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Nonspreading relativistic electron wavepacket in a strong laser field
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A solution of the Dirac equation in a strong laser field presenting a nonspreading wave packet in the rest
frame of the electron is derived. It consists of a generalization of the self-accelerating free electron wavepacket
[I. Kaminer et al., Nat. Phys. 11, 261 (2015)] to the case with the background of a strong laser field. Built upon
the notion of nonspreading for an extended relativistic wavepacket, the concept of Born rigidity for accelerated
motion in relativity is the key ingredient of the solution. At its core, the solution comes from the connection
between the self-accelerated free electron wavepacket and the eigenstate of a Dirac electron in a constant and
homogeneous gravitational field via the equivalence principle. The solution is an essential step towards the
realization of the laser-driven relativistic collider [S. Meuren et al., Phys. Rev. Lett. 114, 143201 (2015)], where
the large spreading of a common Gaussian wavepacket during the excursion in a strong laser field strongly limits
the expectable yields.
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I. INTRODUCTION

Recent advances in ultrastrong laser technology [1–3] pro-
vide bright prospects for laser-driven particle acceleration
techniques. Especially successful are laser-driven plasma-
based accelerators [4], which raised hopes to further develop
the technique to compete with conventional electron-positron
colliders [5,6], reducing the scale of the accelerating device.
Even more dramatic scale change promises the idea of the
laser-driven coherent microscopic collider [7–10], where the
electron and positron generation, acceleration, and collision
are realized within a single stage in a microscopic scale,
providing high luminosity due to the coherently controlled
electron-positron recollision. The bottleneck of this idea is
the large spreading of a single-electron wavepacket in the
rest frame of the electron during the excursion in the laser
field within one laser period, which significantly restrains
the luminosity of the collision. Thus, the covet is the over-
riding of the wavepacket spreading for the electron motion
in the continuum. Nonspreading free electron wavepackets
via interference of different momentum components in the
wavepacket, so-called particle Airy beams, are known for the
Schrödinger equation [11,12], which generalizes the similar
idea for optical beams [13–17]. However, Airy beams are
not normalizable, i.e., span the whole space. Because of the
infinite extension of such wavepackets in space, they are not
applicable for a laser-driven collider, as the luminosity of the
collider should be quenched.

*agontijo@mpi-hd.mpg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by Max Planck Society.

In the nonspreading wavepacket, the distance between two
points remains constant during the motion. While the lat-
ter has a well-defined meaning in nonrelativistic mechanics,
in the relativistic case, surprises arise, particularly involving
Bell’s paradox [18]. In this gedanken experiment, two points
connected by a thread move with a constant acceleration,
keeping a constant distance between them in the laboratory
frame; however, the thread between the points is broken be-
cause of the contracted length of the thread in the laboratory
frame [19]. Then, how do the two points have to move to
avoid breaking the thread connecting them? This question
is resolved by the Born rigidity concept [20], defining the
notion of a rigid body in a relativistic setting: The word-
lines of the rigid body points have to be equidistant curves
in space-time. Or, in more simple terms, the space distance
between two infinitesimally close points measured simultane-
ously in the comoving inertial frame (rest frame) should be
constant. In particular, this will be the case, and the thread
will not break in Bell’s paradox, if the points move with
different constant accelerations along hyperbolic trajectories
[21]. In the laboratory frame, the space distance between
the infinitesimally close points will decrease, fitting to the
Lorentz contraction, while the distance between them in the
rest frame will remain constant. Note that for the luminosity of
the laser-driven collider, the rest frame size of the electron and
positron wavepackets matters at the recollision. Relativistic
wave packets of a decaying particle in different reference
frames is discussed in Ref. [22].

Although seemingly unrelated, generating nonspreading
wavepackets in relativistic quantum mechanics shares a com-
mon thread with the resolution of Bell’s paradox through
the concept of Born rigidity and hyperbolic motion. In both
cases, the motion of different points of the objects is crucial,
whether it is the motion of the points of the rigid body or the
dynamics of interference fringes of the electron wavepacket
along hyperbolic trajectories in the case of quantum
mechanics.
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In this paper, inspired by the geometrical concept of Born
rigidity, we use the covariant relativistic dynamical inver-
sion (CRDI) technique [23] to demonstrate the existence
of nonspreading wavepackets in a laser field fulfilling the
Born rigidity requirements. These wavepackets in the lo-
cal rest frame of the electron feature interference fringes
with a constant distance between them due to the fringes’
dynamics along the hyperbolic trajectories [24]. Employing
the CRDI technique, we develop a procedure to transform
the wavepacket in the laser field to the local rest frame of the
electron, where it evolves into a free electron wavepacket. To
impose nonspreading property on the wavepacket fringes, we
invoke the equivalence principle, which tells us that the hyper-
bolic trajectories, i.e., trajectories corresponding to a motion
with constant acceleration, are similar to those in a constant
gravitational field. The latter allows us the construction of the
nonspreading free electron wavepacket via mimicking locally
the exact solution of the Dirac equation for the electron in a
constant and homogeneous gravitational field [25]. We have
identified the finite lifetime of the nonspreading wavepacket
because of the leaking from the Rindler space and proved that
it is sufficient to allow recollision in a laser-driven collider.

Our main aim is to create relativistic nonspreading
wavepackets in a sense that the distance between the
wavepacket fringes remains constant with time in the elec-
trons’ local rest frame. The Born rigidity concept tells us
that this aim will be realized if the dynamics of the fringes
of the wavepacket manifests hyperbolic trajectories along the
so-called Rindler coordinates [21].

The structure of the paper is the following. In Sec. II, a fam-
ily of rigid relativistic coordinate systems is constructed. The
quantum dynamics of an accelerating electron is discussed in
Sec. III. A nonspreading wavepacket in a strong laser field
is constructed in Sec IV. The lifetime of the nonspreading
wavepacket is discussed in Sec. V. The application of the non-
spreading wavepacket for a laser-driven collider is considered
in Sec. VI, and our conclusion is given in Sec. VII.

II. CONSTRUCTION OF A FAMILY OF RIGID
RELATIVISTIC COORDINATE SYSTEMS

In line with the concept of Born rigidity, here we show how
to construct a rigid reference system. Consider a particle in
arbitrary motion relative to an inertial system I; the particle’s
coordinates with respect to I are X α = (T, X,Y, Z ). In what
follows, Greek indices run from 0 to 3, while Latin indices
run from 1 to 3. The particle’s time track may be described
by the equations X α = f α (τ ), with τ being the proper time
of the particle. Consider now another reference system R
attached to the particle which is uniformly accelerated with
respect to I; the axis of R should always be parallel to that
of I , the particle being always situated at its origin. Let the
coordinates following the particle in its motion relative to R
be xα = (t, x, y, z). At any moment, there exists an inertial
coordinate system I ′, momentarily at rest with respect to the
particle, whose coordinate axes coincide with those of R.
Hence, we have x′

i = xi, x′
0 = 0 and τ = t . The transformation

connecting the coordinates X α with xα is

X α = f α (t ) + xieα
i (t ), (1)

where eα
ν (t ) is an orthonormal frame for an accelerated ob-

server that obeys the following equation:

deν
μ

dt
= �ν

βeβ
μ,

where �ν
β = uν u̇β − uν u̇β and uμ = ḟμ(t ) = dfμ(t )/dt . Dif-

ferentiation of X α gives dX α = [uα + xiėα
i (t )]dt + dxieα

i (t ).
From the properties uαuα = 1, u̇β u̇β = −gigi, and u̇βuβ = 0,
we get

ds2 = dt2(1 + gix
i )2 − (dx2 + dy2 + dz2), (2)

where gi(t ) = eα
i u̇α are functions of t only, being completely

determined by the motion of the origin of the system of co-
ordinates xα relative to the system X α . Considering the line
element (2), the corresponding system of reference is rigid
since the distance between two reference points (x, y, z) and
(x + dx, y + dy, z + dz) is given by dσ 2 = dx2 + dy2 + dz2.
In fact, the space geometry is even Euclidean; thus, (x, y, z)
are Cartesian space coordinates.

Now consider that the origin O of the system xα is moving
in the Z-axis direction of the X α system. From Eqs. (1), we
have

X = x, Y = y, Z =
∫ t

0
sinh[θ (t )]dt + z cosh[θ (t )],

T =
∫ t

0
cosh[θ (t )]dt + z sinh[θ (t )]. (3)

For the vector gi, we get g = [0, 0, g(t )], g(t ) = dθ/dt .
Hence, Eq. (2) becomes

ds2 = dt2(1 + gz)2 − (dx2 + dy2 + dz2). (4)

In particular, if the motion of the origin O is hyperbolic,
then θ (t ) = gt , thus making g a constant. The transformation
equations then reduce to the well-known Rindler coordinates
[21]:

X = x, Y = y, Z = 1

g
[cosh(gt ) − 1] + z cosh(gt ),

T = 1

g
sinh(gt ) + z sinh(gt ). (5)

Let us examine if the reference system R corresponding to the
coordinates xα will appear as rigid with respect to the observer
A in the inertial frame I . By elimination of the variable t from
Eqs. (5), we obtain

Z = 1

g

[√
(1 + gz)2 + g2T 2 − 1

]
, X = x, Y = y.

The velocity of the reference points relative to I at time T is
thus

v = dZ

dT
= gT√

(1 + gz)2 + g2T 2
= tanh(gt ). (6)

Since the velocity v of the frame R from the point of view of
A also depends on z, R will not appear as rigid with respect to
I . In fact, the difference between two reference points (x, y, z)
and (x, y, z + dz) measured by A is found to be

dZ = (1 + gz)dz√
(1 + gz)2 + g2T 2

= dz

cosh(gt )

=
√

1 − v2dz.
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Hence, from A’s perspective, each part of the accelerated
frame R undergoes a Lorentz contraction.

Going back to the motion of the particle in the accelerated
frame R from the point of view of A, consider the velocity v

for the particle located permanently at position z, that is, it is
at rest with respect to R. By definition, the proper time of the
particle can be calculated from Eq. (4) as

dτ =
√

dt2(1 + gz)2 − dx2 − dy2 − dz2 (7)

= dt (1 + gz), (8)

τ = (1 + gz)
∫ t

0
dt = (1 + gz)t, (9)

given that dx/dt = dy/dt = dz/dt = 0.

III. QUANTUM DYNAMICS
OF AN ACCELERATING ELECTRON

The idea of the nonspreading wavepacket is closely related
to the confined Dirac solution of Greiner [25] for the elec-
tron in a constant gravitational field due to the equivalence
principle and can be deduced from the latter. In the chiral
representation [26], the eigenspinor of the Greiner’s solution
for a spin-up electron reads

ψR = 2
√

2Neπ�/2

iπ
eiγ 5π/4

⎛
⎜⎜⎝

Ki�+1/2(mu)
0

Ki�−1/2(mu)
0

⎞
⎟⎟⎠e−i�η, (10)

where Kν (x) is a Bessel function, N is a normalization con-
stant, m is the electron mass, γ 5 = iγ 0γ 1γ 2γ 3, and � is the
eigenenergy. (η, u) are defined as the comoving coordinates
of an inertial observer momentarily at rest with respect to
the electron. Hence, using the Rindler coordinates, we have
η ≡ gt and u ≡ z + 1/g =

√
(Z + 1/g)2 − T 2. Let us mas-

sage Eq. (10) a bit more to gain intuition on how to build it
from a wavepacket. First, note that

Kν (x) = 1

2

∫ ∞

−∞
e−x cosh t+νt dt,

along with cosh(t ) = i sinh(t − iπ/2). Combining both iden-
tities, (10) becomes

ψR =
√

2N
iπ

∫ ∞

−∞
dte−imu sinh t

⎛
⎜⎜⎝

e(i�+1/2)t

0
e(i�−1/2)t

0

⎞
⎟⎟⎠e−i�η. (11)

Since Z = u cosh η, T = u sinh η, by defining the momentum
p = m sinh b for b real and making the change of coordinates
t = η − b in (11), we finally have

ψR = i
√

2N
π

e− γ 0γ 3

2 tanh−1 ( T
Z )

∫ ∞

−∞

⎛
⎜⎜⎝

e−b/2

0
eb/2

0

⎞
⎟⎟⎠

× e−im(T cosh b−Z sinh b)−i�bdb. (12)

The spinor (12) is the desired result.

The wave function of Eq. (10) is an eigenstate and is con-
fined in the coordinate u. Note that only for gravitational fields
can an accelerated electron be described as a superposition
of plane waves. This is a direct consequence of the equiva-
lence principle. In fact, only gravity-induced acceleration can
be transformed away by a coordinate transformation in the
immediate vicinity of the particle.

A. The Dirac equation in the accelerated frame

Here we show how the spinor discussed in the previous
section is connected with the self-accelerated spinor in the
laboratory frame by a Lorentz transformation. From the co-
ordinate relations Z = u cosh η and T = u sinh η, we have

∂

∂T
− ∂

∂Z
= eη

(
1

u

∂

∂η
− ∂

∂u

)
,

∂

∂T
+ ∂

∂Z
= e−η

(
1

u

∂

∂η
+ ∂

∂u

)
,

leading to

0 =
[
−m + i

(
γ 0 ∂

∂T
+ γ 3 ∂

∂Z

)]
ψ

=
[
−um + ieηγ 0γ 3

(
γ 0 ∂

∂η
+ γ 3u

∂

∂u

)]
ψ. (13)

Equation (13) is exactly the Dirac equation in the labora-
tory frame. It can be transformed to the accelerated frame as
follows:

eγ 0γ 3 η

2

[
−um + i

(
γ 0 ∂

∂η
+ γ 3

{
u

∂

∂u
+ 1

2

})]
ψR = 0,

which can be rewritten in the more compact form of

[
−mu + i

(
γ 0 ∂

∂η
+ γ 3

{
u

∂

∂u
+ 1

2

})]
ψR = 0, (14)

with ψR = e−γ 0γ 3 η

2 ψ , where ψ is the solution of the free Dirac
equation in the laboratory frame, while ψR is the solution in
the Rindler (also known as accelerated) reference frame.

B. Constructing the superposition for a free particle

Equipped with the spinor (12) and the relationship ψR =
e−γ 0γ 3 η

2 ψ , here we will build the self-accelerating wavepacket
in the laboratory frame. In the Chiral representation, the Dirac
spinor for a spin-up electron in its rest frame with respect to a
global inertial frame is

ψ = h(0)

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠e−imT , (15)

where h(0) is some momentum-dependent envelope function.
Let us apply a boost to a frame moving along the Z axis with
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momentum p,

ψp = h(p)

⎛
⎜⎜⎜⎜⎝

m−p+Ep

2
√

m(m+Ep)

0
m+p+Ep

2
√

m(m+Ep)

0

⎞
⎟⎟⎟⎟⎠e−i(EpT −pZ ), (16)

with Ep =
√

m2 + p2. Now we build a wavepacket by inte-
grating over p the spinor (16),

ψ (t, z) =
∫ ∞

−∞

h(p)d p

2Ep

⎛
⎜⎜⎜⎜⎝

m−p+Ep

2
√

m(m+Ep)

0
m+p+Ep

2
√

m(m+Ep)

0

⎞
⎟⎟⎟⎟⎠e−i(EpT −pZ ), (17)

in which d p
2Ep

renders the integral Lorentz invariant.
Let us now choose the following envelope function:

h(p) = Ne−aEp, (18)

where N is a normalization constant and a > 0 is a constant
with units of length. Upon making the variable substitution
p = m sinh(b) and including the phase factor eiαb, with α

being a arbitrary real number in (17), one ends up with the
desired superposition,

ψ = N
∫ ∞

−∞
dbeibα

⎛
⎜⎜⎝

e−b/2

0
eb/2

0

⎞
⎟⎟⎠

× e−im[cosh(b)(T −ia)−sinh(b)Z]. (19)

Due to the particular form of h(b), the b integration in (19)
can be performed exactly. In order to see this, first note that
for a > 0,∫ +∞

−∞
dteiy cosh(t )+iζ sinh(t )−νt = iπe

iνπ
2

(
y + ζ

y − ζ

) ν
2

H (1)
ν (x),

∫ +∞

−∞
dteiy cosh(t )+iζ sinh(t )+νt = iπe

iνπ
2

(
y − ζ

y + ζ

) ν
2

H (1)
ν (x),

with x =
√

y2 − ζ 2. Then, defining

m(ia − T ) = y, ζ = mZ,

x = m
√

(ia − T )2 − Z2

leads to

ψ = N
∫ ∞

−∞
dbeibα

⎛
⎜⎜⎝

e−b/2

0
eb/2

0

⎞
⎟⎟⎠eiy cosh(b)+iζ sinh(b). (20)

Before continuing, note that ix = im
√

(a + iT )2 + Z2 and
H (1)

ν (ix) = 2Kν (x)
π i1+ν . Hence, by performing the b integration, one

gets

ψ (T, X ) = N

⎛
⎜⎜⎝

Fiα−1/2(ζ̄ )
0

Fiα+1/2(ζ̄ )
0

⎞
⎟⎟⎠, (21)

where ζ̄ = i
√

(ā + iT̄ )2 + Z̄2 and Fiα±1/2(ζ̄ ) =
2( iā−T̄ −Z̄

iā−T̄ +Z̄ )±1/4+iα/2K±1/2+iα (ζ̄ ).
In summary, the confined solution for the eigenstate ψR to

the free Dirac equation with respect to the accelerated frame
(η, u) of Eq. (11) can be mimicked by a superposition ψ

of the Dirac solutions for a free electron with respect to the
laboratory frame (T, Z ),

ψR = e− γ 0γ 3

2 tanh−1 ( T
Z )ψ, (22)

where the free wavepacket ψ should have a momentum chirp
via the phase ϕ(b) = −αb, with α = �, according to Eq. (11).
When, additionally, we use the momentum distribution in
the free wavepacket h(p) = e−aEp , with the constant a > 0
characterizing the momentum spread of the wavepacket, we
get the dispersionless free spinorial wavepacket giving by the
spinor (21). While the wavepacket (21) was already discussed
in Ref. [24], the emphasis here is its direct relation to the
nonspreading concept.

IV. NONSPREADING WAVEPACKET
IN A STRONG LASER FIELD

Our aim is to construct a solution of the Dirac equation in
a laser field in the form of a wavepacket and to show, using
the CRDI technique, that it represents a nonspreading spinor
in the local rest frame of the electron. We construct the de-
sired wavepacket from the Volkov solutions ψp(T, X ) for an
electron in a plane-wave laser field eAμ = [0, ḟ1(ξ ), ḟ2(ξ ), 0],

ψL(T, X ) = 1

(2π )1/2

∫ ∞

−∞

d p

2Ep
f (p)ψp(T, X ), (23)

where

ψp(T, X ) =
(

1 + n/ ∧ A/
nμ pμ

)
ue−i(EpT −pZ−�), (24)

with nμ = (1, 0, 0, 1), pμ = (Ep, 0, 0,−p), Ep =
√

m2 + p2,
A/ = γ μeAμ, n/ ∧ A/ = (n/A/ − A/n/)/2, u is the leftmost col-

umn of the boost matrix B =
√

Ep+m
2Ep

(1 + γ0γ
3 p

Ep+m ), � =
− 1

2ω(Ep−p)

∫ ξ

0 [ ḟ1(φ)2 + ḟ2(φ)2]dφ, and the laser field phase
ξ = ω(T − Z ). For the superposition coefficients in Eq. (23),
we use those which yield the free wavepacket ψ ; see
Eqs. (11)–(22). After performing the change of variables p =
m sinh b,

ψL =
∫ ∞

−∞
dbN f (b)

⎛
⎜⎜⎝

e−b/2

e
b
2 [ ḟ1(ξ ) + i ḟ2(ξ )]/m

eb/2

0

⎞
⎟⎟⎠

× e−im(T cosh b−Z sinh b)−ieb�, (25)

the closed expression for the integral in (25) is

ψL(T, X ) = N

⎛
⎜⎜⎝

Fiα−1/2(ζ̄ ′)
Fiα+1/2(ζ̄ ′)[ ḟ1(ξ ) + i ḟ2(ξ )]/m

Fiα+1/2(ζ̄ ′)
0

⎞
⎟⎟⎠, (26)
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where ζ̄ ′ = i
√

(ā + iT̄ ′)2 + Z̄ ′2, Z ′ = Z − �, T ′ = T + �,
and Fiα±1/2(ζ̄ ′) = 2( iā−T̄ ′−Z̄ ′

iā−T̄ ′+Z̄ ′ )±1/4+iα/2K±1/2+iα (ζ̄ ′).
Let us transform the spinorial wavepacket (26) to the rest

frame, which is defined as the space-time-dependent frame in
which the spatial components of the electron’s four-current
vanish at the given space-time point, and demonstrate its
nonspreading property. In the free-electron case, such Lorentz

transformation is the matrix e− γ 0γ 3

2 tanh−1( T
Z ) on the left of the

spinor (11). An equivalent transformation is now needed for
the case in which the electron is interacting with a plane-wave
field. In order to construct the desired Lorentz transformation,
we make use of the CRDI technique. In the Hestenes formu-
lation (see, for instance, Sec. 3 of Ref. [27]), the spinor (24)
can be written as

� = e
n/∧A/

nμ pμ Be−γ2γ1(EpT −pZ−�). (27)

As discussed in [23] (see, also, Appendix A), the matrix

e
n/∧A/

nμ pμ ≡ R is, in fact, a Lorentz transformation. In the chiral
representation, it is given by

R =

⎛
⎜⎜⎜⎝

1 0 0 0
[ ḟ1(ξ )+i ḟ2 (ξ )]

Ep−p 1 0 0

0 0 1 − [ ḟ1(ξ )−i ḟ2(ξ )]
Ep−p

0 0 0 1

⎞
⎟⎟⎟⎠. (28)

However, the Lorentz transformation (28) is valid only for the
wave function (27), but not (26). Moreover, it does not account
for the transformation to the Rindler (accelerated) frame. In
order to encompass both transformations, we start with the
following ansatz:

R̄ = e− γ 0γ 3η′
2

⎛
⎜⎜⎝

1 0 0 0
−d∗ω[ ḟ1(ξ ) + i ḟ2(ξ )] 1 0 0

0 0 1 dω[ ḟ1(ξ ) − i ḟ2(ξ )]
0 0 0 1

⎞
⎟⎟⎠, (29)

where d∗ and η′ are free functions to be found by the require-
ments that the resulting spinor is of the same form as Eq. (11)
and that the electron’s current vanishes. These requirements
are fulfilled by the following functions:

d∗ =
√

a + i(cT ′ + Z ′)
a + i(cT ′ − Z ′)

Kiα− 1
2
(κζ̄ ′)

2mωKiα+ 1
2
(κζ̄ ′)

and

η′ = 1

2
ln

(
q

K1/2−iα (κζ̄ ′∗)K1/2+iα (κζ̄ ′)
K1/2−iα (κζ̄ ′)K1/2+iα (κζ̄ ′∗)

)
,

q =
√

a2 + (cT ′ + Z ′)2

a2 + (−cT ′ + Z ′)2
,

with superscript ∗ standing for complex conjugation. Apply-
ing R̄ to (23), R̄ψL, leads to the following spinor describing
the electron in its rest frame:

R̄ψL ≡ ψ̄R = Ne− γ 0γ 3

2 η′

⎛
⎜⎜⎝

Fiα−1/2(ζ̄ ′)
0

Fiα+1/2(ζ̄ ′)
0

⎞
⎟⎟⎠. (30)

The final step of the transformation consists of the coordinate
transformation Z ′ = Z − �, T ′ = T + �.

One now needs to prove that the constructed wave function
ψ̄R obeys the Dirac equation in the plane-wave field given by
A/. In order to do so, one must do the following: First construct
the vierbein eα

μ = 1
4 Tr [R̄−1γ αR̄γμ], eμ

α = 1
4 Tr [R̄−1γ μR̄γα],

which transform the γ matrices in the laboratory frame to
the new γ matrices γ̃ α = eα

μγ μ, γ̃α = eμ
αγμ. After the trans-

formation, the wavepacket ψ̄R satisfies the following Dirac
equation:

iγ̃ μ∇μψ̄R − γ̃μeAμψ̄R − mψ̄R = 0,

where ∇μ = ∂/∂X μ + �μ, X μ = (T, X,Y, Z ), which de-
scribes the electron in its rest frame. The matrix �μ is the
spinor connection and is given by 2�μ = �i jμσ i j , 2σ i j =
γiγ j , and �i

jμ = −eν
j e

i
σ eσ

a ∂μea
ν . The wavepacket in the rest

frame will be nonspreading when the spinor of Eq. (23) is
represented in exactly the same form as the free spinor of
Eq. (21). This is achieved by the consecutive application
of the coordinate transformation Z ′ = Z − �, T ′ = T + �.
With the change of vierbein e′α

μ = ∂X ′α
∂X μ , e′μ

α = ∂X μ

∂X ′α , and with
the new gamma matrices γ ′α = e′α

μ γ̃ μ, γ ′
α = e′μ

α γ̃μ, the trans-
formed spinor (30) satisfies the Dirac equation in the new
frame,

iγ ′μ∇′
μψ̄R − γ̃μeAμ(ξ ′)ψ̄R − mψ̄R = 0,

with ∇′
μ = ∂/∂X ′μ + �μ. Note, also, that eAμ(ξ ′) =

eAμ[ξ (ξ ′)] since ξ ′ = ξ + 2ω�(ξ ). The variable ξ (ξ ′) is
then given by inverting the coordinate transformation.

Thus, the constructed wavepacket of the electron in a laser
field in the form of Eq. (23) [or Eq. (26)] coincides, up to
a boost [see Eq. (30)], with the free self-accelerating non-
spreading wavepacket [cf. Eq. (21)] in the local rest frame
of the electron at each (Z ′, T ′). Note that the exact Lorentz
transformation of the electron Dirac wave function in a laser
field to the electron rest frame is essentially facilitated by
application of the CRDI technique [23,28].

V. LIFETIME OF THE NONSPREADING WAVE PACKET

There is an important deviation of the nonspreading wave
packet given by Eq. (30) from the accelerating electron solu-
tion given by Eq. (10). While in the latter a = 0, the former
has a finite size of the wavepacket a 	= 0, which has essential
implications. To discuss this, consider the spinor (30) in the
laboratory frame (hereafter, we drop the primes in order to
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FIG. 1. Space-time profile of the electron density for the free electron modulated wavepacket of Eq. (21): (a),(b) in the laboratory frame,
(c),(d) in the accelerated frame (i.e., in Rindler coordinates), (a),(c) α = 30 and ā = 0.005, (b),(d) α = 30 and ā = 2. Note that the Rindler
coordinates only cover the region outside the light cone to the right.

simplify the notation),

ψ = e
γ 0γ 3

2 ηψ̄R = N

⎛
⎜⎜⎝

Fiα+1/2(ζ̄ )
0

Fiα−1/2(ζ̄ )
0

⎞
⎟⎟⎠, (31)

The impact of the wavepacket size a is given by the prefactor
in Fiα±1/2(ζ̄ ), which we analyze next.

The space-time profile of the electron wavepacket is pre-
sented in Fig. 1. Figures 1(a) and 1(b) show the distribution
in the laboratory-frame coordinates (T, Z ), while Figs. 1(c)
and 1(d) show it in the accelerated rest frame with Rindler
coordinates (η, u). In the laboratory frame, the wavepacket is
separated into two parts: inside the light cone with normal
spreading and outside the light cone (defined as region I in
Ref. [25]) representing the nonspreading wavepacket. The
latter shows interference fringes, each lobe corresponding
to a hyperbolic trajectory. Such a feature is entirely due to
the chirping parameter α. From the rest frame perspective
[Figs. 1(c) and 1(d)], the wavepacket is nonspreading (the
width of the wavepacket at each instant of the Rindler’s time
η remains constant), while in the laboratory frame, the width
of the wavepacket is contracting with time T according to the
Lorentz transformation.

There is a significant effect stemming from the value of
the wavepacket size parameter a; cf. Figs. 1(a) and 1(c) with
Figs. 1(b) and 1(d). During evolution, the nonspreading part
of the wavepacket is gradually leaking out into the normal
one. The parameter a controls the balance between the non-
spreading and normal parts of the wavepacket and determines
the lifetime of the nonspreading part of the wavepacket. Such
leaking is responsible for washing out the interference fringes:
the smaller the value of a, the slower is the interference
fringes’ extinction (Fig. 1). There is no extinction in the case
of the accelerating electron solution of Eq. (10) with a = 0.
We can estimate the lifetime of the nonspreading wave packet
as follows. Let us begin with the spinor in the accelerated
frame, which is related to (21) in the same way as the spinor
(12) is related to the one in the laboratory frame. We have

ψ = N

⎛
⎜⎜⎝

e
η

2 Giα−1/2(ζ̄ )
0

e− η

2 Giα+1/2(ζ̄ )
0

⎞
⎟⎟⎠,

Giα±1/2(ζ̄ ) =
(

eη(−ūeη + iā)

ū + iāeη

)± 1
4 + iα

2

K±1/2+iα (ζ̄ ),

ζ̄ =
√

ā2 + 2iāū sinh(η) + ū2. (32)
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FIG. 2. (a) The asymmetry ratio A = (|ψ̄R|2 − |ψ |2|)/(|ψ̄R|2 + |ψ |2|) vs the wavepacket chirping parameter α and the size parameter ā
for T = 1 fs. (b) The wavepacket size δū vs η for α = 40 and ā = 10−6.

Now, for η 
 1, we have

ζ̄ ≈ eiπ/4
√

2āūeη/2, K±1/2+iα (ζ̄ ) ≈
√

π

2ζ̄
e−ζ̄ ,

(
eη(−ūeη + iā)

ū + iāeη

)± 1
4 + iα

2

≈
(

iūeη

ā

)± 1
4 + iα

2

.

Thus,

ψ†ψ ≈ e−2(eη āū)1/2− πα
2√

2ū
. (33)

The same estimation with the Rindler spinor (10) leads to

ψ
†
RψR ≈ e−2ū+ π�

2√
2ū

. (34)

Using asymptotic expressions of the wave functions at η 

1: |ψ |2 ≈ exp[−2(eηāū)1/2 − πα

2 ]/
√

2ū, |ψR|2 ≈ exp[−2ū +
π�
2 ]/

√
2ū. Both asymptotic expansions will coincide if eηā ∼

ū or Z̄ − T̄ � ā. Taking into account that the equation for the
rightmost hyperbolic trajectory (Z̄0 ≈ α) as a function of time
is Z̄ (T̄ ) ≈ √

α2 + T̄ 2, we have an estimate for the lifetime of
the nonspreading wavepacket,

Tl � (α2 − ā2)/(2ām), (35)

which indicates that large α and small ā are beneficial for the
extension of the lifetime. For instance, Tl � 1 fs when using
α = 30 and ā = 0.001.

We also analyze the balance of the nonspreading and
normal parts of the wavepacket, introducing the asymmetry
parameter via A = (|ψ̄R|2 − |ψ |2|)/(|ψ̄R|2 + |ψ |2|) and cal-
culating the densities of these parts via Eqs. (11) and (21); see
Appendix B for a definition. The example of the dependence
ofA on the parameters α and ā is shown in Fig. 2(a) for T = 1
fs. The wavepacket is nonspreading if |ψ |2 ≈ |ψ̄R|2|, i.e., at
A→ 0, while at A→ 1, the nonspreading wave packet is
fully extinguished, |ψ |2 → 0.A is very sensitive to ā. Smaller
ā is preferred for A→ 0; however, the larger α allows larger
ā at a givenA [Fig. 2(a)].

We numerically evaluated the wavepacket spatial size via
the accelerated frame spinor (see Appendix B), i.e., con-
sidering only the parts outside the light cone. The standard

deviation δū =
√

〈ū2〉 − 〈ū〉2 is calculated with ā = 10−6 and
α = 40 [Fig. 2(b)]. With the rightmost hyperbolic trajectory,
the transformation between the time in the accelerated frame
and in the laboratory frame is then T̄ = α sinh η. As seen in
Fig. 2(b), the wavepacket spreading δū stays constant up to
η ≈ 11, which corresponds to the laboratory time T ≈ 2 fs.

Considering that the fringes of the self-accelerating part of
the wavepacket must last for at least one period of the laser
field, let us estimate the maximum value for the parameter
ā. For a full cycle of the laser field in the electron’s rest
frame, one has ω(T − Z ) = 2π . The latter, combined with
the condition |Z̄ − T̄ | � ā, gives a � λ′, where λ′ is the laser
wavelength in the electron rest frame.

VI. LASER-DRIVEN COLLIDER

We consider applications of the nonspreading relativistic
wavepackets to a laser-driven collider [10]. Here electrons and
positrons are created from vacuum by high-energy gamma
photons counterpropagating an ultrastrong laser field. They
are accelerated by the laser field and collide within a cycle of
the field. The rest frame of the created pairs depends on the γ -
photon energy (�0) and the laser strong field parameter [a0 ≡
eE0/(mω), with the laser field amplitude E0]. Let us estimate
the velocity (or the Lorentz γ factor) of the average rest frame
(RF) of the created pair at the threshold of the process for
the given gamma-photon energy �0 in the laboratory frame
(LF), and the laser field strength a0. Here, a0 ≡ eE0/mω is
the classical strong field parameter of the laser field, where the
quasimomentum (momentum averaged over the laser period)
of the electron and positron is vanishing, q = 0, q0 = m∗, and
where m∗ = m

√
(1 + a2

0/2) is the dressed mass of the electron
in a linearly polarized laser field. As the pair is created by
absorbing one gamma photon of the energy �′

0 (in the RF)
and n counterpropagating laser photons with an energy �′

0
(in the RF), the energy-momentum conservation law in the
RF at the threshold of the process yields �′

0 = nω′ = m∗.
In an ultrastrong laser field a0 
 1, the average number of
laser photons involved in the pair production process is n ∼
a3

0. We choose the gamma-photon energy in the LF to ful-
fill the condition �0 > a3

0ω. In this case, the RF propagates
along the gamma photon and the RF’s γ factor is determined
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from the Doppler-shifted momentum conservation condition:
�0/(2γ ) = 2γ nω ≈ ma0/

√
2. Thus, with the given a0, the

RF’s γ of the most probable pair production is determined
from the condition

2
√

2a2
0γω/m = 1, (36)

which will require the gamma-photon energy

�0 ≈
√

2mγ a0. (37)

Assuming an infrared laser field with ω/m = 10−6, a0 = 102

(the laser intensity of 1022 W/cm2), we have, from Eqs. (36)
and (37), γ ≈ 30 and �0 ≈ 2 GeV.

The laser period in the rest frame of the pair, T ′ = TL/γ ∼
3 × 10−2 fs (with the laser period TL in the laboratory frame),
which is less than the wavepacket leaking time Tl ∼ 1 fs
(for α = 30 and ā = 0.001), i.e., the recollision time, is
short enough to maintain the nonspreading character of the
wavepacket.

The next point is how to create the nonspreading
wavepacket. For the latter, the specially tailored momentum
chirping of the wavepacket given by the phase ϕ(p) = αb =
α sinh−1(p/m) is essential. This chirping induces a spatial
shift of each momentum component in the laser field, δx(p) =
∂ϕ(p)/∂ p. The created wavepacket of the electron (positron)
will be chirped if the particle with the corresponding mo-
mentum value is created with the corresponding spatial delay
δx(p). The particle in the LF moves with the momentum
p = mγ . From Eqs. (36) and (37), γ is determined either by
the laser field intensity a2

0 or by the gamma-photon energy.
Specifically tailoring the laser intensity in space according to
the function δx(p), one can achieve chirping of the created
wavepackets of the electron and positron. Another possibility
is to use a chirped γ -photon beam.

A. Role of radiation reaction

The approach based on the Dirac equation can be valid
if the radiation reaction does not much disturb the electron
dynamics. We can formulate it as a restriction on the laser
and electron parameters. The condition for negligible radia-
tion reaction can be formulated as the radiation energy loss
(�ε) being negligibly small compared to the electron energy
(ε): �ε � ε. In the laser-driven collider (Refs. [8,10]), the
electron acceleration takes place during the excursion in a half
cycle of the laser field. As the radiation formation length is
a0-times smaller than the electron trajectory period at a0 
 1
(see, e.g., Ref. [6]), the number of the radiation formation
lengths during one laser period is a0. As the probability
for a photon emission on a formation length is of the or-
der of the fine-structure constant α f , �ε ∼ α f a0ωc, with the
characteristic energy of the emitted photon ωc ∼ χε, where
the quantum strong field parameter χ ≡ E ′/Ecr describes the
photon recoil (see, e.g., Ref. [6]). Here, E ′ is the background
field strength in the rest frame of the electron and Ecr is the
Schwinger critical field. In the laser collider setup, one can
estimate χ ∼ 2γ0(ω/m)a0, when the gamma photon with an
energy mγ0 counterpropagates the laser field as in Ref. [10].
Thus, the condition to neglect radiation reaction in the laser
collider will read α f a0χ ∼ 2α f a2

0γ0(ω/m) � 1. For instance,
in the case of an infrared laser field ω/m ∼ 10−6 GeV, gamma
photon γ0 ∼ 103, and an ultrastrong laser field of the intensity

of 1022 W/cm2 (a0 ∼ 102), this condition can be fulfilled,
�ε/ε ∼ 10−1. Thus, the approach based on the Dirac equa-
tion can still be valid for typical parameters of a laser-driven
collider.

B. Role of spreading in the transversal directions

We discussed the possibility of generating a dispersionless
Dirac electron wavepacket in a plane laser field. While this
is an approximation, it is relevant to the discussed setup and
employed parameters. This approximation can be valid when
the electron transverse oscillation amplitude is much less than
the laser beam waist size. We can estimate the electron trans-
verse oscillation amplitude as x0 ∼ (a0/γ0)(c/ω) (see, e.g.,
[29]), with the laser field nonlinear parameter a0 = eE0/mcω,
the laser frequency ω, and the electron gamma factor γ0 after
switching off the laser field. Using the parameters a0 = 102

(1022 W/cm2), λ = 1 µm, and γ0 = 30, we have x ≈ 0.5 µm.
Assuming the laser waist size of w0 ∼ 10 µm, the condition
x0 � w0 is fulfilled, which would require a strong but feasible
10 PW laser field [1022 × (10−3)2]. Moreover, the electron
wavepacket size is of the order of a ≈ 10−2λC , with the
Compton wavelength λC , and thus a � w0 is safely fulfilled.
Thus our plane-wave description is suitable for our employed
realistic parameters given that the interference pattern of the
wavepacket will not be affected.

VII. CONCLUSION

We have shown the existence of nonspreading relativistic
wavepackets in a laser field, which, in the local rest frame
of the electron, is similar to a self-accelerating nonspreading
free wavepacket. We have established that there is a finite life-
time for the self-accelerating wavepacket and found that the
wavepacket chirping and extension parameters impose strict
restrictions on the lifetime duration. The nonspreading feature
of the relativistic wavepacket represents the essential property
to permit an efficient laser-driven high-energy collider.

APPENDIX A: DECOMPOSITION OF R̄
INTO BOOSTS AND ROTATIONS

In the simplified case with a = 0 and α = 0, it is straight-
forward to see the following relationship:

R̄ = e− η′γ 0γ 3

2 UB,

U = e
−θ

(
γ 1γ 3 ḟ1 (ξ )√

ḟ1 (ξ )2+ ḟ2 (ξ )2
+γ 2γ 3 ḟ2 (ξ )√

ḟ1 (ξ )2+ ḟ2 (ξ )2

)
,

B = e−w(V1γ
0γ 1+V2γ

0γ 2+V3γ
0γ 3 ), (A1)

where

θ = tan−1

(√
ḟ1(ξ )2 + ḟ2(ξ )2

2mc

)
,

w = tanh−1

⎛
⎜⎜⎜⎜⎜⎝

√
ḟ1(ξ )2 + ḟ2(ξ )2

2mc

√
1 +

(√
ḟ1(ξ )2+ ḟ2(ξ )2

2mc

)2

⎞
⎟⎟⎟⎟⎟⎠

023040-8



NONSPREADING RELATIVISTIC ELECTRON WAVEPACKET … PHYSICAL REVIEW RESEARCH 6, 023040 (2024)

= tanh−1(sin θ ),

V1 = ḟ1(ξ )√
ḟ1(ξ )2 + ḟ2(ξ )2

cos θ,

V2 = ḟ2(ξ )√
ḟ1(ξ )2 + ḟ2(ξ )2

cos θ,

V3 = sin θ.

Incidentally, the boost B leads to the following proper
velocity:

u
c

= B2γ0 = γ (1 + γ 0γ kβk ),

γ = 1 + ḟ1(ξ )2 + ḟ2(ξ )2

2m2c2
,

�β =
(

ḟ1(ξ )

mc
,

ḟ2(ξ )

mc
,

ḟ1(ξ )2 + ḟ2(ξ )2

2m2c2

)

×
(

1 + ḟ1(ξ )2 + ḟ2(ξ )2

2m2c2

)−1

.

This is expected since the solutions to the classical and quan-
tum equations of motion for an electron in a laser field are, up
to the phase factor to the right of the matrix spinor (i.e., � in
the main text), the same.

APPENDIX B: WAVEPACKET VARIANCE AND NORM

The wavepacket variance with respect to both the labora-
tory frame and the accelerated frame is defined as

δZ̄ =
√

〈Z̄2〉 − 〈Z̄〉2, 〈Z̄n〉 =
∫ +∞

−∞
dZ̄ Z̄nψ†ψ, (B1)

δū =
√

〈ū2〉 − 〈ū〉2, 〈ūn〉 =
∫ ∞

0
dū ūnψ

†
RψR, (B2)

while the wavepacket norm in both frames is

|ψ |2 =
∫ +∞

−∞
dZ̄ ψ†ψ, |ψR|2 =

∫ ∞

0
dū ψ

†
RψR. (B3)

For the spinor (21), these integrals can be calculated exactly.
The results are

〈Z̄2〉 = K1(2ā)
ā[4(α2 − T̄ 2) + 4π āL0(2ā)(α2 − T̄ 2) + 1]

2K0(2ā)

− 2π ā2L−1(2ā)(T̄ − α)(α + T̄ ) + π ā(T̄ − α)(α + T̄ )

K0(2ā)

+ T̄ 2, (B4)

〈Z̄〉 = πα

(
āL−1(2ā) + [2āL0(2ā)K1(2ā) − 1]

2K0(2ā)

)
, (B5)

where Kn(2ā) and L−n(2ā) are the Bessel and the modified
Struve functions, respectively. One can extract the important
result for variance δZ̄2 = 〈Z̄2〉 − 〈Z̄〉2,

δZ̄ (α)2 − δZ̄ (0)2 = πα2

[
ā2L−1(2ā)[2 − πL−1(2ā)]

− π [1 − 2āL0(2ā)K1(2ā)]2

4K0(2ā)2
+ ā[πL−1(2ā) − 1]

K0(2ā)

+ ā
{

2
π

− 2ā[πL−1(2ā) − 1]L0(2ā)
}
K1(2ā)

K0(2ā)

]
, (B6)

which is independent of time.
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