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Microscopic theory of nonlinear phase space filling in polaritonic lattices
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We develop a full microscopic theory for a nonlinear phase space filling (NPSF) in strongly coupled two-
dimensional polaritonic lattices. Ubiquitous in polaritonic experiments, the theoretical description of NPSF, also
known as nonlinear optical saturation, remains limited to perturbative treatment and homogeneous samples.
In this study, we go beyond the existing theoretical description and discover the broad scope of regimes where
NPSF crucially modifies the optical response. Studying the quantum effects of non-bosonicity, cooperative light-
matter coupling, and Coulomb blockade, we reveal several regimes for observing the nonlinear Rabi splitting
quench due to the phase space filling. Unlike prior studies, we derive nonlinear Rabi frequency scaling all
the way to the saturation limit and show that the presence of a lattice potential leads to qualitatively distinct
nonlinearity. We concentrate on the three regimes of NPSF: (1) planar; (2) fractured; and (3) ultralocalized.
For the planar saturation, the Rabi frequency decreases exponentially as a function of exciton density. For the
fractured case, where excitons form a lattice with sites exceeding the exciton size, we discover fast NPSF at
low occupations. This is followed by slower NPSF as the medium becomes fully saturated. This behavior is
particularly pronounced in the presence of Coulomb (or Rydberg) blockade, where regions of fast and slow NPSF
depend on the strength of repulsion. For the ultralocalized NPSF, we observe the square-root saturation typical
to the collection of two-level systems. Our findings shed light on recent observations of strong nonlinearity in
heterobilayers of transition metal dichalcogenides where moiré lattices emerge naturally [Nature (London) 591,
61 (2021)]. Finally, the developed theory opens the prospects for engineering strongly nonlinear responses of
polaritonic lattices with patterned samples, driving polaritonics into the quantum regime.
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I. INTRODUCTION

Strong light-matter coupling (SC) hybridizes photons
and matter excitations, leading to an emergence of po-
laritons [1–4]. Systems where SC can be achieved in-
cludes atomic vapors and lattices [5,6], collection of
color centers [7–9], quantum dots [10,11], microwave cir-
cuits [12], molecular complexes [13–15], semiconductor
quantum wells [16,17], and two-dimensional (2D) mate-
rials [18–27] (see Ref. [1] for the full panorama). In
semiconductor nanostructures, the prominent example is
strong coupling to excitonic modes, leading to exciton-
polaritons [2]. The very essence of polaritonic response is in
acquiring a nonlinearity for light [28], ultimately being visible
even at the few-photon occupation [29–32]. The utility of
nonlinearity ranges from generating solitons [33–35] to quan-
tum information processing and gates at the single-photon
level [36–39]. In semiconducting microcavities, nonlinearity
leads to emergent fluids of light in planar geometries [40–43]
and highly nontrivial dynamics in lattice-based polaritonic
systems [44–54].

Polaritonic nonlinearity can originate from several sources,
which lead to different types of nonlinear processes. First,
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quasiparticles in an underlying medium can interact via
Coulomb repulsion or attraction [55–63], leading to energy
shifts from hybridized polaritonic modes, and thus power-
dependent response [64]. This type of nonlinearity prevails
for Wannier-type excitons, manifested in exchange-dominated
scattering for 2D systems [55,56], and dipole-dipole inter-
action for dipolar excitons [65–69]. Similar interactions are
observed for Rydberg states [70], enabling a plethora of highly
nonlinear effects for Rydberg atom gas [71–73], atomic ar-
rays [74–76], and recently Rydberg excitons [77–80]. The
ultimate limit of Coulomb-driven nonlinearity comes from a
Coulomb blockade [81]—inability of creating more excitation
at specific sites due to large energy penalties, and subsequent
nonlinear impact on coupled photonic modes [82,83].

The second type of nonlinearity comes from statistical
properties of matter excitations and corresponds to the non-
linear phase space filling (NPSF), which can be referred to
interchangeably as a nonlinear optical saturation [56,59,84].
Namely, creating two excitons in exactly the same state of
electrons (e) and holes (h) is forbidden by their fermionic
statistics. Similarly, a collection of two-level systems (TLS)
can only be excited until further excitations are prevented
by Pauli statistics [5]. Thus, increased number of excita-
tions leads to filling the available phase space (no room for
creating new quasiparticles) [85,86], and effectively reduced
light-matter coupling in remaining sites or area. At high
powers NPSF can lead to the power-dependent quench (or
collapse) of the associated Rabi splitting [24]. For Wannier
excitons (delocalized e-h pairs) this nonlinear mechanism was
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FIG. 1. Sketch of an optical microcavity with polaritonic lattice
as an active medium. The cavity is formed by a concave top mirror
(e.g. fiber-based) and a bottom mirror as a distributed Bragg reflector
(DBR) of high reflectivity. Polaritonic lattice is arranged as a pat-
terned semiconductor with excitonic potential, as typically realized
in heterobilayers of transition metal dichalcogenides (TMDC) with
moiré potential.

discussed already in the seminal paper of Tassone and Ya-
mamoto [56], where first-order power-dependent contribution
to the reduction of Rabi splitting was described. However,
in III-V semiconductors this nonlinearity was not considered
to be dominant [59]. For Frenkel-type excitons (quasiparti-
cles based on localized e-h pairs in molecular lattices) NPSF
plays a major role [87,88], and is ubiquitous in various
experiments [87,89–91]. Finally, recent results in transition
metal dichalcogenides (TMDC) show the importance of both
contributions from Coulomb and nonlinear phase space fill-
ing [24,92–101].

In this paper, we develop a unified treatment of nonlinear
quantum optical effects based on phase space filling. Our the-
ory is applicable to a wide range of exciton-polariton lattices,
also in the presence of both Pauli and Coulomb blockade. We
describe three distinct NPSF regimes being the planar, frac-
tured, and ultralocalized regimes. For each case, we present an
analysis and show that in the fractured case a sharp decrease
of Rabi frequency in the low-density regime can be facilitated
by the Coulomb blockade. Our theory can shed light onto

recent experiments in moiré heterobilayers, and open a way
for enhancing the nonlinear response.

II. THEORY OF EXCITONS COUPLED
TO A CAVITY MODE

To develop the microscopic model of nonlinear phase space
filling, we start by considering excitons (electron-hole pairs)
strongly coupled to a cavity mode. This is typically formed by
distributed Bragg reflectors or fiber-based mirrors (see sketch
in Fig. 1).

Specifically, we consider bound excitons being confined to
minima of potential, thus forming a polaritonic lattice (Fig. 2).
A system Hamiltonian with Ns lattice sites reads

Ĥ = ω0ĉ†ĉ +
Ns∑

i=1

ĤX
i +

Ns∑
i=1

�0(X̂ †
i ĉ + ĉ†X̂i ), (1)

where ĉ† (ĉ) is a field operator creating (annihilating) a cavity
photon with energy ω0 (we set h̄ = 1). The first term in Eq. (1)
thus describes the energy of the cavity mode at normal inci-
dence (small photon momenta). The second term

∑Ns
i=1 ĤX

i
describes the available quantum states on each lattice sites,
labeled by index i. This term may also be viewed as a lattice
of identical quantum emitters, which can host up to � exci-
tons, depending on the confinement potential and interaction
between excitons. Therefore, the Hamiltonian of each separate
sites can be written as

ĤX
i = 1i−1 ⊗

(
�∑

n=0

εn|n〉〈n|
)

⊗ 1Ns−i, (2)

where 1 is the identity operator in the Hilbert space of a single
site, and 1n = ⊗n

i=0 1. In the above, |n〉 denotes the n-exciton
eigenstate with energies εn in an emitter. The ground state of
a emitter is |0〉 (no exciton) with energy ε0 = 0, see Fig. 3.

Intuitively, this model is analogous to a lattice of decoupled
harmonic oscillators. However, we note that we assume a
general form of the energy-level structure of ĤX

i to account for
exciton-exciton interaction and arbitrary confinement poten-
tial, introducing some degree of unharmonicity. With this, we

FIG. 2. Regimes of NPSF. Here we sketch different regimes of nonlinear phase space filling (saturation) in polaritonic lattices. As a
prominent example, we present moiré heterostructures with different twist angles, demonstrating the planar, fractured, and ultralocalized
NPSF at progressively increased twist angle.

023033-2



MICROSCOPIC THEORY OF NONLINEAR PHASE SPACE … PHYSICAL REVIEW RESEARCH 6, 023033 (2024)

Quantum emi�ers: …………

exciton

…

••

••••

••••••

FIG. 3. Quantum emitter. Each moiré cell of a bilayer can be
viewed as a quantum emitter that hosts excitons in its excited state.
The quantum states of the emitter with energy ε0, . . . , εn are denoted
by |0〉, . . . , |n〉 in the diagram.

make sure that the microscopic model can describe excitons
of different types (Wannier and Frenkel), as well as remaining
valid for generic quantum emitters with � + 1 levels.

Finally, the third term in the system Hamiltonian (1) de-
scribes the strong light-matter coupling, where �0 is the bare
exciton-photon coupling strength. This term defined the tran-
sition between the emitter’s energies levels by absorbing or
emitting a photon. These transitions at site i is described by
the excitonic ladder operator as

X̂ †
i = 1i−1 ⊗

(
�−1∑
n=0

√
rn|n + 1〉〈n|

)
⊗ 1Ns−i, (3)

where rn ≡ |〈n + 1|x†|n〉|2 with x† being the field operator for
creating an exciton. This exciton transition matrix element rn

describes the effective rate for creating an additional exciton
in a n-exciton state |n〉. It is determined by the microscopic
details of a n-exciton state. We note that, although our polari-
tonic lattice model Eq. (1) is similar to an atomic system, the
optical transition of each emitter [Eq. (3)] only takes place
between the adjacent energy levels, |n〉 and |n + 1〉. Namely,
the optical multiexciton processes are forbidden. In contrast
to atoms, the transitions between levels do not have such a
constraint and they are determined by optical selection rules.
Importantly, excitons are composite bosons with a nontrivial
n dependence of rn. In contrast to atomic level transition,
each atomic level cannot host more than one electron. This
corresponds to rn = δn,0 in Eq. (3), where the only allowable
transition is between states |0〉 and |1〉. This is the key differ-
ence between the two systems, which leads to distinct optical
saturation effects qualitatively. The transition matrix element
rn depends on the underlying physics of the quantum emitter
(exciton). The quantitative description for rn is presented in
Section III.

In the lattice of identical emitters, the exciton created by a
uniform cavity mode must preserve the translational symme-
try in the lattice. This implies that the photon can only couple
to the lattice collective mode (bright state) in the form [5,86]

B̂† = 1√
Ns

Ns∑
i=1

X̂ †
i . (4)

This operator creates a coherent lattice excitation where the
probability of finding an exciton is uniformly distributed
across the lattice instead of sitting on a particular site. It
corresponds to a collective exciton mode that participates in
SC. This allows us to rewrite the coupling Hamiltonian,

Ns∑
i=1

�0(X̂ †
i ĉ + X̂iĉ

†) = √
Ns�0(B̂†ĉ + B̂ĉ†), (5)

meaning the coupling only acts in the subspace of bright
states. The collective excitonic quasiparticle B̂† is exactly
the mode that couples to light in optically active materi-
als, with the corresponding

√
Ns enhancement for Frenkel

excitons [1,87] and exciton area-based enhancement of light-
matter coupling for Wannier excitons [3]. Importantly, the
collective exciton mode B̂† also acts like a quasiparticle with
well-defined particle numbers, but it has a peculiar statistical
property. In the low ratio of total number of excitons N to Ns

in the lattice (N/Ns, exciton number per site), the B† quasi-
particle excitations obey statistics similar to the bosonic one.
However, in a large N/Ns regime, this quasiparticle excitation
may strongly deviate from the Bose statistics due to the com-
posite nature of exciton and blockade effects arising from the
Coulomb interaction between excitons. This non-bosonicity
determines how the phase space is depleted by B† excitations.
This will eventually appear as a nonlinear correction to the
light-matter coupling of the lattice.

To see the relation between the phase space-filling ef-
fect and nonlinear light-matter coupling, we consider in the
SC regime that the two states {(B̂†)N+1|∅〉, ĉ†(B̂†)N |∅〉} hy-
bridize and form a quasiparticle—polariton. Here, we defined
the global ground state |∅〉 = |0〉c

⊗Ns
i=1 |0〉 as the product of

emitter ground state (|0〉) and cavity (|0〉c) ground states. To
investigate the nonlinearity of the polariton in the lattice of
emitters, we construct the polaritonic Hamiltonian as block
diagonal matrices

HN =
[

EN+1 �N

�N EN + ω0

]
(6)

that couple states with N + 1 excitons, containing B† excita-
tions in total. Here EN = 〈∅|B̂N Ĥ (B̂†)N |∅〉/F (Ns )

N is the total
energy of N collective excitons and we have introduced the
normalization factor of the N-exciton states [85,102]

F (Ns )
N = 〈∅|B̂N (B̂†)N |∅〉. (7)

This ensures the states are properly normalized such that the
matrix elements in Eq. (6) retain the correct physical meaning
at increasing densities (as phase space filling increases). The
off-diagonal elements then can be written as [103]

�N = �0

√
F (Ns )

N+1/F
(Ns )
N , (8)

meaning that the light-matter coupling �N (effective Rabi fre-
quency) depends on the number of excitons. This introduces
the nonlinearity in the system in the form of nonlinear phase
space filling.

To study the effect of NPSF in full generality, we develop
a strategy for calculating the normalization factor [Eq. (7)]
for a generic structure of on-site excitations and arbitrary Ns.
We do this by using a multinomial expansion. The compact
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expression of the normalization factor reads

F (Ns )
N =

∑
n1+···+nNs =N

(
N!/NN/2

s

n1! . . . nNs !

)2 Ns∏
i=1

P(ni ), (9)

where P(ni ) = r0 . . . rni−1 with P(0) ≡ 1 (see Appendix A
for the derivation). The renormalization factor in Eq. (7)
completely determines the NPSF of the Hamiltonian (1). We
note that while F (Ns )

N was evaluated before in some limiting
cases, such as Wannier exciton [85,102] and Frenkel exciton
(two-level emitter) [86], here we present the generic nonper-
turbative treatment. This is imperative for accessing the NPSF
in the deep saturation regime, as demonstrated in the next
sections.

To summarize, we have developed a general theoretical
framework for the exciton-polariton on a lattice, which is
described by Eqs. (6)–(9). This reduces the study of the NPSF
problem to specifying rn and |n〉, which are ultimately deter-
mined by the properties of the n-excitons state of an emitter.
As we will discuss later, rn is the key parameter that gives rise
to a different F (Ns )

N , N dependence of the Rabi frequency, and
thus enable various qualitative modes of NPSF. Before carry-
ing out the full analysis, it is instructive to consider two special
cases and recover known results. First, let us consider |n〉
being the state of purely bosonic excitations. In this case, the
transition matrix element is rn = n + 1 (bosonic enhancement
factor) and the number of available states is � → ∞. Using
this assumptions in Eq. (9), we recover the usual bosonic
normalization factor F (Ns )

N = N! for N-boson state. Next, let
us then consider the opposite limit corresponding to two-level
systems (fermionic limit). This is modeled by a quantum
emitter with r0 = 1, rn�1 = 0. With this, Eq. (9) reduces to
the quantum limit [86] with F (Ns )

N = N!Ns!/(Ns − N )!N−N
s . In

the rest of the paper, we demonstrate that the polariton Hamil-
tonian in Eqs. (6)–(9) allows us to go beyond these two limits.
We consider transition matrix elements that are neither purely
bosonic nor purely fermionic. This is controlled by the con-
finement, composite particle properties, and interactions. Our
theory reveals the behavior of F (Ns )

N for a polaritonic lattice
with strong NPSF (deep saturation regime). This regime of SC
has not been explored before. In the following, we investigate
this regime and discuss the relevant system in moiré structure
of 2D materials.

III. INTRODUCING LOCALIZATION OF EXCITONS AND
POLARITONIC LATTICES

In the previous section, we presented the general theory
of excitons in a cavity and introduced the transition matrix
elements rn that characterize the polaritonic system [Eq. (3)].
As we mentioned previously, the form of rn has important
implications for the nonlinear phase space filling of the lattice.
As described in Eq. (3), the transition matrix element rn is
a measure of the rate for creating an additional exciton-like
quasiparticle in a n-excitons system. This quantity depends on
the specific correlation effects between excitons. Calculating
it for general cases is a highly nontrivial many-body prob-
lem. Therefore, in this section, we consider two microscopic
mechanisms that induce NPSF. One is due to the correla-
tion of the fermionic statistics (Pauli blockade) where the

electron and hole from excitons cannot occupy the same state
in phase space. The other mechanism is due to the strong
exciton-exciton interactions (Coulomb blockade) where the
high-energy states are effectively projected out in the phase
space. In the Pauli blockade, we can evaluate rn exactly, and
for the Coulomb blockade we use the phenomenological ap-
proach that allows to keep the system tractable in the presence
of nonlinearity.

A. Pauli blockade

To investigate the Pauli blockade of a polaritonic lattice,
we begin with the simplest case of Ns = 1 and extend the
consideration to excitons with a spatial shape. For a single
site (or emitter), we construct the n-exciton ground state as

|n〉 = 1√
F (1)

n

(x†
0 )n|0〉, F (1)

n = 〈0|xn
0 (x†

0 )n|0〉, (10)

where the exciton creation field operator is

x†
ν =

∫
dredrh�ν (re, rh)a†

re
brh . (11)

Here, �ν (re, rh) is the exciton wavefunction, with ν being the
state index (quantum number), re and rh are the electron and
hole position vectors in real space, and a†

re
and brh are the

electron and hole field operators, respectively.
Due to the finite sample size, there is a limited amount of

quantum numbers to assign to each electron and hole com-
posing the exciton. Moreover, two different fermions cannot
be labeled by the same quantum numbers (Pauli exclusion
principle), meaning that the single site cannot host an un-
limited number of excitons. The site will saturate and exhibit
a nonlinear optical response as the exciton density becomes
higher and higher. In Eq. (10) the effect of Pauli blockade
appears in the normalization factor F (1)

n . We write the latter
in the recursive form,

F (1)
n =

n∑
m=1

(−1)m−1

n

[
n!

(n − m)!

]2

σmF (1)
n−m, (12)

where we introduced the Pauli scattering terms σm (see
Appendix B and Refs. [85,103]). The Pauli scattering is de-
fined as an overlap between excitonic wavefunctions,

σm =
m−1∏
i=1

∫
dre1 drh1�

∗
0

(
rei , rhi

)
�0
(
rei , rhi+1

)

×
∫

drem drhm�∗
0

(
rem , rhm

)
�0
(
rem , rh1

)
. (13)

Intuitively, this term may be understood as the degree of
bosonicity of the exciton. For the pure boson limit we have
σ1 = 1 and σm>1 = 0, leading to F (1)

n = n! as a standard
bosonic state normalization factor. In the Frenkel limit, we
have σm = 1 for all m, which yields F (1)

1 = 1 and F (1)
n>1 = 0.

In between these two limits σm is a monotonically decreasing
function of m with σm � 1. Away from the bosonic limit, the
effect of nonlinear phase space filling is always present, thus
lowering the effective probability for creating more excitons
in confined regions. That is, F (1)

n /n! is a monotonically de-
creasing function of the integer index n. The effect of the Pauli
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blockade can be seen as a modification of the transition matrix
element rn defined through

rn = |〈n|x†
0|n − 1〉|2 = F (1)

n /F (1)
n−1. (14)

Once rn is set for a single site, we can construct the Ns site
of the polaritonic lattice by using Eq. (9) with rn specified in
Eq. (14). In this case, calculating matrix elements in Eq. (6)
by using Eqs. (9) and (14) is not convenient, since the number
of available excited states (�) may be large. Instead of using
multinomial expansion, we derive the recursive formula for
F (Ns )

N (see Appendix B for full derivation),

F (Ns )
N =

N∑
m=1

(−1)m−1

N

[
N!

(N − m)!

]2
σm

Nm−1
s

F (Ns )
N−m. (15)

However, we note that when using Eq. (15) for numerical
calculation, one needs to ensure high accuracy for each term
in the sum due to large cancellations (we achieve this by
developing a semi-symbolic treatment of expressions when
only the final evaluation is numerical). As compared to the
single site case in Eq. (12), the multisite result has a reduced
Pauli scattering terms σm/Nm−1

s , which takes into account
two contributing effects. One is the Pauli blockade that we
have already described, relating the effect to the statistical
properties of the particles. Second, we have the real space
enhancement factor, meaning there are more sites to place our
emitters.

B. Coulomb blockade

Next, we note that placing two excitons together may
be impossible due to the fact that their constituents interact
with each other via Coulomb potential. The enhancement
of on-site exciton-exciton (X-X) Coulomb repulsion due to
weak screening in two-dimensional structures translates into
a strong Kerr shift for the excitonic mode. As the exciton
energy is shifted out of resonance, this effectively reduces the
transition matrix element between excited states, resulting in
similar implications as the Pauli blockade. The main differ-
ence with the Pauli blockade is that the number of available
excitations per site is sharply depleted at finite �. The cut-off
value � depends on the depth of localization potential and the
cost of Coulomb energy by creating additional excitons at the
same site. However, we note that the Coulomb blockade is a
complex correlated problem since the on-site X-X Coulomb
repulsion and the maximum number of excitons per site �

implicitly depend on the n-exciton rather than one-exciton
wave function as in the Pauli blockade problem. Calculating
the transition matrix element rn microscopically is beyond the
scope of this paper, as it reduces to exclusively numerical
modeling, while here we concentrate on predominantly ana-
lytical treatment. Nevertheless, our general theory in Eq. (1) is
still applicable, and we introduce the Coulomb blockade effect
as the phenomenological reduction of the transition matrix
element at increasing n. This may be modeled by

rn ≈
{

n/
(
1 + δ2

n

)
, n � �

0, � > n
, (16)

corresponding to the rate for driving the transition be-
tween energy levels with detuning δn = (n − 1)U/�0

(dimensionless) due to the Kerr shift. Here, U is the strength
of X-X interaction and n is the number of excitons. In this
case the Pauli statistics plays no role, where the exciton is
considered as an elementary boson. However, we will see later
that different blockade mechanisms eventually lead to similar
qualitative results.

Although the form of Coulomb blockade in Eq. (16) is
considered for this paper, we remark that the physics of satu-
ration effects due to X-X interaction is very rich. Particularly,
the interaction depends on both the exciton’s wavefunction
and the screened Coulomb potential, which have important
consequences for forming the n-exciton state |n〉. The details
of |n〉 ultimately impact the scaling of the saturation effect. For
instance, as we compare s-wave and p-wave exciton (Rydberg
state), in the case of dipole-dipole interactions, the long-range
part of the effective X-X interaction can set a blockade radius,
thus effectively enhancing the saturation (we have now seen
this in Cu2O polaritons [104]). For s-excitons, the exchange
interaction is dominant and generally short range. However, it
depends heavily on the details of wavefunctions and this leads
to a qualitatively different scaling from Rydberg state.

IV. DIFFERENT REGIMES OF NONLINEAR
PHASE SPACE FILLING

Previously, we have derived a microscopic expression for
light-matter coupling and nonlinear phase space filling in
the general form, accounting for multiple localized excitonic
sites, the spatial structure of excitons, and X-X interac-
tions. Now, let us analyze the behavior of NPSF for some
qualitatively distinct cases, in particular driven by a sample
geometry. The size of excitons is described by the Bohr radius
aX. This has to be compared with the exciton localization
length L, defined by the lattice potential. Depending on the
L/aX ratio as well the number of sites Ns, the NPSF contribu-
tion has different scaling, both in high and low occupation
limits. We suggest the three regimes corresponding to: (1)
planar; (2) fractured; and (3) ultralocalized NPSF.

We visualize the three sample geometries in Fig. 2. The
planar case corresponds to an exciton that is delocalized over
the entire sample (Ns = 1; Fig. 2, left). The saturation effect in
this regime was studied before for Wannier excitons in III-V
semiconductors [56,59] and TMDC monolayers [24,105]. In
this case, the prior analysis was performed in the perturba-
tive limit, where only the first nonlinear correction to �N is
derived as �N ≈ �0

√
N (1 − β1N + O[N2]), where the beta

factor β1 = −(�0

√
N )−1d�N/dN |N=0 depends on the ratio

of exciton area to the total area [56,59], and the second-order
correction was derived in Ref. [24].

Another regime corresponds to the opposite limit, where
excitons are ultralocalized on the lattice of many sites, and
the localization length is comparable to the size of the ex-
citon (Fig. 2, right). In this case, the exciton behaves like a
Frenkel exciton [86], and we note that similar behavior can be
attributed to trion polaritons [24,94]. The Rabi frequency of
the ultralocalized case scales as a square root of the deviation
from single occupation case.

Finally, we reveal that for the intermediate localized length,
the fractured regime can be realized. In this case the analytical
form of Rabi frequency is not known, and we will show that
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the NPSF scaling behavior of this regime is rather nontrivial.
Namely, it is not a simple interpolating result between planar
and ultralocalized cases. This may shed light on various po-
laritonic experiments where lattice sites can host multiple but
finite number of excitons.

Let us now proceed with calculating the scaling of NPSF
for the three regimes. To account for the effect of Pauli block-
ade we consider an excitonic wavefunction in the Gaussian
form

�0(re, rh) ≈ 1

πLaX
e− 1

2 [(R/L)2−(r/aX )2], (17)

where R = mc
M re + mv

M rh is the center of mass, and r = re − rh

is the relative position of an electron-hole pair. Here, M =
mc + mv is the mass of exciton, and mc and mv are the
masses of electron and hole, respectively. We note that the
similar ansatz was chosen for studying phase space filling of
a quantum dot [103], and that the Gaussian exciton shape is
particularly suitable for TMDC heterostructures [95,101,106]
due to the quadratic scaling of an interlayer potential. We
remind that L is the localization length of the lattice po-
tential and aX defines the size of the exciton. The exciton
localization length can be characterized by the wavefunction
spread in the exciton’s center-of-mass motion, which depends
on the confinement potential. This can be dictated by an ex-
citonic disorder, or induced by twisting in a TMDC bilayer
forming the moiré potential [107,108] (visualized in Fig. 2).
The exciton Bohr radius aX depends on the electron-hole
screened interacting potential (defined as intralayer and inter-
layer potentials for TMDC bilayers). While other choices of
wavefunction are possible, Gaussian shape allows evaluating
many scattering terms efficiently, and we do not expect the
shape modification to induce qualitative changes.

We proceed by evaluating Pauli scatterings for defining rn.
Substituting the wavefunction from Eq. (17) in Eq. (13), we
obtain the analytic expression of σn. The compact expression
reads (see details in Appendix C)

σn =
n−1∏
k=0

(aX/L)2(
1 + γ 2

c

)(
1 + γ 2

v

)− (1 − γcγv )2 cos2(kπ/n)
,

(18)
where γc,v = (mc,v/M )(aX/L) [103]. We report the effects
of the Pauli blockade in Fig. 4. We run the numerical sim-
ulation with various L/aX ratios and mc = mv by solving
Eq. (8). In Fig. 4(a), we demonstrate the effects of saturation
in the single site limit. This case corresponds to the single
parabolic potential well with excitons that couple strongly to
the cavity mode. In the limit of delocalized particles (light-
blue line), it approaches the ideal bosonic limit (gray-dashed
line), where NPSF is not present due to Bose statistics. The
different curves and bullet points are summarized in the leg-
end in Fig. 4(b). In the other limit of particles localized
over the full sample size (dark blue curve with L = 0.5aX,
closest to the bottom), particles exhibit “close-to-fermionic”
behavior, [109] where the sample is saturated with more than
one excitation. In the intermediate region, 0.5 < L/aX < 10,
one can see a smooth transition from bosonic-to-fermionic
behavior. Also, the renormalized Rabi frequency in this
intermediate region may be well approximated by the expo-
nential decay with the exciton packing fraction in the sample

FIG. 4. Pauli blockade and the dependence. The dependence of
the (renormalized) Rabi frequency �̄N (Ns, aX) = �N/

√
N on num-

ber of excitons N . (a) NPSF effect of a single localization site
(Ns = 1) for different ratios of L/aX. L is the exciton localized length,
and the values are shown in the legend in (b). The black-dashed line
is the bosonic limit, where the exciton is treated as an elementary
boson. (b) NPSF for Ns = 20 sites. We can see the transition from
Frenkel (L/aX = 0.5) to bosonic limit by changing the localized
length L. Three qualitative regimes of the NPSF are labeled. The
planar regime smoothly transitions over to the ultralocalized regime
via the fractured regime (blue-shaded region).

η = N (aX /L)2,

�N ≈ �0 exp
[− 1

2

(
ηv + 1

2η2v2
)+ O(η3)

]
. (19)

where we have used σn ≈ (ηv)n−1 with v = (1 + γ 2
c )(1 +

γ 2
v ) in Eq. (18). Note that this result follows from the def-

inition (8) and the exponential form of the normalization
factors [85,102], which is valid for very high orders in η.
The exponential scaling in Eq. (19) can be also recovered as a
continuation of the diagrammatic expansion [24].

Next, we consider a lattice with many sites. As light cou-
ples to the lattice with Ns = 20, the saturation effect exhibits
a rather nontrivial behavior shown in Fig. 4(b). In this case,
we observe similar behavior for large localization length with
L = 10aX and recover the expected bosonic limit for point-
like particles. As the exciton size increases (L � 0.6aX), we
observe a kink in the proximity of N ≈ Ns due to the transition
from the low occupation regime with a fast saturation rate to
the high occupation regime with a slower rate. This behav-
ior may be understood as follows. As N < Ns, the blockade
of available phase space is very effective, which resembles
Frenkel exciton (see the blue curve with L = 0.5aX). At the
point where N = Ns, the N excitons almost occupy the entire
phase space with less available space. Therefore, the satura-
tion due to the newly created excitations in N > Ns regime is
less effective. We can intuitively describe it as “fill all sites by
at least one exciton first, and only then fill the rest”.
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low-density

FIG. 5. Saturation rate. Here we plot a rate of the Rabi
splitting saturation, d�N/dN , as a function of exciton filling
N/Ns. (Inset) Saturation rate in a low-density regime [β1 =
−(�0

√
N )−1d�N/dN |N=0] with various ratios of localization

length-to-exciton length L/aX .

To see the nontrivial changes in the saturation rate, in Fig. 5
we plot a derivative of the Rabi frequency with respect to the
number of particles, d�N/dN (assuming �N is a continuous
function in N). We observe that in the planar regime (large
L/aX ) the saturation rate is relatively small and constant in N .
Once the exciton becomes localized with L � aX , the satura-
tion rate exhibits strong N-dependent behavior. In particular,
in the fractured regime (L/aX ≈ 0.6, yellow curve in Fig. 5),
we can see clearly the transition of fast-to-slow saturation rate
from low-occupation (N < Ns) to high-occupation (N > Ns)
regime. In the dilute limit (N � Ns), the saturation rate can be
characterized by a constant β1. As demonstrated in the inset
of Fig. 5, this β1 constant grows exponentially as the exciton
localization length decreases.

As the localization length becomes smaller (L = 0.5aX),
the lattice localization eventually reaches the Frenkel
limit [86]. In this limit, the Rabi frequency can be calculated
as

�N = �0
√

NsN

√
1 − N − 1

Ns
, (20)

which exhibits the square root scaling in N . We note that
this expression follows from the normalization prefactor
that is valid for all N and Ns, and includes nonperturba-
tive corrections. We stress that the exponential and square
root scalings are qualitatively distinct from the conjectured
saturation dependence �N = �0/

√
1 + N/Ns used in some

studies [95,100].
Now, let us add the Coulomb blockade. In this case, the

number of excitons at each site is limited due to the finite
confinement potential and Coulomb repulsion. Also, once
many excitons occupy a single site, it becomes more difficult
to drive the transition from |n〉 to |n + 1〉 due to the Kerr shift
of the excitonic mode. Using the blockade model in Eq. (16),
we study the nonlinear phase space filling effect on the Rabi

FIG. 6. Coulomb blockade. The NPSF under the Coulomb
blockade shown as a function of exciton occupation, for varying
number of exciton states � and X-X interaction strength U . We model
the transition matrix element using Eq. (16) with � � 7. Upper, mid-
dle, and lower panels are plotted by using the different on-site X-X
repulsion as U/�0 = 0.5, U/�0 = 1, and U/�0 = 2, respectively.

frequency. The results are shown in Fig. 6. Similar to the case
of Pauli blockade (Fig. 4), the saturation curves exhibit similar
behavior in each distinct regime. In this case, the fractured
saturation may be realized as � = 2, depending on the strength
of Coulomb repulsion. The kink-like feature may not appear
near N ≈ Ns if the Coulomb blockade is weak such that the rn

does not decrease fast enough in large n, see Fig. 6. Moreover,
the quench of Rabi frequency nearing the full saturation (Rabi
collapse) behaves closer to the ultralocalized regime.

Summarizing the discussion in this section, the nonlinear
phase space filling due to excitons localization can be divided
qualitatively into three different regimes (Fig. 2). Particularly,
as the excitons started to localize at a different region of the
lattice, NPSF enters the fractured regime. In this regime, the
Rabi frequency of the polaritonic lattice is strongly renor-
malized. The phase space is saturated at a higher rate in the
low (N < Ns) density regime rather than in the high (N > Ns)
density regime, exhibiting an exponential tail.

V. SATURATION IN TMDC MOIRÉ LATTICE

In this section, we concentrate on drawing a connection
between the proposed microscopic modeling of polariton lat-
tice saturation with the recent exciting results for bilayers of
TMDC. In the case of TMDC bilayers, the lattice ordering
appears naturally, and we consider several possible contribut-
ing effects. Specifically, by twisting a TMDC bilayer one can
drastically modify its optical properties [107,108,110]. One of
the salient features of such a bilayer is the formation of mod-
ulating optical absorption with a moiré period. Additionally,
the inhomogeneity due to the moiré pattern can also generate a
potential landscape that results in the localization of excitons
in a moiré cell [108,111]. Moreover, the variation of twisting
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FIG. 7. Moiré exciton saturation. The Rabi frequency renormal-
ization is modeled by Pauli’s blockade (gray-dashed curve) and
Coulomb blockade (colored-solid curves) in the TMDC moiré lattice.
We shown results as a function of exciton density nX , and consider a
varying number of excited levels � = 1, 2, ..., 5.

angles and domain relaxation can lead to the formation of a
lattice structure that is composed of smaller moiré patches.
Therefore, twisted TMDC bilayers form an ideal system to
realize near-perfect exciton-polaritonic lattices.

Moiré excitons in a twisted heterobilayer TMDC is the
subject of current intense research [106,108,112–115]. In
particular, the recent experiment [95] for the TMDC het-
erobilayers has found strong nonlinear saturation effects in
moiré exciton-polariton. Experimental results suggest that
there are several regimes of saturation where the saturation
rate changes qualitatively. This was conjectured to originate
from the Coulomb blockade due to the strong dipole-dipole
interactions of moiré excitons, but a full explanation is miss-
ing.

We approach this system with the developed theory of
NPSF. To investigate the optical nonlinearity of this twisted
bilayer we use the lattice model in Eq. (1). Assuming mc = mv

and using M = 0.71 m0 from Ref. [95], we plot the saturation
curve for Rabi frequency due to Pauli blockade and compare
it to Coulomb blockade with �0 = 10 meV and U = 30 meV.
Using the estimation of the moiré cells density in Ref. [95],
being 6 × 104 µm−2, this gives the estimated exciton density
in the horizontal axis in Fig. 7. As we can see, the Pauli
blockade shows a rather smooth saturation in this bilayer
system. In contrast to the Coulomb blockade, we can see a
clear kink near N ≈ Ns. We see that this nontrivial Rabi fre-
quency renormalization qualitatively resembles the saturation
behavior observed in Ref. [95]. Namely, the saturation rate is
fast in the low-density exciton regime where N < Ns, and the
rate reduces in the N > Ns case.

We note the kink-like feature in the saturation curve
appears in the higher density as compared to the density esti-
mated in the experimental study. One possible reason may be
that our calculation assumes a perfect correlation of exciton
density with the laser power. In reality, the relation between
them may be complicated due to the presence of disorder
such as residue strain and can be impacted by the lattice
reconstruction [108]. This results in a smaller effective area
of light-matter interaction. Furthermore, these effects also

lead to the light interacting with the dark collective modes.
Therefore, deducing the actual excitonic density in the sample
may not be an easy task, since the number of excitons cannot
be counted directly in the experiments. Nevertheless, keeping
this as a hypothesis, we suggest that the experimentally ob-
served nontrivial renormalization of Rabi frequency may be
the manifestation of fractured NPSF, which is facilitated by
the Coulomb blockade.

VI. CONCLUSIONS

In summary, we developed a nonperturbative microscopic
theory for describing nonlinear optical effects arising from
the phase space filling. While the developed quantum the-
ory can be applied for many systems at strong coupling, we
concentrate on the lattice geometries in the limit of strong
NPSF (deep saturation). We unified different phase space
filling mechanisms such as Pauli and Coulomb blockade by
writing them in term of transition matrix elements between
the excitations of an emitter rn. First, we described the effect
of Pauli blockade arising from the finite system size and
accounting for the exciton shape. This allows describing the
change of NPSF from the planar quasi-bosonic case all the
way to the case of two-level system saturation. We generalized
the considerations to multiple sites, and studied the NPSF
behavior between planar and ultralocalized (Frenkel) limit.
Intriguingly, we find a distinct regime of fractured NPSF,
where the Rabi frequency decrease has a kink-like feature at
the number of sites, while the full saturation at high occupa-
tion reveals an exponential tail. This behavior is particularly
pronounced in the presence of Coulomb blockade effects.
Looking into specific examples, we analyzed the NPSF effects
for moiré lattices of TMDC heterobilayers, suggesting that
fractured NPSF may be relevant to the recent experimental
observations of strong nonlinearity [95].

Looking into the future, we note that the understanding
of nonlinear phase space filling can help engineering moiré
structures, or rather patterned samples, such that the non-
linearity is maximized. This will allow to push further the
limits of quantum polaritonics [29,38,39,94]. As for potential
open questions, in our polaritonic lattice model we consid-
ered only the NPSF of a uniform collective excitation (bright
state) [Eq. (4)] coupled to cavity photons. However, cavity
photons can couple to other nonuniform collective excitations
(dark states) in the presence of lattice inhomogeneity arising
from disorder, strain [116], lattice reconstruction [117], and
nonuniform cavity modes. This shall further enrich the NPSF
behavior leading to unique nonlinear effects. Also, in this
paper we did not take into account the tunneling between
sites. As indicated in Ref. [95], the moiré band dispersion
of the exciton center-of-mass motion is not very flat. This
implies that excitons tunneling between localized regions in
the moiré lattice may not be negligible and can be tunable.
Another consideration in Ref. [64] is that the light can induce
changes in the exciton radius. This effect may add an extra
contribution to the nonlinear saturation, and affect the Pauli
and Coulomb blockade that we consider in this paper. We
believe it is an interesting topic for future studies. It is also in-
teresting to generalize our theoretical approach to investigate
the saturation effect of moiré trions [118–120]. Studying the
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trion-polariton NPSF in the lattice geometry and accounting
for particle attraction [121] is an important next step.
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APPENDIX A: MULTINOMIAL EXPANSION OF
NORMALIZATION FACTOR

In this section, we provide the details for the derivation
of Eq. (9). Using the commuting property of creation and
annihilation operators [X †

i , Xj] = 0 for i 
= j, we can carry out
the multinomial expansion of B̂† as

(B̂†)N =
∑

n1+···+nNs =N

N!NN/2
s

n1! . . . nNs !
(X †

1 )n1 . . . (X †
Ns

)nNs

where ni = 0, 1, 2 . . . , and

(X †
i )ni =1i−1 ⊗

(
�−ni−1∑

n=0

√
P(ni )|n + ni + 1〉〈n|

)
⊗ 1Ns−i

with P(n) = r0 . . . rn−1 [P(0) ≡ 1]. Also, we note that
(X †

i )n = 0 if n > �. Therefore, substituting the above into

F (Ns )
N = 〈∅|B̂N (B̂†)N |∅〉, (A1)

we obtain Eq. (9).

APPENDIX B: MICROSCOPIC DERIVATION OF
MANY-BODY PAULI BLOCKADE

To derive the Hamiltonian in Eq. (1) microscopically, we
may model the exciton wavefunction in a single site (emitter)
as [111][

Q̂2

2M
+ p̂2

2μ
+ VM (R) + V (r)

]
�(re, rh) = E�(re, rh),

(B1)
where �(re, rh) with re and rh being the position of the
electron and hole. The electron and hole masses are me and
mh with total mass M = me + mh and reduced mass μ =
memh/M. The center-of-mass and relative positions are R =
(mere + mhrh)/M and r = re − rh with their corresponding
total momentum operator Q̂ and the relative momentum op-
erator p̂. The exciton localized potential is VM (R) and the
screened electron-hole interacting potential is V (re, rh). Solv-
ing Eq. (B1), this gives the exciton creation operator of each
site in Eq. (11).

Once the excitonic field operator in Eq. (11) is specified
by Eq. (B1), we use the n-exciton states in Eq. (10) as the
emitter’s excited states to construct Ns-site Hilbert space with

the (over) completeness relation [85]

1⊗Ns =
Ns⊗
i

∑
n=0

|n〉〈n|. (B2)

Assuming that the light-matter interacting Hamiltonian of a
single emitter as

Hint =
Ns∑
i

�0cx†
i0 + H.c. (B3)

where the exciton in i emitter is labeled by the subscript, we
obtain Eq. (1) by sandwiching (B3) by the identity operator in
Eq. (B2). Namely,

X †
i = 1⊗Ns x†

i01
⊗Ns . (B4)

This yields

√
rn = 〈n|x†

0|n − 1〉 =
√
F (1)

n /F (1)
n−1. (B5)

To derive the transition matrix element for the Pauli block-
ade, we calculate

F (1)
n = 〈0|xn

0 (x†
0 )n|0〉

= 〈0|
[

n�1xn−1
0 +

(
n

2

)
[x0,�1](x0)n−2(x†

0 )n−1

]
|0〉.

Here, �1 = [x0, x†
0] and we introduce the notation

�n =
{

[[x0,�n−1], x†
0], n is even

[x0, [�n−1, x†
0]], n is odd

. (B6)

Using the fact that [[�n, x†
0], x†

0] = 0 and [[�n, x0], x0] = 0,
and �n|0〉 = (−2)n−1σn|0〉, this leads to

F (1)
n = nσ1F (1)

n−1 +
(

n

2

)
〈0|xn−2

0 [x0,�1](x†
0 )n−1|0〉. (B7)

We let

�(n)
m = 〈0|xn−m−2

0 [x0,�m+1](x†
0 )n−m−1|0〉

2m+1(n − m − 1)[(n − m − 2)!]2
, (B8)

and rewrite Eq. (B7) into

F (1)
n = n!2

n

{
σ1F (1)

n−1

[(n − 1)!]2
+ �

(n)
0

}
. (B9)

To proceed further, we derive the iteration formula for �(n)
m ,

leading to

�
(n)
0 =

(n−1
1

)
(2σ2)F (1)

n−2+
(n−1

2

)〈0|xn−2
0 [�2, x†

i ](x†
0 )n−3|0〉

2(n − 1)[(n − 2)!]2

= −σ2F (1)
n−2

[(n − 2)!]2
+ 〈0|xn−2

0 [�2, x†
i ](x†

0 )n−3|0〉
22(n − 2)[(n − 3)!]2

= −σ2F (1)
n−2

[(n − 2)!]2
+

(n−2
1

)
22σ3 fn−3

22(n − 2)[(n − 3)!]2

+
(n−2

2

)〈0|xn−4
0 [x0,�3](x†

0 )n−3|0〉
22(n − 2)[(n − 3)!]2

= −σ2F (1)
n−2

[(n − 2)!]2
+ σ3F (1)

n−3

[(n − 3)!]2
+ �

(n)
2 . (B10)
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Using this iterating formula and setting F (1)
N<0 = 0, we obtain

Eq. (12) in the main text.
Similarly, we generalize the above calculation for the Ns-

site system. To calculate

F (Ns )
N = 〈∅|BN (B̂†)N |∅〉, (B11)

we follow the same procedure as in calculating F (1)
n , and we

define

�̃n =
{

[[B, �̃n−1], B̂†], n is even
[B, [�̃n−1, B†]], n is odd

, (B12)

where �̃1 = 1
Ns

∑Ns
i=1 �

(i)
1 with �

(i)
1 = [Xi, X †

i ] = [xi0, x†
i0]

where i = 1, . . . Ns is to label the exciton in each different
emitter (where we ignore the identity operator 1⊗Ns in the
commutators). It is not difficult to show that

�̃n = 1

Nn
s

Ns∑
i=1

�(i)
n . (B13)

Using �̃n|∅〉 = σn/Nn−1
s |∅〉 and iterating Eq. (B11) [same as

Eqs. (B7) and (B10)], we obtain Eq. (9).

APPENDIX C: CALCULATION OF σn

In this Appendix, we explore the property of σn for a
single emitter (e.g., quantum dot [103]) in Eq. (B6). Here,
we only focus on one emitter. Therefore, we drop the emitter
index i for simplicity. To calculate σn Eq. (B6), we use the
commutation relation

[xμ, x†
ν ] = δμν + Dμν, (C1)

where ν is the quantum number of the exciton (ν = 0 being
the ground state). The non-bosonicity is

Dμν = −
∫

r

[ ∫
re

∫
r′

e

�∗
μ(re, r)�ν (r′

e, r)a†
r′

e
are

+
∫

re

∫
r′

e

�∗
μ(r, rh)�ν (r, r′

h)b†
r′

h
brh

]
. (C2)

Here, we use the notation
∫

r1...rn
= ∫

dr1 . . . drn. Using the
completeness relation of the exciton wavefunction,∑

ν

�∗
ν (re, rh)�ν (r′

e, r′
h) = δre,r′

e
δrh,r′

h
, (C3)

this gives

[Dμν, x†
β ] = −

∑
α

2�
μα
νβ x†

α, (C4)

[xβ, Dμν] = −
∑

α

2�
μα

νβ xα, (C5)

where

�
μα

νβ =
∫

rer′
erhr′

h

�∗
μ(re, rh)�∗

α (r′
e, r′

h)�ν (r′
e, rh)�β (re, r′

h).

Therefore, using a†
r |0〉 = br|0〉 = 0, we have

�2|0〉 =
[

−
∑

β

2�00
0βxβ, x†

0

]
|0〉 = −2σ2|0〉 (C6)

with σ2 = �00
00. Similarly, it is not difficult to show that

�n|0〉 = −2n−1σn|0〉 (C7)

where σ1 = 1, σ2 = �00
00, and

σn =
∑
ν1

· · ·
∑
νn−2

�00
0ν1

�
ν1,0
0,ν2

· · · �νn−2,0
0,0 , n > 2. (C8)

To do the integration in σn analytically, we estimate the
exciton wavefunction by using a Gaussian function. Then, the
integration reduces to

σn =
∫ n∏

i=1

drei drhi

πaX/L
exp[−xT Ax − yT Ay], (C9)

where we have changed the variable rei → Lrei , rhi → Lrhi ,
and

xT = [
xh1 , xe1 , . . . , xhN , xeN

]
, (C10)

yT = [
yh1 , ye1 , . . . , yhN , yeN

]
, (C11)

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θv ξ 0 0 . . . ξ

ξ θ c ξ 0 . . . 0

0 ξ θv ξ
. . . 0

...
...

. . .
. . .

. . .
...

0 0 · · · ξ θv ξ

ξ 0 · · · 0 ξ θ c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (C12)

The eigenvalues of A can be obtained exactly by using a
tight-binding approach (nearest-neighbor hopping with two
sublattices). The eigenvalues are

λ±
k = 1

2
[(θv + θ c) ±

√
(θv − θ c)2 + 16ξ 2 cos2[kπ/n]]

with k = 0, . . . , n − 1,

θ c,v = m2
c,v

M2 + L2

a2
X

, ξ = mcmv

2M2
− L2

2a2
X

. (C13)

Finally, we integrate out rei and rhi . This gives

σn =
(

L

π2aX

)n
π2n

|A| =
n−1∏
k=0

L/aX

λ+
k λ−

k

(C14)

as a closed expression for the Pauli scatterings in the finite-
size system.
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[19] N. Lundt, A. Maryński, E. Cherotchenko, A. Pant, X. Fan, S.
Tongay, G. Sek, A. V. Kavokin, S. Höfling, and C. Schneider,
Monolayered MoSe2: A candidate for room temperature po-
laritonics, 2D Mater. 4, 015006 (2016).

[20] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink,
M. Kroner, E. Demler, and A. Imamoglu, Fermi polaron-
polaritons in charge-tunable atomically thin semiconductors,
Nat. Phys. 13, 255 (2017).

[21] S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet,
F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S.
Novoselov, M. S. Skolnick et al., Valley-addressable polari-
tons in atomically thin semiconductors, Nat. Photonics 11, 497
(2017).

[22] C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B.
Urbaszek, Two-dimensional semiconductors in the regime of
strong light-matter coupling, Nat. Commun. 9, 2695 (2018).

[23] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie,
T. Amand, and B. Urbaszek, Colloquium: Excitons in atom-
ically thin transition metal dichalcogenides, Rev. Mod. Phys.
90, 021001 (2018).

[24] R. P. A. Emmanuele, M. Sich, O. Kyriienko, V. Shahnazaryan,
F. Withers, A. Catanzaro, P. M. Walker, F. A. Benimetskiy,
M. S. Skolnick, A. I. Tartakovskii et al., Highly nonlinear
trion-polaritons in a monolayer semiconductor, Nat. Commun.
11, 3589 (2020).

[25] L. Lackner, M. Dusel, O. A. Egorov, B. Han, H. Knopf,
F. Eilenberger, S. Schröder, K. Watanabe, T. Taniguchi, S.
Tongay et al., Tunable exciton-polaritons emerging from ws2
monolayer excitons in a photonic lattice at room temperature,
Nat. Commun. 12, 4933 (2021).

[26] C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H.
Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay
et al., Bosonic condensation of exciton–polaritons in an atom-
ically thin crystal, Nat. Mater. 20, 1233 (2021).

[27] Y. V. Zhumagulov, S. Chiavazzo, D. R. Gulevich, V.
Perebeinos, I. A. Shelykh, and O. Kyriienko, Microscopic
theory of exciton and trion polaritons in doped monolayers
of transition metal dichalcogenides, npj Comput. Mater. 8, 92
(2022).
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