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Utilizing time-series measurements for entropy-production estimation in partially observed systems
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Estimating the dissipation, or the entropy-production rate (EPR), can provide insights into the underlying
mechanisms of nonequilibrium-driven processes. However, in practical experimental settings, precise quantifi-
cation of the EPR can be challenging, as only partial information is typically accessible. Here, we explore
the relationship between the observed information and the accuracy of EPR estimation. We employ a range
of coarse-grained time-series trajectory data, simulating scenarios where varying degrees of information are
available. We discover a hierarchy of lower bounds on the total EPR, demonstrating that an increasing amount of
information can be leveraged for obtaining tighter EPR estimation, underscoring the critical role of exploiting the
available data. Moreover, we introduce a technique for utilizing waiting times within hidden states and tightening
the lower bound on the total EPR for some cases. This approach highlights the potential of hidden features within
the data to provide valuable insights into the dissipative dynamics of complex systems.

DOI: 10.1103/PhysRevResearch.6.023039

I. INTRODUCTION

Entropy production, often referred to as energy dissipa-
tion, occupies a central role in the realm of nonequilibrium
thermodynamics [1–3]. It serves as a fundamental quantity,
providing crucial insights into the thermodynamic behavior
of systems that operate far-from-equilibrium. In living sys-
tems, for example, the rate of dissipation is closely related
to the consumption rate of chemical fuel molecules, such as
adenosine triphosphate (ATP) by molecular motors [4] that
drive numerous cellular processes, including cell division,
locomotion, and growth [5].

The entropy production calculated along a single trajec-
tory is a stochastic quantity, which has gathered significant
experimental interest [6–16]. Estimating the total entropy-
production rate (EPR), i.e., the average rate of the production
of entropy, is straightforward, given complete information
about the dissipative degrees of freedom [17]. However, prac-
tical scenarios pose a challenge on calculating the EPR since
experimental data always have a finite resolution, and only
a subset of the degrees of freedom are accessible [2]. Such
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coarse-grained observation, where only some of the dissipa-
tive degrees of freedom are monitored or resolved, can only
provide a lower bound on the total dissipation rate [18–25]. In
some cases, only the transitions between states are observable,
omitting information about the states themselves [26–31].
Nevertheless, exploiting the available data optimally, to gain
the tightest possible lower bound on the EPR, is a subject of
active research.

There are several estimators for partial EPR that do not
require any prior information about the system, such as the
number of states or the underlying topology, based on the deep
connection between the dissipation and the breaking of time-
reversal symmetry [32]. These estimators rely on the direct
link between EPR and the difficulty of distinguishing forward
and reverse processes, quantified by the relative entropy or
Kullback–Leibler Divergence (KLD) [18,33–39]. Calculating
the KLD between probability distributions of forward and
reverse trajectories can be done using various techniques
[33–36,40]. For instance, the plug-in method involves esti-
mating the probabilities of data sequences while discarding
information about transition times [35]. In contrast, the KLD
can be calculated analytically when applied to semi-Markov
processes, where it was shown to be the sum of two contribu-
tions, one of which captures irreversibility in the sequence of
states, and the other quantifying irreversibility in waiting-time
distributions (WTD) [33,41]. For second-order semi-Markov
processes, this KLD estimator can detect and quantify en-
tropy production even in the absence of observable currents
[33,42,43].
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FIG. 1. Illustration of the partial information frameworks for arbitrary four-state system. (a) A fully observed four-states system. The
trajectory (blue line) is described by the sequence of microstates and the corresponding waiting times (WT). (b) Full coarse-graining (full-CG).
States 3 and 4 cannot be resolved, and are lumped together to a single macrostate H (orange line). (c) Semi-coarse-graining (semi-CG).
States 3 and 4 cannot be resolved, but intratransitions between the hidden microstates can be recorded, where consecutive visits in the
hidden microstates (orange line with black markers) are recorded as a sequence of H , with the corresponding WT of each hidden microstate
between intratransition events. (d) Transformed semi-coarse-graining (transformed semi-CG). Each n consecutive visits to the hidden
microstates in H are recorded as Hn (light orange, orange, and brown represent different sequence lengths) and the WT in Hn are the sum
of the WT in consecutive visits in the hidden microstates 3 and 4.

Machine learning (ML) has also emerged as a valuable
tool for entropy-production estimation by exploiting the irre-
versibility of data series [44–46]. The core idea is to optimize
an objective function whose extremum is the KLD between
the forward and reverse trajectories of sequences of states. For
example, the recurrent neural network estimator for entropy-
production (RNEEP) estimates the EPR from coarse-grained
data of partially observed systems, using a recurrent neural
network to solve the optimization problem [44]. Other esti-
mators search over systems with the same statistics as the
system at hand using different sets of observables [47–50],
or provide a lower bound on the entropy production from the
fluctuations of the transition fluxes or first passage times using
the thermodynamic uncertainty relations (TUR) [51–60].

In this work, we focus on a continuous-time Markov chain
(CTMC) model over a discrete set of states, in which a sub-
set of the microstates is coarse-grained, or “lumped,” into a
single macrostate. We consider different levels of observed
statistics from different coarse-graining (CG) approaches and
infer the EPR from the observed data using the KLD esti-
mator [33], the plug-in estimator [35,36], and the RNEEP
estimator [44], when applicable. These estimators do not
require prior knowledge of the systems and only use the
observed statistics to infer and quantify time-irreversibility.
First, we use the sequence of observed microstates and coarse-
grained macrostates, and the transitions between them. Then,
we include information about transitions between the hidden
microstates within the coarse-grained macrostates (intratran-
sitions). In the latter case, the data do not follow semi-Markov
statistics, so the KLD estimator cannot be directly applied.
To overcome this challenge, we introduce a unique reformu-
lation of the trajectory data of observed states and transitions,
and intratransitions within macrostates, that enables us to ex-
ploit waiting-time information for a tighter EPR bound using

the KLD estimator. Specifically, we label the coarse-grained
macrostates according to the number of times they are visited
before jumping into an observed state. We apply the CG ap-
proaches to three model systems, namely, a four-state system
in which two of the states are coarse-grained into a single hid-
den state (Fig. 1), a molecular motor model with two internal
states that cannot be resolved by an external observer (Fig. 2),
and the discrete Flashing Ratchet model with time-varying po-
tential, whose values cannot be observed (Fig. 3). We provide
a unifying comparison between the plug-in, RNEEP, and KLD
estimators across various CG schemes, and emphasize how
additional information can be exploited to infer tighter lower
bounds on the total EPR.

II. THEORETICAL FRAMEWORK

A. Model systems

We explore three generic CTMC models as case studies,
namely, a four-state system, a molecular motor, and a flashing

FIG. 2. A model of a molecular motor that can physically jump
between spatial positions i ↔ i + 1, and switch between internal
conformation i ↔ i′ corresponding to active (i′) or passive (i) states.
An external observer can only record the position of the motor, such
that states of the same position, i and i′, regardless of the internal
conformation, are coarse-grained into a single macrostate Hi. In the
semi-CG framework, intratransitions i ↔ i′ are recorded.
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FIG. 3. Discrete flashing ratchet of three states with periodic
boundaries, and a potential that can be switched on (i) and off (i′)
but is not accessible to the observer. States of the same position i, re-
gardless of the potential, are coarse-grained into a single macrostate
Ha, Hb, and Hc. In the semi-CG framework, intratransitions i ↔ i′

are recorded.

ratchet. In each of these systems, some of the states cannot
be resolved, giving rise to coarse-grained data of the system
trajectories, rendering the observed statistics a second-order
semi-Markov process [33].

In the four-state system, two of the states cannot be re-
solved and are effectively coarse-grained into a single hidden
state (Fig. 1). Specifically, two states are observed (Marko-
vian) states, while the other two states are lumped into a single
macrostate. We allow an external control parameter to tune the
transition rates over the observed link, thereby affecting the
observed dynamics.

In the case of the molecular motor (Fig. 2), the motor is
capable of both physical movement in space, transitioning be-
tween positions labeled as i ↔ i + 1 (upward or downward),
and altering between two internal states, i ↔ i′ (passive or
active). The motor movement is driven by an external source
of chemical energy, �μ, facilitating upward spatial transitions
from the active state, while a mechanical force F opposes
this motion. The internal states can be thought of as two
different conformations of the motor, and, therefore, cannot
be distinguished by an external observer, who can only access
the physical position of the motor.

The discrete flashing ratchet is commonly used to study
the behavior of particles in the presence of an external po-
tential, in which a series of barriers and wells are alternately
flashed on and off in a periodic manner [36,61] (Fig. 3).
This creates a series of potential energy barriers that particles
must overcome to move in a preferred direction. Similar to
the molecular motor, the system can jump between states
i ↔ i + 1 in which the potential is on, and i′ ↔ (i + 1)′ in
which the potential is off, and can also switch between the
on and off states, i ↔ i′. The system is inherently driven out
of equilibrium by the external force that flashes the potential
energy barriers.

B. Coarse-graining (CG)

Coarse-graining a system implies grouping together mul-
tiple states or variables into a smaller set of macroscopic
variables. The coarse-grained trajectories of these systems
represent the time-evolution of the system as it transitions be-
tween the coarse-grained states. Generally, the coarse-grained
data cannot be treated with the Markovian approxima-
tion [62–65], and different levels of coarse-graining can
be considered based on the partial information available
about the system. In this section, we explain the different

coarse-graining approaches, taking the four-state model sys-
tem as an example (Fig. 1).

1. Full-coarse-grain (full-CG)

In this CG approach, termed full-CG, we lump together a
subset of the microstates into a single observed state, giving
rise to a second-order semi-Markov process [Figs. 1(a) and
1(b)], since the waiting time in the hidden state depends on
the state visited before [33]. In this example, states 1 and 2 are
observed, whereas states 3 and 4 can not be distinguished and
are recorded as a single state, H . Here, the waiting time in H is
the sum of the corresponding waiting times in the microstates
3 and 4 before jumping to one of the observed states.

2. Semi-coarse-grain (semi-CG)

In semi-CG, we assume an observer can record intratran-
sitions within the hidden states [Fig. 1(c)]. For example, a
sequence of 1 → 4 → 3 → 2 is recorded as 1 → H → H →
2, with the corresponding waiting times, i.e., the time spent
in the first visit to H and the time spent in the second visit
to H are recorded separately. In this case of observed intra-
transitions within a coarse-grained state, the initial and final
microstates are not known, as both are lumped together to the
same macrostate. Still, the added information can be utilized
to improve the lower bound on the total EPR.

3. Reformulation

The plug-in and the RNEEP estimators rely on the se-
quence of states, while discarding waiting-time information,
and can, therefore, be directly applied to the semi-CG trajec-
tory. However, to apply the KLD estimator to the semi-CG
data, we first need to reformulate the trajectory to harness
the information of the WTD, by labeling the coarse-grained
macrostates according to the number of times they are visited
before jumping into an observed state. The transformation,
depicted in Fig. 1(d), consists of two steps. First, we look
for all the consecutive sequences of the hidden state H , and
record their length, i.e., the number of visits to the state H .
Second, all sequences with the same length are considered
a new state, so a sequence of n appearances of H is labeled
Hn. The waiting time associated with Hn is now the sum of
the individual waiting times in the n consecutive appearances
of H . Using the summation of the waiting times associated
with each of the visits in H , instead of keeping the data of the
duration of each consecutive visit, is necessitated by numeri-
cal limitations (Appendix A 1). Following this reformulation,
we lose information about the full trajectory, and the KLD
estimator applied to the reformulated data is a lower bound
on the total EPR (Appendix A 2). We stress that the new
representation is only used for applying the KLD estimator,
whereas the plug-in and RNEEP estimators do not require
waiting-time information and are used as reference methods
that only exploit sequences of states rather than the WTD.

C. Entropy-production rate estimators

1. Plug-in estimator

The plug-in estimator, σplug, was proposed for approximat-
ing the KLD rate between the forward and reverse sequences
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of discrete stationary time series, by counting sequences of
data and calculating their probabilities [35,36]. The approxi-
mated mth-order KLD between sequences of length m is

Dx
m =

∑
x1,x2,...,xn

p(x1→m)ln

(
p(x1→m)

p(xm→1)

)
, (1)

where p(x1→m) and p(xm→1) are the probabilities of a forward
sequence x1→m = (x1, ..., xm ) and the backward one xm→1 =
(xm, ..., x1). These probabilities can be estimated from the
number of appearances of each sequence in a long trajectory.
Based on the approach in Ref. [35], the slope of Dx

m as a
function of m,

d̂x
m = Dx

m − Dx
m−1, (2)

gives the entropy production per step in the limit of large m.
However, for a non-Markov process that cannot be described
by a semi-Markov process of any order, calculating d̂x

m is
challenging for large values of m. Therefore, the following
ansatz [66] has been proposed:

d̂x
m � d̂x

∞ − c
ln(m)

mγ
, (3)

where d̂x
∞, c, and γ , are the fit parameters for d̂x

m as a function
of m. Our plug-in estimator for the entropy-production rate
per time is thus

σplug = 1

τ
d̂x

∞, (4)

where τ is the mean waiting time in each step.

2. KLD estimator

The KLD estimator, σKLD, derived by calculating the KLD
between forward and reverse trajectories in semi-Markov pro-
cesses, has two contributions [33]:

σKLD = σaff + σWTD, (5)

where the affinity, σaff, stems from observed currents, and the
σWTD stems from time-asymmetries in WTD. To apply Eq. (5)
to second-order semi-Markov processes, the observed states
are reformulated as doublets, [i j], where the first index is the
previous state, and the second index is the current state [33].

The affinity contribution is

σaff = 1

τ

∑
i, j,k

p(i jk) ln

(
p([i j]→[ jk])

p([k j]→[ ji])

)
, (6)

where p(i jk) is the probability to observe the sequence of state
i → j → k, or p(i jk) = p([i j]→[ jk])R[i j], with p([i j]→[ jk]) being
the probability to jump to state k after jumping from i to j,
and R[i j] being the fraction of visits to [i, j]. The affinity, σaff,
is governed by the relation between the forward and reverse
transition probabilities.

The WTD contribution stems from the Kullback-Leibler
divergence between WTD associated with forward (i → j →
k) and backward (k → j → i) transitions:

σWTD = 1

τ

∑
i, j,k

p(i jk)D[ψ (t |[i j] → [ jk])||ψ (t |[k j] → [ ji])],

(7)

where ψ (t |[i j] → [ jk]) is the WTD in state j given
that the previous state was i and the following is k, τ

is the average waiting time per state, and D[u(x)||v(x)]
is the Kullback-Leibler Divergence between two probabil-
ity distributions, u(x) and v(x), defined as D[u(x)||v(x)] =∑

x u(x) ln(u(x)/v(x)). See Appendix B 1 for details regard-
ing WTD estimation.

3. RNEEP estimator

The RNEEP estimator, σRNEEP, is formulated as an opti-
mization problem [44], with a specific objective function to
be minimized using stochastic gradient descent. The input of
the problem is the set of all sequences of length m from a
single long trajectory, and the solution is the coarse-grained
entropy-production rate per step along the input trajectory.
Similar to the plug-in estimator, the RNEEP uses the discrete
sequence of states and does not exploit the WTD data, so
estimating the full probability distributions of the waiting
times is not required. Intuitively, this estimator should yield
similar results to the plug-in estimator, Eq. (4), and to σaff,
Eq. (6), as it uses the same information (see Appendix B 2
for further discussion). Note that in Ref. [44], the RNEEP
was compared to a semianalytical calculation of the KLD
between trajectory distributions. However, since the results
of the plug-in estimator were similar to the semi-analytical
values for the semi-CG statistics [35], we focus on the plug-in
estimator in our work.

The RNEEP can be implemented by different machine
learning models, such as recurrent or convolutional neural
networks [44,45]. Following the approach of Ref. [44], we use
a recurrent neural network, whose input is a sequence of some
length m, xm

t = (xt , xt+1, ..., xt+m−1), and its output is hθ (xm
t ),

where θ represents the learnable weights of the network. The
output of the RNEEP is [44]

�Sθ

(
xm

t

) ≡ hθ

(
xm

t

) − hθ

(
x̃m

t

)
, (8)

where x̃m
t is the time-reversed sequence of xm

t . The RNEEP
estimator is the solution of the optimization problem of mini-
mizing the following objective function over �Sθ (xm

t ) for all
possible sequences of length m:

σRNEEP,m = 1

τ
min
�Sθ

Et E(xm
t )

[
�Sθ

(
xm

t

) − e−�Sθ (xm
t )

]
, (9)

where Et in the expectation over t , and E(xm
t ) is the expec-

tation over the observed sequences xm
t . See Appendix B 2

for a detailed explanation regarding the implementation
of the RNEEP estimator and the corresponding numerical
considerations.

III. RESULTS

We have evaluated the three EPR estimators, plug-in,
RNEEP, and KLD, across the three coarse-grained systems,
including the four-state system, the molecular motor, and
the flashing ratchet, subjected to the different CG schemes.
Both full-CG and semi-CG approaches were applied to tra-
jectories comprising approximately N = 107 states, simulated
using the Gillespie algorithm [67], where the reformulation
(transformed-semi-CG) was used for calculating σKLD for the
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FIG. 4. Entropy-production rates for the 4-state system. Total EPR, σtot (dark red), KLD estimator, σKLD, for the semi-CG (dark blue) and
full-CG (light blue) data, plug-in estimator, σplug, for the semi-CG (dark orange) and full-CG (light orange), RNEEP estimator, σRNEEP,m, for
the semi-CG (light to dark purple for increasing sequence length m) and full-CG (light to dark green for increasing sequence length m) data,
and the affinity contribution, σaff, for the full-CG data (red). Rates: ω̄12 = 2s−1, ω̄21 = 3s−1, ω13 = 0s−1, ω14 = 1s−1, ω23 = 2s−1, ω24 = 35s−1,
ω31 = 0s−1, ω32 = 50s−1, ω34 = 0.7s−1, ω41 = 8s−1, ω42 = 0.2s−1, ω43 = 75s−1. Error bars represent standard deviation. In cases where error
bars are not visible, they are smaller than the size of the marker.

semi-CG statistics. Each reported result for any system orig-
inates from 10 distinct randomly generated trajectories with
the specified parameter along the x axis.

For all tested systems, we find the results of the EPR
estimators calculated on the semi-CG data better than the ones
calculated on the full-CG data. This comparison serves as
compelling evidence for the importance of appropriate utiliza-
tion of the available data for extracting tight bounds on the
total EPR.

A. Four-state system

The four-state system (Fig. 1) has two observed states, 1
and 2, where the states 3 and 4 are coarse-grained into a single
state H . The rates of the observed link, 1 − 2, between the two
observed microstates are tuned according to ω12 = ω̄12ex and
ω21 = ω̄21e−x, where ωi j is the transition rate from j to i, to
mimic an external forcing, where the range of x was chosen
to include the stalling force in which there is no observable
current over the 1-2 link [18]. The results for the four-state
system under the two CG schemes, semi-CG and full-CG, and
the three estimators, RNEEP, plug-in, and KLD, are presented
in Fig. 4, where the stalling force corresponds to the x value
for which the affinity contribution, σaff, vanishes.

As expected, the bounds on the total EPR obtained from
estimators applied to the semi-CG statistics are respectively
better compared with the same estimators applied to the full-
CG trajectories. In the full-CG case, σRNEEP,m converges with
increasing sequence length, m to the affinity, σaff, as both esti-
mators use the same data. The plug-in estimator, σplug, which
also uses the same data of the full-CG trajectory, provides
similar results as σaff away from the stalling force. However,
close to the stalling force, where σaff vanishes, σplug provides
nonzero values that stem from the inherent bias of the method,

which assigns positive values to all the probabilities [36]
(see Appendix B 2). The KLD estimator, σKLD, provides the
tightest lower bound for the full-CG data, as it is the only one
that utilizes information of the irreversibility in WTD.

Calculated on the semi-CG data, the RNEEP estimator,
σRNEEP,m, provides a tighter bound for increasing sequence
lengths m, converging to approximately similar values as the
KLD estimator, applied to the transformed semi-CG trajecto-
ries (Appendix B 3). Above sequence length of m ≈ 20, the
values of σKLD are mostly within the standard deviation of
the σRNEEP,m results. In this case, both the KLD and RNEEP
surpass the plug-in estimator, where the values of σplug are
similar to σRNEEP,8, indicating that σRNEEP,m for larger m, and
σKLD calculated on the post-reformulation trajectory, effec-
tively utilize longer sequence data. The relationship between
the semi-CG and the transformed-semi-CG data is consider-
ably complex. While in the case of the transformed-semi-CG,
we gain information from the WTD, the KLD estimator in-
terprets each Hn state post-reformulation as distinct, despite
their origination from the same subset of states with varying
numbers of visits. Conversely, in the case of the semi-CG data,
the labeling of hidden states remains invariant to the number
of their successive appearances, underlining a fundamental
difference in the treatment of states between the two models.

The difference in σKLD between the transformed semi-CG
and the full-CG schemes reflects the additional information
regarding irreversibility encoded in the intratransitions be-
tween microstates in the hidden macrostate. Moreover, the
irreversibility encoded in these intratransitions in the semi-CG
data is also reflected in the values of the three estimators
that do not vary significantly for x values near the stall
force, in contrast to the estimators applied to the full-CG
trajectories that strongly depend on the deviation of x from
stalling conditions.
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FIG. 5. Entropy-production rates for the molecular motor model. Total EPR, σtot (dark red) of the full trajectory, KLD estimator, σKLD

(dark blue), plug-in estimator, σplug (dark orange), and RNEEP estimator, σRNEEP,m (light to dark purple for increasing sequence length m) for
semi-CG data. The transition rates for ∀i 
= j are ωii′ = ωi′i = ωi′ j = ωi j′ = 1, and ωi j = 0.01, where states i (i′) represent the passive (active)
states of the motor. The driving force affects the rates by the following rule:

ωi j

ω ji
= eF and

ωi′ j

ω ji′
= eF−�μ. The three presented branches, from left

to right, are for �μ = 1, 2, 3, respectively. Error bars represent standard deviation. In cases where error bars are not visible, they are smaller
than the size of the marker.

It is crucial to highlight not just the precision of the esti-
mator but also the complexity and robustness of the results.
While the KLD estimator provided a lower bound on the total
EPR by construction (Appendix A 2), the RNEEP estimator
requires dedicated hyperparameter tuning for each system,
as improper adjustments of these parameters could lead to
an overestimation of the EPR (Appendix B 3). Furthermore,
computing σRNEEP,m is considerably more resource-intensive
and time-consuming from a computational standpoint, com-
pared to the calculation of σKLD.

B. Molecular motor

The molecular motor moves “up” or “down” along a one-
dimensional line in discrete steps. For each physical position,
the motor can be either active or passive, where in the former
case, the upward jump is favored by a chemical potential
�μ. An external force F acts downward, against the preferred
direction. We assume an external observer cannot distinguish
between the active and passive states and can only record the
position of the motor. The results for the molecular motor sys-
tem under the full-CG and the semi-CG schemes with the three
EPR estimators, RNEEP, plug-in, and KLD, are presented in
Fig. 5 for three values of �μ and a range of F values which
include the respective stalling conditions, in which there is
no net movement of the motor and the affinity estimator, σaff,
vanishes.

Similar to the four-state system, the estimators calculated
on the semi-CG data provide tighter bounds compared to
their respective counterparts calculated on the full-CG data,
underscoring the contribution of the additional information
of the intratransition within the macrostates exploited in the
semi-CG scheme. In the full-CG trajectories, the KLD, plug-
in, and RNEEP estimators provide similar values, except near

the stalling force, where σKLD [33,49] is consistently a tighter
estimator than σplug and σRNEEP,m, as we saw in the four-state
system.

In the case of the semi-CG scheme, the σKLD, calculated
on the transformed semi-CG trajectory, provides the tightest
lower bound on the total EPR compared to the plug-in [35,36]
and the RNEEP [44]. While this result is not trivial, as we
saw in the four-state system in which the RNEEP estima-
tor was comparable to the KLD values, it emphasizes that
our method of reformulation can potentially exploit viable
information and produce tighter lower bounds in some cases.
The RNEEP estimator, σRNEEP,m, provides a tighter bound for
increasing sequence lengths m, similar to the four-state system
(Appendix B 3). Above sequence length of m ≈ 64, the values
of σplug are mostly within the standard deviation of σRNEEP,m.

The difference in σKLD between the transformed semi-CG
and the full-CG frameworks reaffirms the unique encoding of
irreversibility within the hidden transitions. This distinction
highlights how irreversibility is reflected in the semi-CG data,
evident in the consistent behavior of the estimators near the
stalling force. In contrast, the estimation on the full-CG trajec-
tories strongly relies on the proximity to stalling conditions.

C. Flashing ratchet

The flashing ratchet models a Brownian particle moving
along a periodic one-dimensional line under the influence of
a linear potential V that can be switched on and off at a
constant rate [35,36]. The particle is described by its position
in the “on,” i, or “off,” i′, states. The information regarding the
potential is not accessible, and both the on and off states, i and
i′, are lumped into a single macrostate Hi. The results for the
discrete flashing ratchet system under the semi-CG scheme,
which includes the information of the intratransition within
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FIG. 6. Entropy-production rate estimators for the flashing ratchet calculated on the semi-CG trajectory data as a function of the potential V .
Total EPR, σtot (dark red) of the full trajectory, KLD estimator, σKLD (dark blue), plug-in estimator, σplug (dark orange), and RNEEP estimator,
σRNEEP,m (light to dark purple for increasing sequence length m) for semi-CG data. The transition rates for ∀i 
= j are: ωii′ = ωi′i = ωi′ j′ = 1,
ωi j = e(Vj−Vi )/2, where states i (i′) correspond to the turned-on (off) potential. Error bars represent standard deviation. In cases where error bars
are not visible, they are smaller than the size of the marker.

the macrostates, and the three estimators, RNEEP, plug-in,
and KLD, are presented in Fig. 6 as a function of the potential
value, V . Since the estimators applied to the full-CG scheme
are several orders of magnitude smaller, we present them sep-
arately in Appendix C. Here, too, we validate the importance
of the amount of available information in the context of EPR
estimation.

As expected, all estimators increase monotonically with
increasing values of V , corresponding to larger total EPR
values. However, for the case of the flashing ratchet system
with the semi-CG data, in contrast to the previous examples,
we find that the plug-in estimator, σplug, provides the tightest
lower bound on the total EPR, suppressing the KLD estimator,
σKLD. The RNEEP estimator, σRNEEP,m, yields a tighter bound
for increasing sequence lengths m, converging to the σplug

value for m ≈ 128.
The difference in the relation between the estimators across

the various systems tested could be attributed to the different
topologies. For example, while both the molecular motor and
the flashing ratchet represent cyclic processes, upward tran-
sitions in the molecular motor system, either from an active
or inactive state, can only arrive at an inactive state, whereas
in the flashing ratchet system, transitions arrive at either on
or off states of the potential from a neighboring position
with a similar potential status. These distinctions might yield
different contributions of the WTD data extracted from the
transformed semi-CG information.

D. Statistical comparison

To underscore the performance of the three estimators, and
specifically the contribution of our proposed data reformu-
lation to include the WTD of intratransitions, we randomly
sampled 50 fully connected four-state systems. We sam-
pled the rates independently from a uniform distribution in
the range [0,50], and calculated the plug-in and RNEEP

estimators for the semi-CG framework, and the KLD es-
timator for the transformed-semi-CG data. The results are
summarized in Fig. 7.

Evidently, the σRNEEP,128 resulted in an overestimation of
the total EPR in 10 (20%) systems. In these cases, the plug-in
estimator yielded tighter EPR bounds compared to the KLD
in 6 of the 10 systems. We stress that in this analysis, the
hyperparameters of the RNEEP estimator were not separately
adjusted for each of the 50 randomly sampled systems, re-
sulting in the overestimation of the total EPR for some of the
tested systems. Out of the remaining 40 systems, the tightest
lower bound on the total EPR was obtained by the σRNEEP,128,
σKLD, and σplug estimators for 20, 17, and 3 of the cases,
respectively. Comparing the results of the KLD and plug-in
estimators for all systems tested, we find that σKLD resulted in
a better estimation in 40 (80%) cases, compared to the σplug

values.
While the RNEEP estimator resulted in the tightest lower

bound in some of the cases, the requirement for meticulous
calibration per system, and susceptibility to overestimation,
render its general applicability challenging. Nevertheless, our
proposed data reformulation, for cases in which intratran-
sitions are available has proven to be robust, independent
from system specifics, and a preferable tool for bounding the
total EPR.

IV. CONCLUSIONS

In conclusion, we performed a rigorous comparison of
time-irreversibility-based EPR estimators, with a primary fo-
cus on KLD-based approaches, encompassing both KLD
estimators with WTD statistics and those without (specif-
ically, plug-in and RNEEP), while employing two distinct
coarse-graining methodologies. Our findings affirm that the
semi-coarse-graining framework, which incorporates intra-
transitions data, consistently yields tighter EPR bounds
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FIG. 7. EPR estimation for 50 fully connected four-state systems, whose rates were randomly sampled from a uniform distribution in the
range [0,50]. The estimators were evaluated on trajectory realizations with N = 107 steps, coarse-grained under the semi-CG scheme. The
results of the σKLD (blue), σplug (orange), and σRNEEP,128, are shown in comparison to the hotel EPR, σtot (black line). In some cases, σRNEEP,128

overestimates σtot.

compared to the full-coarse-graining framework. This out-
come underscores the capacity of the former to harness a
richer source of time-irreversibility information. Additionally,
a direct comparison of the EPR bounds derived from full-CG
and semi-CG statistics offers a quantitative assessment of the
time-irreversibility embedded within the intratransitions as
captured by each estimator.

Moreover, we have introduced an innovative approach
for the reformulation of semi-coarse-grained trajectories, a
method previously tailored for the plug-in and RNEEP esti-
mators, to accommodate the KLD estimator. The application
of this transformed-semi-CG approach, together with the
KLD estimator, has exhibited varying degrees of success.
While it has proven effective in distilling time-irreversibility
information within the intratransitions of lumped microstates
for certain cases, the RNEEP or the plug-in estimators outper-
formed it in others. This could be attributed to the treatment of
newly introduced states in the reformulation corresponding to
the number of consecutive visits in the hidden states, in which
the partial utilization of the WTD statistics may not suffice,
as we exclude information about individual residence times
between the recorded intratransitions.

It is essential to reiterate the intricate relationship be-
tween the semi-CG and transformed-semi-CG datasets. The
incorporation of the WTD data in the transformed-semi-
CG trajectories contributes to the ability to detect time-
irreversibility. However, the KLD estimator recognizes each
post-transformation Hn state as unique, even though they all
stem from an identical group of states, differing only in the
number of consecutive visits. This is in contrast to the semi-
CG approach, where the classification of hidden states is not
influenced by the number of their appearances. This key dis-
tinction underpins a fundamental difference in state treatment
across the two models, possibly leading to a varying tightness
of the resulting bound on the total EPR. Consequently, in
the semi-CG case, we recommend opting for the maximum

of the three estimators, bearing in mind the need for careful
calibration of the RNEEP calculation to avoid overestimation
in this case.

It is worth noting that the proposed transformations and
EPR estimation techniques showcased here hold broader ap-
plicability, extending to other continuous-time systems when
only partial information is available, and the observations are
coarse-grained. Further exploration of the governing factors
influencing post-reformulation results is a promising avenue
for future research.
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APPENDIX A: REFORMULATION

1. Implementation limitations

As depicted in Fig. 1, our reformulation method aims
to manipulate trajectory data to enhance the utilization of
available information, thereby refining the estimation of EPR.
Our approach seeks to leverage the waiting-time distribution
(WTD) within the semi-CG framework for employing the
KLD estimator. By creating a new, effective, hidden state for
each consecutive sequence length of hidden states within the
original semi-CG trajectory, we assign an effective waiting
time for the new state, which is the cumulative sum of all
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component waiting times. Attempting to handle vectors of
the individual waiting time becomes impractical when the
new hidden state comprises a sequence of more than four
jumps, as the WTD becomes at least four-dimensional in
this scenario. Consequently, obtaining adequate samples to
sufficiently reconstruct the distribution becomes challenging.
Furthermore, varying states within the reformulation would
exhibit distinct dimensionalities in their WTD, necessitating
tailored adjustments. Therefore, we note that while we gain
information about the WTD by applying such reformulation,
some pertinent information present in the semi-CG states is
lost in the new effective hidden states.

2. Lower bound

Here, we detail the proof that calculating the KLD between
forward and reverse trajectories under coarse-graining results
in a lower bound on the total EPR, being directly linked
to the KLD between forward and reverse trajectories with
complete information [17,33]. Note that in our tested sys-
tems, the assumption that the coarse-graining scheme and the
time-reversal commute [42], holds. While this proof aims to
support our new reformulation approach for the semi-CG data,
termed transformed-semi-CG, to allow for the calculation of
the KLD estimator when intratransitions information is avail-
able, it is valid for both the semi-CG and full-CG schemes.

Let γ denote the full observable trajectory with complete
information of states and WTD, and let γcg denote the coarse-
grained trajectory, γcg = CG(γ ). Moreover, γ̃ , γ̃cg represent
the reversed full and coarse-grained trajectories, respectively.
We now apply the chain rule for the relative entropy on the
KLD between the joint distributions of γ and γcg [68,69]:

D[P(γ , γcg)||P(γ̃ , γ̃cg)]

= D[P(γ )||P(γ̃ )] + D[P(γcg|γ )||P(γ̃cg|γ̃ )]

= D[P(γcg)||P(γ̃cg)] + D[P(γ |γcg)||P(γ̃ |γ̃cg)]. (A1)

The crucial aspect of our reformulation approach is that
the transformation of a trajectory into a new representation,
based on the number of consecutive visits in a hidden state, is
uniquely defined by the original trajectory. This means that for
any given initial trajectory, there is a specific and unambigu-
ous way to represent its transformed-semi-CG counterpart
using our suggested scheme. Therefore, as the coarse-grained
trajectory, γcg, is uniquely determined given the full trajectory,
γ , we have

P(γcg|γ ) =
{

1, γcg = CG(γ ),
0, otherwise, (A2)

and similarly for γ̃cg and γ̃ ,

P(γ̃cg|γ̃ ) =
{

1, γ̃cg = CG(γ̃ ),
0, otherwise, (A3)

which implies

D[P(γ |γcg)||P(γ̃ |γ̃cg)] = 0. (A4)

Plugging this result into Eq. (A1), and invoking the non-
negativity of the relative entropy, we arrive at the required
result:

D[P(γ )||P(γ̃ )] � D[P(γcg)||P(γ̃cg)]. (A5)

APPENDIX B: NUMERICAL CONSIDERATIONS

1. Waiting-time distributions estimation

The KLD estimator, σKLD, has two contributions, namely,
σaff and σWTD. While σaff can be directly calculated by count-
ing second-order transitions, σWTD requires the estimation
of continuous functions. To numerically evaluate continuous
probability density functions, we use the kernel density esti-
mation (KDE) method [70]. In this approach, the estimated
function depends on the bandwidth of the kernel, and the
optimal bandwidth is correlated to the sample size. We used

FIG. 8. Convergence of EPR estimators, σKLD (blue diamonds), σplug (light orange dots), σRNEEP,128 (dark green squares), σaff (red triangles),
and σWTD (gray triangles), as a function of effective trajectory length, calculated for the four-states system and x = −0.15. The effective
trajectory length is calculated for the full-CG data. Each data point of the KLD, plug-in, and RNEEP estimators is the mean of 10 realizations
of trajectories of varying lengths between N = 5 × 104 to N = 5 × 107 states. Error bars represent the standard deviation.
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FIG. 9. Convergence of σRNEEP,m as a function of the input sequence length m (purple) for semi-CG data, compared to the values of the
σKLD (blue), and σplug (orange), which do not depend of m, for the four-state system with x = 0.45 (top left), the flashing ratchet with V = 2
(top right), and the molecular motor with F = 2 and �μ = 2 (bottom). Each data point of the RNEEP estimator as a function of the input
sequence length, σRNEEP,m, is the mean of the RNEEP calculation for 10 trajectory realizations of length N = 107 for all systems. The error
bars correspond to the standard deviation.

Silverman’s rule of thumb [71] to choose the bandwidth. In our
case, the sample size is the number of observed second-order
jumps for each WTD, which can lead to a large variation
between sample sizes for different transitions. We chose three
different kernels, each for a different range of sample size, 2 ×
102–5 × 103, 5 × 103–105, and >105. A sample size of less
than 2 × 102 was not considered due to the lack of statistics.

The grid size of the KDE was also chosen empirically for
optimized convergence to the WTD, considering the compu-
tational cost. The estimation of the WTD is better for longer
trajectories, whereas short trajectories can result in an inaccu-
rate estimation of the EPR due to insufficient statistics (Fig. 8).
Moreover, the required trajectory length for a desired toler-
ance of the estimation depends on the system parameters [33].

2. Plug-in estimator implementation

The calculation of the plug-in estimator, σplug, imple-
mented according to Ref. [35], involves log ratios of

probabilities for forward and reverse sequences. However, in
cases where a forward sequence occurs while its reverse is
missing or lacks sufficient statistics, computing the log ratio
becomes impossible. We must, therefore, resort to numerical
methods to handle these instances. As proposed in Ref. [35],
a small bias could be added to the number of observations
of each sequence, preventing the probability from being zero.
However, this approach may introduce overall biases and
potentially overestimate the results if not meticulously cal-
ibrated. Instead, we chose to exclude pairs of forward and
reverse sequences from the analysis if any second-order tran-
sitions in either direction were not observed, to ensure a
reliable and stable lower bound for our calculations.

We note the observed difference between σplug and σaff for
the full-CG scheme (Figs. 4 and 5), despite them relying on the
same underlying information. This divergence stems from the
distinct computational methods employed, where σplug is de-
rived from a fitting function, whereas σaff is calculated directly
from the log-ratio. This fundamental difference accounts for
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the variations seen between σplug and σaff values, especially
noticeable around the stalling force.

Figure 8 presents σplug estimator results as a function of the
effective trajectory length, emphasizing the role of sufficient
statistics for robust analysis. Longer trajectories are important
for the convergence of σplug, thereby providing more reliable
data for the calculation and capturing the true behavior of
the system.

3. RNEEP convergence

The RNEEP estimator, implemented according to
Ref. [44], was calculated on 12 training trajectory realizations
of length N = 107 run in parallel on eight Geforce RTX 2080
Ti GPUs. Evaluating the RNEEP estimator for a trajectory
input required approximately 20 minutes, where the entire
data set was generated in a few hours.

The σRNEEP,m estimator gives a tighter bound on the total
EPR for increasing sequence length, m, up to saturation for
m ≈ 20, m ≈ 64, and m ≈ 128, for the semi-CG of the four-
state system, the molecular motor, and the flashing ratchet,
respectively (Fig. 9).

A significant limitation of the RNEEP estimator is the need
for recalibration of hyperparameters for each system under
study. This recalibration is crucial since improper manage-
ment of the training process might lead to unreliable results,
when the training parameters are not meticulously adjusted
for each system. In our statistical analysis of the 50 randomly
sampled four-state systems (Fig. 7), the RNEEP model was
trained for the various systems without making any modifica-
tions to its hyperparameters, resulting in an overestimate of
the total EPR in a few cases. This approach revealed that the
RNEEP estimator required careful and system-specific tuning
to ensure accurate results.

APPENDIX C: EPR ESTIMATORS ON full-CG
FLASHING RATCHET TRAJECTORIES

The results of the KLD, plug-in, and RNEEP estimators
for the flashing ratchet calculated on the full-CG trajectory
data are presented in Fig. 10. Noticeably, these results are
approximately three orders of magnitude smaller compared
to the same estimators calculated on the semi-CG data (see
Fig. 6). This substantial difference further underscores the

FIG. 10. Entropy-production rate estimators for the flashing
ratchet calculated on the full-CG trajectory data. KLD estimator,
σKLD (light blue), plug-in estimator, σplug (light orange), and RNEEP
estimator, σRNEEP,m (light to dark green for increasing sequence
length m). The transition rates for ∀i 
= j are: ωii′ = ωi′i = ωi′ j′ = 1,
ωi j = e(Vj−Vi )/2, where states i (i′) correspond to the turned-on (off)
potential.

sensitivity of EPR estimations to the level of available in-
formation, suggesting that the finer details captured in the
semi-CG scheme, which are absent in the full-CG framework,
can be exploited to provide a tighter lower bound on the
total EPR.

Among the tested estimators on the full-CG data of the
flashing ratchet, the KLD estimator, σKLD, provides the tight-
est bound, followed by the plug-in estimator, σplug, and the
RNEEP estimator, σRNEEP,m, whose values increase for an
increasing sequence length, m. These results, and the relation
between the values of the various estimators, align with our
findings for the four-state system and the molecular motor for
the full-CG scheme.
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