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Interaction-induced directional transport on periodically driven chains
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We study a driven system in which interaction between particles causes their directional, coupled movement.
In that model system, two particles move alternatingly in time on two coupled chains. Without interaction, both
particles diffuse along their respective chains, independent from one another. Interaction between them, whether
attractive or repellent, leads to an energetic separation of configurations where the particles are close to each
other and those where they are farther separated. The energy difference causes close-by particles to remain
bound together, forming a doublon. Their relative position in the starting configuration determines whether the
doublon moves to the left or right or remains stationary due to the periodic driving.

DOI: 10.1103/PhysRevResearch.6.023032

I. INTRODUCTION

Directional transport in physical systems can be realized in
various ways. The most obvious one is applying an external
field, e.g., an electric field that accelerates a charged parti-
cle in a particular direction or an inhomogeneous magnetic
field that deflects atoms in different directions according to
their spin. An alternating electric field can also lead to di-
rectional transport. A simple example is an electron emitted
at, say, t = 0 into a linearly polarized laser field, e.g., by
ionization. Depending on the emission time, the electron may
drift in opposite directions, parallel to the polarization of the
incident laser field. Other ways to achieve directional trans-
port are by topologically protected edge currents through the
breaking of time-reversal symmetry, e.g., by a magnetic field
or spin-orbit coupling [Hall effect(s) [1–4]], or by periodic
driving and asymmetric potentials [(semi)classical [5,6] and
quantum ratchets [7–9], and Thouless pumping [10,11]]. All
these systems prescribe the direction of movement of particles
within them. Interactions between the particles will affect the
particle dynamics, but as long as the particle interaction is
symmetric under particle exchange, one would not expect
directional transport to arise. In fact, one might expect that
interaction, in general, would broaden momentum distribu-
tions, including peaks in such distributions that correspond
to directional motion without interaction. The directional
motion would then gradually disappear with increasing in-
teraction strength. However, it has been shown recently that
topologically protected motion survives to a certain extent
in a Hubbard-Thouless pump [12]. Interaction might even
be required to achieve directional transport in a topological
many-body system [13].
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In this work, we present a minimal model of a driven
two-particle system that shows directional transport due to
interaction, even though this interaction is symmetric under
particle exchange. Moreover, the drive is spatially symmetric
(unlike the laser example above) and no asymmetric potentials
are involved (in contrast to the ratchet systems). Therefore,
the direction of movement is not predetermined by the system
parameters and depends on the initial condition.

The key to directional transport in our system is the alter-
nating driving of the two particles. While the interaction in our
model system is always active, the hopping of each particle is
only allowed for half of the driving period. In this case, the ini-
tial configuration determines the direction in which the bound
pair of particles (i.e., doublon) moves. Without interaction, the
doublon does not exist and the two particles simply diffuse in-
dependently without preferred directionality. The alternating
drive where only one of the two particles is allowed to move
per half period implies that the two particles are distinguish-
able and should be independently addressable by external
fields. Lin, Ke, and Lee [14] investigated a system similar to
the one described in this work, as well as its implementation
in ultracold atoms in optical lattices (see Sec. IV). Their
two spin-1/2 particles experience different one-dimensional
trapping lattices because one is spin-up and the other spin-
down. In contrast to our work presented in this publication,
the interaction between neighboring particles is not isotropic.
By tuning hopping and interaction strengths, the two particles
form topological bound states. Periodic modulation of these
two parameters leads to topological Thouless pumping of the
bound states. Without interaction, however, the system in [14]
is topologically trivial and no transport occurs.

A related phenomenon is Coulomb drag [15], where a
current in one conductor induces a current in a second, ad-
jacent, but electrically isolated conductor. In our system, the
two particles behave similarly but drag each other reciprocally
without an external bias (voltage) on either conductor.

This publication consists of the following parts. We in-
troduce the model in Sec. II and explore the behavior of
one particle during half its driving period in Sec. III. The
doublon dynamics can be conveniently analyzed by mapping
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FIG. 1. Chains a and b of identical length N = 5 (we chose this
small N for illustration purposes but performed all calculations with
much longer chains). The red and black lines indicate the hopping
J of particles a and b on their respective chains. Dashed gray lines
indicate the interaction V between nearest-neighbor sites on different
chains.

onto a 2D system, as discussed in Sec. IV. Section V describes
possible experimental implementations. Finally, we conclude
and discuss the significance of our work in Sec. VI.

We use units in which h̄ = 1.

II. SYSTEM

We consider the lattice shown in Fig. 1, consisting of
two chains a and b of length N with one particle on each
chain (also labeled a and b). Each particle may hop along its
respective chain; hoppings to the other chain are prohibited.
The particles move alternatingly, starting with particle a. The
interaction between particles is between nearest neighbors,
i.e., across the chains.

The Hamiltonian reads

Ĥ (t ) =
∑
〈i, j〉

(Ja(t )â†
i â j + Jb(t )b̂†

i b̂ j ) + V
∑
〈〈i, j〉〉

n̂(a)
i n̂(b)

j , (1)

where âi and b̂i are annihilation operators on site i of chains
a and b, respectively, â†

i and b̂†
i are the corresponding creation

operators, and n̂(a)
i = â†

i âi and n̂(b)
j = b̂†

j b̂ j are the occupation
number operators. 〈i, j〉 indicates nearest neighbors within a
chain and 〈〈i, j〉〉 nearest neighbors across the chains.

The hoppings Ja,b(t ) are assumed to be periodic with a
period T and piecewise constant,

Ja(t ) =
{

J, 0 � t < T/2,

0, T/2 � t < T,
(2a)

Jb(t ) =
{

0, 0 � t < T/2,

J, T/2 � t < T .
(2b)

We choose J = 1 in all numerical calculations throughout this
publication. With the labeling in Fig. 1, we can write

Ĥ (t ) =
N−1∑
i=1

(
(Ja(t )â†

i âi+1 + Jb(t )b̂†
i b̂i+1) + H.c.

+ V
(
n̂(a)

i n̂(b)
i+1 + n̂(a)

i+1n̂(b)
i

)) + V
N∑

i=1

n̂(a)
i n̂(b)

i . (3)

III. MOVEMENT OF ONE PARTICLE
DURING A HALF PERIOD

We investigate particle a’s movement on its chain a during
the first half period (0 � t < T/2). Particle a starts in site

i and propagates. Particle b is located in site j and remains
stationary during this time.

The Hamiltonian during this phase can be written as an
N × N matrix

H = HJ + HV . (4)

It consists of two parts, one describing the hopping

HJ = tridiag(J, 0, J ) =

⎛
⎜⎜⎜⎜⎜⎝

0 J 0

J 0 . . .

. . .
. . . J

0 J 0

⎞
⎟⎟⎟⎟⎟⎠ (5)

and one describing the interaction

HV = (vk,l ), (6)

with

vk,l =
{

V, k = l = j − 1, j, j + 1,

0, else
(7)

on sites neighboring the position j of particle b.

A. |V | � J

The interaction between particles is between neighboring
sites, i.e., for states with |i − j| � 1. Therefore, a strong po-
tential |V | � J leads to a large energetic separation of the
states i = j − 1, j, j + 1 from the others. If particle a starts
its movement in a site i with i < j − 1 (i > j + 1), it cannot
bridge this energy gap and will remain on the left side of par-
ticle b, i < j − 1 (right side, i > j + 1). Interestingly, it does
not matter if the potential is repulsive (V > 0) or attractive
(V < 0).

Assuming |i − j| � 1 with a strong potential |V | � J con-
fines particle a to the three sites j − 1, j, and j+1. The N×N
Hamiltonian (4) becomes limited to these three states (3×3),

H =

⎛
⎜⎝V J 0

J V J
0 J V

⎞
⎟⎠, (8)

with eigenenergies

E0 = V, E1,2 = V ±
√

2J (9)

and eigenstates

ϕ0 =
⎛
⎝ 1

0
−1

⎞
⎠, ϕ1,2 =

⎛
⎝ 1

±√
2

1

⎞
⎠. (10)

We can now write any time-dependent state as

ψ (t ) =
2∑

h=0

ch exp(−iEht )ϕh. (11)
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FIG. 2. Probabilities of particle a on different sites as a function
of time with |V | � J (a) for starting position i = j and (b) for
starting position i = j − 1. The crosses mark the probabilities at the
end of the driving phase ta = π√

2J
.

1. i = j

If particle a starts at i = j, ψa(0) = (0, 1, 0)T, the coeffi-
cients are c0 = 0 and c1,2 = ± 1

2
√

2
, resulting in

ψa(t ) = exp(−iV t )√
2i

⎛
⎜⎝

sin(
√

2Jt )√
2i cos(

√
2Jt )

sin(
√

2Jt )

⎞
⎟⎠. (12)

The probability at the three sites i = j − 1, j, j + 1 is

pa(t ) = |ψa(t )|2 = 1

2

⎛
⎜⎝

sin2(
√

2Jt )

2 cos2(
√

2Jt )

sin2(
√

2Jt )

⎞
⎟⎠, (13)

shown in Fig. 2(a). The particle moves symmetrically from the
starting site j to the left and right neighbors j ± 1, where it
reaches a maximum probability of 0.5 at time t = π

2
√

2J
before

completely returning to site j at t = π√
2J

.

2. i = j − 1

If particle a starts at i = j − 1, ψa(0) = (1, 0, 0)T, the
coefficients are c0 = 1

2 and c1,2 = 1
4 , resulting in

ψa(t ) = exp(−iV t )

2

⎛
⎜⎝

1 + cos(
√

2Jt )

−√
2i sin(

√
2Jt )

−1 + cos(
√

2Jt )

⎞
⎟⎠. (14)

0

1

1
2

pr
ob

ab
ili

ty
p

a
(t

)

0 π
2
√

2J
π√
2J

3π
2
√

2J

√
2π
J

time t

0

1

1
2

pr
ob

ab
ili

ty
p

b
(t

)
i

i + 1
i + 2
i + 3

FIG. 3. Probabilities of particles a and b on different sites as a
function of time. Particle a moves from site i via site i + 1 to site
i + 2 during the first phase; then particle b moves from site i + 1 via
site i + 2 to site i + 3 during the second phase.

The probability is

pa(t ) =

⎛
⎜⎝

cos4(Jt/
√

2)

sin2(
√

2Jt )/2

sin4(Jt/
√

2)

⎞
⎟⎠, (15)

shown in Fig. 2(b).
We choose ta = π√

2J
to achieve a complete transfer of

particle a from site j − 1 to site j + 1. Particle a leapfrogs
over particle b from its left to right neighbor. If we choose the
timing of the second phase of the driving cycle as tb = π√

2J
,

particle b will leapfrog over particle a, leading to directional
transport. Effectively, both particles move two sites to the right
without spreading. Figure 3 shows the probabilities pa(t ) and
pb(t ) for the complete cycle. Figure 4 shows a sketch of the
particles’ movement.

3. i = j + 1

If particle a starts at i = j + 1, ψi= j+1(0) = (0, 0, 1)T, it
will analogously leapfrog over particle b to site j − 1, result-
ing in directional transport to the left.

B. V = 0

For potential V = 0, the position j of particle b does not in-
fluence particle a’s movement. The Hamiltonian (4) simplifies

023032-3
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a b

FIG. 4. Sketch of the leapfrogging movement of particles a and
b during a complete driving cycle. During the first phase (0 � t <

T/2), particle a jumps over particle b and two sites to the right.
Then, during the second phase (T/2 � t < T ), particle b jumps over
particle a and two sites to the right.

to

H = HJ = tridiag(J, 0, J ) =

⎛
⎜⎜⎜⎜⎜⎝

0 J 0

J 0 . . .

. . .
. . . J

0 J 0

⎞
⎟⎟⎟⎟⎟⎠. (16)

The time-dependent Schrödinger equation

i∂tψa(t ) = Ĥψa(t ) (17)

leads to a diffusion-type equation for the time-dependent wave
function ψ (n, t ) in site n,

∂tψa(n, t ) = −iJ (ψa(n − 1, t ) + ψa(n + 1, t )). (18)

For a particle starting in site i on an infinitely long chain, it
follows [16] that

ψa(i + l, t ) = i−lJl (2Jt ) (19)

and

pa(i + l, t ) = |ψa(i + l, t )|2 = J 2
l (2Jt ), (20)

where Jl is the Bessel function of the first kind.
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FIG. 5. Probabilities of particle a on different sites as a function
of time with V = 0. The crosses mark the probabilities at the end of
the driving phase ta = π√

2J
.
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FIG. 6. Probabilities of particle a on different sites at time
ta = π√

2J
as a function of interaction V (a) for starting position i = j

and (b) for starting position i = j − 1.

The probabilities pa(t ) are shown in Fig. 5. Particle a
spreads symmetrically to the left and the right. This proves
that, without interaction between the particles (V = 0), no
doublons can exist and neither the stationary nor leapfrogging
state occurs.

C. V �= 0

For potential V �= 0 but not V � J , we have to use the
whole Hamiltonian (4) to describe the system.

A video in the Supplemental Material [17] shows the evo-
lution of the probabilities for increasing interaction V going
from the spreading at V = 0 shown in Fig. 5 to the periodic
returns at V � J shown in Fig. 2. We are mainly interested
in the probabilities at the end of phase a, ta = π√

2J
. These

are marked by crosses in Figs. 2 and 5. Figure 6 shows the
probabilities p(ta) as a function of the interaction V . Even
at relatively small interactions V � 6, the initial configura-
tion i = j remains stationary, pi= j (ta) ≈ 1. The leapfrogging
state (starting at i = j ± 1) needs higher interaction strengths
V � 20 to remain localized [pj∓1(ta) ≈ 1] while jumping
from site j ± 1 to site j ∓ 1.

IV. MAPPING TO 2D

We map the two chains to a square grid, as shown in Fig. 7.
The positions i and j of particles a and b are plotted along the
horizontal and vertical directions, respectively.
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FIG. 7. Mapping of the Hamiltonian to a 2D lattice with the two
particles’ indices along the two axes (a-chain index s at the x axis;
b-chain index t at the y axis). Red and black lines connecting sites
indicate the time-dependent hoppings Ja(t ) and Jb(t ). Gray crosses
indicate the combinations of lattice sites for which the interaction
potential is nonvanishing. These form the reduced lattice on which
the doublon dynamics take place if V � Ja,b. The unit cell of this
three-site-wide ribbon and the new labeling i − j = 1, 0, −1 are
indicated in brown.

A. Interacting subsystem for V � J

For strong interactions V � J , interacting states (located
on sites marked by crosses in Fig. 7) are energetically sep-
arated from noninteracting states (located on sites marked
by dots). If the initial state is interacting, it will remain an
interacting state. Hence, for V � J , we only need to consider
a subset of the 2D system, as indicated by the brown unit cell.
This reduced system is quasi-1D, effectively a three-site wide
ribbon. The unit cell m contains three sites, labeled by the
difference of positions a and b, i − j = 1, 0, and −1.

1. Stationary states

A state initially located at site (m, 0) will split towards sites
(m − 1,−1) and (m, 1) during the first phase, returning to
(m, 0) at the end of the phase, ta = π√

2J
. During the second

phase, it will equivalently split towards sites (m,−1) and
(m − 1, 1) before returning to (m, 0) at the end of the driving
cycle T = ta + tb =

√
2π
J . The state appears to be stationary

when looking stroboscopically after complete driving cycles.

2. Leapfrogging states

A state starting in site (m,±1) moves to site (m ∓ 1,∓1)
during the first phase and then to site (m ∓ 2,±1) during the
second phase. The states move two unit cells in each cycle.

3. Reflection at the corner

The two preceding paragraphs described the evolution of
states in an infinite system or the bulk of finite chains. Now,

we will investigate the effects of borders. The bottom left
corner comprises the complete unit cell m = 1. The upper
right corner is a partial unit cell m = N , containing only the
site (N, 0) with sites (N,±1) absent.

For the Hamiltonian at the edge, one needs to consider only
two sites during each driving phase (instead of three for the
bulk),

H =
(

V J
J V

)
. (21)

The eigenenergies are

E1,2 = V ± J (22)

and the eigenstates are

ϕ1,2 =
(

1
±1

)
. (23)

We can now write any time-dependent state during that driv-
ing phase as

ψ (t ) =
2∑

h=1

ch exp(−iEht )ϕh. (24)

Without loss of generality, we initialize the state as ψ (0) =
(1, 0)T. The coefficients become c1 = c2 = 1/2, resulting in

ψ (t ) = exp(−iV t )

(
cos(Jt )

−i sin(Jt )

)
(25)

and the probability

p(t ) = |ψ (t )|2 =
(

cos2(Jt )

sin2(Jt )

)
. (26)

Compared to the three-site Hamiltonian in Sec. III, the oscilla-
tion frequency of the two-site Hamiltonian is decreased from√

2J to J . Therefore, at the end of the phase ta = π√
2J

, the state
is incompletely transferred from one site to the next,

p(ta) =
(

cos2
(
π/

√
2
)

sin2
(
π/

√
2
)
)

≈
(

0.3669
0.6331

)
. (27)

The corner influences the stationary state starting at site (1, 0).
It leaks into (1, 1) in the first phase, from where it continues
to (2,−1) in the second phase. It also leaks into (1,−1) in
the second phase. The stationary state sends out leapfrogging
states until it vanishes. Here, we described the edge at m = 1,
but the behavior at the other edge is equivalent.

The leapfrogging states split up when they run into an edge,
similar to the stationary states.

4. Interpretation as a spin-1 system

Labeling sites in the unit cell as −1, 0, and 1 already sug-
gests an analogy to a spin-1 system. The leapfrogging states
undergo a spin-flip operation from ±1 to ∓1 in each phase,
accompanied by a spatial movement. The spin 0 states are
unaffected by the spin-flip and remain in the same location.
Experimentally, this could be achieved by moving particles
with a time- and space-dependent magnetic field.

Although there is a similarity to the quantum spin Hall
effect in that the transport direction depends on the spin, there

023032-5
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m + 1

m − 1m − 1

m + 1
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FIG. 8. Unit cell of the 45◦-rotated system. The sites within it are
numbered by α = 1, 2, 3, . . . , S with even S. The crosses mark the
diagonal sites and the dots mark the nondiagonal sites. The unit cell
is infinitely repeated in the vertical direction and numbered by the
index m. The height of the unit cell, d , is marked. Periodic boundaries
are employed horizontally, connecting sites S and 1 within the same
unit cell.

are essential differences. While the spin remains unchanged
in the spin Hall effect, it flips during transport in our model.

B. Band structure

Calculating a band structure in the one-dimensional sys-
tem described in Sec. II is impossible due to the particles’
interaction. After the mapping to 2D, we can calculate a band
structure. To do so, we use a unit cell (shown in Fig. 8), which
contains nondiagonal sites in addition to the three diagonal
sites. The sites are numbered α = 1, 2, 3, . . . , S with even S.
The unit cell is repeated infinitely in one direction and num-
bered by an index m. We employ periodic boundary conditions
in the other, finite direction, connecting the left and right edges
of the unit cell. While this periodicity does not exist in the
complete 2D system, the alternative would create diagonal
edges, which do not exist in the 2D square system since
there are only horizontal and vertical edges. The edge states
at these diagonal edges would obfuscate the bands we are
interested in.

We can write the Hamiltonians for the two phases of the
driving cycle in real space as

Ĥi =
∑

m

(
J

∑
α odd

(ĥi(m, α) + H.c.) + V
3∑

α=1

|m, α〉〈m, α|
)

,

(28)

with

ĥa(m, α) = |m, α〉〈m, (α − 1) mod S|
+ |m, α〉〈m + 1, (α + 1) mod S|,

ĥb(m, α) = |m, α〉〈m, (α + 1) mod S|
+ |m, α〉〈m + 1, (α − 1) mod S|. (29)

We transform the Hamiltonians to k space by making the
Bloch ansatz [18]

|m, α〉 = d

2π

∫
BZ

dk exp(−ikmd ) |k, α〉, (30)

0 π
2d

π
d

3π
2d

2π
d

momentum k along diagonal

−√
2

0

√
2

F
lo

qu
et

en
er

gy
ε F

FIG. 9. Band structure of a 20-site wide strip with V = 10. The
red bands reside on the three sites with the modified potential and the
black bands on other sites.

where d is the lattice constant in the vertical direction in
Fig. 8. We obtain

Ĥi = d

2π

∫
BZ

dk |k〉〈k|
(

J
∑
α odd

(ĥi(k, α) + H.c.)

+V
3∑

α=1

|α〉〈α|
)

, (31)

with

ĥa(k) = |α〉〈α − 1| + exp(ika)|α〉〈α + 1|,
ĥb(k) = |α〉〈α + 1| + exp(ika)|α〉〈α − 1|. (32)

The time evolution operator is

Û (T ) = exp

(
T

2i
Ĥb

)
exp

(
T

2i
Ĥa

)
. (33)

Solving the equation

Û (T )ψF = λFψF (34)

gives the Floquet [19] eigenstates ψF and the Floquet energies
εF are calculated from the eigenvalues λF = exp(−iεFT ).

The resulting band structure in Fig. 9 confirms our previous
observations on the behavior of the doublons. They are located
on the three sites α = 1, 2, 3, and Floquet eigenstates where
this is the case are drawn red in Fig. 9. One of these doublon
bands is quite flat, corresponding to the stationary doublons.
The two sloped bands correspond to doublons moving in
opposite directions along the diagonal. The other bands are
shown in black and form a continuum for N → ∞. These
bands are the diffusing states.

Depending on the potential V , some diffusing bands have
nonzero energy at the center of the Brillouin zone, εF(k =
π
d ) �= 0. These are edge states localized at the boundary be-
tween α = 3 and 4 and between α = S and 1.

Figure 10 shows the Floquet energies εF(k = π
d ) as a

function of potential V . The bulk states are at constant
εF(k = π

d ) = 0. The energies of the doublons increase linearly
with V , as indicated by the orange shadow around εF = V .
The energies of the edge states show an interesting behav-
ior: they have a tilted pole at V ≈ 3, where they approach
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FIG. 10. Floquet energies εF at k = π

d as a function of potential
V for a 20-site wide strip. The energies of the doublons are marked
by an orange shadow at εF = V .

the doublon energies. At higher potentials, they approach
the energy of the bulk states, limV →∞ εF(k = π

d ) = 0. There
are crossings between the doublon and edge state energies. We
have checked that they are avoided crossings by following the
Floquet eigenstates.

V. POSSIBLE EXPERIMENTS AND APPLICATIONS

Ultracold atoms in optical lattices [20,21] suggest them-
selves for an experimental realization of our model system.
The correspondence between our Floquet model and its real-
ization in an optical lattice is readily apparent. The moving
particles are the cold atoms. The sites of the lattice in the
model are the sites of the optical lattice, which traps the
ultracold atoms. The interaction between the two atoms can
be finely tuned using Feshbach resonances [22]. Bound atom
pairs have been demonstrated in periodically driven lattices
[23] and for repulsive interaction in static optical lattices [24].
Modulation of the lasers achieves a change of the lattice,
which enables the temporal modulation of the hoppings. Many
Floquet systems have been implemented in optical lattices
[25]. The use of Floquet engineering to modify the band
structures of temporally periodic systems of ultracold atoms
has been studied in both theory [26] and experiment [27].
Thouless pumping is one of the transport regimes that have
been implemented in optical lattices [28,29]. A recent report
[13] shows the implementation of interaction-induced Thou-
less pumping of fermionic 40K atoms in an optical lattice. In
their experiments, the interacting particles may be located on
the same lattice sites (in contrast to our model). The periodic
driving also differs. Nevertheless, the experiments suggest
that our model could be implemented in optical lattices.

Another implementation would be possible in photonic
waveguides [30–34]. The photonic waveguides are written
into a glass block; they constitute the lattice sites. The propa-
gation dimension of the light pulses (which are the particles)
corresponds to the temporal dimension. Hopping amplitudes

can be modified by changing the distance between waveg-
uides or turned on and off by writing “blockers” between
them. Directly implementing the two one-dimensional chains
would be challenging to realize experimentally because of
the necessary interaction between particles (light pulses) on
neighboring sites. The two-dimensional square lattice (after
mapping to two dimensions as described in Sec. IV) is more
suitable for experimental realization. The different potentials
of its lattice sites are implemented as different refractive in-
dices of the respective waveguides. Solitons and edge states
have been achieved experimentally [35–39] and also Thouless
pumping [40].

VI. CONCLUSION AND SIGNIFICANCE

We investigated two particles on two linear chains in a
periodic driving scheme and showed how their interaction
influences their temporal evolution. Without interaction, both
particles diffuse. With sufficiently strong interaction, they can
form a stationary bound state that remains localized with-
out diffusing. They can also form nonstationary, nondiffusing
states, which propagate in a leapfrogging manner. These states
are energetically separated from all others, as seen in the Flo-
quet band structure. The relative position of the two particles
in the starting configuration determines their behavior.

A possible extension of the system would be going from
linear chains to two-dimensional grids on which the particles
move. The added dimension would enable vertical and diago-
nal movement of the particles in addition to the horizontal one
on the chains.

Our relatively simple model system harbors spatially lo-
calized states, which are only stable due to interaction. We
think of it as a building block, a part of a toolbox for synthetic
quantum systems. We envision its potential use for transport-
ing two particles together for some distance and then splitting
them up again at the target location. This could be useful
for information transfer in quantum computing. Entangling
particles (e.g., their spins) before their transport would also
be possible.

Observing the evolution of the two particles and the life-
time of their bound state could allow us to measure the
strength of the interaction between them. Since the direction
of transport depends on the exact initial locations of the two
particles, the system could be used as a switch in quantum
computing, relaying signals to the left or to the right depend-
ing on the input.
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