gradient depends on the details of the problem due to
the entangled property of the output state.

C. Measurement efficiency for random state

How well the sp-QCNN improves the measurement ef-
ficiency depends on the details of the problem. Here, we
analytically prove that the efficiency is improved by a factor of
O(n) for a typical state randomly chosen from the T -invariant
Hilbert subspace in the limit of n → ∞.

Let us begin by considering the nonsplitting QCNN, where
we measure Z1 and obtain an outcome s = ±1 for every mea-
surement. In the limit of n → ∞, the probability of obtaining
an outcome ±1 is almost 1/2 for a typical random state be-
cause the statistical fluctuations by randomness are negligible
due to the exponentially large Hilbert space [this probability
distribution is depicted in the left panel of Fig. 5(b)]. Given its
Bernoulli distribution, the estimation accuracy of the expecta-
tion value is

σ0 ∼ O
(

1√
Nshot

)
, (17)

where Nshot is the number of shots.
In the sp-QCNN, we measure all the qubits in the com-

putational basis and regard the mean of the n measurement
outcomes as the output of the QCNN [Eq. (11)]. In other
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words, we measure Zavg = ∑
j Z j/n rather than Z1 and ob-

tain one of the eigenvalues s [= ±1,±(n − 2)/n, . . . ] as an
outcome. Also, given that the full unitary transformation
U is translationally symmetric, the output state of the sp-
QCNN has the same symmetry. The right panel of Fig. 5(b)
shows the number of eigenstates of Zavg with an eigenvalue
s, Dn(s), on the T -invariant Hilbert subspace. In the limit
of n → ∞, Dn(s) approaches the following asymptotic form
(see Appendix B for derivation):

Dn(s) ∼ Cn

(1 + s2)n/2
, (18)

where Cn is a constant independent of s. The width of Dn(s)
in s is O(1/

√
n), which finally gives rise to a small estimation

error.
Here, we assume that when measuring Zavg for a typical

state randomly chosen from the T -invariant subspace, the
probability of obtaining an outcome s is proportional to Dn(s).
This assumption would be justified in the limit of n → ∞,
where Dn(s) is sufficiently large, and the statistical fluctua-
tions are insignificant. Considering that the width of Dn(s) is
O(1/

√
n), we can estimate the expectation value from Nshot

experiments with an accuracy

σsp ∼ O
(

1√
nNshot

)
. (19)

From the quantification in Eq. (12), the relative measurement
efficiency of the sp-QCNN is

r =
(

σ0

σsp

)2

∼ O(n). (20)

This result indicates the O(1/n) times reduction in the number
of experiments required to achieve a certain accuracy.

The scaling argument in Eq. (20) is valid in situations
where the output state is a random quantum state. Therefore,
it may arise in the early stage of the learning process when
the parameters of the QCNN are randomly initialized and the
output state is approximately random. In Sec. V, we will show
that the sp-QCNN exhibits O(n) scaling for a concrete task in
the early stage of learning and, remarkably, even in the final
stage.

V. APPLICATION TO QUANTUM PHASE RECOGNITION

In this section, we apply the sp-QCNN to a quantum phase
recognition task investigated in Ref. [19] and verify its ef-
fectiveness. For the remainder of this paper, we simulate the
quantum circuit with Qulacs, an open-source quantum circuit
simulator [66].

A. Formulation of problem

Let us consider a one-dimensional cluster Ising model with
the periodic boundary condition, whose Hamiltonian is given
by

H = −
n∑

j=1

ZjXj+1Zj+2 − h1

n∑
j=1

Xj − h2

n∑
j=1

XjXj+1, (21)

where n is the number of qubits, and Xj,Yj , and Zj are the
Pauli operators at the jth qubit. This Hamiltonian exhibits
SPT [48–51], paramagnetic (PM), and antiferromagnetic
(AFM) phases on the h1-h2 plane. The SPT phase is pro-
tected by Z2 × Z2 symmetry characterized by Xeven(odd) =∏

j∈even(odd) Xj . The ground state of H , an input state in our
task, is translationally symmetric because of T HT † = H .

Our task is to recognize the SPT phase using the sp-QCNN.
Quantum phase recognition is one of the main applications
of the QCNN, and many studies have been conducted with
the aim of practical quantum advantages [20–22]. In this task,
the sp-QCNN can be applied because the input data (i.e., the
ground state of H) is translationally symmetric. For training
data, we use 20 ground states of H evenly located on the
line of h2 = 0 from h1 = 0.05 to 1.95. Using the Jordan-
Wigner transformation [67], we can analytically obtain the
exact ground state for h2 = 0, which transits from the SPT
to PM phases at h1 = 1. To evaluate the generalization of
our method, we test the trained model with 28 data samples,
most of which are not included in the training dataset. These
samples correspond to ground states at (h1, h2) with h1 ∈
{0.35, 0.65, 0.95, 1.25} and h2 ∈ {0,±0.5,±1,±1.5}. The
exact phase diagram on the h1-h2 plane is computed with the
density matrix renormalization group (DMRG) [68–71]. In
this work, we prepare the input data with exact diagonalization
for simplicity. Yet, in actual experiments, other preparation
methods must be applied, such as variational quantum eigen-
solver on a quantum computer and analog-digital transduction
from a quantum experiment.

To train our model and evaluate its generalization, we con-
sider the following error as the loss function:

L = 1

2M

M∑
i=1

(〈φi|U †ZavgU |φi〉 − yi )
2, (22)

where |φi〉 and yi are the training and test data and its corre-
sponding label, and U is the total unitary of the circuit (M is
the number of training and test data). Here, we set yi as 1 if
|φi〉 belongs to the SPT phase and 0 if it does not. We opti-
mize the loss function using the stochastic gradient descent
(SGD) method [72]. In SGD, we update the parameters as
�θ (t+1) = �θ (t ) − η(t )∇L, where �θ (t ) is the parameter vector at
optimization step t , and ∇L is calculated from only one of the
training data at each step. We also decrease the learning rate as
η(t ) = η0/t to stabilize the training and set η0 = 200. Besides,
to investigate the statistical properties of the sp-QCNN, we
simulate the same circuits with Np different random initial
parameter sets. We set Np = 50 in Sec. V B and Np = 200 in
Sec. V C.

B. Performance with limited measurement resources

We investigate how the high measurement efficiency of
sp-QCNN enhances the machine learning performance in
training with limited measurement resources. In such situa-
tions, statistical errors in estimating the gradient of the loss
function would disturb the training process, reducing accuracy
within a limited computational resource. Here, we show that
the sp-QCNN can suppress the statistical errors, stabilizing
and speeding up the learning process.
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FIG. 6. (a and b) Changes in training (top) and test (bottom) loss functions for (a) n = 8 and (b) n = 16. The orange (blue) solid and dashed
lines denote the loss functions with and without statistical errors in the sp-QCNN (conventional QCNN), respectively. The shaded areas are the
10th–90th percentiles of the loss function for 50 sets of random initial parameters at each epoch. We match the number of shots per parameter
to obtain the gradient in both QCNNs. (c) Phase diagram predicted by the trained sp-QCNN with statistical errors for n = 16 qubits. The color
denotes the average magnitude of 〈Zavg〉 for 50 sets of initial parameters. The gray dots and dashed green lines denote our training data and
phase boundaries computed by DMRG, respectively. In these simulations, we set the depth of each layer as d = 5.

As the sp-QCNN circuit, we use the ansatz in Eq. (3) with
d = 5, where the total number of parameters is 60 for n = 8
and 80 for n = 16. We also compare the sp-QCNN with the
conventional QCNN depicted in Fig. 1(a), where the convolu-
tional and fully connected layers consist of two-qubit unitary
gates parametrized as

∏15
j=1 e−iθ j Pj (Pj = IX, IY, . . . , ZZ).

Since the gates acting in parallel share the same parameters,
the number of independent parameters in the conventional
QCNN is 75 for n = 8 and 105 for n = 16. When measuring
the gradient in the simulation, we match the shot number per
parameter in the conventional and sp-QCNNs for each layer.
Here, we use 2mθNshot shots for parameter θ in the sp-QCNN
and set Nshot = 5.

We first show that our sp-QCNN has comparable classifi-
cation performance to the conventional QCNN. Figures 6(a)
and 6(b) illustrate the changes in the training and test loss
functions with and without the statistical errors of gradients
for the conventional and sp-QCNNs. Both with and with-
out statistical errors, the final values of the training and test
losses in the sp-QCNN (orange lines) are equal to or better
than those of the conventional one (blue lines). This result
indicates that our model exhibits sufficient expressivity and
generalization for this problem compared to the conventional
QCNN. Furthermore, our model can accurately predict the
unknown phase diagram. Figure 6(c) presents the phase dia-
gram predicted by the trained sp-QCNN with statistical errors
for n = 16 qubits. It closely aligns with the phase bound-
ary computed by DMRG (shown as dashed lines). Notably,
the sp-QCNN can identify the SPT-AFM phase transition,
even though this phase transition was not part of the training
dataset.

The sp-QCNN effectively suppresses statistical errors and
accelerates the learning process while maintaining compa-
rable classification performance to the conventional QCNN.
In Figs. 6(a) and 6(b), the loss functions converge rapidly
for both QCNNs in the absence of statistical errors (dashed
lines). However, in the presence of statistical errors (solid
lines), the loss convergence becomes significantly slower in

the conventional QCNN, whereas it remains relatively mod-
est in the sp-QCNN. This fast convergence in the sp-QCNN
stems from its high measurement efficiency. While significant
statistical errors disturb the rapid and stable optimization in
the conventional QCNN, the high measurement efficiency in
the sp-QCNN suppresses the statistical errors, stabilizing and
accelerating the optimization. As shown in Figs. 6(a) and 6(b),
this improvement is more prominent for n = 16 compared
to n = 8, due to the O(n) improvement in the measurement
efficiency. The fast convergence of training is highly effective
for near-term quantum devices where a long optimization run
is impractical due to limited computational resources.

C. Quantification of measurement efficiency

The previous subsection reveals that the sp-QCNN sup-
presses the statistical errors in estimating the gradient and
accelerates the learning process due to its high measurement
efficiency. Here, we numerically quantify the measurement
efficiency of sp-QCNN, showing that it improves the mea-
surement efficiency by a factor of O(n) in the quantum phase
recognition task. The measurement efficiency is quantified by
the ratio of the variances in the nonsplitting and sp-QCNNs, as
shown in Fig. 5 and Eq. (12) (we assume that the nonsplitting
QCNN consists of the same unitary Vi as the sp-QCNN).
We calculate the measurement efficiency for n = 8, 12, 16,
and 18 to identify the scaling with respect to the number of
qubits. In this verification, the changes in the measurement
efficiency are computed during the training process for three
typical input states: SPT, PM, and AFM states, which are the
eigenstates of H for (h1, h2) = (0, 0), (+∞, 0), and (0,−∞).
We also explore the efficiency of measuring the loss gradient
for the first parameter. The unitary circuit consists of the trans-
lationally symmetric ansatz (3) with d = 10 and is split such
that the number of qubits in a branch varies as 8 → 4 → 2 →
1, 12 → 6 → 3 → 1, 16 → 8 → 4 → 2 → 1, and 18 →
9 → 3 → 1 for n = 8, 12, 16, and 18, respectively. Also, to
distinguish between the effects of statistical errors on the
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FIG. 7. (a) Changes in training and test loss functions for several numbers of qubits n. The lines and shaded areas depict the median and the
10th–90th percentiles for 200 sets of random initial parameters, respectively. (b–e) Changes in relative measurement efficiency during training.
(b)–(d) show the efficiency r for different inputs, SPT, PM, and AFM states, whereas (e) shows the efficiency for measuring the loss gradient
by the first parameter. At each epoch, we simulate experiments with 1000 shots 10 000 times, estimate σ0 and σsp, and calculate the efficiency
r = (σ0/σsp )2. The solid lines and shaded areas depict the mean values and standard deviations, respectively, for 200 sets of initial parameters.
Except for evaluating the efficiency, we optimize the circuit using the exact expectation value (i.e., without statistical errors).

circuit optimization and the observable measurement, we
train the variational circuit with exact gradient (i.e., with-
out statistical errors in estimating gradient) and estimate the
measurement efficiency with a finite shot simulation at each
epoch. Figure 7(a) shows the training and test losses in this
setup, which indicates good trainability and generalization up
to n = 18.

Figures 7(b)–7(e) show the changes in the relative mea-
surement efficiency r during training for the three inputs
and loss gradient. For the PM and AFM states [Figs. 7(c)
and 7(d)], the efficiency r is high at the beginning and does
not significantly decrease during training. For the SPT state
and loss gradient [Figs. 7(b) and 7(e)], r is initially high
but decreases as training, finally converging to a small value
(r = 2 − 5). These results imply that the improvement rate of
measurement efficiency strongly depends on the input data,
what we measure, and the stage of learning. Even for the

SPT state and loss gradient, the final efficiency is higher than
one, indicating that the measurement in the sp-QCNN is more
efficient than that in the nonsplitting QCNN.

Figures 8(a) and 8(b) show the relative measurement ef-
ficiency with varying the number of qubits n at 0 and 200
epochs for the four cases (cf. Fig. 7). At 0 epoch [Fig. 7(a)],
all the data points are nearly aligned on a straight line. This
result supports that measurement efficiency is improved by a
factor of O(n) in the early stage of learning and is consistent
with the previous argument based on randomness. Even at 200
epoch [Fig. 7(b)], we can fit the data points in straight lines
within their error bars, suggesting that the efficiency is also
improved by a factor of O(n) in the final stage of learning.
In other words, compared with the nonsplitting QCNN, the
sp-QCNN can reduce the number of shots required to achieve
a certain estimation accuracy of expectation values by a factor
of O(1/n) throughout the learning process.

(a) 0 epoch (b) 200 epoch (c) n=8 (d) n=16
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FIG. 8. (a and b) Relative measurement efficiency r with varying the number of qubits n for SPT, PM, AFM, and loss gradient at (a) 0 and
(b) 200 epoch in Fig. 7. The four straight lines fit the corresponding types of data points. The error bars denote the standard deviations for 200
sets of initial parameters. (c and d) Relative measurement efficiency r on h1-h2 plane after 200 epochs for (c) n = 8 and (d) 16 qubits. The
color denotes the magnitude of the relative measurement efficiency. The gray dots and dashed green lines denote our training data and phase
boundaries computed by DMRG, respectively.
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We also investigate the measurement efficiency for predict-
ing the phase diagram by the trained sp-QCNN with n = 8 and
16 qubits [Figs. 8(c) and 8(d)]. By comparing these figures,
we notice that the efficiency r for n = 16 is more than twice
that for n = 8 in most areas. This result implies the O(n)
times improvement for prediction. We also observe that the
efficiency is low in the SPT phase but relatively high in the
PM and AFM phases, a trend evident in Fig. 7 as well. We
infer that this phenomenon is due to the following reason.
For the SPT state, the expectation value of

∑
j Z j/n after

training is almost one because we have assigned the label as
yi = 1 for the SPT phase in the loss function, which means
that U |φSPT〉 ∼ |0 . . . 0〉. Given that the sp-QCNN has no ad-
vantages for measuring |0 . . . 0〉, the measurement efficiency
is not significantly improved. For complete understanding,
additional analyses must be conducted in future works.

VI. CONCLUSIONS

In this study, we have proposed a QNN architecture, sp-
QCNN, which reduces measurement costs by exploiting the
translational symmetry of data as prior knowledge. In the
sp-QCNN, we symmetrize and split the QCNN circuit to
parallelize the computation, thus improving the measurement
efficiency. We have demonstrated the advantage of the sp-
QCNN for the quantum phase recognition task: it has high
classification performance for this task and can improve the
measurement efficiency by a factor of O(n). In a realistic set-
ting where measurement resources are limited, the sp-QCNN
can enhance the speed and stability of the learning process.
These results present a possibility for the symmetry-based
architecture design of QNN and bring us one step closer to
achieving the quantum advantages of the QCNN in near-term
quantum devices.

This work offers some research directions for the future.
First, finding practical applications of the sp-QCNN is cru-
cial for quantum advantages. A promising candidate is the
research of solids, where the sp-QCNN could offer some
hints on unsolved problems in condensed matter physics,
such as the phase diagrams of the Hubbard model [56] and
the kagome antiferromagnetic Heisenberg model [57]. The
second direction is further studies of symmetry-based archi-
tecture design to reduce measurement costs. Although this
work has provided a different approach for QML, its cov-
erage is limited to data with translational symmetry. Hence,
generalization to other symmetries, such as the space group,
is intriguing and fruitful and may be applied to chemical
molecules as well as solid-state materials. The third direction
is to find a better ansatz. Although this work establishes the
basis of the sp-QCNN, the best Vi for a given problem remains
unclear. In general, low expressivity tends to result in poor
QML accuracy, while excessively high expressivity can lead
to barren plateaus [40,73]. Therefore, finding an ansatz with
appropriate expressivity depending on a problem is helpful to
realize sp-QCNN experimentally.

Finally, we provide several open issues on the sp-QCNN.
This work has shown that the sp-QCNN has sufficient expres-
sivity, trainability, generalization, and measurement efficiency
to solve the phase recognition task. However, whether it can
solve other complicated tasks remains unclear. In particular,

FIG. 9. An implementation of circuit splitting using local SWAP
gates. This figure shows the circuit splitting of n qubits to two
branches (n even). The SWAP procedure consists of (n − 2)/2 steps.
For step d , we swap jth and ( j + 1)th qubits for j = d + 1, d +
3, . . . , n − d − 1. This circuit uses (n2 − 2n)/8 SWAP gates with a
depth of (n − 2)/2.

the translational symmetry of Vi could suppress expres-
sivity and limit solvable tasks in general. Uncovering the
possibilities and limitations of the sp-QCNN is an impor-
tant open issue. For trainability, elucidating whether barren
plateaus exist in the sp-QCNN is crucial. In the conventional
QCNN, barren plateaus do not appear due to its unique ar-
chitecture: the logarithmic circuit depth and the locality of
unitary operations and observables [23,37–39]. Considering
that the sp-QCNN shares these properties with the conven-
tional QCNN, we suggest that no barren plateaus will appear
even in the sp-QCNN [74]. The results in this paper show
that the training of the sp-QCNN works well up to n = 18
qubits, supporting our conjecture. The analysis of measure-
ment efficiency is also an important research issue. Also,
while we observed the O(n) times improvement of measure-
ment efficiency in the phase recognition task of Hamiltonian
(21), it remains unclear whether the measurement efficiency is
improved by a factor of O(n) in other problems as well. More
thorough analyses are necessary for complete verification.
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APPENDIX A: IMPLEMENTATION
OF CIRCUIT SPLITTING

In real hardware, the implementation of circuit splitting de-
pends on the hardware connectivity. For example, in quantum
computers with all-to-all connectivity such as ion trap devices,
special processes for circuit splitting are not necessary be-
cause the unitary operations on each branch after splitting can
be implemented with the qubits being separated. Conversely,
in quantum computers where only local entangling operations
on neighboring qubits are available, we have to swap the
qubits in order to implement the unitary operations after split-
ting. For concreteness, let us consider a case where n qubits
are split into two branches (we assume that n is even). Figure 9
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illustrates the SWAP circuit for splitting, which uses O(n2)
SWAP gates with a depth of O(n). Although conventional
QCNNs also require SWAP gates to rearrange the remaining
qubits in the pooling layers, our sp-QCNN needs more SWAP
gates in general.

APPENDIX B: THE NUMBER OF EIGENSTATES OF Zavg

Here, we derive Eq. (18), where the number of eigenstates
of Zavg for translationally symmetric states is

Dn(s) ∼ 1

(1 + s2)n/2
(B1)

with an eigenvalue s. For convenience, we consider Ztot =∑
j Z j rather than Zavg = Ztot/n. In the sp-QCNN, we measure

Ztot, whose eigenvalues are ±n,±(n − 2), . . . , and obtain one
of the eigenvalues every shot. In addition, the output state is
translationally symmetric in the sp-QCNN. Hence, for sim-
plicity, we now focus on the T -invariant eigenspace of Ztot

with an eigenvalue z, Vz (i.e., T |φ〉 = |φ〉 and Ztot |φ〉 = z |φ〉
for any |φ〉 ∈ Vz). Below, we investigate the dimension of Vz.

To this end, we introduce a cyclic group generated by T ,

Gn = {I, T, T 2, . . . , T n−1}. (B2)

Let Mz be the set of the eigenstates of Ztot with an
eigenvalue z in the computational basis (e.g., Mn−2 =
{|10 . . . 00〉 , . . . , |00 . . . 01〉}). Then, we define an equiva-
lence relation ∼ by Gn in Mz: for |a〉 , |b〉 ∈ Mz, |a〉 ∼ |b〉
holds if and only if g |a〉 = |b〉 with ∃g ∈ Gn. We also define
the equivalence class of |a〉 ∈ Mz as [a] = {|x〉 ∈ Mz | |x〉 ∼
|a〉} and the quotient set as Mz/Gn = {[a] | |a〉 ∈ Mz}. The
elements of Mz/Gn correspond one-to-one to the bases of Vz,
such that |�i〉 = ∑

|φ〉∈[�i] |φ〉 /N , where |�i〉 is the base of
Vz, [�i] is the element of Mz/Gn, and N is the normaliza-
tion factor (T |�i〉 = |�i〉 can be easily checked). Therefore,
dimVz = |Mz/Gn| holds, where |A| is the number of elements
in A. Using Burnside’s lemma [75], we have dimVz as follows:

dimVz = |Mz/Gn| = 1

|Gn|
∑
g∈Gn

|Mg
z |, (B3)

where Mg
z = {|φ〉 ∈ Mz | g |φ〉 = |φ〉}. Then, the following

theorem holds.
Theorem 1. For z �= ±n, the following relation holds in the

limit of n → ∞:

Fz ≡ dimVz

/
1

n

(
n

�z

)
n→∞−−−→ 1 (B4)

with �z = (n + z)/2. Here,
(·
·
)

denotes the binomial coeffi-
cient. This theorem states that the asymptotic form of dimVz

is
( n
�z

)
/n.

Proof. Since Fz = F−z trivially holds, we focus on −n +
2 � z � 0, or 1 � �z � �n/2� (�·� is the floor function). We
first rewrite Eq. (B3) as

dimVz = MI
z

|Gn| + 1

|Gn|
∑

g∈Gn\{I}
|Mg

z |

= 1

n

(
n

�z

)
+ 1

n

∑
g∈Gn\{I}

|Mg
z |. (B5)

FIG. 10. Illustration for calculating |Mg
z | with n = 12, �z = 4,

and g = T 3. Each white (black) circle indicates a single-qubit state of
|0〉 (|1〉), and n = 12 and �z = 4 mean that there are eight (= n − �z)
white and four (= �z) black circles in total. Given that the order of g
is four (∵ g4 = I), we first divide the qubits into four sets, each con-
sisting of three [= n/ord(g)] qubits. In all the sets, the configuration
of white and black circles must be the same as each other because of
the condition that g does not change the state. Therefore, each set has
two white and one [= �z/ord(g)] black circles, and there are three
[= ( n/ord(g)

�z/ord(g)

)
] possible configurations shown in the figure.

Therefore, Fz is reduced to

Fz = 1 +
∑

g∈Gn\{I}
|Mg

z |
/(

n

�z

)
. (B6)

We will evaluate the second term in this equation.
To calculate |Mg

z |, we define the order of g ∈ Gn, ord(g),
as the number of elements in the subgroup generated by g
(i.e., {g0, g1, g2, . . . , gk−1} with gk = I). Note that ord(g) is a
divisor of n. Thereby, |Mg

z | is written as follows:

|Mg
z | =

{
0 �z/ord(g) /∈ Z( n/ord(g)
�z/ord(g)

)
�z/ord(g) ∈ Z.

(B7)

Figure 10 shows a graphical description of Eq. (B7) as an
example for n = 12, �z = 4, and g = T 3.

Based on Eq. (B7), one can straightforwardly show that
the second term in Eq. (B6) vanishes in the limit of n → ∞
for �z = 1, 2 by noticing that ord(g) = 1 only for g = I and
ord(g) = 2 only for g = T n/2. Thus, we focus on 3 � �z �
�n/2�. Because of ord(g) � 2 for g �= I , we have

|Mg
z | �

( �n/2�
��z/2�

)
. (B8)

This inequality can be shown by considering the properties
of binomial coefficients:

(a
b

)
<

(a′
b

)
(a < a′) and

(a
0

)
<

(a
1

)
<

· · · <
( a
�a/2�

)
(note that 3 � �z � �n/2�). Using Eq. (B8), the
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second term in Eq. (B6) is bounded as follows:

0 �
∑

g∈Gn\{I}
|Mg

z |
/(

n

�z

)
� n

( �n/2�
��z/2�

)/(
n

�z

)
≡ A�z .

(B9)

The right-hand side of this inequality, A�z , approaches zero in
n → ∞ for 3 � �z � �n/2�, which can be proven by showing
A3

n→∞−−−→ 0 and 0 < A�n/2� < · · · < A4 < A3 by definition of
A�z . Therefore, we have

∑
g∈Gn\{I}

|Mg
z |

/(
n

�z

)
n→∞−−−→ 0. (B10)

As mentioned above, this limit holds true even for �z = 1, 2.
Substituting Eq. (B10) to Eq. (B6), we obtain

Fz
n→∞−−−→ 1 (B11)

with �z �= 0, n. �
This theorem states that dimVz asymptotically approaches( n

�z

)
/n (except for dimVn = dimV−n = 1). Using Stirling’s

formula [n! ∼ √
2πn(n/e)n], we have

dimVz ∼ 2n

√
2

πn3
Dn(s), (B12)

where we have defined

Dn(s) ≡ [
(1 + s)1+s+ 1

n (1 − s)1−s+ 1
n
]−n/2

(B13)

with s = z/n. For large n, Dn(s) rapidly decreases to vanish
away from the origin. Therefore, we expand the denominator
of Dn(s) in s, obtaining

Dn(s) = (1 + [1 + O(1/n)]s2 + O(s4))−n/2

∼ 1

(1 + s2)n/2
, (B14)

for sufficiently small s. The width of Dn(s) is O(1/
√

n) in
n → ∞, leading to the O(n) times improvement of measure-
ment efficiency in the sp-QCNN (see Sec. IV C). Finally, we
remark that this discussion is approximately valid for large but
finite n while this Appendix considers the limit of n → ∞. In
fact, in Sec. V C, we have observed the clear O(n) scaling for
n = 18 at the beginning of training, where the output state is
almost random.
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