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Excitonic instability towards a Potts-nematic quantum paramagnet
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Magnetic frustration can lead to peculiar magnetic orderings that break a discrete symmetry of the lattice in
addition to the fundamental magnetic symmetries (i.e., spin rotation invariance and time-reversal symmetry).
In this work, we focus on frustrated quantum magnets and study the nature of the quantum phase transition
between a paramagnet and a magnetically ordered state with broken threefold (Z3) crystal rotation symmetry.
We show that the transition can occur in two stages, giving rise to an intermediate nematic phase in which
rotation symmetry is broken but the system remains magnetically disordered. Since the nematic transition is
described by the three-state Potts model, the intermediate phase is a Z3 Potts-nematic phase. Our prediction of the
existence of a Potts-nematic phase is based on an analysis of bound states formed from two-magnon excitations
in the paramagnet, which become gapless while single-magnon excitations remain gapped. By considering three
different lattice models, we demonstrate a generic instability towards two-magnon bound state formation in
the Potts-nematic channel. We present both numerical results and a general analytical perturbative formula for
the bound state binding energy similar to BCS theory. We further discuss a number of different materials that
realize key features of the model considered, and thus provide promising venues for possible experimental
observation.
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I. INTRODUCTION

The study of ordering phenomena is one of the central
pillars of condensed-matter physics. Landau’s theory of phase
transitions provides a general framework for understanding
the structure of ordered phases and the nature of the transitions
between different phases. The order parameter is a fundamen-
tal concept in the study of phase transitions and characterizes
the ordered phase in terms of its symmetry. In the simplest and
most common cases, the ordering transition is associated with
the breaking of a fundamental symmetry, such as translation
symmetry in the case of crystalline order; charge conservation
in the case of superconductivity; and time-reversal combined
with spin-rotation symmetry in the case of magnetic order. Or-
dering transitions with a much richer structure arise when, in
addition to the fundamental symmetry, one or more secondary
symmetries are broken in the ordered state, such as spatial
rotation or inversion symmetry. This occurs, for instance, in
unconventional non-s-wave superconductors and superfluids,
where the internal structure of the Cooper pairs (i.e., their
spin and orbital angular momentum) can lead to spontaneous
spatial anisotropy associated with broken rotation symmetry
[1,2]. Similar phenomena can occur in magnets when the ex-
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change interactions are (strongly) frustrated, which prohibits
the formation of simple ferromagnetic or antiferromagnetic
Néel order. Whereas the ferromagnet and antiferromagnet do
not break the symmetries of the crystal lattice (up to a global
spin rotation), the more complicated magnetic configurations
that arise as a result of frustration generally do break one or
more spatial symmetries.

In this paper, we study a particular class of such frus-
trated magnets: magnets that spontaneously break a discrete
Z3 (i.e., threefold) crystal rotation symmetry in the ordered
state. Such phases naturally arise in simple Heisenberg spin
models with frustrated exchange interactions, for instance in
two-dimensional (or layered quasi-two-dimensional) magnets
with triangular [3–5] or honeycomb lattice [6] geometry. The
phase diagrams of triangular and honeycomb lattice spin mod-
els with further neighbor exchange couplings are known to
include collinear single-Q magnetic states, characterized by
staggered ferromagnetic stripes (see Fig. 1), which are stabi-
lized by the “order by disorder” mechanism [3,7–11]. Since a
single ordering wave vector is spontaneously selected from a
set of three wave vectors related by crystal rotation symmetry,
the latter symmetry is spontaneously broken in these single-Q
states. This may be compared to Heisenberg antiferromagnets
with tetragonal symmetry, such as frustrated square lattice
magnets, which can support single-Q stripe order described
by either one of two wave vectors (π, 0) and (0, π ) [9,12].
Such single-Q phases break a Z2 Ising symmetry correspond-
ing to the two possible orientations of the stripes, which in
two dimensions implies a finite-temperature Ising transition
to an Ising nematic phase with no magnetic order [12]. In
three dimensions, the Ising and magnetic transitions may still
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FIG. 1. Triangular lattice model. (a) Triangular lattice Heisen-
berg model with exchange couplings J1 between nearest neighbors
(exemplified by red arrows) and J2 between next-nearest neighbors
(blue arrow). When both J1,2 > 0 and 1/8 < J2/J1 < 1, the minima
of the Fourier-transformed exchange coupling matrix Jq are located
at the three M points in the Brillouin zone with the wave vectors
Q1,2,3, indicated by blue dots on the right. The generating lattice
vectors a1,2 are indicated in red. (b) Three possible realizations of tri-
angular lattice single-Q ordering corresponding to the three M-point
wave vectors. Black (white) solid dots represent classical moments
pointing out of (into) the page.

occur at different temperatures, in which case a so-called
vestigial Ising nematic phase arises [13]. The emergence of
Ising nematicity is a well-known example of the rich order-
ing phenomenology that can occur in complex magnets with
multiple broken symmetries [14].

In contrast to the Ising case, the breaking of a discrete
Z3 symmetry is governed by the three-state Potts model
[15] and thus provides a manifestly different—and much
less studied—window into the nature of magnetic ordering
in unconventional complex magnets [16–19]. The purpose of
this paper is to explore the nature of the phase transition in
magnets that break an additional Z3 symmetry, such as a
threefold crystal rotation, and thus belong to the three-state
Potts universality class. As far as the thermal phase transition
is concerned, general arguments suggest that, similar to the
Ising case, a finite-temperate transition to a Potts-nematic
phase is possible [17,18,20].

Rather than the thermal phase transition, our goal here is
to study the nature of the zero-temperature quantum phase
transition between a quantum paramagnet and a magnetically
ordered phase which breaks a discrete Z3 crystal rotation sym-
metry. The question we specifically seek to answer is whether
an intermediate Potts-nematic phase, in which the system
remains paramagnetic but breaks the Z3 rotation symmetry,
can exist.

To address this question, we consider a minimal XXZ
model of S = 1 quantum spins with single-ion anisotropy
[21]. In this minimal model, defined in Eq. (8), the single-
ion anisotropy D controls the transition between the quantum
paramagnet realized for sufficiently large D and the magneti-
cally ordered state. The latter is controlled by the frustrated

exchange interactions, which are chosen such that, at the
classical level, the energy is minimized by a set of degenerate
ordering wave vectors related by threefold rotation symmetry.
Following the approach of Ref. [21], we start from the quan-
tum paramagnet and study its instability towards the formation
of two-magnon bound states as D is lowered, which may occur
due to an attractive interaction between single-magnon excita-
tions. If the energy gap of two-magnon bound states closes at
a value of D larger than the value at which the single-magnon
gap closes, this indicates an instability towards bound state
formation. Furthermore, if the internal structure of the bound
state solution, defined by the relative angular momentum of
the magnons, breaks the Z3 rotation symmetry, this suggests
that proliferation of two-magnon excitations gives rise to
an intermediate Potts-nematic quantum paramagnetic phase.
Such analysis is similar in spirit to the classic Cooper problem
in the context of superconductivity [22], which addresses the
instability of the Fermi sea to the formation of two-particle
bound states (Cooper pairs).

We apply this analysis to three different models of frus-
trated quantum magnets: the triangular lattice, the honeycomb
lattice, and the three-dimensional face-centered-cubic (fcc)
lattice. In all three cases, we focus on a part of the phase
diagram where single-Q magnetic order that breaks rota-
tion symmetry is favored. We obtain a matrix Schrödinger
equation for the two-magnon bound states, show that it decou-
ples in channels of distinct symmetry quantum numbers, and
solve it numerically. We demonstrate that when the exchange
interactions favor magnetic order that breaks the rotation sym-
metry, generically two-magnon bound states have the largest
(positive) binding energy in the nematic channel, suggesting a
generic instability towards a Potts-nematic phase in this class
of quantum magnets. The numerical analysis is supplemented
by a perturbative analytical approach, is independent of the
underlying lattice structure, and in two dimensions yields an
expression for the width of the intermediate Potts-nematic
phase similar to BCS theory. In particular, as expressed in
Eq. (27), the binding energy, which is proportional to the
width of the nematic phase, depends on the single-magnon
density of states and the effective coupling constant in the
nematic channel.

To make a connection with possible candidate materi-
als, we identified a number of compounds that can host the
proposed Potts-nematic vestigial phase under certain condi-
tions. We point to two specific material classes, which we
propose as a prospective platform to test our predictions.
One of the two groups is the family of transition metal
trichalcogenides (MPX3), which have attracted much atten-
tion recently [23–29]. The other is iron-intercalated transition
metal dichalcogenide FexNbS2, which was recently reported
to host a Z3-breaking magnetism, revealed in optical measure-
ments [30,31].

The paper is organized as follows. In Sec. II we define
our model and give a general introduction to the physics of
Z3-symmetry breaking magnets. We proceed with Sec. III, in
which we develop the main formalism used in our work and
derive its perturbative limit. We then apply this machinery
to the specific cases of triangular, honeycomb, and face-
centered-cubic lattices, and we present the results in Sec. IV.
Finally, we propose concrete experimental implementations
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in Sec. V, and we conclude with a discussion (Sec. VI). The
details of the derivation for a non-Bravais lattice are relegated
to Appendix. Throughout the paper, we consider zero temper-
ature and work in units of the lattice constant (i.e., a = 1).

II. ROTATION SYMMETRY BREAKING
IN FRUSTRATED ANTIFERROMAGNETS

This work is focused on frustrated Heisenberg antiferro-
magnets described by the general Hamiltonian

H = 1

2

∑
i j

Ji jSi · S j, (1)

where Ji j = Jji are the exchange coupling constants. When
the spins {Si} are considered as classical vectors, the ex-
change couplings describe interactions between pairs of
spins which either favor alignment (Ji j < 0) or antialignment
(Ji j > 0). Frustration arises when the interactions between
different pairs of spins compete and the energetic requirement
of perfect alignment or antialignment cannot be simultane-
ously satisfied for all pairs of spins. Frustration may originate
from the geometry of the lattice, as is the case for the
nearest-neighbor triangular lattice antiferromagnet, or from
the presence of multiple competing exchange interactions,
such as in J1-J2-J3 models.

A standard approach to determining the classical spin
configuration with the lowest energy is the Luttinger-Tisza
method [32,33]. It relies on expanding the spin variables in
Fourier modes as Srα = ∑

q eiq·(r+�α )Sqα , where �α denotes
the position of sublattice site α with respect to the lattice
vector r, and writing the spin Hamiltonian in terms of the
Fourier modes as H = (N/2)

∑
q(Jq)αβS∗

qα · Sqβ . Here Jq is
the Fourier transform of the exchange couplings, which in the
case of non-Bravais lattices is a matrix in sublattice space.
Minimization of the classical energy then requires comput-
ing the eigenvalues of Jq for all q and finding the lowest
eigenvalue. The minimal eigenvalue occurs either at some
specific unique wave vector Q or at a set of symmetry-related
(i.e., “degenerate”) wave vectors {Qi}. The latter case is a
consequence and signature of frustration. The eigenmodes
corresponding to the minima of Jq are generally referred to
as the optimal Luttinger-Tisza modes and can be used to
construct spin states that minimize the magnetic energy. This
construction must, however, be subject to the fixed-length
constraint, i.e., |Si|2 = S2, and this implies that, in the case
of non-Bravais lattices, it may not be possible to construct
ground states from optimal Luttinger-Tisza modes only. In this
case, the Luttinger-Tisza method only provides a lower bound
for the classical energy. Note that in the case of primitive
Bravais lattices, however, it is always possible to construct
ground states from the optimal Luttinger-Tisza modes.

In this work, we focus on a particular class of frustrated
magnetic systems for which the minima of the eigenvalues
of Jq occur at a set of three symmetry-related wave vectors
{Qi} (with i = 1, 2, 3) in some part of the phase diagram.
The degenerate wave vectors are related by crystal rotation
symmetry and satisfy the two additive relations

2Qi � 0, Q1 + Q2 + Q3 � 0, (2)

where equivalence is up to a reciprocal-lattice vector. Note
that the first of these relations implies that the Fourier modes
are real. Prominent examples of Heisenberg magnets which
exhibit such phases in the phase diagram are the triangular
J1-J2 model [3,10], the honeycomb lattice J1-J2-J3 model [6],
and the three-dimensional face-centered-cubic (fcc) lattice J1-
J2 model [8,34,35]. These three models will be the subject
of the remainder of this paper and will be discussed in more
detail below. In the case of the triangular and honeycomb
lattices, the wave vectors Qi correspond to the high-symmetry
M points of the Brillouin zone shown in Fig. 1(a), which are
clearly related by threefold rotation. The triangular lattice pro-
vides the simplest example of the magnetism of interest. The
minima of Jq are located at the three M points when J1 and J2

are both positive (and hence frustrated) and 1/8 < J2/J1 < 1.
To understand the nature of the classical ground-state man-

ifold when the optimal Luttinger-Tisza modes derive from the
wave vectors {Qi}, consider first the simple case of a Bravais
lattice. The triangular and fcc lattices are examples. Up to a
global spin rotation, the most general parametrization of the
Fourier modes SQi consistent with the fixed length require-
ment takes the form

SQ1 = S

2
mxx̂, SQ2 = S

2
myŷ, SQ3 = S

2
mzẑ, (3)

where S is the spin length, and �m = (mx, my, mz ) ≡
(sin θ cos φ, sin θ sin φ, cos θ ) is a unit vector defined in terms
of the angles (θ, φ). The angles (θ, φ) parametrize a family
of degenerate classical ground states, which can be repre-
sented as points on the Bloch sphere. Generically, such points
correspond to triple-Q magnetic states, but there are spe-
cial lines and points on the Bloch sphere corresponding to
double-Q and single-Q states. In particular, states that cor-
respond to �m = (1, 0, 0) and its equivalents define single-Q
configurations.

A natural and convenient way to resolve the degeneracy of
the classical ground states is to consider composite order pa-
rameters built from the primary magnetic Fourier modes. The
distinct symmetry properties of the composite orders unam-
biguously expose the symmetries of magnetic configurations
and can thus be used to sharply distinguish classical ground
states. In the present context, we define the nematic composite
order parameter n and the (scalar) chiral order parameter χ as

n = ∣∣SQ3

∣∣2 + ω
∣∣SQ1

∣∣2 + ω2
∣∣SQ2

∣∣2
, (4)

χ = SQ1 · SQ2 × SQ3 . (5)

Here ω = e2π i/3 is a cubic root of unity. It is clear from
these definitions that both n and χ transform trivially under
translations, but n is time-reversal even whereas χ is time-
reversal odd. Most importantly, since nonzero n must originate
from an unequal contribution of the three wave vectors, it
signals the breaking of crystal rotation symmetry in the
magnetic state. Substituting the Fourier mode representation
(3) into (4) and (5), one finds n and χ in terms of �m as

n ∼ m2
z + ωm2

x + ω2m2
y , (6)

χ ∼ mxmymz. (7)
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This shows that n is zero when m2
x = m2

y = m2
z , and that

finite χ requires all components of �m to be nonzero (i.e.,
noncoplanar order). Note in particular that single-Q ordered
states are associated with 〈n〉 	= 0.

Since any energy functional of n contains a cubic Potts-
anisotropy ∝ n3 + (n∗)3, thus giving rise to three distinct
nematic ground states, n describes Pott-nematic order [15]. As
a result, n is uniquely associated with the spontaneous break-
ing of threefold crystal rotation symmetry in the magnetically
ordered phase.

The continuous degeneracy of the classical ground states
parametrized by �m does not survive the effect of fluctuations.
This is due to the well-known “order-by-disorder” mecha-
nism, which tends to favor collinear spin alignment [3,7–
10,12]. For instance, whereas the classical energy is inde-
pendent of the angles (θ, φ), the energy associated with the
quantum zero-point motion of the magnon excitations does
depend on the orientation of �m, and is lowest for the single-Q
states such as �m = (1, 0, 0) [3,5,10,34].

III. INSTABILITIES OF A QUANTUM PARAMAGNET

In this section, we turn to the central part of this work.
As outlined in the Introduction, our goal is to determine the
instability of a quantum paramagnet towards the formation of
nematic magnon bound states. To achieve this, we start from
an XXZ model for a system of S = 1 spins, introduced in
Ref. [21], which is defined by the Hamiltonian

H = 1

2

∑
r,δ

Jδ

(
Sx

r Sx
r+δ + Sy

rSy
r+δ

+ ηδS
z
rSz

r+δ

) + D
∑

r

(
Sz

r

)2
.

(8)

The Hamiltonian is a sum of two terms. The first term is of
the general form introduced in (1) and describes exchange
couplings between the spins. Specifically, pairs of spins sepa-
rated by a distance r − r′ = δ interact with coupling constant
Jδ. Note that compared to (1) here we have also introduced
an XXZ anisotropy given by ηδ ≡ Jz

δ
/Jδ, which denotes the

ratio of the exchange couplings in the z direction and the xy
plane. This is useful, since the parameter ηδ can be interpreted
as controlling the interactions between magnons. As far as the
magnetic ground state is concerned, there is no difference with
(1) at the classical level. The second term in (8) describes a
single-ion anisotropy of strength D > 0.

For simplicity, in what follows we focus the discussion on
the case of primitive Bravais lattices and leave the straightfor-
ward generalization to non-Bravais lattices to Appendix, the
results of which will be used when applying the analysis to
the honeycomb lattice. Since we are interested in the quantum
behavior of this model, we consider the system at T = 0.

As argued in Ref. [21], in the limit where D is much larger
than the exchange couplings Jδ, the ground state is a quan-
tum paramagnet with all spins in the |0〉 ≡ |S = 1, 0〉 state.
We denote the paramagnetic ground state as |
〉 = ⊗ j |0 j〉.
Instead, when D → 0 one expects a magnetically ordered
state, the nature of which is determined by the exchange
couplings Jδ. Crucially, in what follows we assume that the
exchange couplings take values such that Jq has minima at
three degenerate wave vectors {Qi}, giving rise to a degen-

erate magnetic ground manifold at the classical level. This
is precisely the part of the phase diagram considered in the
previous section. In this case, D describes the transition from
a quantum paramagnet to a magnetically ordered state which
spontaneously breaks a discrete Z3 rotation symmetry. Our
goal is to examine this transition and establish whether or
not the paramagnetic ground state |
〉 is unstable towards the
formation of nonmagnetic two-magnon bound states in the
vicinity of the magnetic transition.

A. Schrödinger equation for magnon pairs

To address this question, we follow the approach of
Ref. [21] and consider a general two-magnon state |ψ〉
defined as

|ψ〉 =
∑
r 	=r′

ψrr′ |r, r′〉, |r, r′〉 = 1

2
S+

r S−
r′ |
〉, (9)

where ψrr′ is the wave function, which is a function of the
positions of the two magnons. By projecting the Schrödinger
equation H|ψ〉 = E |ψ〉 into the two subspace of two-magnon
states, we find the equation

(E − 2D)ψrr′ =
∑

δ

Jδ(ψr+δ,r′ + ψr,r′+δ) − Jz
δ ψrr′δr+δ,r′ ,

(10)

where Jz
δ

≡ ηδJδ. Note that, in accordance with (9), the two-
magnon wave function is understood to vanish when r′ = r
(i.e., ψrr = 0) [36]. The first key observation is that the second
term on the right-hand side, which is proportional to Jz

δ
, gener-

ically describes an attractive interaction between the magnons,
whereas the first term represents a kinetic term for the two
magnons. To proceed, we expand the wave function ψrr′ in
Fourier modes as

ψrr′ =
∑
K,q

eiK·(r+r′ )/2eiq·(r−r′ )ψq(K), (11)

where K is the momentum conjugate to the center-of-mass
coordinate, and q is conjugate to the relative coordinate r − r′.
Substituting the Fourier mode expansion into the Schrödinger
equation (10) yields the equation

[E − 2D − Eq(K)]ψq(K) = −
∑

δ

Jz
δ eiq·δBδ, (12)

where

Eq(K) = 2
∑

δ

Jδe
iK·δ/2 cos q · δ (13)

can be viewed as a kinetic energy of the two magnons, and Bδ,
defined as

Bδ = 1

N

∑
p

e−ip·δψp(K), (14)

corresponds to the real-space wave function as a function of
the relative coordinate r − r′ = δ. Note that in the case of zero
center-of-mass momentum, one has Eq(K = 0) ≡ Eq = 2εq,
where εq = ∑

δ Jδ cos q · δ is the single-magnon dispersion.
To solve Eq. (12), we divide by the kernel E − 2D − Eq(K)
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and use the definition of Bδ to obtain a matrix equation
given by

Bδ =
∑
δ′

Mδδ′Bδ′ , (15)

where the matrix Mδδ′ is defined as

Mδδ′ = 1

N

∑
q

Jz
δ′ e−iq·(δ−δ′ )

2D + Eq(K) − E
. (16)

Solutions to the Schrödinger equation are then determined by
the condition

Det(M − 1) = 0. (17)

In our case, we seek solutions corresponding to zero energy
(E = 0), which means that the energy for creating two-
magnon excitations vanishes. The general strategy for solving
(17) after setting E = 0 is to diagonalize M and determine
when the eigenvalues of M − 1 vanish. This is done as a
function of D, and the first eigenvalue that vanishes as D
decreases corresponds to the solution of interest.

Inspection of the structure of M reveals that it is pos-
sible to bring it in block-diagonal form by making use of
the symmetry properties of the underlying lattice and the
center-of-mass momentum K. To illustrate how group theory
machinery can be employed to block diagonalize M, it is
useful to consider the example of the triangular lattice J1-J2

model discussed in the previous section.
The triangular lattice has six nearest-neighbor vectors a j

and six next-nearest-neighbor vectors a′
j [37], which we label

j = 0, . . . , 5. As a result, δ, δ′ in (15) and (16) take values in
this set of 12 vectors. Let us furthermore consider the case
K = 0. The matrix M is then block-diagonalized by a unitary
matrix U of the form

U =
(

U
U

)
, (18)

where the matrix elements of U are

Ujl = ei2π l j/6/
√

6. (19)

Here U transforms from the basis of (next)-nearest-neighbor
vectors to a basis of angular momentum labeled by l =
−2, . . . , 3. Since the triangular lattice (as well as the center-
of-mass momentum K = �) has full hexagonal symmetry,
different angular momentum channels cannot mix, implying
that U†MU is block-diagonal. The blocks, therefore, cor-
respond to distinct angular momentum channels, which we
denote Ml and are given by

Ml = 1

N

∑
q

1

2D + Eq

⎛
⎝Jz

1

∣∣ f l
q

∣∣2
Jz

2 f l∗
q gl

q

Jz
1gl∗

q f l
q Jz

2

∣∣gl
q

∣∣2

⎞
⎠. (20)

Here f l
q and gl

q are the nearest-neighbor and next-nearest-
neighbor symmetry-adapted lattice harmonics of the triangu-
lar lattice and are defined as

f l
q =

∑
j

Ujl e
iq·a j , gl

q =
∑

j

Ujl e
iq·a′

j . (21)

It is worth noting that the matrix in (20) can be
decomposed as⎛

⎝Jz
1

∣∣ f l
q

∣∣2
Jz

2 f l∗
q gl

q

Jz
1gl∗

q f l
q Jz

2

∣∣gl
q

∣∣2

⎞
⎠ =

(
f l∗
q

gl∗
q

)(
Jz

1 0

0 Jz
2

)(
f l
q gl

q

)
, (22)

which leads to further simplifications within a weak-coupling
approach; see Sec. III B. We further point out that the l = 0
angular momentum channel is special and should be excluded,
since it leads to a two-magnon wave function ψrr′ that is
nonzero when r′ = r, thus contradicting the assumptions that
underlie (10).

Equation (17) now reduces to a set of separate equations in
each angular momentum channel given by Det(Ml − 1) = 0.
These equations can be solved—generally numerically—to
obtain the critical value D∗

c at which magnon pairs can form
with zero energy. Each angular momentum channel will yield
a different value of D∗

c . The critical values D∗
c are then com-

pared to Dc, the value of D at which the gap to single magnon
excitations closes, which is obtained by setting 2Dc + EQi =
2(Dc + εQi ) = 0. It thus follows that Dc is determined by
the minimum of the magnon dispersion εQi . (Note that εQi

is negative.) When D∗
c > Dc for one or more l , two-magnon

bound states can form with positive binding energy

εb = 2(D∗
c − Dc). (23)

The angular momentum channel with the largest value D∗
c then

determines the structure of excitons, much like the structure of
Cooper pairs is determined by the relative angular momentum
of the constituent electron pairs.

It is worth noting that symmetries generally imply degen-
eracies of angular momentum channels. For instance, in the
case of the triangular lattice, l = ±2 (as well as l = ±1) are
degenerate and form a single irreducible channel.

This detailed example of the triangular lattice serves to il-
lustrate the general symmetry-based method for solving (17).
In particular, the matrix M can always be block-diagonalized
such that each block Mi corresponds to distinct symmetry
quantum numbers (i.e., representation of the lattice symmetry
group), and matrix elements within each block are products of
symmetry-adapted lattice harmonics. So, Eq. (17) reduces to
a set of decoupled equations in each symmetry channel of the
form Det(Mi − 1) = 0. Their solutions determine whether
two-magnon bound states can form, and if so, in what symme-
try channel they form. This general method applies to finite
center-of-mass momentum K as well, with the modification
that the relevant symmetry group is the little group of K.

B. Weak coupling

Further analysis of Eq. (20) is possible when the interaction
between the magnons is small. It follows from Eq. (10) that
the interaction between magnons originates from the SzSz

coupling and is parametrized by ηδ = Jz
δ
/Jδ, which may be

treated as a perturbative parameter. Similar to Ref. [21], this
assumption will allow us to derive a compact expression for
the exciton binding energy, which is shown to depend on (i) an
effective coupling constant and (ii) magnon density of states.

In Sec. III A, we used (11) to express the two-
magnon problem to the Schrödinger equation in terms of
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center-of-mass and relative coordinates. Under this transfor-
mation, the magnon interaction translates into a quantum-well
potential for the relative coordinate r − r′ = δ. As a result,
the weak-coupling limit is equivalent to the shallow well
approximation in quantum mechanics. This is why we expect
the bound state binding energy εb to be small compared to
the exchange couplings Jδ, while the size of the two-magnon
bound state (i.e., the “exciton”) should be large on the lattice
scale. Consequently, the extent of the exciton in reciprocal
space will be small, which allows us to expand the dispersion
(13) in the vicinity of its minima.

To illustrate the weak-coupling analysis, we will again
consider the case of a triangular lattice, and relegate the gen-
eralization to non-Bravais lattices to Appendix. Following the
scheme outlined above, we assume that the summand in (20)
is concentrated in the vicinities of the wave vectors Qi, the
locations of the minima of (13). Assuming further that K = 0,
we expand Eq in the denominator up to the second order in
p = q − Qi and evaluate the lattice harmonics in the numer-
ator at Qi. We also use the fact that the summand is invariant
under rotation of q by 2π/3, which allows us to consider
just one out of three Qi points; the contributions from each
wave vector must be equal. Then the matrix structure of (20)
is determined by a single q point and has rank 1. Evidently, for
fixed angular momentum l it has just one nonzero eigenvalue
corresponding to the eigenvector ( f l

Qi
, gl

Qi
)T . That leads to the

following equation, where the summation was replaced by
integration in the vicinity of Qi:

λl
∫

dp
VBZ

1

pT Aip + εb
= 1. (24)

Here VBZ is the area of the Brillouin zone, p is a small momen-
tum reckoned from Qi, and (Ai )mn = ∂2Eq/∂qm∂qn|Qi . The
effective coupling constants λl and the exciton binding energy
εb are defined as

λl = 3
(
Jz

1

∣∣ f l
Qi

∣∣2 + Jz
2

∣∣gl
Qi

∣∣2)
, εb = 2D + EQi . (25)

Integral (24) is most easily performed by switching to the
integration over single-magnon energy ξ = pT Aip/2:

νQiλ
l
∫

dξ
1

2ξ + εb
= νQiλ

l

2
log

ωc

εb
= 1, (26)

where ωc is a cutoff on the order of the exchange energies
J1,2, and νQi is the magnon density of states at one of the
three minima. The latter is finite in two dimensions at a
quadratic dispersion minimum and can be evaluated by Ai

diagonalization followed by a linear coordinate transform for
the integration variables px, py. If ρ1 and ρ2 are the eigen-
values of Ai (obviously, they are the same for each Qi), then
νQi ∝ 1/

√
ρ1ρ2. Note that flattening of the minima enhances

the density of states and increases the binding energy. The
value of the latter follows from (26):

εb = ωc exp

(
− 2

νQiλ
l

)
, (27)

which is a key result of this section. The expression for the
binding energy closely resembles that for the Cooper problem
of two attracting electrons above the two-dimensional Fermi

surface. That is expected as both problems are in a weak-
coupling regime and effectively two spacial dimensions.

The energy of the two-magnon state is given by the famil-
iar expression for two-particle bound states, i.e., E = 2(D +
εQi ) − εb, which implies that zero-energy solutions exist for
a critical value D∗

c = −εQi + εb/2 = Dc + εb/2, reproducing
Eq. (23). Since the binding energy is positive for chan-
nels with a nonzero (attractive) coupling constant, one has
D∗

c > Dc, demonstrating that the quantum paramagnet is un-
stable towards the formation of nonmagnetic two-magnon
excitons. The internal structure of the excitons, as defined
by their symmetry quantum numbers, directly follows from
comparing the coupling constants λl : the angular momentum
channel with the largest coupling gives rise to the largest value
of D∗

c and determines the leading instability. As explained
in the previous section, the zero angular momentum channel
should be eliminated.

We expect the result (27) to be general for two-dimensional
materials with three equivalent minima of the magnon dis-
persion. Details of the model in each case are encoded into
the magnon density of states and effective coupling constants
λl . For non-Bravais lattices, Eq. (25) should be modified by
introducing projectors to the lower magnon band as explained
in Appendix. We also comment on a generalization to three
spatial dimensions in the next section.

IV. POTTS-NEMATIC MAGNON BOUND STATES

In this section, which forms the heart of the paper, we
present a detailed application of the theory developed in the
previous section to three particular lattice models that exhibit
rotation symmetry broken magnetism. Specifically, we con-
sider the triangular and honeycomb lattice in two dimensions,
and the fcc lattice in three dimensions. We present both the
outcome of the exact solution of the two-particle problem
obtained by numerical integration in Eq. (20) and the predic-
tion of the analytical perturbation theory given by (26). For
the case of the fcc lattice, we show how the weak-coupling
approach, which in two dimensions gives rise to (27), still
yields useful approximations to the numerically exact result.

A. Triangular lattice magnets

We begin by considering the triangular lattice model briefly
introduced in Sec. II (see also Fig. 1). This model includes
antiferromagnetic exchange couplings between nearest neigh-
bors, given by J1 > 0, and next-nearest neighbors, given by
J2 > 0, which define the XXZ part of (8). Since both cou-
plings are antiferromagnetic, the interactions are frustrated.
We specifically focus on the part of the phase diagram where
1/8 < J2/J1 < 1, since in this regime Jq has minima at three
commensurate M-point wave vectors (i.e., the centers of the
edges of the Brillouin zone), thus implying a magnetically
ordered state of collinear stripes at small D [38] [shown in
Fig. 1(b)]. Furthermore, since the dispersion of the single-
magnon excitations in the quantum paramagnetic state is
proportional to Jq (i.e., εq ∼ Jq; see Sec. III A), its minima
are also located at the M points.

Consider first the numerical solutions of Eq. (20). These
are obtained straightforwardly by numerical evaluation of the

023034-6



EXCITONIC INSTABILITY TOWARDS A POTTS-NEMATIC … PHYSICAL REVIEW RESEARCH 6, 023034 (2024)

(a) (b) (c) (d)

FIG. 2. Two-magnon “exciton” bound states in the triangular lattice model. (a) Binding energy εb defined in Eq. (23) as a function of
η = Jz

1,2/J1,2 for different values of J2/J1. Solid (and colored) curves correspond to numerical solutions of Eq. (20) for l = 2. Dashed (and
black) curves correspond to the binding energy computed using Eq. (27) (with prefactor fitted), showing excellent agreement for small η.
(b) The binding energies as a function of J2/J1 computed numerically from Eq. (20) for the l = 2 (solid curves) and l = 3 (dashed curves)
angular momentum channels. Black squares indicate where the nematic l = 2 channel becomes dominant. (c) The binding energies as a
function of J2/J1 in the interval 1/8 < J2/J1 < 1 (bounded by vertical dashed lines). (d) Single-magnon density of states νM (in units of J−1

1 )
for magnon excitations on top of the paramagnetic phase evaluated at the M points. νM is given by Eq. (28) and explains the general behavior
of εb shown in (c).

sum, and the key results are presented in Fig. 2. Most im-
portantly, we find that in the regime of interest, i.e., 1/8 �
J2/J1 < 1, the binding energy for two-magnon bound states is
positive and largest in the l = 2 angular momentum channel,
which is the doubly degenerate (Potts-)nematic channel. In
Fig. 2(a) we show the binding energy εb obtained from solving
(20) for l = 2 as a function of η, which controls the strength
of the attractive magnon interaction. For convenience here,
we have taken η1,2 = η, where ηi = Jz

i /Ji, i.e., the ratio be-
tween Jz and J is equal for nearest- and next-nearest-neighbor
couplings. Different (solid and colored) curves correspond to
different values of J2/J1, showing that the binding energy in-
creases as J2/J1 decreases. For comparison, the dashed black
curves show the binding energy calculated using Eq. (27),
which was derived under the assumption that η is small. We
see that the BCS-like formula (27) is in excellent agreement
with the numerically exact result in this regime.

In panels (b) and (c) of Fig. 2 we show the binding energy,
or equivalently D∗

c − Dc, as a function of the strength of J2

relative to J1 for various values of η. As expected, panel
(c) shows that the binding energy increases for increasing
η. Furthermore, we find that the binding energy is a convex
function of J2/J1 and increases towards to boundaries of the
interval 1/8 < J2/J1 < 1. As discussed below, this behavior
can be explained by (27), in particular the density of states νM

at the M points.
The exchange coupling ratio J2/J1 = 1/8 is of special im-

portance since the minima of Jq change at this value, thus
implying that the classical ground state changes. In particular,
for J2/J1 < 1/8 the minima of Jq are located at the K points,
giving rise to the well-known coplanar 120◦ spiral state on the
classical level. Note that in the vicinity of J2/J1 = 1/8 both
the M points and the K are local minima of Jq; it is the global
minimum that changes at J2/J1 = 1/8.

In the limit J2/J1 = 0, Ref. [21] showed that two-magnon
bound states can form in the (nondegenerate) l = 3 channel,
which is the channel naturally associated with the K points.
Excitons with l = 3 break an Ising Z2 symmetry, which

corresponds to the (vector) chirality of the 120◦ classical
order [vector chirality corresponds to the order parameter
κi j = Si × S j , which differs from the scalar chirality χ de-
fined in Eq. (5)]. To examine the behavior in the vicinity of
J2/J1 = 1/8, we compute the binding energy in the interval
0 < J2/J1 < 1/4 for both channels and different values of η,
and we show the result in panel (b) of Fig. 2. As is clear,
in the close vicinity of J2/J1 = 1/8 the binding energy is
positive in both channels, but is larger for the “chiral” l = 3
channel. At some value J2/J1 � 1/8, which is marked by a
black square in Fig. 2(b) and increases with η, the “nematic”
l = 2 channel becomes dominant, implying a transition from
a chiral instability towards a Potts-nematic instability. Note
that the curves exhibit a cusp (i.e., discontinuous derivative)
at J2/J1 = 1/8, which is due to the aforementioned abrupt
change of the global minimum.

To further understand the formation of nematic two-
magnon bound states, we follow the weak-coupling approach
described in Sec. III B and compute the magnon density of
states ν

�
M and effective coupling constant λ� by expanding

around the M points. The density of states is given by

ν
�
M = 1

4π
√

(9J2 − J1)(J1 − J2)
(28)

and the effective coupling constant is found as

λ� = 8
(
Jz

1 + Jz
2

)
. (29)

These two parameters enter the expression for the binding
energy in Eq. (27) and have been used to compute the black
dashed curves in Fig. 2(a). (The prefactor coming from the
cutoff was fitted.) The density of states, which is shown in
panel (d) of Fig. 2, is singular and diverges at J2 = J1. This
is caused by the fact that for J2 > J1 the minima of Jq move
away from M towards �, making the M points saddle points
rather than minima. In contrast, ν

�
M is regular at J2/J1 = 1/8,

because M remains a local minimum. Since the effective
coupling (29) remains finite and does not change significantly
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dx2−y2dxy

FIG. 3. Real-space structure of the two-magnon bound state
wave function on the triangular lattice in the l = 2 angular mo-
mentum channel. Shown are the wave functions ψ1,2(ρ) (up to a
numerical coefficient) given in Eq. (30), where ρ = r − r′ is the
distance between the magnons. Doubly degenerate solution for the
exciton wave function on the triangular lattice in the weak-coupling
regime, shown in real space [ψ (ρ) = (1/2π )

∫
dq ψqeiq·ρ, where ρ

is the vector connecting the two magnons]. The values slowly decay
in space due to the finite exciton size (not shown).

in the interval 1/8 < J2/J1 < 1, the main dependence of
the binding energy εb on the J2/J1 ratio comes from the
J2/J1 dependence of νM , which is illustrated by Figs. 2(c)
and 2(d).

As explained in Sec. III A, the excitonic solution in the
Potts-nematic channel corresponds to l = ±2 values of the
angular momentum and thus has a twofold degeneracy, which
we observe both in numerical and weak-coupling approaches.
In the latter, it is straightforward to obtain an explicit ex-
pression for the wave functions in real space, which up to a
constant factor reads

ψ1(2)(ρ) = Re(Im)[eiM1·ρ + ω2eiM2·ρ + ωeiM3·ρ]e−r/lε . (30)

Here ρ is the vector connecting the two lattice sites occupied
by magnons constituting the exciton, and ω = e2π i/3 is the
cubic root of unity. The factor e−r/lε , where lε ∼ ε−1/2 � 1,
appears in the next orders of the perturbation theory and
makes the wave function normalizable. Equation (30) rep-
resents the fact that the solution is a linear combination of
exponentials eiMi ·ρ with the wave vectors Mi pointing to the
minima of the single-magnon dispersion, so that the exciton
is formed from the most low-lying excitations. The three
exponentials are combined in a function with l = ±2 in the
same way as the nematic order parameter (4) is constituted
from the spin densities at Mi points. Taking the real (imag-
inary) part of the l = 2 wave function [Eq. (30)] gives the
wave functions with the symmetry of dxy (dx2−y2 ) orbitals.
The third linearly independent combination of exponentials
eiM1·ρ + eiM2·ρ + eiM3·ρ provides the rotation-symmetric l = 0
wave function, which contradicts assumptions made in (10)
and thus should be discarded.

We show the bound state wave functions (30) graphically
in Fig. 3 (up to a numerical coefficient) ignoring the slow de-
caying factor. Note that the radial structure is not completely
trivial: one can see that the angular harmonics are not aligned
on the neighboring shells but are rotated with respect to each
other. That makes ψ (ρ) obey the approximate translational

FIG. 4. The value of the interaction parameter η = Jz
i /Ji required

to create an exciton with the binding energy εq = 0.05J1 for different
values of the center-of-mass momentum K, taking values along the
�-K-M-� contour in the Brillouin zone (horizontal axis). The mini-
mal η corresponds to the K = 0 case (� point), which makes it the
leading instability channel and justifies considering zero center-of-
mass momentum excitons in the rest of the paper.

symmetry ρ → ρ + 2δ1(2) with a doubled period reflecting
the fact the 2Mi ∼ 0 in the reciprocal space. (The translation
symmetry is not exact due to the decaying factor e−ρ/lε .) Note
also that the excitonic wave function ψ (ρ) nullifies when the
two magnons reside on the third-nearest sites. In accordance
with this, we found that introducing the third-nearest-neighbor
interaction J3 does not change the value of the effective
coupling (29).

Finally, to make sure that excitons with zero center-of-
mass momentum K represent the leading instability, we run
a numerical calculation for the case of a nonzero K, which
still boils down to solving (17) with M given by Eq. (16).
In this place, we opted for fixing the binding energy at the
value of ε = 0.05J1 and evaluating the minimal interaction
strength η required to create such a bound state. The result
is presented in Fig. 4, where we allowed the center-of-mass
momentum K to take values across a path in the Brillouin
zone, connecting the points �-K-M-�. Indeed, we observed
that K = 0 requires the minimal amount of interaction for the
bound state formation, which justifies considering K = 0 in
the rest of the paper. Interestingly, we found that the K = Mi

choice is also favorable for exciton formation, however this
instability remains subleading.

B. Honeycomb lattice magnets

Next, we examine Potts-nematic two-magnon bound state
formation on the honeycomb lattice. The motivation for con-
sidering the honeycomb lattice is twofold. First, it has the
same symmetry group as the triangular lattice, but contrary
to the latter it has a sublattice structure, thus providing a
generalization of the analysis presented in Sec. III to non-
Bravais lattices. Second, a variety of experimentally available
candidate materials are realizations of the honeycomb lattice
model, which makes the honeycomb lattice highly relevant
from an experimental perspective. The connection to exper-
imental compounds will be discussed in more detail below
in Sec. V.

As mentioned in Sec. II, as far as the exchange interactions
included in Eq. (8) are concerned, we consider a frustrated
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FIG. 5. (a-1) Zigzag (blue) and striped (yellow) phases on the honeycomb lattice for antiferromagnetic nearest-neighbor coupling (J1 < 0
case). Effective Potts-nematic coupling constant (31) is positive only at J2 > J1/2, so the vestigial state can emerge only in the part of the
zigzag domain (shown in darker blue). Lines demonstrate contours at which perturbative theory predicts the width of the intermediate phase
to be (D∗

c − Dc )/J1 ∼ 10−1 (solid), ∼10−2 (dashed), and ∼10−3 (dot-dashed) [listed are the values of the exponential factor in Eq. (27)]. We
assumed Jz

i = Ji when plotting this picture. (a-2) Similar plot for the J1 > 0 case. In that case, the vestigial phase can appear for all points
inside the zigzag and striped magnetic domains. (b),(c) The core real-space (ρ) structure of the Potts-nematic exciton on the honeycomb lattice
in the perturbative regime for (a) zigzag phase; (b) striped phase. The spin-up magnon resides on the first sublattice, while the spin-down
magnon is located at a site, shifted by ρ. The solution is doubly degenerate in each case. Slow exponential decay is not shown.

J1-J2-J3 honeycomb model with up to third-nearest-neighbor
couplings. The classical phase diagram of the isotropic
J1-J2-J3 Heisenberg model is known [6,39] and notably
includes two magnetic phases with broken threefold rotation
symmetry. The corresponding regions in the phase diagram
are defined by the property that the minima of Jq are located at
the M points. Note that since Jq is a matrix in the space of the
two sublattices, two distinct solutions exist, which are related
by the relative orientation of the spins on the sublattices, i.e.,
either aligned or antialigned. The single-Q collinear orderings
with M-point wave vectors that are selected by fluctuations are
schematically shown in Fig. 5, and are generally referred to
as stripe (sublattice-even) and zigzag (sublattice-odd) orders.
In our analysis, we restrict to exchange couplings (J1, J2, J3)
which favor zigzag or stripe order on the classical level.

To account for the two sublattices in the system, we ex-
tend the general theory presented in Sec. III A to the case
of a non-Bravais lattice (see Appendix). The main occurring
difference is the appearance of projectors to the Bloch bands
in the expression for the effective matrix elements (A12).
We present solutions of the modified equations obtained by
numerical Brillouin zone integration complemented by the
band summation in Fig. 6. For that plot, we picked values
of the spin couplings inside the zigzag domain in Fig. 5(a)
(J1 < 0, J2/|J1| = 1, J3/|J1| = 0.3) and varied the effective
interaction strength η = ηi = Jz

i /Ji. We observed that the
bound state with angular momentum l = ±2 has the largest
binding energy, and its dependence on η is captured well by
the perturbation theory with a fitted prefactor (dashed line). As
in the case of a triangular lattice, that means that proliferation
of excitations of this kind constitutes the leading instability,
when D is lowered, and that marks the transition to the Potts-
nematic phase.

The weak-coupling theory for a non-Bravais lattice in gen-
eral follows the previous derivation given in Sec. III B. Again,

the main contribution stems from the most low-lying excita-
tions, which now also means that it is sufficient to consider
the lower band. We expand around the minima of the latter
(located at Mi points) and, after some algebra, get expres-
sions for the effective coupling constant in the Potts-nematic
channel

λ� = 8
(
Jz

1 + 2Jz
2

)
, (31)

which appears to be the same for both zigzag and stripe M-
orderings. The density of low-lying states at M points equals

ν�M =
√|J1 − 3J3|/(2πJ1)√

(J13 − 2J2|J1 − 3J3|)[2J2 + β(4J3 − J1)]
, (32)

FIG. 6. The width of the Potts-nematic phase (D∗
c − Dc )/J1 ob-

tained from exciton binding energy as a function of interaction
strength η = Jz

i /Ji for the honeycomb lattice model. The solid line
shows the numerical solution, while the dashed one is for the ana-
lytical perturbative result, valid at η � 1. The prefactor in the latter
was fitted.
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where J13 = J2
1 + J1J3 − 4J2

3 and β = sgn (J1 − 3J3). Equa-
tions (31) and (32) should be plugged into the general
perturbative formula for the binding energy (27), which gives
a result consistent with numerical computation (Fig. 6).

The perturbative wave function of l = ±2 excitons is again
doubly degenerate and appears to be a linear combination of
the exponentials eiMir as in the case of a triangular lattice,
but it bears a sublattice structure, which differs slightly be-
tween the zigzag and stripe phase. We present it graphically
in Fig. 5(b) for underlying zigzag ordering, and in Fig. 5(c)
for the stripe one, choosing the dxy and dx2−y2 basis and using
the ρ plane, where ρ is the distance between the magnons
in the pair. We assumed that the spin-up magnon resides on
the first sublattice; the opposite case leads to similar pictures.
The figure depicts the core of the exciton wave function with
omitted slow decay factor e−ρ/lε .

With an obtained analytical approximation, we explore
exciton formation for all striped phases in the phase dia-
gram of Fig. 5(a). The first important observation is that
for the bound state to emerge, the effective coupling con-
stant (31) needs to be positive. It turns out that at J1 < 0
and inside the zigzag domain (J3 > 0), λ� > 0 only when
J2/J1 > 1/2, which defines a subregion potent to develop a
vestigial phase (shown by a darker tone and a solid frame).
Contrary to that, for the stripe phase (J3 < 0) and for both
phases at J1 > 0, the effective coupling is positive every-
where inside the magnetic domain, so that in the latter cases
magnetic ordering should always be preempted by a vestigial
phase.

We now turn to the discussion of how prominent should
be the effect of exciton formation across the honeycomb lat-
tice phase diagram. As suggested by Eq. (27) and common
knowledge, enhancement of the density of states at minima
of the dispersion is beneficial for the formation of the bound
state. Inspection of (32) implies that such enhancement hap-
pens in the vicinity of the right boundaries of zigzag and
stripe domains. That can be explained by the fact that at
these lines, the system undergoes a phase transition into the
spiral ordering, characterized by a noncommensurate value
of ordering wave vector Q. After the transition, the minima
of the coupling matrix Jq eigenvalues and, consequently, the
minima of the single-magnon dispersion on top of a para-
magnet drift away from the M-points, turning the M-point
itself into a saddle point rather than the minimum. Before the
transition but near the boundary, the effect is manifested by
the appearance of the soft direction at each M-point, leading
to the increase of the single-magnon density of states. This
phenomenon is completely analogous to the one that happens
on the triangular lattice in the vicinity of the J2/J1 = 1 point
as described in Sec. IV A. To further illustrate this statement
and make it quantitative, we plot contours, at which our per-
turbative theory predicts the binding energy (and hence the
width of the Potts-nematic phase) to be of the order 10−1

(solid line), 10−2 (dashed line), and 10−3 (dot-dashed line)
in units of Ji [Fig. 5(a)]. Since the prefactor in Eq. (27) is un-
determined, the contours are defined such that the exponential
factor in Eq. (27) equals 10−1, 10−2, and 10−3, correspond-
ingly. As can be seen in the picture, the most perceptible
effect appears near the aforementioned boundary of the
domains.

FIG. 7. Binding energy of the Potts-nematic excitons on the fcc
lattice as a function of interaction strength parameter η = Jz

i /Ji. Note
that the bound state exists only at η > ηc due to the peculiarity of
a three-dimensional problem. Dashed lines demonstrate the asymp-
totics obtained by fitting the data with Eq. (34).

C. FCC lattice magnets

In the final part of this section, we turn to an application
of our theory to a model in three dimensions: the fcc lattice.
Our goal is to demonstrate that the analysis developed in
Sec. III is not limited to two dimensions, but extends to three
dimensions as well. The three-dimensional case is different
in one important way, however. Since it is well known that
bound states do not exist for an arbitrarily shallow potential
in three dimensions, making it a threshold phenomenon, we
expect the two-magnon bound states to occur only for finite
interaction between the magnons. In particular, this means that
Eq. (27) does not apply to the three-dimensional case. Below
we describe how the analysis of Sec. III B can be adapted to
the case of the fcc lattice.

We consider a J1-J2 model on the fcc lattice with anti-
ferromagnetic J1 and small ferromagnetic J2. For a simple
nearest neighbor fcc antiferromagnet (J2 = 0), the Fourier
transformed exchange coupling Jq has minima on lines in
momentum space. The lines of minima reflect the frustra-
tion of the fcc lattice and are defined by the constraint
(qx, qy) = (2π, 0) with arbitrary qz (all symmetry-equivalent
constraints also define minima). Introducing ferromagnetic
coupling between the next-nearest neighbors (J2 < 0) lifts that
degeneracy and results in minima of Jq at the three wave vec-
tors Q1 = (2π, 0, 0), Q2 = (0, 2π, 0), and Q3 = (0, 0, 2π ).
These wave vectors satisfy Eq. (2). The fact that there are
three equivalent minima points implies that Z3 symmetry is
broken in the ordered phase with the ordering wave vector
provided by one of these minima. Such ordering is formed by
stripes, which now can take one of the three directions parallel
to the principal axes in the three-dimensional space. We thus
expect that in this case, as well, intermediate Potts-nematic
state emerges at a range of single-ion anisotropy parameter D
between the ordered and paramagnetic phases.

We start with the demonstration of the solution for the
binding energy εb, obtained by numerical integration in (16).
It is shown in Fig. 7, where εb is plotted against the interaction
strength η = ηi = Jz

i /Ji for a number of J2/J1 values. As
predicted above, we observe that the bound state is formed
only at η > ηc, which is the main distinction with respect to
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FIG. 8. Critical values of the interaction parameter ηc on the fcc
lattice as a function of spin couplings ratio |J2|/J1. Formation of
Potts-nematic excitons, and hence the vestigial phase occurs only
at η = Jz

i /Ji > ηc due to the corresponding property of the three-
dimensional potential well problem.

the two-dimensional case. At η � ηc, the binding energy has
an approximately quadratic dependence on η − ηc. A more
accurate formula (34) contains a logarithmic correction and
is discussed below. We plot it by a dashed line in Fig. 7
and observe that it captures well the numerical dependence
at small η − ηc (with fitted parameters).

Having identified the threshold nature of the bound state
formation, we studied the dependence of the critical inter-
action ηc on the spin-spin couplings (Fig. 8). The resulting
dependence is monotonous and drops to zero in a sharp non-
analytic way at J2 → 0. This behavior is explained by the
fact that at J2 = 0 the single-magnon dispersion reaches its
minimum on a set of lines, which effectively renders the
problem two-dimensional. From a quantitative perspective,
it is interesting that for the isotropic Heisenberg model with
η = Jz

i /Ji = 1, the bound states exist only at |J2|/J1 � 0.1.
We proceed with the weak-coupling theory for the

three-dimensional case. A naive attempt at taking the integral
in (16) using expansion (24) in the vicinity of Qi points
leads to a linearly divergent integral due to increased phase
volume in three dimensions. The common resolution would
be to subtract from the integrand of (24) its value at εb = 0
(to be taken numerically over the whole Brillouin zone) and
then proceed with the regularized integral. In the regime of
small binding energies εb, that leads to the following implicit
expression for εb(η):

η−1 = η−1
c − B

√
εb

J1
, (33)

where B is a constant determined by the density of states in the
vicinity of M-points. The result indeed signifies that the bound
state exists only at η > ηc. However, we found that Eq. (33) is
suitable to describe the asymptotics of the exact solution only
at very small values of εb, which correspond to a much smaller
scale than the one in Fig. 7. This observation is explained by
the following considerations. As discussed in the beginning
of this subsection, at |J2| → 0 the dispersion acquires a very
soft direction near the minimum, which eventually transforms
into a line of degenerate minima. This process leads to the
increase of the single-magnon density of states, which, as

discussed in previous sections, enhances the effect. Given
the smallness of relevant J2 (in Fig. 7, |J2|/J1 � 0.1) that
means that at moderate εb the value of (20) is not captured
well by the quadratic expansion (24). Instead, one can expect
logarithmical corrections to (33) due to the nascent crossover
to 2D. Indeed, we find that a corrected formula

η−1 = η−1
c − B

√
εb

J1
log

�

εb
(34)

captures the numerical dependence much better (see the
dashed lines in Fig. 7).

To conclude, our consideration predicts that the effect of
exciton formation and the appearance of the vestigial phase is
weaker in three dimensions for nonspecific values of the spin-
spin interactions. However, in the vicinity of special points in
the phase diagram (J2 = 0 in our case), the effect becomes
more pronounced due to the enhanced density of states of
relevant magnons.

V. CONNECTION TO EXPERIMENT

The analysis presented in the previous section indicates
that the instability towards a Potts-nematic phase is rather
general and does not depend on the specific realization of the
proposed model on any specific lattice. This generality moti-
vates the important question of whether material realizations
of Potts-nematic quantum magnets exist among experimen-
tally known material systems. In pursuit of this question, in
this section we highlight and discuss a number of promising
candidate materials to which our theory applies or relates.

For our theory to directly apply, candidate materials should
satisfy three requirements. First, the interactions between
the spin must be such that magnetic order with broken Z3

crystal symmetry is favored. This implies a tacit constraint
on the symmetry of the crystal structure and limits the search
for materials to hexagonal, trigonal, tetrahedral, or octahedral
systems. In practice, the search should be focused on materials
or families of materials in which rotation symmetry broken
magnetic order is observed, which is the clearest signature
of the nature of the exchange couplings. Examples will be
discussed below. The second requirement is that the candidate
materials exhibit significant easy-plane single-ion anisotropy,
which implies that spin-orbit coupling is important. In our
model, the single-ion anisotropy controls the (quantum phase)
transition between the paramagnet and the ordered state, and
therefore would be responsible for driving a magnetically
ordered state into a putative Potts-nematic phase. Closely
related to this second requirement is the third requirement: the
quantum spins must be S = 1 degrees of freedom, such that in
the limit of large single-ion anisotropy the ground state is a
perfect quantum paramagnet product state. In principle, other
integer-spin systems may be considered, such as S = 2, since
these also admit a quantum paramagnetic ground state.

Given these requirements, one of the more promising
material classes is the family of transition-metal phosphorous
trichalcogenides (MPX3) [23–29,40]. These are layered
van der Waals materials in which the transition metal M =
(Fe, Ni, Mn, Co) sites are magnetic and form a honeycomb
lattice within each layer. The X are occupied by chalcogen
atoms, typically sulfur (S) or selenium (Se). The MPX3
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materials have attracted much attention recently as a versatile
platform for exploring intrinsic two-dimensional magnetism
in few-layer or monolayer systems. While some members
of this class show antiferromagnetic Neél order, others were
found to realize antiferromagnetic zigzag order—precisely
the type of order discussed in Sec. IV B. Furthermore, strong
easy-axis or easy-plane behavior was observed, such as
Ising-like easy-axis behavior in FePS3 [24,26,41] and XY-like
easy-plane behavior in NiPS3 [25,42]. To explain the observed
magnetic orderings across the family of MPX3 compounds,
a J1-J2-J3 honeycomb lattice spin model with single-ion
anisotropy was proposed [24,25,43–45], which, quite remark-
ably, is identical to the honeycomb lattice model studied in
this work. It is for this reason that the trichalcogenide magnets
offer a particularly compelling venue for Potts-nematicity
associated with rotation symmetry broken magnetic order.

Within the family of MPX3 materials, NiPS3 deserves
special attention. Not only do the ordered moments of the
observed zigzag phase lie in the plane [25,42], suggesting
easy-plane anisotropy with D > 0, but the Ni2+ ions also give
rise to S = 1 spins on the honeycomb sites. This implies that
NiPS3 provides a realization of the model studied in this work.

It is important to point out one caveat concerning the
bulk MPX3 materials, in particular concerning the stacking
of the constituent layers in the bulk structures. In the sulfur-
based compounds MPS3 with M = (Fe,Ni,Mn), the layers
are stacked in monoclinic fashion, giving rise to space group
C2/m. This means that the threefold rotation symmetry of
the constituent honeycomb layers is already broken in the
bulk structure, thus precluding the spontaneous breaking of
rotation symmetry by the magnetic interactions. The coupling
between the layers is believed to be very weak, however, and
may be weak enough to prevent a selection of the nematic
director by the monoclinic stacking direction. Indeed, encour-
aging evidence for this has recently been reported by linear
and nonlinear optical measurements [29], which have found
three different magnetic domains below the Neél temperature
within one homogeneous structural domain.

A second material of interest is the iron-intercalated
transition-metal dichalcogenide (TMD) FexNbS2 with x =
1/3, which is a member of the class of intercalated TMDs
MxTA2 [46–48]. Here M is a transition metal, T = (Ta, Nb),
and A = (S, Se). The magnetic Fe atoms are intercalated be-
tween the adjacent van der Waals layers of 2H-NbS2 and
form a triangular lattice with

√
3 × √

3 periodicity. The two
neighboring triangular lattice layers of Fe atoms that make
up the unit cell (and are located at c = 1/4 and 3/4) are
shifted with respect to each other, effectively forming a honey-
comb structure. The resulting space group of the intercalated
structure is P6322. Importantly, both optical birefringence
[30,31] and detailed neutron crystal diffraction [31] mea-
surements have reported observation of rotational symmetry
broken stripe order. Here, the two triangular lattice layers each
form the ordering pattern shown in Fig. 1 and together form
the honeycomb lattice stripy order shown in Fig. 5. As such,
the observed magnetic order falls in the class of orderings
considered in our work. (Note that Ref. [31] reported great
sensitivity of the ordering pattern to small changes in the
intercalation parameter x close to the commensurate value
1/3.) Furthermore, the Fe2+ ions give rise to S = 2 spins

[49,50]. To understand the observed magnetic orderings, re-
cent theory works proposed a Heisenberg spin with extended
exchange interactions and single-ion anisotropy [51,52], es-
sentially equivalent to our honeycomb lattice model. An open
question is the nature of the single-ion anisotropy, however,
with initial estimates suggesting it might be negative, thus
implying an easy-axis anisotropy [51,52].

To obtain the nematic phase at low temperatures, one needs
a suitable tuning knob to weaken and eventually destroy the
magnetic order. This can be provided by varying strain and
pressure in the system. An alternative possibility is the for-
mation of the Potts-nematic phase at a thermal rather than
a quantum phase transition with temperature as a control
parameter [20].

To detect Potts-nematicity in an experiment, one needs
a suitable measurement setup. Whether a certain response
function is sensitive to the emergence of the nematic order
parameter can be determined by the group-theoretical ap-
proach. In particular, it suggests various polarization-sensitive
optical measurements including linear dichroism and second-
harmonics generation, which have been applied previously to
detect domains inside the magnetic phase [29,31]. Combined
with the techniques that detect ordinary magnetic transition,
e.g., magnetic susceptibility measurements, they allow us to
discern the vestigial order. Recently, two independent exper-
imental groups obtained evidence of Potts-nematicity in the
layered honeycomb compound FePSe3 at a temperature close
to the thermal phase transition [20,53]. Moreover, in the later
experimental Ref. [54], vestigial nematicity in NiPS3 was ob-
served in accordance with our predictions. To study the order-
ing, the authors used nitrogen-vacancy spin relaxometry and
optical Raman quasielastic scattering. The latter approach is
particularly powerful, because it allows us to discern magnetic
and vestigial phases by probing distinct phonon modes re-
lated to the breaking of translation and rotational symmetries,
correspondingly. However, experimental observation of Potts-
nematicity at reduced temperatures in the regime of a quantum
phase transition remains an open experimental challenge.

VI. DISCUSSION AND CONCLUSION

The central result of this paper is the demonstration that
a magnetically disordered Potts-nematic phase can exist as
an intermediate phase at the quantum phase transition from
a quantum paramagnet to a Z3 threefold rotation symmetry
broken antiferromagnet. Since such a phase is magnetically
disordered, spin-rotation symmetry and time-reversal sym-
metry are preserved, yet a Z3 crystal rotation symmetry is
broken, thus giving rising to nematic order. The relevant order
parameter for the nematic phase is expressed in terms of
bilinears of the primary magnetic degrees of freedom, i.e., the
spin variables.

Our conclusion is inferred from the analysis of two-
magnon excitations in the paramagnetic state of an S = 1
quantum spin model, in which the transition between the
paramagnet and the magnetic state is regulated by the value of
easy-plane single-ion anisotropy. With both numerical and an-
alytical methods, we established the existence of two-magnon
bound states—“excitons”—with the angular momentum
l = 2. That makes the two-particle gap close slightly before
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the single-particle gap as the transition is approached, leading
to the proliferation of excitons. The latter can be described by
a Jastrow ansatz [21,55]. We derived a general equation for the
excitonic bound state in terms of lattice harmonics [Eqs. (17)
and (20)] and derived its analytical solution for the weak-
coupling regime (27). The latter expresses the binding energy
and, hence, the width of the vestigial phase as a function of
magnon density of states at the dispersion minima (in the para-
magnetic state) and the effective interaction strength, which
is a linear combination of the spin-spin coupling constants.
Analytical perturbation theory is corroborated by a detailed
numerical analysis for the cases of triangular, honeycomb, and
fcc lattices (see Figs. 2–8).

It is important to describe the relation between the charac-
ter of the vestigial phase determined by the two-magnon wave
function and the properties of the single-magnon dispersion
above the paramagnetic phase. In the present paper, we as-
sumed that the dispersion has three degenerate minima in the
Brillouin zone (Q1, Q2, and Q3 momenta, satisfying 2Qi ∼ 0),
which are related to each other by an in-plane rotation for
the cases of triangular and honeycomb lattices. Under these
assumptions, perturbative expression (25) for the effective
coupling constants in different angular momenta channels (l)
nullifies for l = 1 and 3 leaving only a Potts-nematic channel
with l = 2 and an unphysical symmetric wave function with
l = 0. Similarly, we checked that in the setup of Ref. [21], in
which the dispersion had two inequivalent minima, the only
physical channel arising in the perturbation theory is the chiral
one (l = 3). This relation provides a universal scheme allow-
ing us to determine the nature of the vestigial phase given
the single-particle spectrum. In the numerical calculation, we
observed that the effective couplings in the “wrong” angular
momentum channels are nonzero, but they are small and thus
irrelevant deep inside the domain with a given magnetic or-
dering [see Fig. 2(b)].

While in the present work we focused on the specific case
of an S = 1 spin model, our analysis straightforwardly gen-
eralizes to any integer spin system. Indeed, the ground state
at large values of the single-ion anisotropy in that case is still
a perfect paramagnet, given by a product of Sz = 0 states on
each site. A spin flip to a state with Sz = s on any site costs an
energy Ds2, and therefore the energetically lowest excitations
in this case still correspond to s = ±1. This means that for
the purpose of determining the instability of the paramagnet
marked by a gap closure, one can restrict the consideration
to these two branches only, which makes all further analysis
the same as in the S = 1 scenario. In contrast, we expect that
half-integer models behave qualitatively differently, since they
do not admit a paramagnetic product state.

The prediction of the formation of a Potts-nematic phase
at low temperatures in the vicinity of the quantum phase
transition poses a natural question: does there exist a simi-
lar vestigial phase at the thermal phase transition between a
striped antiferromagnet and the symmetry high-temperature
phase? This question is addressed in Ref. [20], where early
experimental evidence of such a vestigial phase was pre-
sented and explained through the large-N theory based on the
Ginzburg-Landau free energy.

In the present work, we based our reasoning on the study
of single excitations and their pairs. While this approxima-

tion is justified in the limit of small interaction strength at
Jz/J � 1, it would also be interesting to see how Potts-
nematicity emerges in other frameworks, including many-
body analytical and numerical approaches. Preliminary cal-
culations based on the Schwinger boson technique confirm
Potts-nematic instability and will be reported elsewhere. An-
other interesting question is the fate of the Potts-nematic
transition under an externally applied magnetic field. The
latter can be used as an additional tuning knob, and generally
leads to a more complicated magnetic phase diagram [56].
Complementing this phase diagram with nematic phases is an
open research challenge.

We conclude by emphasizing that there exist a number
of different materials that provide promising venues for
experimental observation of Potts-nematicity in quantum
magnets. As discussed in Sec. V, given its currently
established magnetic properties, the MPX3 family of
transition-metal trichalcogenides is of particular interest.
Within this class of materials NiPS3 is most promising, as
it is likely to provide a realization of the model considered
in this work. Another possible candidate material is the
Fe-intercalated dichalcogenide NbS2.
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APPENDIX: GENERALIZATION
TO NON-BRAVAIS LATTICES

Here we describe the generalization of the two-magnon
problem to the case of a non-Bravais lattice, which requires a
proper account for the sublattice degree of freedom. We start
we the expression for the XXZ Hamiltonian of the form

H = 1

2

∑
r,δ,α,β

(Jδ)αβ

(
Sx

rαSx
r+δ,β + Sy

rαSy
r+δ,β

)

+ 1

2

∑
r,δ,α,β

(Jz
δ )αβSz

rαSz
r+δ,β , (A1)

where r and r + δ are Bravais lattice vectors, and α, β label
the spins within the unit cell, i.e., the sublattice degrees of
freedom. The two-magnon wave function ψr,α;r′β also carries
sublattice indices. For clarity of narration, we will consider
zero center-of-mass momentum excitons (generalization to
the opposite case is straightforward). Then, the Fourier trans-
form of the wave function reads

ψr,α;r′β =
∑

q

ψαβ (q)eiq·(r+�α−r′−�β ), (A2)

where �α determines the position of the α-sublattice site inside
a unit cell.

We proceed with projecting the Schrödinger equation to
the subspace of two opposite-spin magnons, as was done in
the main part [Eq. (12)]. It is convenient to interpret ψαβ (q)
as a matrix and write the variational Schrödinger equation in
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the matrix form

(E − 2D)ψ (q) − Ĵq · ψ (q) − ψ (q) · Ĵ†
q = Int[ψ]. (A3)

Here Ĵq is the Fourier transform of the interaction matrix

(Jq)αβ =
∑

δ

(Jδ)αβeiq·(δ+�β−�α ), (A4)

which reduces to the single-magnon energy ε(q) in the
Bravais-lattice case [see the paragraph under (14)]. Int[ψ] is
the interaction term appearing due to magnon-magnon inter-
action, provided by the SzSz part of the spin coupling. It has
the following matrix elements:

(Int[ψ])αβ = −
∑

δ

(Jz
δ )αβ Bα,β,δ eiq·(δ+�β−�α ), (A5)

where Bα,β,δ = ψr,α;r+δ,β is the real-space wave-function am-
plitude at two magnons residing on α and β sublattices in
the unit cells separated by the Bravais lattice vector δ. That
is a correct definition because ψr,α;r+δ,β does not depend on
r in the case of zero center-of-mass momentum. Importantly,
(A4) contains only the elements Bα,β,δ which are multiplied
by nonzero spin-spin couplings (Jz

δ
)αβ . Thus, for a model with

finite-range interaction, there is a finite number of Bα,β,δ com-
ponents. For instance, on a J1-J2-J3 model on a honeycomb
lattice for each of the two choices for α, there are three nearest
neighbors, six next-nearest ones, and three third-nearest ones,
constituting 12 elements for one α and 24 total components
of Bα,β,δ. To proceed, we need to express the latter via the
momentum-space wave function:

Bα,β,δ =
∑

p

e−iδ̃p ψαβ (p), (A6)

where we introduced the following notation for brevity:

δ̃ = δ + �β − �α. (A7)

The next step is to diagonalize the left-hand side of (A3)
by expressing ψαβ (q) via the eigenstates ea(q) of Ĵq matrix:

ψ (q) =
∑

ab

cab(q)ea(q)eT
b (−q), Ĵqea(q) = ε(a)

q ea(q),

(A8)

where a enumerates the Bloch bands of magnons. Then, (A3)
takes the form∑

ab

[
E − 2D − ε(a)

q − ε
(b)
−q

]
cab ea(q)eT

b (−q) = Int[ψ]. (A9)

Assuming that ea(q) constitutes an orthonormal basis for each
q and multiplying (A9) by e†

a′ (q) from the left and by eb′ (q)
from the right, we get cab,

cab(q) = −
∑
α,β,δ

(Jz
δ
)αβ eiδ̃q · e†

a(q) Bα,β,δ e∗
b(−q)

E − 2D − ε
(a)
q − ε

(b)
−q

. (A10)

We then substitute (A10) into (A8) and further into (A6) to
find the self-consistency equation

Bα,β,δ =
∑

α′,β ′,δ′
Mα,β,δ;α′,β ′,δ′Bα′,β ′,δ′ , (A11)

where

Mα,β,δ;α′,β ′,δ′ =
∑
q,a,b

(Jz
δ′ )α′β ′ei(δ̃

′−δ̃)q P(a)
αα′ (q)P(b)

ββ ′ (−q)

2D + ε
(a)
q + ε

(b)
−q

,

(A12)

where P(a)(q) = e(a)
q [e(a)

q ]† is the projector to the ath band
acting in the sublattice space, and E = 0 value was taken
since we are looking for the instability, which arises when the
excitons become gapless.

The condition for (A11) to have a solution is given by the
same equation det M − 1 = 0 as in the main text [Eq. (17)].
However, expression (A12) for M is slightly more involved
and includes projectors to magnon bands and summation over
the latter. Nevertheless, for an isotropic model one can still
block-diagonalize M with the help of lattice harmonics and
proceed with the numerical computation. In Sec. IV B we
demonstrate how that works for the case of the honeycomb
lattice.

Weak-coupling theory for a non-Bravais lattice is regulated
by the parameters (ηδ)αβ = (Jz

δ
)αβ/(Jδ)αβ , which determine

the interaction between the single-magnon excitations. In an
isotropic model, the couplings depend only on the relative
distance δ̃ between the sites:

(Jδ)αβ = J (|δ + �β − �α|). (A13)

For simplicity, we would also assume that η is the same
for all couplings so that the theory has just one perturbation
parameter. At small η, which corresponds to a shallow well
problem, common knowledge is to expect the exciton binding
energy to be small, while its size is expected to be large in
real space and small in reciprocal space. That allows us to
consider only the low-lying excitations in the summation in
(A12), which boils down to considering only the lower band
and expanding the dispersions ε(a)

q in the vicinity of their
minima, which we denote as Qi. Moreover, we will evaluate
the numerator of (A12) strictly at Qi points. Thus, we rewrite
the summation in the vicinity of each minimum in terms
of p = q − Qi,

Mα,β,δ;α′,β ′,δ′ =
∑

i

∫
dp
VBZ

(Jz
δ′ )α′β ′ei(δ̃

′−δ̃)Qi PQi
αα′P

Qi
ββ ′

εb + pT Aip
,

(A14)

where PQi
αβ = P(low)

αβ (Qi ) are projectors onto the lowest magnon
band, binding energy εb = 2D + εQi + ε−Qi , and

(Ai )mn = ∂2
(
ε(low)

q + ε
(low)
−q

)
∂qm∂qn

∣∣∣∣∣
Qi

(A15)

is the expansion of the magnon dispersion in the vicinity of
the global minima Qi. Equation (A14) has the same general
form as the analogous equation for a Bravais lattice (24).
For a quadratic magnon band minima, one can proceed with
integrating (A14) over ξ = pT Aip as was done in (26). The
corresponding density of states νQi should contain only the
contribution of the lowest band at the Qi point. Such integra-
tion leads to the same functional dependence as in (26) with
some value of λ and the density of states to be understood as
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explained above. For the case of the honeycomb lattice, which
has dispersion minima at M-points, these quantities are given

by (31) and (32). We discuss the result of the weak-coupling
approach for this case in detail in Sec. IV B.
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