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Solving optimization problems with local light-shift encoding on Rydberg quantum annealers
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We provide a non-unit-disk framework to solve combinatorial optimization problems such as maximum cut
and maximum independent set on a Rydberg quantum annealer. Our setup consists of a many-body interacting
Rydberg system where locally controllable light shifts are applied to individual qubits in order to map the
graph problem onto the Ising spin model. Exploiting the flexibility that optical tweezers offer in terms of
spatial arrangement, our numerical simulations implement the local-detuning protocol while globally driving
the Rydberg annealer to the desired many-body ground state, which is also the solution to the optimization
problem. Using optimal control methods, these solutions are obtained for prototype graphs with varying sizes at
timescales well within the system lifetime and with approximation ratios close to one. The nonblockade approach
facilitates the encoding of graph problems with specific topologies that can be realized in two-dimensional
Rydberg configurations and is applicable to both unweighted as well as weighted graphs. A comparative analysis
with fast simulated annealing is provided which highlights the advantages of our scheme in terms of system size,
hardness of the graph, and the number of iterations required to converge to the solution.
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I. INTRODUCTION

Using quantum computing for applications requires a fault-
tolerant scalable architecture [1–5]. The current so-called
noisy intermediate-scale quantum (NISQ) era is dictated by
noisy qubits and gates with comparatively low fidelities [6,7].
Despite these limitations, there is ongoing research in trying to
find suitable problems for which the quantum approach is su-
perior [7–10]. In particular, there is a class of problems whose
exact solutions are hard to obtain in polynomial time, and at
best, in certain cases, there exist only approximate solutions
to them. They fall under the category of NP-hard problems
[11,12] and are regularly investigated beyond the realm of
computational complexity theory in order to get better insight
into the performance of quantum algorithms [13–15]. In this
work, we consider two such NP-hard problems, namely, max-
imum cut (Max-Cut) and maximum independent set (MIS),
which are combinatorial optimization problems that have
many practical applications [16–20].

When solving a combinatorial optimization problem with
quantum systems, there are two pertinent challenges that arise:
(i) the choice of quantum hardware and (ii) the choice of
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quantum algorithm to be implemented. An ideal quantum
hardware should allow scalability with the number of qubits.
Qubits of superconducting devices still suffer from noise and
rely on a fixed architecture with localized connectivity [21],
while trapped ions are still too sensitive to external fields to al-
low scalability for more than 50 qubits [22,23]. Motivated by
recent experiments where hundreds of neutral Rydberg atoms
can be trapped and whose interactions can be manipulated
[24–26], there is a tendency and perspective to use Rydberg
platforms to solve optimization problems, which is also the
focus of this work.

Very recent developments in solving optimization prob-
lems on Rydberg platforms include solving the weighted MIS
graph problem on a Rydberg simulator [27] and the Max-Cut
problem using Rydberg gates [15] whose approximation ratio
suffers due to noisy gates. In both works, the quantum ap-
proximate optimization algorithm (QAOA) approach is used
to approximate the optimal solution [28,29]. In general, vari-
ational methods require finding optimal values for a large
number of variational parameters (e.g., initial state ansatz,
choice of the mixer, and number of layers), which by itself
is found to be an NP-hard problem [30,31]. This can make the
implementation of variational algorithms to solve a particular
optimization problem fairly cumbersome. For this purpose,
we propose an optimized quantum annealing protocol that is
implemented on the Rydberg platform.

Another issue is the choice of encoding which is a scheme
by which a real-world optimization problem is mapped onto
a system of interacting qubits. The encoding scheme depends
on the choice of both hardware and algorithm. Max-Cut and
MIS are optimization problems that can be represented in a
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Quadratic Unconstrained Binary Optimization (QUBO) form.
In this representation, the objective function along with its
constraints has a quadratic form with variables that take binary
values [32,33]. The advantage of formulating the problem in
QUBO form is that it can naturally map to interacting spin
models [34]. However, it should be mentioned that depending
on the type of optimization problem, this mapping is nei-
ther unique nor trivial to be physically realized [27,35–38].
For example, in Ref. [27], the MIS problem was encoded
on an interacting spin system using the unit-disk encoding
[39] that relies on the perfect implementation of the Rydberg
blockade effect [40] between the atoms. Based on the unit-
disk encoding, a problem graph with N vertices will require
∼4N2 physical spins which can be a substantial overhead of
resources [41].

In this work, by taking advantage of localized light shifts
on individual atoms, we encode and solve the Max-Cut and
MIS problems using a non-unit-disk mapping to spin models.
The proposed scheme has the benefit of tackling weighted
as well as unweighted graphs within the same framework
and can in principle be generalized to other QUBO prob-
lems. By combining gradient and nongradient optimal control
methods, we implement the temporal evolution of the laser
parameters that make the annealing process on the Rydberg
platform efficient to solve optimization problems. Thus we
obtain optimal solutions for different graphs (with sizes 5–15,
up to degree 5) with varying hardness within 3–5 µs with
an approximation ratio close to one. The hardness parameter
measures the complexity of the problem graph and serves as
a convenient metric for benchmarking the performance of our
optimal quantum annealing method. For graphs with similar
size and complexity, we find that our protocol outperforms
the simulated annealing algorithm [42] in terms of accuracy.
Our encoding scheme should be applicable on any quantum
platform that allows local qubit control along with global
driving of the many-body system to its ground state.

We proceed as follows. In Sec. II we outline the theoret-
ical description for the Rydberg simulator and introduce the
Max-Cut and MIS problems. We propose a three-step scheme
for non-unit-disk encoding and solving graph problems using
the Rydberg annealer architecture in Sec. III. In Sec. IV we
discuss the tools to characterize the complexity of the prob-
lems and the quality of the solutions. Finally, in Sec. V we
analyze our results, and detail the physical implementation of
our scheme in Sec. VI. Section VII contains our conclusions
and outlook.

II. THEORY

In Sec. II A, we provide a brief introduction to the many-
body Rydberg Hamiltonian which provides the setup for
quantum annealing while Sec. II B defines the Max-Cut and
MIS problems.

A. Hamiltonian of Rydberg simulator

We consider ultracold atoms trapped in optical tweezers
[43,44]. They are described as two-level systems consisting
of a ground state (|g〉) and a Rydberg excited state (|e〉) that
are optically coupled using a laser [45,46]. The Hamiltonian

expressed in the atomic basis reads as follows:

ĤRyd = �

2

∑
j

|e〉 j 〈g| + |g〉 j 〈e| −
∑

j

� j |e〉 j 〈e|

+
∑
k< j

Vk j (|e〉k 〈e| ⊗ |e〉 j 〈e|), (1)

where Vk j = C6/|r j − rk|6 is the van der Waals (C6 > 0) inter-
action between the pair of Rydberg atoms |e〉k and |e〉 j where
C6 is the associated dispersion coefficient. Here r j and rk are
the positions of the two atoms labeled as j and k. The detuning
� j is the site-dependent laser parameter describing the differ-
ence between the frequency of the applied field and the natural
frequency associated with the atomic transition. The Rabi
frequency � is the global laser parameter that couples the two
states and is proportional to the intensity of the driving field
and the dipole moment associated with the atomic transition.
Using the Pauli spin operator representation and setting � =
0, the above equation reduces to the Ising Hamiltonian with a
longitudinal field (up to a constant C = 1

4

∑N−1
j=1

∑N
k= j+1 Vjk),

given as

ĤIsing =
N∑

j=1

⎛
⎝� j

2
+ 1

4

N∑
k=1, j �=k

Vjk

⎞
⎠σ̂ z

j +
1

4

N−1∑
j=1

N∑
k= j+1

Vjk σ̂
z
j σ̂

z
k ,

(2)

where the negative sign is absorbed in � j . The first term is
the local longitudinal field which depends on the detuning
as well as

∑N
k=1, j �=k Vjk , while the second term corresponds

to the interaction between spins. The above Hamiltonian is
useful for the connection to optimization problems that can be
formulated in the QUBO framework.

B. Max-cut and MIS problem definitions

QUBO problems are often represented by a graph G(V, E )
with vertices V and edges E which take different representa-
tions depending on the problem, as shown in Fig. 1. Below we
define the classical cost functions for the Max-Cut and MIS
problems, respectively.

Max-Cut. Given a graph G with weights w jk associated
with each edge ( j, k), a subset of vertices from the graph is
referred to as a cut. This cut becomes a Max-Cut when the
vertices are split into two sets in a way that maximizes the
total weight (Max-Cut value) of edges between them. The
problem graph is illustrated in Figs. 1(a) and 1(b). Figure 1(a)
displays a weighted graph of size 4 and Fig. 1(b) shows a
dashed curve representing the cut that divides the graph into
two sets, blue and red. Both sets are interchangeable as the
solution is degenerate. The Max-Cut cost function, which is
to be maximized, is expressed as

CMax-Cut =
∑

( j,k)∈E

w j,k (Xj (1 − Xk ) + Xk (1 − Xj )), (3)

where the sum is over all the edges in the graph G. The
variable Xj ∈ {0, 1} represents the two sets in a cut.

MIS. Given a graph G with weights w j associated with each
vertex j, a subset of mutually nonadjacent vertices is said to
be a maximum independent set if it has the largest possible
sum of weights w j over all vertices in the subset. Figures 1(d)
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(a) (b) (c)

(f)(e)(d)

FIG. 1. Setup of weighted Max-Cut and MIS problems. (a) The problem graph for Max-Cut with weights wi j on the edges (such that
ω34 > ω14 > ω24 > ω12) and (d) the problem graph for MIS with weights wi on the vertices (such that ω3 > ω1 > ω4 > ω2). Panels (b) and
(e) show the solution to the corresponding problems. The dashed curve in (b) indicates the cut, dividing the graph into two sets, red and blue
vertices. In (e), red vertices constitute the MIS. Panels (c) and (f) correspond to an atomic configuration where the shaded blue region around
each atom indicates the local detuning and the global Rabi frequency used in the setup. Each atom is subjected to specific values of detuning
depending on the weights which are encoded in the distance-dependent interactions between the atoms as indicated with the solid black arrow.
Distance between atoms in the Rydberg configuration in the case of the Max-Cut problem follows r34 < r14 < r24 < r12 and in the case of the
MIS problem follows r34 < r14 < r12 < r24.

and 1(e) depict the MIS problem. The MIS can be found by
maximizing the following cost function:

CMIS =
∑
j∈V

w jXj −
∑

( j,k)∈E

w jwkXjXk, (4)

where the sum is over all the vertices V in the first term, and
in the second term the sum is over all the edges E . Here,
Xj ∈ {0, 1} where Xj = 1 indicates that a vertex j is in the
independent set. The first term in the cost function contributes
only when Xj = 1, and the second term ensures that no two
vertices with an edge between them belong to the independent
set. It is done by suppressing the occurrence of simultaneous
Xj = 1 and Xk = 1 along an edge.

III. NON-BLOCKADE-BASED PROTOCOL FOR SOLVING
MAX-CUT AND MIS ON RYDBERG ANNEALER

This section discusses the protocol adopted in this work
to solve the QUBO problems. The first step in solving the
Max-Cut and MIS problems using Rydberg annealers is to
encode the problem graph onto the physical spins (qubits) of
the Rydberg setup. In principle, this encoding scheme is not
unique and the most widely used approach, in the context of
Rydberg simulators, is the unit disk (UD) encoding [39,47].
Although it is the natural choice of encoding owing to the

fact that the Rydberg blockade effect successfully implements
unit disks in a straightforward manner [27,35,41], it has its
drawbacks. In order to solve a particular QUBO problem (in
this case Max-Cut or MIS) graph with N vertices, it requires
solving a graph with ∼4N2 unit disks. This significant over-
head along with the issue of unwanted interactions calls for
alternative encoding schemes.

One of the highlights of this work is to explore an alter-
native, non-blockade-based encoding scheme that allows us
to map QUBO to Rydberg annealers both for weighted and
unweighted graphs using a single framework and it possesses
a linear scaling with respect to N . In steps 1 and 2, we outline
our scheme of encoding the Max-Cut and MIS problem graphs
onto the Rydberg spin model, while in step 3, we discuss the
implementation of optimal quantum annealing using Rydberg
atoms.

Step 1: Mapping of cost functions using local detuning.
The cost functions CMax-Cut and CMIS defined in the earlier
section can be directly mapped to the spin Hamiltonians using
the standard definitions of the Pauli operators. The details are
provided in Appendix A and the corresponding spin Hamilto-
nians with N spins are given in the following, where

ĤMax-Cut =
N−1∑
j=1

N∑
k= j+1

w jk σ̂
z
j σ̂

z
k (5)
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is the spin Hamiltonian for the Max-Cut cost function
[Eq. (3)]. Comparing Eqs. (2) and (5), we define the detunings
� j in a manner such that they cancel the effective longitudinal
field in ĤIsing. Thus, for an atom at the jth position, the local
light shift is chosen to be � j = −1/2

∑N
k �= j Vjk . The edge

weights w jk from the graph are identified as the interaction
strength Vjk between the atoms labeled as j and k as Vjk =
4w jk . This implies that the value of the detunings is related to
the weights according to

� j = −2
N∑

k �= j

w jk . (6)

Similarly for the MIS problem, we get the Hamiltonian for
interacting spins to be

ĤMIS =
N∑

j=1

⎛
⎝−w j

2
+ 1

4

N∑
k=1,k �= j

e jkw jwk

⎞
⎠σ̂ z

j

+ 1

4

N−1∑
j=1

N∑
k= j+1

e jkw jwk σ̂
z
j σ̂

z
k . (7)

In the case of the MIS problem, e jk = 1 if and only if there
is an edge between vertices j and k, otherwise e jk = 0. On
comparing Eq. (2) with Eq. (7), the vertex weights w j from the
graph are related to the interaction strength Vjk between the
atoms labeled as j and k as Vjk = e j,kw jwk . The detunings � j

get chosen to represent the effective longitudinal field for an
atom at the jth position. This gives the following relationship:

� j = −w j . (8)

Thus, the mathematical problem of maximizing Eqs. (3) and
(4) is reduced to a physical problem of finding the many-
body ground state (MBGS) of the spin Hamiltonians given
by Eqs. (5) and (7), respectively. The scheme involves tem-
porally varying the laser parameters till the specific choice of
detuning values are obtained at the end of the protocol, all the
while minimizing the energy of the full system. This will be
elaborated in step 3.

The mapping of classical cost function to the Rydberg
Hamiltonian described here is a direct encoding type which
results in the linear scaling of the number of atoms needed
to represent the vertices of the graph. Consider a problem
graph G(V, E; W) where n(V) and n(E) are the number of
vertices and edges, respectively. Thus, for an all-to-all con-
nected graph, n(E) takes the maximum value, which is

n(EAll) = n(V)(n(V) − 1)

2
.

However, the number of edges for a general graph can vary
from 1 to n(EAll) depending on the problem that needs to be
solved. This implies that the dependence of n(E) on n(V) can
be expressed as

n(E) ∝ n(V)α,

where α ∈ [0, 2]. In some sense, the degrees of freedom for a
graph can be understood in terms of n(E). Hence, the number
of independent degrees of freedom in w jk for generic graphs
does not always scale quadratically with n(V) but can have

α < 2. For a direct encoding, the number of atoms required
is the same as the number of vertices in the problem graph.
If the direct encoding of the graph with N vertices were
to be implemented using only interactions between atoms,
then unwanted interactions cannot be ignored. This leads to
unavoidably creating unwanted edges that did not exist in the
original problem graph.

Step 2: Spatial arrangement of atoms. As seen in the
previous step, the distance-dependent interactions encode the
information about the weights of the graph. Therefore, be-
fore any evolution of the many-body Hamiltonian, the initial
arrangement of the atoms is crucial to the encoding scheme
as is represented schematically in Fig. 1. For example, the
case of a weighted Max-Cut graph with weights ω34 > ω14 >

ω24 > ω12 will correspond to atoms (purple balls) arranged
in a configuration such that r34 < r14 < r24 < r12 which are
trapped in tweezers (shown in green). Similarly, the weighted
MIS problem with weight relationship given by ω3 > ω1 >

ω4 > ω2 is associated with a Rydberg configuration where
r34 < r14 < r12 < r24. Since the weights ωi j are related to the
interactions V (ri j ), which in turn is reflected in the choice of
the ri j , the atoms are arranged in a manner that provides a
true representation of the graph. However, it is possible to
have interactions between atoms that do not share an edge
in the original graph problem. Such unwanted interactions
become a serious issue for graphs with higher degrees. For this
purpose, in two-dimensional (2D) geometry, the maximum
degree of a single node in the graph is limited to five, for
which we numerically checked that the unwanted interactions
do not play a significant role. Apart from the unwanted in-
teractions, the arrangement of the atoms which do have an
edge in the problem graph is also limited. This case appears
when the weights in the graph are such that the resulting
relative distances between the atoms cannot be realized on a
2D plane. Although the graphs that can be represented by the
geometrical arrangement of atoms are limited, we emphasize
that our scheme is applicable to a large class of graphs out
of which only a few are demonstrated in this work. One of
the ways to generate the family of accessible graphs is by
considering geometrically implementable graphs as the basis
and connecting them through an additional node between
them. However, adding a third dimension can also increase
the value of the allowed degree and the flexibility of the atom
arrangement.

Step 3: Optimal quantum annealing with Rydberg atoms.
The previous two steps outlined the encoding of the graph
problem to the Rydberg spin Hamiltonian. The goal is to find
accurate solutions to a problem graph as efficiently as possible
with respect to the number of iterations and run time. This is
achieved by numerically solving the spin dynamics using the
following Rydberg Hamiltonian for a specific arrangement of
atoms:

ĤRyd = �(t )

2

∑
j

σ̂ x
j −

∑
j

� j (t )n̂e
j +

∑
k, j

Vk j n̂
e
k n̂e

j, (9)

where σ̂ x
j = |e〉 j 〈g| + |g〉 j 〈e| and excitation number opera-

tor n̂e
j = 1

2 (σ̂ z
j + I) as |e〉 j 〈e|. The objective is to reach the

target Hamiltonian ĤMax-Cut,MIS [Eqs. (5) and (7)] while min-
imizing the energy of the system to obtain the instantaneous
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ground state whose configuration provides the solution to the
optimization problem. Initially, all atoms are in the ground
state |gg · · · g〉 which corresponds to a large nonzero detun-
ing value � j (t = 0) �= 0. During the protocol, the detuning
value on each atom, � j (t ), varies but attains a specific value
at the end of the protocol as defined by Eqs. (6) and (8).
The initial and final values of the Rabi frequency are set
to zero. At intermediate times, nonzero values of the Rabi
frequency �(t ) provide a transverse field for the above Ising
Hamiltonian. This generates quantum fluctuations and causes
different many-body states to couple with each other, thereby
accessing a larger part of the Hilbert space. This is key to the
quantum annealing process as it explores different configura-
tions through the application of the nonzero transverse field
while traversing the energy landscape to get to the desired
many-body ground-state configuration (i.e., the solution to the
problem graph). The idea is to use well-established techniques
of optimal control theory applied to quantum systems [48–54]
in order to reach this state in an efficient manner well within
the system lifetime. In particular, a combination of gradient-
and non-gradient-based methods (see Appendix C for details)
is used to shape the pulses in time which allows us to opti-
mally steer the many-body state towards the true solution. The
initial guesses for detuning and Rabi frequency are inspired
by the adiabatic evolution and are then optimized in time. The
objective function that needs to be minimized during the opti-
mal control is the expectation value of the target Hamiltonian
ĤMax-Cut,MIS with respect to the instantaneous many-body state
|ψinst (t )〉 which is given as

E = 〈ψinst (t )| ĤMax-Cut,MIS |ψinst (t )〉 . (10)

E is used as the cost function for the optimization but is not
the typical energy of the instantaneous many-body state. Apart
from E , we also define the overlap between the instantaneous
many-body state with the many-body ground state |ψg〉 of the
problem Hamiltonian ĤMax-Cut,MIS during the protocol given
as

F (t ) =
∑

g

|〈ψinst (t )|ψg〉|2. (11)

The fidelity F is calculated over all the degenerate ground
states for an a posteriori analysis of the quality of the solution
obtained. More details about the control methods are provided
in Appendix C.

IV. CHARACTERIZATION OF MAX-CUT
AND MIS PROBLEMS

In order to benchmark our protocol (algorithm), we need to
ascertain how close is the solution provided by our algorithm
to the true solution for problem graphs and compare it with
other methods. This is encapsulated in a quantity referred to
as an approximation ratio which is discussed in this section.
With regards to the efficiency of obtaining the solution for
a given algorithm, it is possible to have a scenario where
finding a solution for a particular graph is faster in run time
than compared to another graph of similar size. This indicates
that the latter graph is more complex or hard to solve which
is an inherent property of the problem graph. However, it is
nontrivial to characterize the complexity of arbitrary graphs.

TABLE I. The table shows a one-to-one correspondence between
the degenerate solutions (DSs) of the original Max-Cut and MIS
problems to the MBGS of the corresponding Rydberg Hamiltonians
given by Eq. (5) and (7), respectively.

Max-Cuta MISb

DS MBGS DS MBGS

10100 |egegg〉 10001 |eggge〉
01011 |gegee〉 10100 |egegg〉
01010 |gegeg〉 01010 |gegeg〉
10101 |egege〉 01001 |gegge〉
aFor the unweighted case of the graph in Fig. 2(a).
aFor the unweighted case of the graph in Fig. 2(f).

Motivated by Refs. [27,41], we generalize their hardness pa-
rameter to include a broader class of problems using the
notion of degenerate subspaces.

A. Approximation ratio

In general, the approximation ratio quantifies the worst-
case performance of an algorithm for solving a particular
problem. In certain cases, this ratio can be evaluated analyt-
ically. This is the case for the Goemans-Williamson algorithm
[55] solving the Max-Cut problem which is considered to be
the best classical approximate algorithm with an approxima-
tion ratio of 0.878. Any quantum algorithm outperforming this
ratio is suggestive of having an advantage over the classical
case. In order to benchmark quantum algorithms, it is more
convenient to evaluate this ratio numerically as defined in
Ref. [56] and given as

R = Cobt

Copt
, (12)

where Copt is the optimal value of the cost function and Cobt

is the obtained value of the cost function evaluated through
our method. In order to evaluate Copt, the exact solution to
the given problem should be available a priori. In the Results
section, we evaluate R for different graphs.

B. Hardness parameter

For Max-Cut and MIS problems, there are certain graphs
such as weighted ones that are generally more challenging
to solve computationally [57]. One way to identify the com-
plexity in a graph is by looking at the symmetries in the
adjacency matrix [58]. However, a physically more intuitive
way is to study the degeneracy in the many-body ground state
of the interacting spin systems. As a result of mapping the
cost functions using local detuning described earlier, there is a
one-to-one correspondence between the degenerate solutions
of the original Max-Cut and MIS problem to the MBGS
of the corresponding Rydberg Hamiltonians as shown in
Table I. The larger the degeneracy for the many-body ground
state (solution space), the higher the probability to get to the
optimal solution during the dynamics. But if the orthogonal
subspaces (not belonging to the solution space) also have large
degeneracy, then there is a possibility for the solution to get
stuck in one of these unwanted subspaces.
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Using this notion of comparing degeneracy between
relevant subspaces, a hardness parameter was defined
only in the context of the MIS problem [27], HP =
D|MIS|−1/(|MIS|D|MIS|). Here |MIS| and D|MIS| correspond to
the size of the MIS and the degeneracy of the solution space.
D|MIS|−1 defines the degeneracy of the subspace of suboptimal
independent sets which has one less arbitrary element (vertex)
from the MIS solution set. This hardness parameter is lim-
ited as it does not take into account all the other subspaces
(with sizes < |MIS| − 1) with relatively higher degeneracy.
Furthermore, this hardness parameter is not well defined for
the solution to the Max-Cut problem.

Thus, in this work, a more general hardness parameter is in-
troduced for both Max-Cut and MIS. This parameter includes
information about the degenerate subspaces and is defined as

HP =
∑

D>Dcutoff
D

CoptDopt
, (13)

where Dopt represents the degeneracy of the solution space,
Copt is the optimal value of the cost function, and D represents
the degeneracy of a subspace. The sum is taken over all
orthogonal subspaces whose degeneracy is greater than a spe-
cific cutoff value. The cutoff value is arbitrarily chosen until
the value of the hardness parameter HP shows convergence.
It should be noted that if Dopt > Dcutoff then this degenerate
configuration is excluded from the numerator sum. The hard-
ness defined for a problem instance is an inherent property of
the problem, independent of the algorithm. This is because the
hardness here characterizes if one instance of the problem has
a more nonconvex optimization landscape as compared to the
other instance. If a problem has more degenerate subspaces,
the optimization landscape will be more nonconvex and hence
harder to navigate for any classical algorithm. We numerically
find that our hardness parameter faithfully captures the com-
plexity of the problem graphs for various cases as shown in
the Results section.

V. RESULTS

As mentioned in step 2 of Sec. III, although we consider
prototypical graphs with a degree not more than five and with
restricted connectivity that is realizable in a two-dimensional
array of atoms in tweezers, we have solved for a large class of
graphs out of which only a few are shown here. These other
graphs can, e.g., be generated by combining smaller graphs
that are known to be solvable through an additional node
between them. Refer to Appendix B for numerical simulation
details.

To understand the working principle of our optimal quan-
tum annealing protocol, we consider a relatively simple case
of the weighted graph of size 5 and degree 3 for which the
Max-Cut and MIS solutions are shown in Figs. 2(a)–2(e)
and Figs. 2(f)–2(j), respectively. The optimized shapes of the
laser parameters (dotted black symbols for detunings, solid
dark red for Rabi frequency) are shown in Figs. 2(b) and
2(g), plots of fidelity (dashed green) and energy (solid blue)
in Figs. 2(c) and 2(h), plots of ordered energies Ei(t ) along
with basis state contribution in the instantaneous eigenstates
(indicated by green color bar) in Figs. 2(d) and 2(i), and
the population of basis states at three different time steps in

Figs. 2(e) and 2(j). The solutions for both problem graphs are
obtained efficiently (∼3.5 µs) and with high fidelity (∼0.99).
By turning on the Rabi pulse, one obtains multiple avoided
crossings in the many-body energy spectrum. The rate at
which the individual detunings are swept controls the Landau-
Zener transitions across multi-level crossings. This results in
a nontrivial path of dynamics for the many-body system to its
target state. Let C = [�1(T ),�2(T ), . . . ,�N (T )] be the set
of final local detunings for N atoms determined a priori by
the weights on the graph given by Eqs. (6) and (8). The ratio
between the set of detunings �1(T ) : �2(T ) : · · · : �N (T ) is
kept fixed during the entire protocol. Thus, a single time-
dependent parameter �G(t ) is defined such that the temporal
variation of each individual detuning at each atom j is given
as � j (t ) = �G(t )� j (T ) as shown in Figs. 2(b) and 2(g). This
factor �G(t ) is initialized such that it starts at a negative
value at t = 0 and increases to 1 at t = T , thereby providing
the desired set of detuning values at the end of the protocol.
The physical implementation of the local-detuning protocol is
elaborated in Sec. VI. The quantity E [defined by Eq. (10)] is
minimized and this is reflected in F [defined by Eq. (11)],
shown in Figs. 2(c) and 2(h). The approximation ratios R
[defined by Eq. (12)] of the final state are also indicated.
For a general Max-Cut problem graph, every cut has at least
twofold degeneracy because of the symmetry between up
and down spins. This is also the case for the chosen graph
and thus the Max-Cut problem has more degenerate states
compared to the MIS problem. This key feature is reflected
in the initial part of the dynamics. The change in E during the
initial part of the dynamics is synonymous with the change
in the instantaneous eigenstates [Figs. 2(h) and 2(i)] for the
MIS problem. However, this is not the case for the Max-Cut
problem. For Max-Cut protocols, we find that E stays constant
for a more extended initial period, signifying that the energy
of the instantaneous state is close to the high energy manifold
of the ĤMax-Cut and remains there longer as a result of the de-
generacy. Both for Max-Cut and MIS, the initial state |ggggg〉
is populated as shown in the leftmost panels of Figs. 2(e) and
2(j). At t = T for Max-Cut [rightmost panel of Fig. 2(e)], the
degenerate ground states (|egegg〉 and |gegee〉) are populated
while for the MIS case, a single state |eggge〉 is populated
[rightmost panel of Fig. 2(j)]. At intermediate times [middle
panels of Figs. 2(e) and 2(j)] due to the nonzero values of the
transverse field (� �= 0), multiple states get populated. Specif-
ically, 12 out of 32 in Fig. 2(e) and 9 out of 32 in Fig. 2(j),
highlighting the fact that the optimal protocol dynamics across
the energy landscape is nonintuitive. This aspect is reinforced
in Fig. 3 where we have 15 spins.

Figure 3 demonstrates the flexibility and scaling of our
encoding for a more complex case involving a weighted graph
of size 15 and degree 5. Figures 3(a) and 3(e) show the graph
topology and the exact solution for Max-Cut and MIS. For this
graph, there will be in general 15 final detuning values � j (T )
at time T . The set of local detunings will all vary with the
same fixed ratios between them. For illustration purposes, we
show the variation of the factor �G(t ) in Figs. 3(b) and 3(f).
Since the complexity of the problem is significantly increased,
we have a different choice for the initial parameters. In partic-
ular, a linear guess is used for �G(t ) in Fig. 3(f) while a linear
ramp with a flat top is used in Fig. 3(b). Figures 3(c) and 3(g)
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(a)

(b)

(c)

(d)

(e) (j)

(i)

(h)

(g)

(f)

FIG. 2. [(a)–(e)] The Max-Cut problem and [(f)–(j)] the MIS problem. [(a) and (f)] Weighted prototype graphs of size 5 with corresponding
solution graphs. [(b) and (g)] Optimal protocols for the Rabi frequency (solid dark red) and the local detunings (dotted black symbols) with
time. The local detuning of each atom is controlled by varying a single time-dependent parameter �G(t ) which is explained in the main
text. Maximum and minimum speeds in detuning change for the Max-Cut problem are 47.4 and 15.4 MHz/µs, respectively, and for the MIS
problem, they are 24.5 and 4.7 MHz/µs, respectively. The expectation value E of the problem Hamiltonian with respect to the instantaneous
state (solid blue) and the fidelity F (dashed green) of the instantaneous state with respect to the ground state are shown in (c) and (h), where R
indicates the approximation ratio. [(d) and (i)] The ordered energies of the instantaneous eigenstates, with a color bar indicating the population
of the basis states during the protocol. The population of the basis states of the Hamiltonian at final time t = T is shown at three different times
during the protocol in (e) and (j). As shown in the middle panels of (e) and (j), 12 states and 9 states out of 32 are populated in the middle
of the protocol. The output at the end of the protocol captures all the degenerate states corresponding to all the degenerate Max-Cut and MIS
solutions.

show the corresponding variation of the expectation value E
and fidelity F during the protocol. Another signature of the
complexity of this problem graph can be seen in Figs. 3(d)
and 3(h), where we find the significant population of a large
number of basis states out of the 215 states, especially at in-
termediate times. In Fig. 3(d), there are 1380 populated states
at t = 3.50 µs, and 310 populated states at t = 7.10 µs. Sim-
ilarly, in Fig. 3(h), there are 678 populated states at t = 3.50
µs, and 1029 populated states at t = 7.10 µs. It is remarkable
that, at the final time, we end up with a small set of degenerate
MBGSs. This is a direct consequence of the optimizer mini-
mizing E which forces the system to transfer the population
to the lower energy levels of the target Hamiltonian. Despite
the population of so many basis states, the optimal protocol
ensures efficient transfer to the optimal solution (R ∼ 0.99),
making the relevance of energy gaps redundant in the context
of multilevel dynamics. One may speculate that this intuition
will hold for larger systems.

Figure 4 compares the performance of our protocol (LO-
QAL) with fast simulated annealing (SA) for different graphs.
More details about SA are provided in Appendix D. In

particular, we illustrate the variation of the approximation
ratio error 1 − R [R is defined by Eq. (12)] with varying
system size N = 2–15 and hardness parameter HP [defined
by Eq. (13)]. In the case of Max-Cut, the approximation ratio
error (1 − R) shows similar trends with respect to the system
size N and the hardness parameter HP as shown in Figs. 4(a)
and 4(b). As system size increase, so does the number of
degenerate orthogonal subspaces (which affects the numerator
of HP). But since the degeneracy of the solution space for
the Max-Cut is always twofold (this affects the denominator
of HP), the overall hardness parameter increases with system
size. For the MIS problem, the SA gives a general upward
trend with oscillations in the approximation ratio error with in-
creasing system size N as seen in Fig. 4(c). These oscillations
are attributed to the degeneracy of the solution space being
linked to the system size which by construction is twofold for
even N and onefold for odd N for the graphs considered in
this study. The larger the degeneracy of the solution space,
the easier it is for the system to reach one of the solutions.
This oscillatory behavior is not reflected in the hardness pa-
rameter because our definition of HP takes into account the
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 3. Solutions to the [(a)–(d)] Max-Cut and [(e)–(h)] MIS problems for a graph of size 15 and degree 5 using the optimal quantum
annealing. Weighted prototype problem graphs with solution graphs for the Max-Cut problem are shown in (a) and are shown for the MIS
problem in (e). (a) Vertex 11 has a degree of 5; (e) vertex 4 has a degree of 5. [(b) and (f)] The optimal protocol for the Rabi frequency depicted
by the solid dark red curve and �G(t ) (defined similar to Fig. 2) depicted by the dashed black curve, with time. The maximum and minimum
speeds for detuning change, for Max-Cut protocols, are 28.8 and 5.1 MHz/µs, respectively, and, for MIS protocols are 1.8 and 0.8 MHz/µs,
respectively. The expectation value E (solid blue) of the problem Hamiltonian with respect to the instantaneous state and fidelity F (dashed
green) of the instantaneous state with respect to the ground state are shown in (c) and (g), where R indicates the approximation ratio. The
population of states at three different times (t = 3.50 µs, t = 7.10 µs, and t = 10.65 µs) are shown in (d) and (h).

(a) (c)

(b) (d)

FIG. 4. Comparison of optimized simulated annealing (SA) and localized optimal control for quantum annealing in a loop (LOQAL) for
[(a) and (b)] Max-Cut and [(c) and (d)] MIS problems. Approximation ratio error 1 − R with respect to system size N is shown in (a) and (c),
and for the hardness parameter HP in (b) and (d).

023031-8



SOLVING OPTIMIZATION PROBLEMS WITH LOCAL … PHYSICAL REVIEW RESEARCH 6, 023031 (2024)

(a)

(b)

(c) (e)

(d)

FIG. 5. Results using the optimal quantum annealing with noisy protocols to solve the Max-Cut problem for a graph of size 10. The
weighted prototype graph for the Max-Cut problem is shown in (a) along with the solution graph. The optimal protocol for the Rabi frequency
(solid dark red) and the factor controlling the detunings �G (dashed black) are shown in (b), where noise is added to the laser parameters of the
preoptimized protocol and in (d) where noise is added during the optimization of the parameters. The shaded regions represent the fluctuations
in the laser parameters for each run that were chosen from a random distribution. [(c) and (e)] Corresponding expectation value (solid blue) of
the problem Hamiltonian with respect to the instantaneous state (E ) and the fidelity F (dashed green) of the instantaneous state with respect to
the ground state for both cases, where R indicates the approximation ratio.

degeneracy of all the relevant subspaces and thereby suc-
cessfully characterizes the problem graphs. For the graphs
considered in Fig. 4, it clearly shows the quantum algorithm
is more robust and performs better than SA.

All results so far did not include any noise in the dynamics.
Using Max-Cut as an example, we apply the optimal quantum
annealing protocol to a noisy system as is expected in real ex-
periments. Figure 5 displays the Max-Cut problem of size 10
with noise up to 8% in the laser parameters chosen randomly
which is shown as shaded regions across the bold lines (mean
value) in Figs. 5(b) and 5(d). Two different approaches are
adopted to simulate the noisy model. In Fig. 5(b) the noise is
added after the optimization of the pulses while in Fig. 5(d) it
is added during the optimization procedure and the optimizer
adapts to the noisy protocol. The shaded region of the fidelity
F is broader than that of E (which is barely visible) and
is shown in Fig. 5(c), indicating that slight variations in the
parameters bring a small change in E , but drastic changes in
F . This is due to the fact that the gap in the lower energy
levels of the target Hamiltonian is vanishing. That results
in the system occupying low-energy excited states close to
the MBGS, at the same time dropping the fidelity as it is a
quantity highly sensitive to the occupied states. In order to
better simulate real experiments, a random error of up to 8% is
added to the laser parameters during each run which is shown
in Fig. 5(d). This causes the optimization landscape to adapt
to the random variations in the parameters. Thus, in Fig. 5(d),
the shaded region of the pulses is not as broad as in Fg. 5(b). In

Fig. 5(e) both the expectation value E and the fidelity F show
no significant effect of the noise, thereby being more resilient
to the laser noise.

VI. PHYSICAL IMPLEMENTATION OF THE PROTOCOL

For the numerical simulations shown in this work, we
considered Rydberg states 60S1/2 of the Cs atoms which have
a van der Waals coefficient C6 ∼ 139 GHz µm6 and a radiative
lifetime of ∼234 µs [25,59,60]. An essential aspect of the
protocol is to realize an array of trapped atoms with adjustable
interatomic distances ranging from 1 to 7 µm, which should
be achievable with the current state-of-the-art optical tweezer
technology [43]. An ingredient of our protocol is the opti-
mal control of the laser parameters. Apart from one global
near-resonant laser that couples the ground-state atom to its
Rydberg state with Rabi frequency �, we have another laser
whose intensity will be distributed over the atoms selectively
using a spatial light modulator [61]. This will provide in-
dividual local light shifts for the ground-Rydberg transition,
thereby implementing specific local detunings. At the end of
the experimental sequence, measurements of the distribution
of the Rydberg excitations can be performed by fluorescence
imaging. The whole process will be repeated multiple times to
efficiently calculate and classically minimize the expectation
value of the problem Hamiltonian [Eq. (10)].

We considered the case of noise in laser parameters in our
simulations but the experiments can suffer from a variety of
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errors, introducing different types of noise to the system which
includes motional dynamics, interaction induced dephasing
[62], blackbody radiation [63], and state preparation and mea-
surement (SPAM) errors [64], all of which could lead to a
significant drop in readout fidelity. There are ways to address
and control errors on the Rydberg platform, including con-
verting them into erasures [63] and transforming complicated
error models into Pauli-Z errors through the use of ancillary
atoms [65]. Future works will involve optimizing for noisy
models using our protocol.

VII. CONCLUSIONS AND OUTLOOK

Rydberg atoms can achieve the required scalability with
arbitrary connectivity between qubits, making them highly
desirable platforms to solve optimization problems. The pro-
tocol presented in this work is fairly universal in the sense that
it can handle both weighted and unweighted graphs within
the same framework, which is not always obvious for other
schemes and possibly could be generalized to other QUBO
problems beyond Max-Cut and MIS. Although the focus of
this work is on a Rydberg annealer, any quantum device that
permits local qubit control along with the global driving of the
many-body system can implement our protocol. A promising
aspect of the optimized dynamics is that it goes beyond the
energy gap dependence that would usually limit the adiabatic
protocols for large system sizes, which need to be verified for
larger systems.

The motivation for presenting an alternative encoding
scheme that is implementable on an optimized Rydberg an-
nealer is to have a more favorable scaling of the required
number of qubits for problem graphs with N vertices. For the
sizes and complexity of graphs considered here, we do find
accurate solutions for both the Max-Cut and MIS problem
graphs with N = 5 and 15 vertices that do have an O(N )
scaling. However, the topology of the graphs is limited due
to the issue of unwanted interactions. Such effects can be
mitigated using a three-dimensional arrangement of atoms
but further investigations are needed to generalize our en-
coding scheme for graphs with arbitrary connectivity and
degree. Despite having shown the advantage of our proto-
col with respect to fast simulated annealing, benchmarking
our method with other classical algorithms can shed more
insights into the performance of our method. A more thor-
ough analysis of optimal dynamics that can adapt to different
types of noise and in particular where Bayesian methods
[53,54,66] can prove to be useful will be the scope of future
work.
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APPENDIX A: MAX-CUT AND MAXIMUM INDEPENDENT
SET ENCODING

The mathematical mappings between the classical cost
functions [67] of Max-Cut and maximum independent set
to the target Hamiltonian as given in the main article are
provided in this section.

1. Max-Cut

The classical Max-Cut cost function which is to be maxi-
mized is given by

CMax-Cut =
∑

( j,k)∈E

w jk (Xj (1 − Xk ) + Xk (1 − Xj )), (A1)

where Xj ∈ {0, 1} and the sum is over all the edges E with
weights W in the graph G. By replacing Xj to Zj = 2Xj −
1 such that Zj ∈ {−1, 1}, the Max-Cut cost function CMax-Cut

becomes

CMax-Cut =
∑

( j,k)∈E

w jk

(
1 + Zj

2

(
1 − 1 + Zk

2

)

+ 1 + Zk

2

(
1 − 1 + Zj

2

))
(A2)

= 1

4

∑
( j,k)∈E

w jk ((1 + Zj )(1 − Zk )

+ (1 + Zk )(1 − Zj )) (A3)

= 1

2

∑
( j,k)∈E

w jk (1 − ZjZk ). (A4)

The 1/2 in w jk is absorbed and the sum
∑

( j,k)∈E over

edges is changed to a double sum
∑N−1

j=1

∑N
k= j+1, where N

is the total number of vertices. This gives

CMax-Cut =
N−1∑
j=1

N∑
k= j+1

w jk (1 − ZjZk ), (A5)

where w jk = 0, if there is no edge between the vertices j and
k. The above cost function can be represented as an Ising-type
Hamiltonian with the help of Pauli matrices,

ĤI =
N−1∑
j=1

N∑
k= j+1

w jk
(
1 − σ̂ z

j σ̂
z
k

)
, (A6)

such that the expectation value of ĤI is the same as CMax-Cut.
The sum over the first term in ĤI [Eq. (A6)] is just a constant,
so finding the maximum 〈ĤI〉 can be formulated in terms of
the Hamiltonian,

ĤMax-Cut =
N−1∑
j=1

N∑
k= j+1

w jk σ̂
z
j σ̂

z
k , (A7)

where minimization of 〈ĤMax-Cut〉 leads to the maximization
of 〈ĤI〉. In this way, the mathematical problem of maximizing
CMax-Cut in Eq. (A1) is reduced to a physical problem of
finding the many-body ground state of the Hamiltonian given
by Eq. (A7).
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2. Maximum independent set

The MIS can be found by maximizing the following cost
function:

CMIS =
∑
j∈V

w jXj −
∑

( j,k)∈E

w jwkXjXk, (A8)

where Xj ∈ {0, 1}. The sum is over all the vertices V with
weights W in the first term, and in the second term the
sum is over all the edges E . Similar to the case of Max-
Cut, Xj is replaced by Zj and the cost function CMIS

becomes

CMIS =
∑
j∈V

w j
(1 + Zj )

2
−

∑
( j,k)∈E

w jwk
(1 + Zj )

2

(1 + Zk )

2
(A9)

=
∑
j∈V

w j

2
+

∑
j∈V

w jZ j

2
− 1

4

∑
( j,k)∈E

w jwk − 1

4

∑
( j,k)∈E

w jwk (Zj + Zk ) − 1

4

∑
( j,k)∈E

w jwk (ZjZk ) (A10)

=
∑
j∈V

w j

2
− 1

4

∑
( j,k)∈E

w jwk +
∑
j∈V

w jZ j

2
− 1

4

∑
( j,k)∈E

w jwk (Zj + Zk ) − 1

4

∑
( j,k)∈E

w jwk (ZjZk ). (A11)

Now
∑

( j,k)∈E w jwk (Zj + Zk ) contains the sum over all the edges connected to the jth vertex. So for each vertex, the
contribution is coming from the neighbors alone,

∑
( j,k)∈E

w jwk (Zj + Zk ) =
∑
j∈V

w jZ j

⎛
⎝∑

k∈S j

wk

⎞
⎠, (A12)

where S j is the set consisting of the neighbors of the jth vertex. The cost function then becomes

CMIS =
∑
j∈V

w j

2
− 1

4

∑
( j,k)∈E

w jwk +
∑
j∈V

w jZ j

2
− 1

4

∑
j∈V

w jZ j

⎛
⎝∑

k∈S j

wk

⎞
⎠ − 1

4

∑
( j,k)∈E

w jwk (ZjZk ) (A13)

=
∑
j∈V

w j

2
− 1

4

∑
( j,k)∈E

w jwk +
∑
j∈V

(
1

2
−

∑
j∈S j

wk

4

)
w jZ j − 1

4

∑
( j,k)∈E

w jwk (ZjZk ). (A14)

The first two terms are just constants. If Zi is replaced by σ̂ z
i , the problem of finding the maximum of C (or minimizing −C)

is equivalent to finding the many-body ground state of ĤWMIS,

ĤMIS =
∑
j∈V

(∑
j∈S j

wk

4
− 1

2

)
w j σ̂

z
j + 1

4

∑
( j,k)∈E

w jwk σ̂
z
j σ̂

z
k . (A15)

The sum
∑

( j,k)∈E in the second term in Eq. (A15) can be converted to a double sum as follows:

ĤMIS =
N∑

j=1

⎛
⎝−w j

2
+ 1

4

N∑
k=1,k �= j

e jkw jwk

⎞
⎠σ̂ z

j + 1

4

N−1∑
j=1

N∑
k= j+1

e jkw jwk σ̂
z
j σ̂

z
k , (A16)

where ei j = 1, if and only if there is an edge between vertices
i and j; otherwise, ei j = 0. The parameter ei j captures the
information about the neighbors of the vertex i. The sum∑

j∈Si
is over all the neighbors of spin i and is replaced by∑N

j=1, j �=i ei j .

APPENDIX B: NUMERICAL DETAILS
OF RYDBERG ANNEALER

The time-dependent Rydberg Hamiltonian provided by
Eq. (9) is implemented using the sesolve function from the
QuTip library [68]. The objective is to find the many-body
ground state of the target Hamiltonians given by Eq. (5) for
Max-Cut and Eq. (7) for MIS (see main text). The expec-
tation value E of the target Hamiltonian with respect to the

instantaneous many-body state is minimized during the opti-
mal quantum annealing protocol. The profile of a global Rabi
frequency �(t ) is optimized in time while the initial and final
values remain zero. An initial guess for �(t ) is provided such
that �(t ) = A(1 − cos(πt/T ))2, where T is the total time of
the protocol and A is of the order of a few megahertz. A
localized detuning � j (t ) on each atom is also optimized in
time where each � j (t ) at time T is given by Eqs. (6) and (8).
For a particular graph, the ratios between individual � j (T )
are kept fixed during the entire protocol; hence, optimizing a
single prefactor �G(t ) will result in the optimization of in-
dividual detunings given by � j (t ) = �G(t )� j (T ). �G takes
a negative value at t = 0 such that the many-body ground
state of the Hamiltonian at t = 0 is |gg · · · g〉, which means
all atoms are in the ground state. �G is then varied in time
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and reaches one at t = T ; the many-body ground state of the
Hamiltonian at t = T corresponds to the solution of Max-Cut
and MIS problems. The total time T is divided into subparts
by selecting eight points; �(t ) and �G at these eight time
points are optimized during the optimal quantum annealing
to reduce E and are connected by b splines. After the system
reaches its final state, fidelity F is also calculated to measure
the accuracy of the obtained many-body state. F represents the
probability of finding the system in one of the ground states,
which differs from the approximation ratio. The approxima-
tion ratio R is also calculated at the end of the protocol to
measure the quality of the solution.

APPENDIX C: OPTIMAL CONTROL THEORY METHODS

Optimal control theory is a mathematical framework that
helps determine the best way to control a dynamical system by
finding parameters that extremize a specific objective function
[69]. It involves solving an optimization problem by adjusting
control inputs over time while considering system dynamics
and constraints. In physics, it has been used for shaping laser
pulses, gate operations, and controlling chemical reactions
[70–72]. For such optimization problems, gradient [73,74]
and nongradient [75,76] methods can be used. Gradient-based
methods rely on calculating the gradient of the objective func-
tion with respect to the parameters and on updating them
iteratively in the direction of the negative gradient to reach
an optimal solution. In contrast, nongradient methods are
typically heuristic or evolutionary algorithms that iteratively
explore the search space to reach an optimal solution. In this
work, we use a combination of Broyden-Fletcher-Goldfarb-
Shanno (BFGS; gradient-based) [77–80] and Nelder-Mead
(non-gradient-based) methods [81]. A description of both
methods is given below.

Broyden-Fletcher-Goldfarb-Shanno (BFGS). The BFGS
method [77–80] is one such gradient-based method that ap-
proximates the inverse of the Hessian matrix of the objective
function using information from the gradients of the function.
At each iteration, the BFGS method calculates the change
in the gradient and uses it to update the current estimate of
the inverse Hessian. The new estimate of the inverse Hessian
is then used to determine the search direction for the next
iteration. The update formula is given by

Hk+1 = (
I − ρkskyT

k

)
Hk

(
I − ρkyksT

k

) + ρksksT
k , (C1)

where Hk is the inverse Hessian approximation at iteration k,
sk = xk+1 − xk is the difference between the current and previ-
ous estimates of the parameters, yk = ∇ f (xk+1) − ∇ f (xk ) is
the difference between the current and previous estimates of
the gradient, ρk = 1/(yT

k sk ), and I is the identity matrix. The
BFGS method typically starts with an initial inverse Hessian
approximation, H0, and iteratively updates the approximation
until convergence is reached. The search direction at each
iteration is given by dk = −Hk∇ f (xk ), and the step size is
determined using a line search method.

Nelder-Mead (NM). As for non-gradient-based methods,
NM [81] is one such method: it iteratively searches for the
minimum of an objective function. The NM method relies on
exploring the simplex, a geometric figure with n + 1 vertices

in n dimensions. At each iteration, the algorithm evaluates
the objective function at the vertices of the simplex and then
performs a set of operations to update the simplex, such as
reflection, expansion, contraction, or shrinkage, based on the
values of the function. The method continues until a stopping
criterion is met, such as reaching a maximum number of itera-
tions or when the function value change is small. Initialization
is a step in which a simplex is defined based on an initial set
of n + 1 points in n-dimensional space. The function values at
the vertices of the simplex are evaluated. The worst vertex of
the simplex (i.e., the vertex with the highest function value) is
then reflected through the centroid of the remaining vertices.
If the reflected vertex has a lower function value than the
second-worst vertex, the simplex is expanded in that direction.
Otherwise, the reflected vertex is retained. If the reflected
vertex has a higher function value than the worst vertex, the
simplex is contracted towards the best vertex. If the contracted
vertex has a lower function value than the worst vertex, it is
retained. Otherwise, the simplex is shrunk towards the best
vertex. If none of the previous steps improves the function
value, the simplex is reduced toward the best vertex. Finally,
the algorithm terminates when a stopping criterion is met,
such as a maximum number of iterations or a slight change
in the function value.

BFGS when compared to NM, can converge faster for
smooth, convex functions. But at the same time, BFGS may
get stuck in local minima or saddle points if the function
has many local optima. Consequently, a combination of both
methods is used in this work. The methods were applied
sequentially in the order of BFGS-NM-BFGS (B-Nel-B), bal-
ancing exploration and exploitation. Starting with BFGS, the
algorithm can quickly converge to a local minimum, and then
NM is used to explore other regions of the objective function
and get closer to the global optimal value. Finally, using BFGS
can refine the solution and potentially converge to a better
optimal value.

Parameters for NM and BFGS. Implementation in the code
is done by the optimize.minimize function from the PYTHON

library SciPy [82]. For both methods a convergence factor
of 10−4 was set. The first layer of BFGS has a maximum
iteration variable which was set to 3–6 depending on the size
of the problem and was set to 2 for the last layer. In NM,
both maximum iterations and maximum number of objective
function evolution need to be fixed and were given a value of
300 to get convergence. These values were set based on the
competition between the time it takes to evaluate one layer
and the quality of the solution. In the case when the system
was noisy, three times the number of runs were required as
compared to the noiseless case.

APPENDIX D: SIMULATED ANNEALING

In this section, details of simulated annealing (SA) are
discussed, which is used for benchmarking the quantum con-
trol method used in this work for the specific graphs. All
the simulations for this method are performed by using an
optimized SA from the SciPy library [82].

Method. Simulated annealing [83] is an algorithm used
to solve optimization problems through a global search ap-
proach. It works by simulating the process of heating and
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(b)

(c)
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FIG. 6. Optimized simulated annealing for Max-Cut and MIS problems. (a) The plot of the probability of failure (1 − Psuccess) and (b) the
run time (trun) in minutes as a function of the number of iterations, Niterations (varying from 10 to 10 000). In (a) and (b), a weighted problem
graph with 10 vertices and 13 edges is chosen. [(c) and (d)] The plot of the probability of failure 1 − Psuccess and run time trun in minutes as a
function of the number of vertices, N (varying from 2 to 16), for the unweighted problem graphs.

cooling a material to reduce defects and minimize energy.
With each function call, the algorithm searches for a new
solution point in the search space. If the new point has lower
energy than the previous point, it is accepted as the new
optimal value with a probability of 1. If not, the probability of
acceptance depends on the temperature. As the temperature
decreases, the algorithm becomes more selective and only
accepts better solutions. The algorithm consists of multiple
cycles, each defined by a one-time cooling process to lower
the temperature from an initial to a final value. While the
algorithm is stochastic, it can be optimized through a local
search approach to reduce the search space and find an optimal
solution. Time for the procedure can further be optimized by
including the annealing schedule from fast simulated anneal-
ing (FSA) [42], which consists of semilocal searches with
occasional long jumps.

Setting up of the numerics for SA. For both MIS and Max-
Cut problems, the cost function was defined to provide the
optimum solution at the function’s minima. In this work for
SA, the temperature is lowered from 0.4 to 0.01 under a dis-
torted Cauchy-Lorentz distribution schedule (FSA) [42,84].
During the simulations, a limit of 2000 function calls per
iteration and 50 cycles was fixed. However, the maximum

number of function calls was never reached and all cycles
were completed. Each full run consists of multiple iterations,
an optimum is reached at the end of each full run, and 50
such full runs were performed for statistics. The probability
of success, Psuccess, and run time trun to reach the optimum
are measured as a function of the number of iterations for
a weighted problem graph to find an optimum number of
iterations for a single run as shown in Figs. 6(a) and 6(b).
A total of 5000 iterations was chosen for subsequent simu-
lations, as it is enough to decrease the error in the statistics
of Psuccess and have a reasonable trun. After fixing the number
of iterations, 15 unweighted graphs were chosen of a vary-
ing number of vertices from 2 to 16, to study the effect of
system size in finding the optimum and scaling of run time.
As shown in Figs. 6(c) and 6(d), a general trend of increase
in run time and a decrease in the probability of success is
observed for both problems. An oscillatory behavior in the
probability of success is also observed with varying system
sizes for even and odd numbers of vertices in the graph. This
behavior is attributed to the degeneracy of the solution space.
If the optimum is highly degenerate, there is an increase in
the probability of reaching the optimum stochastically as the
solution space is larger.
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