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In the field of ergodicity-breaking phases, it has been recognized that quantum avalanches can destabilize
many-body localization at a wide range of disorder strengths. This has in particular been demonstrated by the
numerical study of a toy model, sometimes simply called the “avalanche model” or the “quantum sun model”
[Phys. Rev. Lett. 129, 060602 (2022)], which consists of an ergodic seed coupled to a perfectly localized material.
In this paper, we connect this toy model to a well-studied model in random matrix theory, the ultrametric
ensemble. We conjecture that the models share the following features. (1) The location of the critical point may
be predicted sharply by analytics. (2) On the localized site, both models exhibit Fock space localization. (3) There
is a manifold of critical points. On the critical manifold, the eigenvectors exhibit nontrivial multifractal behavior
that can be tuned by moving on the manifold. (4) The spectral statistics at criticality is intermediate between
Poisson statistics and random matrix statistics, also tunable on the critical manifold. We confirm numerically

these properties.
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I. INTRODUCTION

Our knowledge of quantum thermalization in many-body
systems has significantly improved in the last years [1-4]. A
particularly exciting aspect of quantum thermalization is its
ability to occur in perfectly isolated systems. This is possible
since the information about thermalization can be detected
even on a level of Hamiltonian eigenstates [1,5-7]. Valuable
contribution to this development was provided by experimen-
tal advances to realize nearly perfectly isolated many-body
quantum systems [8—16].

Of equal importance is to understand the boundaries of
quantum thermalization and the conditions under which er-
godicity breaking phase transitions may take place. At the
current stage of research, it is particularly important to es-
tablish toy models of ergodicity breaking phase transitions,
which exhibit clear features of critical behavior already in
finite systems amenable to numerical simulations. Advances
in this subject may bring new impetus for ongoing experi-
mental activities [17-25], as well as provide new perspective
into many-body localization [26-29], for which different per-
spectives about its stability in the thermodynamic limit have
recently been formulated [30-61].

The theory of quantum avalanches provides a mecha-
nism of thermalization in interacting systems in the absence
of translational invariance, when small ergodic regions
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coexist with mesoscopic nonergodic regions [62]. The theory
explains why a seemingly stable nonergodic region, which
exhibits a vanishingly small coupling to an ergodic region,
may eventually thermalize [52,54,62—71]. At the same time,
it also provides conditions for the breakdown of thermaliza-
tion, which have been recently tested numerically in various
quantum systems [64,69,70,72-74].

Avalanche theory has been studied mostly within toy mod-
els, one of which was called the “quantum sun model” (QSM)
in [70,72], which we will mostly refer to below. At this
moment, models like the QSM are the only examples of a
many-body ergodicity breaking transition in Hamiltonian sys-
tems that have the potential to be truly well understood, as
they seem well accessible both analytically and numerically.
In this paper, we want indeed to start a more detailed inves-
tigation of the QSM. The main Leitmotiv we use here, is the
comparison of the QSM to a well-known model in random
matrix theory, namely, the “ultrametric model” (UM) [75].
Despite the fact that the latter model is not commonly thought
of as a many-body model, we conjecture that the behavior of
the QSM and the UM is, when cast in the same language,
nearly identical in the thermodynamic limit for a broad range
of model parameters. In particular, we expect the following
similarities, also sketched in Fig. 1.

(1) Both models have a natural parameter that we call «,
and the transition occurs at . = 1/+/2.

(2) On the nonergodic (localised) side of the transition, the
models exhibit Fock space localization. This is characterized
by the vanishing of fractal dimensions.

(3) Both models have a continuum of critical points, that
can be tuned by some natural parameters, with a natural in-
terpretation as interpolating between the nonergodic and the
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FIG. 1. Phase diagram of the avalanche models studied in this
work, as a function of the tuning parameter « that drives the system
from an ergodic phase (in which short-range spectral statistics com-
ply with random matrix theory predictions) to a nonergodic phase
(that exhibits Fock space localization). At the critical point, o = «,,
the spectral statistics may not comply with random matrix theory
predictions and the Hamiltonian eigenstates exhibit multifractality in
the basis of uncoupled spin-1/2 particles.

ergodic side. Correspondingly, the spectral statistics at the
critical points interpolate between the Poisson statistics of
the nonergodic phase and the random matrix statistics of the
ergodic phase.

(4) These critical points are multifractal, i.e., they are
characterized by a family of critical dimensions.

These similarities would be in particular remarkable be-
cause the QSM, being a many-body model, has a number of
disorder variables that scales like the physical volume of the
system, hence like the logarithm of the Hilbert space dimen-
sion. In contrast, the UM has a number of disorder variables
that scales like the Hilbert space dimension itself. Yet, in a
certain sense, the UM is a more natural model than the QSM to
describe the coupling of a small ergodic region to a perfectly
localized system; whereas the QSM artificially pretends that
the coupling is only to single spins S; of the localized system,
the UM describes the more realistic! case where this particular
coupling also involves all spins S, j < i, closer to the ergodic
region.

In this paper, we proceed concretely as follows. In Sec. II,
we introduce the two models under consideration, the QSM
and the UM. We then introduce the indicators of the critical
point in Sec. I11, i.e., the level spacing ratio, participation and
entanglement entropies, and the Schmidt gap. We establish
two criteria of the critical point: (a) the level spacing ratio and
the entanglement entropy of the most weakly coupled spin ex-
hibit a scale invariant point, and (b) the first derivatives of the
participation and entanglement entropies exhibit a sharp peak.
In both models, these scale invariant points and the peaks of
the derivatives almost perfectly coincide with the analytically
predicted value for the critical point. In Sec. IV, we then study
Fock space localization on the nonergodic side and multifrac-
tal properties at the manifold of critical points. To this end, we
extract the fractal dimension from the scaling of participation
entropies. We argue that the degree of multifractality can be
tuned by either modifying the size of the initial ergodic seed,
or by the overall coupling of the ergodic seed to the remainder
of the system. Finally, in Sec. V, we study properties on the
critical manifold through the lens of level statistics. We show

'By more realistic, we mean that this is what emerges when we
derive the model from the assumption that the perfectly localized
region is described by many-body local integrals of motion obtained
by perturbative diagonalization of the Hamiltonian.

FIG. 2. Sketch of the avalanche physics. (a) The ergodic quan-
tum dot with N = 3 spin-1/2 particles (within a circle), which are
uncoupled from the remaining L = 3 isolated spin-1/2 particles. The
quantum avalanche is enabled by a hierarchical coupling of the dot
to the remaining particles: (b) strong coupling to the closest parti-
cle, (c) moderate coupling to the subsequent particle, and (d) weak
coupling to the most distant particle.

that the values of the scale invariant level spacing ratio is
close to the random matrix theory prediction if the fractal
dimension is close to 1, and it decreases towards to Poisson
value upon enhancing multifractality, i.e., upon decreasing the
fractal dimension towards zero. We conclude in Sec. VI.

II. MODELS

In this section, we introduce the two models studied in this
work, the QSM and the UM. In particular, we provide the
definition of both models, norms of operators contained in the
models, and in Appendix A we show their density of states.

In both models, N denotes the number of spin-1/2 parti-
cles within the subsystem that we denote the quantum dot.
Throughout our scaling analysis, we keep N = O(1) constant.
Setting N = 3 as an example, the quantum dot is sketched as
a region bounded by a blue circle in Fig. 2. However, the type
of interaction that gives rise to the proceeding avalanche, as
sketched in Figs. 2(b)-2(d), depends on the particular model.
With the term avalanche we have in mind a process that gives
rise to ergodicity of spin-1/2 particles outside the dot. In
the absence of coupling to the particles within the dot, the
particles outside the dot are frozen in either of the 7 = +1/2
states. The number of particles outside the dot is denoted by L
and we consider the thermodynamic limit of both models by
fixing N and sending L — oo.

A. Quantum sun model (QSM)
The QSM Hamiltonian is given by

L-1 L-1
A =Hu+ g0y a8 85+ 1S (1)
=0 =0

The first term on the right-hand side (r.h.s.) of Eq. (1),
Hgoi, acts nontrivially on the dot degrees of freedom only.
Properties of the latter are described by a 2V x 2V random
matrix R drawn from a Gaussian orthogonal ensemble (GOE),
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R = %(A +AT) € 2V x 2N, where the matrix elements A; ;

are sampled from a normal distribution with zero mean and
unit variance. Then,

14

Hin = === R @
such that the parameter y controls the bandwidth of the
dot. The prefactor 1/4/2V 4 1 ensures that at y = 1, Hyo
has a unit Hilbert-Schmidt norm ||Hyy|| = 1, where [|H||> =
(H?) = Tr{H?}/D and the Fock space dimension is D =
2N+L (the system has no other conservation laws apart from
the total energy).

The second term on the r.h.s. of Eq. (1) describes the
interaction of a strength gy between the spin-1/2 particles
inside and outside the dot. In particular, a particle j outside
the dot is only coupled to a randomly selected particle n;
inside the dot. The coupling strength «* is tuned by the
parameter «, and u; is the distance between a coupled particle
and the dot. We sample u; from a random box distribution,
uj € [j—¢;, j+¢;]with &; = 0.2 for all j, except for j =0
when uy = 0.

The third term on the r.h.s. of Eq. (1) describes the fields
h; that act on spin-1/2 particles outside the dot, drawn from a
random box distribution h; € [W — dw, W + Sw], with W =
1 and 8y = 0.5. The matrix structure of the Hamiltonian at
N=L=3,a0a=0.85and go = y = 1 is shown in Fig. 3(a).

B. The ultrametric model (UM)

One of the main messages of this work is our conjecture
that the UM of the random matrix theory (RMT) may be
considered as a toy model of the avalanche theory, which
retains all of the relevant physical features of the QSM while
striping down all the unnecessary bits. Several aspects of
the UM have been studied in the past [75-83], however, its
connection to the avalanche theory has to our knowledge not
yet been explored.

We note that the initial motivation for studying the UM
was to better understand the Anderson localization transi-
tion of noninteracting particles [75]. Consequently, the term
“ultrametric” corresponds to the particular geometry of a hi-
erarchical lattice (“ultrametric lattice”), in which the metric is
defined as the number of steps needed for a single particle to
hop from one node to another node. Here we are interested
in many-body physics and hence we formulate the UM in
the Fock space of N + L spin-1/2 particles with dimension
D = 2N*L; see the definition below. For simplicity, we use
the same name for the model. One may define an ultrametric
distance d in our many-body model by ordering the spin-1/2
particles, cf. Fig. 2, by a decreasing coupling from the ergodic
quantum dot. For simplicity, let us assume that there are no
particles within the dot, i.e., N = 0. Then, the two spin con-
figurations [0 @0\ ... o\”) and |6”ai” ... 5"} are said to
be at distance d if o}" # 0", but o{* = o(” forall j > d.

The model Hamiltonian is constructed as a sum of block-
diagonal random matrices 1-7;( with k =0, 1, ..., L, where k
is proportional to the ultrametric distance d. At each k, the
matrix structure of Hj consists of 2L diagonal blocks of
size 2NV+k x 2Ntk Tn analogy with the QSM, we sample each
random block independently from the GOE distribution and

Quantum sun model
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FIG. 3. Hamiltonian matrix structure of (a) the quantum sun
model from Eq. (1), and (b) the ultrametric model from Eq. (4). In
both cases, we consider N = L = 3 and the coupling parameter o« =
0.85, while the other parameters of the Hamiltonians are go = y = 1
in (a) and J =1 in (b). A common feature of both models is the
existence of 2F = 8 dense blocks of size 2V x 2V = 8 x 8, denoting
the ergodic quantum dot. Outside these blocks, the matrix is sparse
in (a) and dense in (b). The matrix elements in each dense block in
(a) are identical, except for their diagonal values, which are related to
the distributions of random fields /;, see Eq. (1). The matrix elements
of each block in (b) are sampled independently. When the size of the
blocks is increased, the magnitude of their matrix elements is reduced
accordingly.

use normalization in accordance with Eq. (2), such that

HO RO ik 3)
= . r=1,..., .

k /IN+K } |

Here, the superscript i denotes the ith random block. We

sample its matrix elements in analogy to the QSM, hence

RV = \%(A + AT) € 2N*k x 2Ntk The full Hamiltonian of

the UM then reads

L
H = I‘?o +]Zak1‘7k,
k=1

ae[0,1). “)

The first term Hy of size 2V x 2V models the initial quantum
dot that consists of N spin-1/2 particles in the absence of
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coupling to the external particles. The sum in the second
term mimics the exponentially decaying coupling between
the dot and the kth localized spin-1/2 particle through the
exponentially decaying values of . Additionally, we have
also included the parameter J tuning the overall perturbation
strength, which carries certain analogies with the parameter gg
in the QSM in Eq. (1). As in the QSM, we interpret the UM
as being defined in a Fock space of N + L spin-1/2 particles,
with D = 2¥*+L, The matrix structure of the UM Hamiltonian
atN =L =3,a =0.85, and J = 1 is shown in Fig. 3(b), and
the density of states in both models are shown in Appendix A.

The UM can also be thought of as a discretized version of
the power-law random banded model (PLRBM) [82,84,85].
In the latter, the off-diagonal matrix elements &; ; are random
numbers whose standard deviation decays with the distance
r from the diagonal, at large r, as std(h—j=) < r ¢ =
27417 The connection with the UM can be made if one
approximates log, r with an integer, e.g., as d = [log, |, and
associates d with the ultrametric distance of the UM. Then,
the decay of the off-diagonal matrix elements in the PLRBM,
o 279 _should be compared with the decay in the UM at large
d, < ad/x/24, cf. Eqs. (3) and (4). This yields the relationship
between the decay exponent a of the PLRBM and « in the
UM,

a=1—loga. Q)

It follows from Eq. (5) that the transition point a, = 1 in the
PLRBM corresponds to the transition point o, = 1/+/2 in the
UM.

C. Relationship between the QSM and UM

The matrix elements of both models, shown in Fig. 3
at N = L = 3, illustrate certain similarities and differences
between the two models. The matrix elements within the
dot are in both cases depicted by the dense blocks of size
2V x 2V =8 x 8 along the diagonals. Then, the QSM only
contains two-body interactions between particles outside the
dot and randomly chosen particles within the dot. This gives
rise to the overall sparse structure of the Hamiltonian matrix,
shown in Fig. 3(a). In the UM, on the other hand, a particle k
outside the dot (k = 1,2, ..., L) is effectively coupled to all
particles inside the dot as well as to particles k¥’ < k outside the
dot. This gives rise to the dense Hamiltonian matrix, shown in
Fig. 3(b).

The most important similarity of both models is that the
critical point o between an ergodic and nonergodic phase is
expected to occur in the thermodynamic limit (N fixed and
L — o0) at the same value,

1
o 7 0.707. ©6)
This expectation is based on the hybridization condition ar-
gument [62], which considers the situation when a particle k&
outside the dot interacts via a coupling g; with the ergodic
bubble consisting of N + (k — 1) particles. The hybridization
condition is expressed as

_ (n|V|m)
A

g , @)

where the states |n), [m) are tensor product states of eigen-
states of the ergodic bubble and the two-level system of the
spin-1/2 particle k. Conjecturing that the matrix elements of
eigenstates of the ergodic bubble satisfy eigenstate thermal-
ization hypothesis [1,5-7], one can approximate the matrix
element as (n|V|m) ~ gi+/A, where the level spacing A of the
many-body spectrum scales as A o< 2~¥*%_ In both models,
the coupling g, scales as g; oc o, such that the key tuning
parameter is « € [0, 1). The critical point then emerges when
G o ak2k/2 remains a nonzero constant when k — 0o, which
occurs at & = o, = 1/+/2, as given by Eq. (6).

We will show in this work that for system sizes amenable
to state-of-the-art exact diagonalization of Hamiltonian ma-
trices, Eq. (6) provides an accurate estimate of the transition
point for a wide range of model parameters. In Sec. IV, we
will also consider an example of weak coupling between the
inner and outer particles in the QSM, for which the transition
point in the system sizes under investigation occurs at « that
exceeds «, from Eq. (6).

III. INDICATORS OF THE CRITICAL POINT

We now turn our attention to the signatures of the critical
point upon tuning the parameter «. We numerically study the
statistical properties of the energy spectra and the properties
of their corresponding energy eigenstates using full exact di-
agonalization of the Hamiltonian matrices from Egs. (1) and
(4). In all cases under investigation, we will first focus on the
UM, for which finite-size convergence of the numerical results
is the most favorable, followed by the comparison with the
QSM.

The goal of this section is twofold. First, we would like to
establish similarities between the two models under investi-
gation, and show evidence that the prediction for the critical
point from Eq. (6) provides an accurate estimate for the criti-
cal point in a broad range of parameters of both models. Then,
we will compare different indicators of the critical point to
explore which of them provide the most accurate prediction
of the critical point, and to study for which regimes of model
parameters the finite-size effects around the critical point scale
most favorably. The latter will be instrumental for the analysis
of Fock space localization in the nonergodic phase and multi-
fractal properties at the critical point, which we will study in
Sec. IV.

A. The average ratio of the adjacent level spacings

We first proceed by analyzing the average ratio of the
adjacent level spacings r [28], shortly the average gap ratio.
For a target eigenlevel n, the ratio 7, is defined as

in{8E,, 6E,_ . _
Py = —mm{ U = min {rn, r, ]}, 8)
max{S$E,, SE,_}

where 0E, = E,.1 — E, is the level spacing between the
eigenlevels n + 1 and n, respectively, while r, is the ratio
of the consecutive level spacings, r,, = 6E,/SE,_;. By defi-
nition, {7,} only assume values from the interval [0, 1], and
hence no unfolding procedure is needed to eliminate the influ-
ence of finite-size effects through the local density of states.
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FIG. 4. The average gap ratio r vs « in the UM at J = 1. (a), (b) and (c) show results at N =0, 1, and 3, respectively. The vertical
dashed line denotes the prediction « = o, = 1/ /2 from Eq. (6). The GOE and Poisson limits rgog and rpeisson are denoted by the upper and
lower horizontal dashed-dotted lines, respectively. Results for r are averaged over Nympies = 1000, 400, and 300 Hamiltonian realizations for

L+N< 13, L+N =14, and L + N = 15, respectively.

To obtain the average value r,

r = ((Fu)n)t. ©))

we first average over N.j; = 500 eigenstates near the center
of the spectrum for each Hamiltonian realization, denoted
by (---), in Eq. (9), and then over an ensemble of spectra
for different Hamiltonian realizations, denoted by (-- - )y. In
the ergodic regime, » assumes the GOE value rgog =~ 0.5307
[86], while the prediction for energy levels with Poissonian
statistics iS rpoisson = 21n2 — 1 ~ 0.3863 [28].

The results for r versus « are shown for the UM (atJ = 1)
in Fig. 4 and for the QSM (at gy = ¥ = 1) in Fig. 5. There are
two main messages from these results.

The first result is that the critical point is rather accurately
predicted for both models by . = 1/+/2 from Eq. (6). The
location of the critical point is estimated by a crossing point
or r versus « at different values of L, which signals scale
invariance of r at the critical point. We will show in the next
sections that this approach to detect the critical point agrees
very well with those based on the analysis of participation and
entanglement entropies.

The second result is that by increasing N the spectral statis-
tics at the critical point gets closer to the GOE value rgog.
This is most prominent at N = 3 in the UM, see Fig. 4(c),
and at N = 5 in the QSM, see Fig. 5(b), for which the point
o = o, signals the breakdown of r from rgog. In these cases,
therefore, the criterion for the critical point based on the
breakdown of r from rgog replaces the criterion based on the
emergence of a scale invariant crossing point of the r values.

Figure 5 also reveals an important numerical detail about
the QSM. Namely, at N = 3 the crossing point of the r values
emerges at « that is slightly larger than «., see Fig. 5(a), while
at N =5 the breakdown point of r from rgog is accurately
predicted by «. This property was already noticed in Ref. [70]
that considered N = 3 and in Ref. [73] that considered N = 5.
We conclude from these results that by increasing N in the
QSM, the transition point for the available system sizes gets
more accurately predicted by «. from Eq. (6). Still, since the
thermodynamic limit is obtained by increasing L — oo and
hence L is expected to be larger than N, the value of N in the
actual calculations should not be too large. In what follows,

we set N = 5 as a compromise to obtain optimal convergence
of finite-size effects in the QSM.

In Figs. 16 and 17 of Sec. IV, we will further show that
decreasing J and g in the UM and the QSM, respectively, fur-
ther shifts the r values at the critical point closer to the Poisson

0.40

0.50

0.45

0.40,

0.2 0.4 0.6 0.8 1.0

FIG. 5. The average gap ratio r vs & inthe QSM at go = y = 1.
(a) N =3 and (b) N = 5. The vertical dashed line denotes the pre-
diction ¢ = . = 1/ V2 from Eq. (6). The GOE and Poisson limits
7o and rpygson are denoted by the upper and lower horizontal
dashed-dotted lines, respectively. Results for r are averaged over
Nsamples = 500 Hamiltonian realizations.
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FIG. 6. Participation entropies S [(a)~(c)] and their derivatives dSt(;I; /da [(d)—-(f)] inthe UM at J =1 and N = 1. [(a) and (d)] ¢ = 0.5

typ

in the main panel and ¢ = 0.1 in the insets. [(b) and (e)] ¢ = 1. [(c) and (f)] ¢ = 2 in the main panel and g = 6 in the inset. Vertical dashed
lines denote o = «, from Eq. (6). Results for S9 are averaged over Nympies = 1000, 400, and 300 Hamiltonian realizations for L < 12, L =

typ
13, and L = 14, respectively. Averaging over the eigenstates, (- - -

spectrum for each data point.

value rpoisson- This insight will be used to tune the multifractal
properties of the eigenstates at the critical point.

B. The inverse participation ratio and the participation entropy

We next focus our attention towards the properties of the
Hamiltonian eigenstate wave functions. To that end, we calcu-
late the inverse participation ratio (IPR) for a selected number
of Hamiltonian eigenstates |n). The IPR, generalized to an
arbitrary index g, is defined as

D

PN(In))y =) I Giln) 1. (10)

i=1

The generalized IPR as such is basis dependent. Here, |i) are
the states in the computational basis, i.e, the basis in which
S’f operators are diagonal, |n) is a Hamiltonian eigenstate at
the corresponding energy E,, and ¢ is a parameter of the
calculation.

For convenience, the quantity that we actually study is the
participation entropy, which is defined as the logarithm of
the IPR. Here we mainly focus on the participation entropy
of the typical IPR,

1 -
Sup = T (P}, ), (11
q
where the brackets (---), and (---)y denote the averages

over Hamiltonian eigenstates at a fixed realization and dif-
ferent Hamiltonian realizations, respectively. The limiting

)u» was performed over N, = 1000 eigenstates near the center of the

S(q)

value of S

entropy,

as g — 1 is the von Neumann participation

D
Sfy'£=—<<2|<i|n> 2 In] Giln) |2>> RNGE)
i=1 nl H

We note that we have also studied the participation entropy of
the average IPR, S@ = ﬁ In((P;"),) i, with no qualitative
physical differences (not shown here).

The goal of this section is to explore to which extent one
can use the IPR-based quantities to pinpoint the critical point.
Figures 6(a)—6(c), and the corresponding insets, show St(‘” ver-
sus ¢ at various g inthe UM atJ = 1 and N = 1. They behave
according to the expectations: St(;’; approaches in the limit
a — 0 an L-independent constant, and it increases (roughly
linearly) with L in the ergodic phase at o > o.. However,
based on the analysis of S[(ng only, it appears to be impossible
to determine the critical point without any a priori knowledge
of it.

In Figs. 6(d)-6(f), we show that a valuable information
about the critical point can be obtained by calculating the
derivative of the participation entropy, dSt(}f’; /do, and plot it
versus «. This analysis is inspired by the recent results for
the Anderson models [87,88], which showed that the peak
of dSt(;’g /dW (where W denotes the disorder amplitude) is
located very close to the Anderson localization transition in
three dimensions [87], and it drifts to zero in two dimensions
[88]. A similar tendency is also observed in the UM at J = 1
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dashed lines denote o = a, from Eq. (6). Results for Sy,
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[(a)—(c)] and their derivatives dSt(;I;/doe [(d)—(f)] in the QSM at go =y = 1 and N = 5. [(a) and (d)]

are averaged over Ngmpes = 500 Hamiltonian realizations. Averaging over the

eigenstates, (- - - ),, was performed over N, = 500 eigenstates near the center of the spectrum for each data point.

and N = 1, shown in Figs. 6(d)-6(f). Namely, the peak in
de;’ﬁ /do is, for most values of g, located very close to the
predicted critical point ¢ = «, from Eq. (6).

As a technical remark, we calculate the derivatives
dSt(;g /da by first interpolating the raw data for Sf;ig with
cubic splines using the UnivariateSpline function from the
scipy.interpolate library. Then, using the tools available
within the same interpolating function, we also evaluate the
first derivatives. We use the same procedure also to evalu-
ate the derivatives of the Rényi entanglement entropies in
Sec. ITIIC.

The g dependence of the results in Figs. 6(d)-6(f) reveals
rich information about the behavior of participation entropies
close to the critical point. We observe that at g = 2, see
Fig. 6(f), the peak location coincides with @ = «, to extremely
high accuracy even in small systems. This remarkable prop-
erty is also observed at higher g, see the inset of Fig. 6(f),
while at smaller ¢ this high precision is lost, see the results in
Figs. 6(d)-6(e). In the localized regime of the PLRBM (i.e., at
a > 1), it was shown that the generalized IPR at ¢ < 1/2 may
not exhibit localization at arbitrary a > 1 as a consequence
of power-law localization [84,85]. Based on the relationship
between the PLRBM and UM discussed in Sec. IIB, we
expect similar features to emerge in the UM as well. This
is consistent with the observation in the inset of Fig. 6(d),
which suggests that at ¢ < 1 in the UM it becomes nearly im-
possible to detect the critical point since d Sf;’g /da exhibits a
shoulder in the vicinity of the critical point rather than a sharp
peak.

While the results in Fig. 6 were obtained for the UM at
N =1, in Fig. 20 of Appendix B, we also show the results
(at g = 2) for other values of N. We observe that the finite-
size effects scale most favorably at N = 1, i.e., at this value
of N, the peak of de;’g /da emerges almost exactly at o = «
already in small systems of N + L = 11 spin-1/2 particles.
We hence consider the UM at N = 1 as the model that is best
suited for the analysis of the critical behavior in finite systems,
and we only study the N = 1 case further on.

In Fig. 7, we complement the results for the participation
entropies in the UM by showing the results for the QSM at
go =y =1 and N = 5. Qualitatively, the results in Fig. 6
and 7 are rather similar, which is the main message of these
analyses. Still, the accuracy to determine the location of the
critical point via the peak of dSl(;]; /da is in the QSM not as
high as in the UM. Figure 7(f) shows that again the most
accurate results are obtained in the large ¢ regime, ¢ 2 2. In
case the precise position of the critical point is not known in
advance, a possible method to improve the prediction for the
critical point (that we do not pursue here) is to extract the
position of the peak for each L, and then scale these values to
the limit L — oo.

To summarize the results for the participation entropies, we
note that its derivative with respect to the tuning parameter
of the transition, dSt(;]g /do, exhibits a peak that we expect is
located at the critical point in the thermodynamic limit. An
additional insight that we obtained from our analysis is that
in finite systems amenable to exact diagonalization, the most
accurate prediction for the critical point are obtained at large
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values of ¢ 2 2. On the other hand, the results in the opposite
limit g < 1 are, at least for the available system sizes, not very
useful for determining the critical point.

C. Rényi entanglement entropies of eigenstates

While the analysis of the participation entropies in the
previous section turned out to be quite useful for the de-
termination of the critical point, we here complement these
results by studying the entanglement based measures. The
participation entropies contain information about the whole
wave function, and hence they may not be very sensitive to
the properties of the particles that are “most distant” from
the ergodic quantum dot. (With “most distant” we have in
mind the particles that are most weakly coupled to the ergodic
quantum dot.) On the other hand, the entanglement entropies
allow for selecting arbitrary subsystems. Here we focus on the
entanglement properties of most distant spin-1/2 particles. A
physical motivation for this choice is that the ergodicity break-
ing phase transition within the avalanche theory is expected to
occur when the avalanche fails to thermalize the most distant
particles, and hence the change of their properties contains
crucial information about the transition.

We consider the eigenstate entanglement entropies of sub-
systems that consist of p most distant spin-1/2 particles. The
Fock space H of the studied Hamiltonian carries a tensor
product structure

H=HNOH1®...QHy, 13)

where Hy refers to the dot degrees of freedom and #; to the
ith spin-1/2 particle outside the dot. We partition the system
into two partitions A, and B, such that H = Hs, ® Hp,.
Here, we take B, to be a collection of p spins farthermost
from the dot,

B,={L—p+1,...L},

while A, denotes the remainder of the system that consists of
N + L — p particles. In the following, unless necessary, we
shall omit the subscript p when referring to the partitions.

For the density matrix p of the full system, we obtain the
reduced density matrix of the subsystem B by tracing out the
degrees of freedom in A,

pg=Trap,  Trpp =1, (14)
where p = |n)(n| is the density matrix associated to the
Hamiltonian eigenstate |n). Upon diagonalization of pp we
obtain the eigenvalue spectrum of the reduced density matrix,
which we denote by {A,...,A;,..., Ap,}, where A; > A;y;.
Here, Dy is the reduced Fock space dimension which equals
2P in our analysis. The gth Rényi eigenstate entanglement
entropy, which is normalized such that its maximum value is
bounded from above by 1, is then defined as

Dy
1 1
(@) — q
Sl = Bl—q<<lnz Ai>>H, (15)

i=1

with ¢ > 0 and ¢ # 1. The limiting value of S as ¢ — 1 is
the von Neumann eigenstate entanglement entropy,

1 Dy
5<'>=—1 5 << x,-lnx,->> ) (16)
NEB\\ o ul o

As in Eqgs. (9), (11), and (12), the averaging is performed
over Hamiltonian eigenstates and different Hamiltonian real-
izations. At p = 1, one can get further analytical insight into
the entanglement entropies, which we present in Appendix C.

Results for the eigenstate entanglement entropies S at
p =1 are shown for the UM in Fig. 8. They are consistent
with the limiting behaviors described in Egs. (C2) and (C3)
of Appendix C, i.e., S~ is very close to | at o = a, see
the inset of Fig. 8(a), and S~ at o = a is considerably
smaller than 1, see the inset of Fig. 8(c).

The eigenstate entanglement entropies S@ exhibit an
important advantage when compared to the participation en-
tropies St(y(’;, namely, the critical point can readily be estimated
to high accuracy from the crossing point of S@ versus o
at different L, see Figs. 8(a)-8(c). Moreover, its derivative,
dS¥ /da, also exhibits a peak that is located very close to
the predicted critical point « = «.. We again observe that the
location of the peak almost exactly coincides with o, at large
q, see Fig. 8(f), while at small ¢ the agreement is less accurate,
see Fig. 8(d). To evaluate the derivatives of the entanglement
entropies, we use the same procedure as the one outlined in
Sec. III B.

Analogous results for the eigenstate entanglement en-
tropies S@ at p = 1 are shown for the QSM in Fig. 9. Also
in this case, there exist a scale invariant (i.e., L independent)
point of S that is almost exactly located at the critical point
o = o, see Figs. 9(a)-9(c). The derivative dS? /da exhibits
a peak very close to the critical point, see Figs. 9(d)-9(f).
Nevertheless, the location of the peak in the QSM does not
coincide with oo = o as accurately as in the UM shown in
Figs. 8(d)-8(f). Still, the common feature of both models is
that the position of the peak gets closer to . when g is
increased. All these results confirm that the similarity of the
critical behavior in both models also emerges on a level of
entanglement entropies.

So far, we mostly focused on the ¢ dependence of S@
and its impact on the determination of the critical point.
Results in Figs. 8 and 9 showed that one can pinpoint very
accurately the critical point using S at p = 1, i.e., when
studying the entanglement properties of the subsystem that
consists of a single, most distant spin-1/2 particle from the
ergodic quantum dot. A natural question is then to ask what
is the optimal size of the subsystem that is most sensitive to
the emergence of the critical behavior. In Figs. 21 and 22 of
Appendix C, we show results that are analogous to those in
Figs. 8 and 9, respectively. However, they are calculated for
the subsystems that consist of p =4 most distant particles
from the dot. Results in Figs. 21 and 22 suggest that they are
still consistent with the emergence of the critical point in the
vicinity of o = o, nevertheless, the accuracy is not as good
as for the results at p = 1, in particular for the QSM. From
these we conclude that, at least for the QSM, the most valuable
information about the transition is encoded in the particles that
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1.0

FIG. 8. The Rényi entanglement entropies S’ [(a)-(c)] and their derivatives dS@/da [(d)-(f)] in the UM atJ =1,N =1,and p = 1.
[(a) and (d)] ¢ = 0.5 in the main panel and g = 0.1 in the insets. [(b) and (e)] ¢ = 1. [(c) and (f)] ¢ = 2 in the main panel and ¢ = 6 in the inset.
Vertical dashed lines denote o = o, from Eq. (6). Results for S'@ are averaged over Nsamples = 1000, 400, and 300 Hamiltonian realizations
for L < 12, L =13, and L = 14, respectively. Averaging over the eigenstates, (- - -),, was performed over N, = 1000 eigenstates near the
center of the spectrum for each data point.

o
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FIG. 9. The Rényi entanglement entropies S [(a)—(c)] and their derivatives dS? /da [(d)—(f)] in the QSM at g =y = 1, N = 5, and
p = 1. [(a) and (d)] g = 0.5 in the main panel and g = 0.1 in the insets. [(b) and (e)] ¢ = 1. [(c) and (f)] ¢ = 2 in the main panel and ¢ = 6
in the inset. Vertical dashed lines denote o = «. from Eq. (6). Results for S@ are averaged over Ngmples = 500 Hamiltonian realizations.
Averaging over the eigenstates, (- - - ),, was performed over N, = 500 eigenstates near the center of the spectrum for each data point.
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FIG. 10. Schmidt gap A in the UM at J =1 and N = 1. (a)
p=1 and (b) p =4. The main panels show A vs « at different
L, while the insets show the second Rényi entanglement entropy
S? from Eq. (15) vs A, also at different L. Vertical dashed lines
in the main panels denote « = «. from Eq. (6), and the dashed line
in the inset of (a) is the result from Eq. (19). Results for A are av-
eraged over Nympies = 1000, 400, and 300 Hamiltonian realizations
for L < 12, L =13, and L = 14, respectively. Averaging over the
eigenstates, (- - - ),, was performed over N, = 1000 eigenstates near
the center of the spectrum for each data point.

are most distant from the ergodic quantum dot. In other words,
when the ergodic bubble fails to thermalize the entire system,
these particles are the first to exhibit nonergodic properties.

D. Schmidt gaps

As another indicator of the critical point, which is related to
the entanglement entropies, we consider the Schmidt gap A.
The latter is defined as the difference between the two largest
eigenvalues of the reduced density matrices of the subsystem
B from Eq. (14), A = A; — X,. In the actual numerical calcu-
lations, we then average A over the midspectrum eigenstates
and over different Hamiltonian realizations,

A = (A = A2)n)Hs a7

similar to the other quantities studied before. Also similar to
the other quantities, in A we omit the index p indicating the
number of spin-1/2 particles in the subsystem.

As already discussed in the previous section, it is conve-
nient to study the case of a single two-level system (p = 1),

1 0 o AN R N R U IE I IR T T

— | e L-5
(a) p=1 i —< L =6
0.8 {o—E L=T
A e L-s
4 e N o L=9
& N & L=10
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\B, i
0.2 L) |
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0.0 02 A 0.9 i

0.0
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FIG. 11. Schmidt gap A inthe QSM at go =y =1and N = 5.
(a) p=1and (b) p = 4. The main panels show A vs « at different
L, while the insets show the second Rényi entanglement entropy S®
from Eq. (15) vs A, also at different L. Vertical dashed lines in the
main panels denote & = o from Eq. (6), and the dashed line in the
inset of (a) is the result from Eq. (19). Results for A are averaged
over Ngmples = 500 Hamiltonian realizations. Averaging over the
eigenstates, (- - -),, was performed over N, = 500 eigenstates near
the center of the spectrum for each data point.

for which A, = 1 — A and hence
A= ((2r — D)udn- (18)

Results for A at p = 1 are shown for the UM and the QSM
in the main panels of Figs. 10(a) and 11(a), respectively. They
provide an extremely accurate measure of the critical point.
In particular, we observe that A is scale invariant at @ = «,
and it tends towards A - 0 at « > a. and A > 1 at o <
o, in the thermodynamic limit L — oo. This establishes the
Schmidt gap A as a candidate that may play a role of an order
parameter for the ergodicity breaking phase transition.

A natural question is to ask about the optimal size of the
subsystem that exhibits most sharp signatures of the transition.
To this end we extend the analysis of A to p = 4 in Figs. 10(b)
and 11(b), i.e., to the case where the subsystem consists of
four most distant particles from the ergodic quantum dot. Also
in this case, one can still detect the critical point by inspecting
the position of the scale invariant point of A. However, in this
case, the scale invariant value of A is much closer to zero, and
hence the signatures of the scale invariance are not as sharp as
in the case of p = 1.
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At p =1, both the Schmidt gap A and the entanglement
entropies S@ are functions of a single eigenvalue A, as ex-
pressed by Egs. (18) and (C1), respectively. It is then expected
that the S is a well-defined function of A, independent of
the system size L. This property is demonstrated in the insets
of Figs. 10(a) and 11(a) at g = 2. An interesting detail of these
figures, though, is that the results do not exactly follow the
expected behavior

S® =1—1log,(1+ A?), (19)

that would have been derived from Eqgs. (18) and (C1) if there
was no averaging over eigenstates and Hamiltonian realiza-
tions. It then appears to be not entirely trivial that at p = 1,
S@ is a well-defined function of A despite this function being
different from Eq. (19). As a side remark, in Fig. 23(a) of Ap-
pendix D we show that when no averaging over Hamiltonian
eigenstates and Hamiltonian realizations are performed, the
second Rényi entanglement entropy is indeed a well-defined
function of the Schmidt gap as predicted by Eq. (19). The
deviations between Eq. (19) and the numerical results in the
insets of Figs. 10(a) and 11(a) are hence a consequence of
the averaging.

At p > 1, we are not aware of any formal argument to
predict a unique relationship between S@ and A. Quite sur-
prisingly, however, we still observe a nearly perfect collapse
of the results for S® when plotted at p = 4 as a function of A,
see the insets of Figs. 10(b) and 11(b). A detailed inspection
in Fig. 23 of Appendix D reveals that the collapse is not
present when S is plotted versus A for a single Hamiltonian
eigenstate, and that the signatures of a well-defined functional
dependence of S on A can be readily observed after the
averaging over eigenstates within a single Hamiltonian real-
ization. While we are here not able to fully rationalize this
behavior, we note that the remarkable scaling collapses share
close similarities in both models.

IV. MULTIFRACTALITY AND FOCK
SPACE LOCALIZATION

Having established in Sec. III the sharp agreement between
the numerically determined location of the critical point and
the analytical prediction, we here focus on the properties on
the nonergodic side and at the critical point. The central quan-
tity of study will be the fractal dimension introduced below.

A. Fractal dimension

In this work, we extract the fractal dimension from the
participation entropies, which were introduced in Sec. III B.
In particular, in Sec. III B we focused on the participation
entropies St(ng that we calculated from the typical IPR, see
Eq. (11), and hence we refer to the corresponding fractal

dimensions as dt(y"; . We calculate dt(yqp) from the ansatz [89]

S(q) — d(q) InD + b((l)

typ typ typ’ (20)

where D = 2V+L is the Fock space dimension and bg]; is an

L-independent constant. The ansatz in Eq. (20) is phenomeno-
logical, and it is expected to describe well the results in the
asymptotic regime, i.e., at sufficiently large L (the details of
the numerical implementation will be discussed below). The

fractal dimension dfyqp) is an L-independent constant that may

depended on q. If that is the case, we refer to the wave func-
tion properties as being multifractal. We note that the fractal
dimension is a basis-dependent quantity since it depends on
the wave function coefficients ¢; = (i|n) calculated in some
basis {|i)}. Here, {|i)} corresponds to the computational basis.

A similar but nonequivalent way to define the fractal
dimension is via the average IPR, which we denote as
(P, 1Y,z In this case, one extracts the decay coefficient 7@
of the IPR from the ansatz

(P, "))y oD, @

from which one can define the fractal dimension d? via
the relation d? = 1@ /(g —1). Nevertheless, studies of
single-particle Anderson localization transition noted that the
distribution of the IPRs at the critical point may be broad

[90], and hence a more natural choice of consideration is dt(yqp)

instead of 9. In all numerical results reported here we only

focus on dl(ng . We observe (not shown here) no significant

differences between d@ and dt(yqp) s

comparison between d‘? and dt(y"; is left for future work.
For the sake of completeness, we also introduce the decay

coefficient of the typical IPR, denoted as rt(yqp), such that

however, a quantitative

Ty = dig(q — 1). (22)
Both quantities d[%) and rt(y'{)) will be discussed below.

The behavior of the fractal dimension is well understood
in the ergodic phase and in the nonergodic phase that exhibits
Fock space localization. These considerations apply to both
d? and df;’g [91], and for simplicity we here only discuss the
former. In the ergodic phase that exhibits many-body quantum
chaos [1], the wave function coefficients ¢; = (i|n) can be
considered as normally distributed random variables with zero
mean and variance 1/D, and hence (P, 1)V y scales with the
Hilbert space dimension approximately as

D
1
(P Db o D357 =D 23)
i=1

giving rise to the decay coefficient 7@ =g —1 and a
g-independent fractal dimension d, = 1. Specifically, in
the commonly studied case at g =2, the IPR scales as
Py y,)g o« D!, which is in agreement with the exact result
predicted by the GOE of the RMT [92], ((Pz_l),,)H =3/D.In
the opposite case of Fock space localization, one may think of
only O(1) coefficients ¢; begin nonzero, and thus (P, Yo |
does not scale with the system size. This implies 79 = d? =
0 for all g. The only exception is g = 1, at which P~ I = 1due
to normalization, and hence d" cannot distinguish between
the ergodic and nonergodic phase. However, studying the
typical fractal dimension dt(y"p) that is the focus of our study,
no such limitation occurs at g = 1.

In finite systems such as those studied here, one often

obtains df;’; that is away from the limiting cases discussed

above, i.e., 0 < df}f’g < 1. This result may either be consistent
with (multi)fractality of the system, or suggesting that the
system is not yet in the asymptotic regime. In our numerical
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FIG. 12. The L-dependent fractal dimension d[(yql;“ from Eq. (24)
inthe QSMatgy =y =1land N =5,at(a)g =0.1,(b)g =1, (c)
g =2, and (d) ¢ = 6. The arrows denote the flows towards Fock
space localization in the asymptotic regime. Vertical dashed lines

denote o = . from Eq. (6).

analyses, we first verify whether the system can be considered
as being in the asymptotic regime, and hence if the ansatz from
Eq. (20) can be applied. Figures 12, 13, and 24 show exam-
ples in which the system is close to the asymptotic regime:
these occur deep in the ergodic regime at o < o < 1 and at
the critical point « = «,. In contrast, outside the asymptotic

d'? should be replaced by a number that depends

regime, d,g,
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FIG. 13. Participation entropy Sfjp) vs the logarithm of the Fock

space dimension InD in the QSM at (a) go=y =1, «a =0.2,
1) go=03,y=03,a=a0=081,(c)go=y =1, ¢ =, and
(d) go =y =1, @ = 0.9. Lines are fits according to the ansatz in
Eq. (20) for Fock space dimensions of the total system in the range
from D = 2'3 to 2!°. They allow for the extraction of the fractal

dimension dl(yqp) and the coefficient tt(y‘g, plotted in Fig. 15.

onl,ie., d[(yqp) — dl(yql;L), which we calculate in Fig. 12. We

numerically extract d, L)

typ
S[(}’,’g between consecutive system sizes L — 1 and L,

by computing the values of slope of

(q) (q)
wo _ _Spp®) — S — 1)

WP In[D(L)] — In[D(L — 1)]

(24)

Such procedure was recently used in studies of multi-fractal
properties of wave functions on different types of Anderson

graphs [93-95]. From the flow of dt(}?l;L) with L, one may

conjecture about the fate of dl(yqp) in the thermodynamic limit
L — oo.

B. Fock space localization on the nonergodic side

We first focus on the properties on the nonergodic side
of the critical point, at @ < o. Previous studies in the UM
have established, almost up to a rigorous level, that in the
nonergodic phase the system exhibits Fock space localization
[75,77].

Here we are particularly interested on the nonergodic side
of the QSM. The latter can be divided in two regimes: the
regime close to the critical point and the regime deep in the
nonergodic phase. Figure 12 shows the L-dependent fractal
dimension dl(}f’l;L) from Eq. (24), which suggest that at suffi-
ciently large ¢ = 1, the first regime approximately belongs for
the interval 0.5 < o < a,. In contrast, at « < 0.5 and ¢ 2> 1
the system exhibits clear signatures of Fock space localization
since d) ~ 0. These results are corroborated in Figs. 14 and

typ
15 by the results at « = 0.2 in the UM and the QSM, respec-

; ; ; (D oy 7D
tively, which consistently show di;; ~ 7,,; ~ 0. In fact, we
even observe slightly negative values of dt(yq; , see the results at

a = 0.21in Figs. 13(a) and 15. In this case, we expect dt(y"; -0
in the thermodynamic limit.

The limit ¢ — 0, which is not the focus of this study, may
represent an exception to these considerations. As discussed
in Sec. II B, it is understood from the studies of the PLRBM
[84,85] that the observation of L-independent IPR (and con-
sequently the participation entropies) may only emerge deep
in the localized regime, i.e., for sufficiently large a, with the
threshold value for @ depending on g. Similar arguments likely
apply to the UM, and it is beyond the scope of this paper
to establish to what degree these arguments also apply to the
QSM.

The most interesting aspect of Fig. 12 is the flow of dt(y"};L)
upon increasing L. In the nonergodic regime at 0.5 < o < «,
the results are consistent with a flow towards Fock space
localization in the thermodynamic limit, i.e., dfy"I;L) — 0 when
L — oo. These results are also consistent with the recent
analysis of d9 at @ = 0.6 and g = 2 in the QSM [73], which
was interpreted as @ — 0.

On the other hand, the results at « > o in Fig. 12 exhibit

values that are close to, but not necessary equal to dt(yq];L) =1.

In the vicinity of the critical point, dt(yq[;L) is nonzero and lower
than 1, which we interpret as a signature of multifractality and
will be discussed in more details in the next section.
Summarizing these results, we expect that Fock space lo-
calization is a property of the entire nonergodic phase in both
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the UM and the QSM. This is different from what is expected
to occur in the putative MBL phase, for which emergence of
multifractality was conjectured, based on simple theoretical
arguments, in the entire phase [46,89,96-99].

C. Multifractality on the critical manifold

We now focus our attention on the eigenstate wave function
properties at the critical point. In the UM it is understood that
the wave function is multifractal [76,79,82]. Specifically, it
was shown that d? exhibits g dependence and in the limit
J — 0, explicit expressions were derived for d@. In lowest
order in J, the ¢ dependence of d? is the same for the UM
and the PLRBM [76,84].

Beyond the UM, multifractality was observed in several
random matrix ensembles [90,100—102]. Its concept was also
extended to physical models without interactions such as An-
derson models on hypercubic lattices [85,91,103—-106] and on
graphs [93-95,107-109], and the connections were made to
quantum dynamics [73,110-117]. A currently very active di-
rection of research is to explore to which degree the concept of
multifractality can be applied to many-body quantum systems

1.0

0.8

0.6

typ

=

B}

0.4

= U a=a=(g]
0.2 B

0.0

d(q)

typ
vs In D curves, such as those shown in Fig. 13, using the ansatz in Eq. (20). The dashed lines in both panels correspond

FIG. 15. (a) Fractal dimension

extracted from the Sf;{;
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vs g, and (b) the decay coefficient T,
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(@)

yp Of the typical IPR vs g, in the UM at N = 1. The values are

vs In D curves, such as those shown in Fig. 24, using the ansatz in Eq. (20). The dashed lines in both panels correspond

(q)

(@) _
d. = Typ

vp =0.
at the boundary of quantum chaos, such as those studied in the
context of MBL [46,89,96-99].

Here we first complement previous results on multifractal-
ity in the UM by showing that also dl(ng exhibits multifractal
properties. Specifically, in Figs. 24(b) and 24(c) in Ap-
pendix E we show that St(y"; can be well fitted by the ansatz
from Eq. (20), suggesting that the system is indeed very close
to the asymptotic regime. We then show the extracted values

of dt(;lp) and réz)) as a function of ¢ in Fig. 14. The fractal

dimension dfy"; decreases with ¢, and this dependence on g
confirms the multifractal character of the wave function.

Figure 14 actually shows dt(yqp) and rt(yqp) versus g for two
different parameter values J =1 and J = 0.5 at the critical
point @ = «,. Different values of J give rise to different fractal
dimensions of wave functions, suggesting the emergence of
a manifold of critical points. In Sec. V, we further study
the impact of J on the critical properties, specifically, on the
spectral statistics. It is possible that there is a one-parameter
family of critical points tuned by the parameter J, however, we
cannot rule out the existence of a higher-dimensional critical
manifold.

(q)
Ttyp

vs ¢, and (b) the decay coefficient r‘(y‘g of the typical IPR vs g, in the QSM at N = 5. The values are

(@ _ (@) _
dyy = Typ = 0.
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The central question is whether the QSM also exhibits
multifractal properties at the critical point. If the answer is af-
firmative, the next question is then to explore whether one can
tune the multifractal properties within the critical manifold as
in the UM.

The results in Fig. 12 have already suggested that the L-
dependent fractal dimension dt(yqr;L) exhibits no, or only mild,
dependence on L at the critical point of the QSM. This ob-
servation is confirmed by the results in Figs. 13(b) and 13(c),
which exhibit a linear dependence of St(;lg on InD according
to Eq. (20), and hence suggest that the system is already very
close to the asymptotic regime in which the L-dependence on

dt(}?; should not be large.

The results for the fractal dimension d'?, and for the decay

typ>
coefficient rt(y‘i)) of the typical IPR, are shown in Fig. 15. At

the critical point, they exhibit two important features: dt(y"g is
nonzero and lower than 1 for all nonzero values of ¢ under
consideration, and it exhibits clear ¢ dependence (it mono-
tonically decreases with ¢g). While the first property may be
argued as being consistent with the results of Ref. [73], the
second property of the QSM has to our knowledge not yet
been explored. We interpret these results as evidence of the
multifractal character of the wave functions.

The results for the QSM in Fig. 15 appear to be very similar
to those for the UM in Fig. 14. Interestingly, one also observes
similarity when studying the role of the coupling parameters
J and gp in the UM and the QSM, respectively. In both cases,
tuning the parameters J and g from large to small values gives
rise to a decrease of dt(yqp) , which we interpret as tuning the
multifractality from weak to strong.

Note that the results in Sec. III have established that the
location of the critical point in the QSM is sharply predicted
by o = a, from Eq. (6) when all the model parameters are of
the same order, which is certainly the case at go = y = 1. If,
however, the coupling parameter g is varied, which is going
to be studied in more detail in Sec. V, the transition point
observed in finite systems may not accurately coincide with
o.. For example, at go = 0.3 that is also studied in Fig. 15,
the transition point from the r statistics appears to be located
around o = 0.81, see Fig. 17(b). This is the reason why mul-

0.425

0.400

tifractal properties of the QSM in Fig. 15 are, at go = 0.3,
studied at « = o and not at @ = «,.

V. SPECTRAL STATISTICS ON THE CRITICAL
MANIFOLD

Having established multifractal properties at the critical
point of both models, we now turn our attention to the spec-
tral properties that have already been studied in Sec. IIT A.
We are particularly interested in how the spectral properties
at the critical point change when the system is tuned from
weak multifractality, i.e., from large fractal dimension dt(y”;
(at ¢ & 1) towards strong multifractality, i.e., towards small
fractal dimension d[(yqp) :

In Figs. 16 and 17, we study the behavior of the average gap
ratio r, defined in Eq. (9), around the critical point at different
values of model parameters. We focus on the value of r at the
critical point, which is detected by the scale invariant crossing
point of r versus «. While in the UM the crossing point occurs
at the predicted value o = «, for essentially all model param-
eters of investigation, we already highlighted in the previous
sections that this may not necessary be the case in the QSM.
An example of the latter is given in Fig. 17(b), where the
crossing point at go = 0.3 emerges close to ¢ = o = 0.81.
Clarifying the fate of this crossing point in the thermodynamic
limit appears to be a challenging task that is beyond the scope
of the paper. We note that at this point we are not aware of
any rigorous argument that would prevent the crossing point
o from drifting towards the predicted critical point ¢, from
Eq. (6).

Figure 16 studies the impact of the coupling parameter J
in the UM on the nature of the critical point. From Fig. 14 we
have already learned that decreasing J gives rise to smaller
values of the fractal dimension dt(y(’g and hence to stronger
multifractality. Figure 16 suggests that stronger multifractality
is associated with a smaller value of r at the critical point, i.e.,
with spectral statistics that is closer to the Poisson distribution.
We hence expect that J represents the tuning parameter of the
spectral statistics within the critical manifold, spanning from
the RMT-like statistics at weak multifractality to Poisson-like
statistics at strong multifractality. These properties share some

0.5 0.6 0.7 0.8

0.7 0.8

09 0.5 0.6 0.7 0.8 0.9
« (0]

FIG. 16. The average gap ratio r defined in Eq. (9) in the UM at N = 1, as a function of « and for different system sizes L. (a) J = 0.1, (b)
J =0.5and (c) J = 1. The vertical dashed lines denote the prediction for the critical point ¢ = «. from Eq. (6). The GOE and Poisson limits
for r are denoted by the upper and lower horizontal dashed-dotted lines, respectively.
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FIG. 17. The average gap ratio r defined in Eq. (9) in the QSM
at N =5, as a function of « and for different system sizes L. (a)
go = 3, with ¥ = 3 in the main panel and y = 0.3 in the inset. (b)
go = 0.3, with y = 0.3 in the main panel and y = 3 in the inset.
The long vertical dashed lines denote the prediction for the critical
point & = o, from Eq. (6), while the short vertical line in the main
panel of (b) denotes the crossing point at & = 0.81. The GOE and
Poisson limits for » are denoted by the upper and lower horizontal
dashed-dotted lines, respectively.

analogies with the PLRBM [84], in which the characteristic
length b tunes the properties of the critical point, ranging from
Poisson-like at strong multifractality (b < 1) to RMT-like at
weak multifractality (b > 1) [74,118].

Similar behavior is observed in the QSM as a function of
the coupling parameter go, see Fig. 17. In particular, large
go > 1 drive the critical point towards RMT-like statistics, see
Fig. 17(a), while small gy < 1 bring it closer to the Poission-
like statistics, see Fig. 17(b). The latter is consistent with
strong multifractality observed in Fig. 15 at gy = 0.3. On the
other hand, the change of y, which governs the spectral width
of the ergodic quantum dot in the QSM, does not appear to
have any significant impact on the spectral statistics within
the critical manifold, see the insets of Fig. 17.

VI. CONCLUSION

This work establishes a direct connection of the critical
behavior between the two different models, the UM of the
RMT and the QSM. A convenient aspect of both models is
that there exist quantitative analytical arguments for the value
of the critical point of the ergodicity breaking phase transition.
Carrying out exact numerical calculations for various ergod-
icity indicators, we showed that these analytical arguments
sharply predict the location of the critical point.

While our main goal was to establish the similarity of the
two models, we also introduced certain ergodicity measures
that have previously not received much attention. Among
those, we stress the entanglement entropy of the most distant
(i.e., most weakly coupled) spin-1/2 particle, which exhibits
scale invariant behavior at the critical point, and the deriva-
tives of the participation and entanglement entropies, which
exhibit a sharp peak at the critical point. Another feature of
the numerical calculations is that the location of the critical
point in the QSM is closest to the predicted analytical value
when the critical properties comply with the RMT predictions,
and it exhibits small deviations otherwise. While this feature
was already noticed before [70,72,73], future work should
explore in more details the fate of these small deviations in
the thermodynamic limit.

On the nonergodic side of the transition, we argued that
both models exhibit Fock space localization in the eigenbasis
of the §% operator. While the latter was already established in
the UM [75,77], our results suggest that also in the QSM, Fock
space localization may emerge in the entire nonergodic phase
in the thermodynamic limit. This result is different from what
was proposed for the putative MBL phase in random-field
spin-1/2 chains [46,89,96-99], in which the entire nonergodic
phase was conjectured to be multifractal. Therefore, while one
can draw certain parallels between the ergodicity breaking in
the QSM and MBL, there are also clear differences between
these two phenomena.

At criticality, the eigenvectors exhibit multifractal behavior
in the eigenbasis of the §¢ operator, characterized by a fam-
ily of nonzero fractal dimensions that are lower than unity.
The fractal dimensions may vary with the size of the initial
ergodic seed and the overall coupling of the ergodic seed to
the remainder of the system, thereby suggesting the emer-
gence of a manifold of critical points. This may carry some
similarities with certain RMT-based models for Anderson
localization transition, such as the power-law random banded
matrix models [84] that exhibit a one-parameter family of crit-
ical points. However, whether there is a one-parameter family,
or eventually a higher manifold of critical points in the QSM,
is an open question that should be addressed in the future.

As a consequence of the emergence of the manifold of
critical points, the spectral statistics on the critical manifold
may be continuously varied from the RMT-like statistics to the
Poisson-like statistics. In the former, the fractal dimensions
are close to unity, while in the latter they are close to zero.
In the context of single-particle transitions, such as those in
the power-law random banded matrices, this relationship is
in certain limits understood even analytically [118], while a
systematic study in many-body quantum systems appears to
be a natural next step of investigation.

To summarize, our results reinforce the QSM and the UM
as fertile playgrounds to study many-body ergodicity break-
ing phase transitions, and call for further characterization of
their properties both from the numerical as well as from the
analytical side.
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APPENDIX A: DENSITY OF STATES

In Sec. II, we introduced both models under investigation,
the QSM and the UM. Here we provide additional information
about the models by studying their coarse-grained density of
states p(E) = §N/SE, which counts the number of Hamilto-
nian eigenstates 6NV in a narrow energy window of width SE.

Figure 18 shows the density of states p(E) in the QSM. It
is accurately described by the normal distribution when gy =
y = 1, see the inset of Fig. 18, while deviations are observed
if y and go depart from 1, see the main panel of Fig. 18. In the
latter case, we apply a phenomenological description of the
density of states using the generalized normal distribution,

B

P exp(—(E — B
ZJF(l/ﬁ)exP( (IE = nl/a)"),

Pgen (E) = (A1)
where E is the energy and I' is the Gamma function, while
u and o are the mean and the standard deviation of the en-
ergy distribution, respectively. We determine the parameter
numerically and it controls the peakedness of the distribution
with respect to its tails. For 8 = 2, one obtains the standard
normal distribution, while the limiting case for § — oo is the
uniform distribution. The variance o2 of the energy distribu-
tion can be estimated analytically as

2= (A% — (A)?

1— 2L L 52
2y Bl (v 2). @

16 1 —o? +4

suggesting that at @ < 1, it is extensive (I'> oc L) by the virtue
of the last term in Eq. (1).

The density of states p(E) in the UM is for different
parameter regimes shown in Fig. 19. Results at N =1 in
Fig. 19(a) show that p(E) is well described by the generalized
normal distribution pg,(E) from Eq. (A1) with 8 2 3, i.e., it
is not accurately described by the Gaussian distribution, which
would correspond to 8 = 2. The reason for the deviation from
Gaussianity is the RMT nature of the model, which includes
processes beyond two-body terms. The distribution is closest
to the Gaussian at small «, for which the suppression of
the multi-body terms is the most efficient. When N is in-
creased, p(E) approaches the Wigner semicircle distribution
[92], given by

2
psemi(E) = m R? — EZ’

(A3)
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FIG. 18. Density of states p(E) in the QSM. The inset shows
results at go = ¥y = 1 and different values of «. Results are nearly
indistinguishable from a normal distribution. The main panel shows
the results ate = e = 1/ /2, when go and y are considerably away
from 1. The dashed-dotted lines of the matching color show fits
to the results using a generalized normal distribution pge,(E) from
Eq. (Al). The values of the B parameter of pg,(E) are given in
the legend, where values close to 8 = 2 indicate proximity to the
normal distribution. The results shown above were averaged over
Ngamples = 40 disorder realizations.

with R ~ 2. This is demonstrated for the case N =9 in
Fig. 19(b).

APPENDIX B: FURTHER RESULTS FOR THE
PARTICIPATION ENTROPY

In Sec. III B, we studied the participation entropies St(;’; and
their derivatives in both models. In particular, in the UM we
focused on systems with N = 1, see Fig. 6. We complement
these results in Fig. 20, in which we also consider Sg’; and
their derivatives at ¢ = 2 in the systems with N =0, see
Figs. 20(a) and 20(d), and N = 3, see Figs. 20(c) and 20(f).
We focus on g = 2 since the results in Fig. 6(f) suggest that
the derivatives of the participation entropies at large g = 2
provide a good estimate of the critical point.

A general observation from Fig. 20 is that in the UM, the
numerical results for all values of N in the interval 0 < N < 3
provide convincing evidence for the emergence of a critical
point at ¢ = «. from Eq. (6), see the vertical dashed lines
in Fig. 20. Nevertheless, one of the goals of this work is to
focus on the parameter regimes in which the location of the
critical point agrees with prediction from Eq. (6) as accurately
as possible already for rather small system sizes of the order
of 10 spin-1/2 particles. Then, Fig. 20(e) suggests that this
goal is most feasible at N = 1, for which the peak of d St(;’; /da
almost exactly emerges at « = «, already in the system that
consists of N 4+ L = 11 particles. For this reason, the majority
of the numerical studies of the UM was carried out for N = 1.

APPENDIX C: FURTHER RESULTS FOR THE
ENTANGLEMENT ENTROPY

In Sec. III C, we studied the Rényi eigenstate entanglement
entropies S? and their derivatives in both models. We fo-
cused on the case p = 1, i.e., on entanglement entropies of
subsystems that consist of a single spin-1/2 particle, which is
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FIG. 19. Density of states p(E) in the UM atJ =1 and N + L = 11. (a) N = 1 at different values of «. Histograms show numerically
obtained p(E) while dashed lines of the matching color are fits according to the generalized normal distribution given by Eq. (Al). The
inset shows the dependence of the g parameter in Eq. (A1) on the value of the coupling parameter «, with the vertical dotted line located at
o = o, = 1/+/2. Note that even for small «, the distributions are not perfectly Gaussian, since &~ 2.77. (b) « = 0.3 at N =3 and N = 9.
At N = 3, the numerical results are rather well described by a generalized normal distribution with 8 ~ 4.66, see the dashed line, while for
N =9, the numerics match with a Wigner semicircle distribution given by Eq. (A3), see the dashed-dotted line. In both panels, the results
shown were obtained by averaging over Nymples = 20 disorder realizations.

most distant from (has the weakest coupling to) the ergodic lated by the norm Tr{pg} = 1, implying A, = 1 — Ay, and the
quantum dot. Rényi entanglement entropy is then

At p = 1, the reduced density matrix describes a two-level
system of a single spin-1/2 particle and hence it only contains |

. . 1
two eigenvalues A; and A,. These two eigenvalues are corre- SO — — — Mn(a? 2 (1 —r ) Cl1
1n21_q(<n( 1+( 1) ))n)H ( )

1.00 0.25 D 0.75 1.00

0% 0% (]

FIG. 20. Participation entropies s& [(a)—(c)] and their derivatives ds® /da [(d)—(f)] in the UM at J = 1. [(a) and (d)] N = 0, [(b) and

typ typ
(e)] N =1 [the same results as in the main panels of Figs. 6(c) and 6(f), respectively], and [(c) and (f)] N = 3. Vertical dashed lines denote
o = «a, from Eq. (6). Results for Sfyzl; are averaged over Ngmples = 1000, 400, and 300 Hamiltonian realizations for L+ N < 13, L+ N =
14, and L + N = 15, respectively. Averaging over the eigenstates, (- - - ),, was performed over N, = 1000 eigenstates near the center of the

spectrum for each data point.
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FIG. 21. The Rényi entanglement entropies S [(a)—(c)] and their derivatives dS9 /da [(d)—~(f)] in the UM atJ =1, N =1 and p = 4.
[(a) and (d)] ¢ = 0.5 in the main panel and g = 0.1 in the insets. [(b) and (e)] ¢ = 1. [(c) and (f)] ¢ = 2 in the main panel and ¢ = 6 in the inset.
Vertical dashed lines denote o = o, from Eq. (6). Results for S'@ are averaged over Nsamples = 1000, 400, and 300 Hamiltonian realizations
for L < 12, L =13, and L = 14, respectively. Averaging over the eigenstates, (- - -),, was performed over N, = 1000 eigenstates near the

center of the spectrum for each data point.

FIG. 22. The Rényi entanglement entropies S@ [(a)—(c)] and their derivatives dS /da [(d)—(f)] in the QSM at go =y = 1, N =5 and
p = 4. [(a) and (d)] g = 0.5 in the main panel and g = 0.1 in the insets. [(b) and (e)] ¢ = 1. [(c) and (f)] ¢ = 2 in the main panel and ¢ = 6
in the inset. Vertical dashed lines denote o = «. from Eq. (6). Results for S@ are averaged over Ngmples = 500 Hamiltonian realizations.
Averaging over the eigenstates, (- - - ),, was performed over N, = 500 eigenstates near the center of the spectrum for each data point.
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This expression contains two limits. In the limit ¢ — 0, one
obtains [omitting the indices n and H in (- - - )]

<(10g2()¥l) + logg(l - Xl))):|
2

q+ 0,
(C2)

$<‘1)=1+[1+

which suggest that S¥~% — 1, as long as A; is sufficiently
away from 1. This is expected to be the case in the ergodic
phase and in the vicinity of the critical point. In the limit
g — 0o, one can simplify ((In(A? + (1 — 1,)7))) in Eq. (C1)
by replacing it with g({InX;)), which is a reasonable ap-
proximation if A; is sufficiently larger than 1/2. This is a
natural assumption for the nonergodic phase and, as shown
in Sec. III D, also in the vicinity of the critical point. It then
follows that the leading term at ¢ — oo is

S(q%oo) ~

—log, Aj. (C3)

This result suggests that, as expected, the two-level system
is maximally entangled at the critical point if A; &~ 1/2, while
the entanglement is vanishingly small if A; — 1. In Sec. III D,
we showed that, at least for the model parameters under in-
vestigation, A; at the critical point is neither close to 1/2 nor
to 1, which gives rise to substantial, but not maximal entan-
glement of S, Results for the entanglement entropies
at p =1, shown in Figs. 8 and 9, are consistent with these
considerations.

The above analysis is in Figs. 21 and 22 extended to the
case p = 4, i.e., to subsystems that consist of four most distant
spin-1/2 particles. For both models, the results in Figs. 21
and 22 suggest that the critical point can be rather accurately
determined from the scale invariant point of S emerging at
o = a, as well as from the peak in its derivative dS@ /da.

Being more quantitative, we note that in the case of the
UM, we actually observe no major differences between the
p =1 and p =4 cases, since the results in Figs. 8 and 21
are virtually almost indistinguishable. In the QSM, however,
some differences can be observed between the p = 1 case in
Fig. 9 and the p = 4 case in Fig. 22. In particular, at p = 4 the
crossing point of S@ versus « at small system sizes N + L ~
10 emerges slightly away from o = o, and it drifts towards o,
upon increasing L. This effect is especially apparent at small
values of ¢ shown in Fig. 22(a). These results establish the
view that the sharpest signatures of the critical point are in
the QSM contained in properties of the particles that are most
distant from the ergodic quantum dot.

APPENDIX D: FURTHER RESULTS
FOR THE SCHMIDT GAP

In the insets of Figs. 10 and 11 in Sec. IIID, we plotted
the second Rényi entanglement entropies S® as functions of
the Schmidt gap A and observed a nearly perfect collapse of
the results for all studied system sizes and for both models.
The quantities S® and A were defined in Egs. (15) and (17),
respectively, as averages over Hamiltonian eigenstates and
different Hamiltonian realizations.

To better understand the origin of the emergence of S
being a well-defined function of A, we here study both quanti-
ties before the averages are carried out. Specifically, we define

% p=1 p=4
0.5
S
(d)
p=4
o L=10
<« L=11
= L=12
~ L=13
0.0 > L=14 a=04 | a=04
0.0 0.5 1.0 0.0 0.5 1.0
A A

FIG. 23. The role of averaging on the dependence of the Rényi
entanglement entropies S® on the Schmidt gap A in the UM at
J=1land N=1.(a p=1 and (b) p=4, both at « = 0.8 and

= 14. The small green symbols denote S( ,)1 vs A, u, see Eq. (D1),
while the larger black symbols denote S},) vs Ay, see Eq. (D2). The
dotted line in (a) is the result from Eq. (19), while the horizontal
and vertical lines in (a) and (b) denote the averages S® and A
from Egs. (15) and (17), respectively, at « = 0.8. In (c) and (d),
we then extend the analysis of S;,z) vs Ay to « in the interval
a € [0.1, 0.98] and to different values of L, as indicated in the legend
in (c). Results for most values of « are shown as gray symbols. The
colored symbols specifically show the results for different system
sizes at three different values of « = 0.9, « = «,, and a = 0.4. The
horizontal and vertical lines denote the averages S and A at a given
L at @ = «,. The results in (a) and (b) were obtained using averag-
ing over Ngmples = 300 Hamiltonian realizations. Results in (c) and
(d) were obtained by averaging over Ngmpies = 1000, 400, and 300
for L < 12, L = 13, and L = 14, respectively.

the entanglement entropy Sflqgl and the Schmidt gap A, 5 of a
single eigenstate |n) of a single Hamiltonian realization as

11
S = Iyl
" InDpl—gq nz

i=1

App =i — i (D)

Analogously, we define the entanglement entropy Sl(f ) and the
Schmidt gap Ay of an average over Hamiltonian eigenstates
of a single Hamiltonian realization as

DB
S — ] ALY A= (A — A, (D2
H lnDBI— <HZ > "= (A — A2)p. (D2)

In Fig. 23, we study the properties of the quantities defined in
Egs. (D1) and (D2)inthe UM atJ =1 and N = 1.

Figure 23(a) shows both S,(lzf)l versus A, y and 81(1) versus
Ay at p=1 and o = 0.8. As expected from Eq. (19), the
entanglement entropy at p = 1 is a unique function of Schmidt
gap already on a level of a single eigenstate. On the other

023030-19



SUNTAJS, HOPJAN, DE ROECK, AND VIDMAR

PHYSICAL REVIEW RESEARCH 6, 023030 (2024)

hand, this is not the case at p = 4, see Fig. 23(b), in which
the results for 852,), versus A, gy give rise to a wide cloud of
points without any well defined functional dependence.

The next question that we then ask is at which level of
averaging the second Rényi entanglement entropy becomes
a well-defined function of the Schmidt gap even at p = 4, as
suggested by the insets of Figs. 10(b) and 11(b). In Figs. 23(c)
and 23(d), we plot S,(f) versus Ay at p=1 and p =4, re-
spectively. The results suggest that at p = 4, the averaging
over Hamiltonian eigenstates within a single Hamiltonian
realization represents the key contribution to establishing a
well-defined functional dependence of S® versus A. Still,
a careful inspection of Fig. 23(d) reveals that the collapse
of the data to a single function is not perfect, and hence the
functional dependence of S® versus A at p > 1 should not
be considered as an exact property.

APPENDIX E: FURTHER RESULTS FOR THE FRACTAL
DIMENSION

In Fig. 13 of the main text, we showed the results for the
participation entropy Sf‘” versus the logarithm of the Fock
space dimension InD for the QSM. They were accurately
described by the functional ansatz from Eq. (20) at the critical
point as well as deep in the ergodic and nonergodic phases.
Using this ansatz, we obtained the fractal dimension dt(fg
studied in Sec. IV.

Analogous results for the UM are shown in Fig. 24. They
are also accurately described by the functional ansatz from
Eq. (20), i.e., the system is said to be very close to the
asymptotic regime in which the L dependence of the fractal

10

(q)
S o S typ o

5 o q=0.9
= 4 ¢g=03 ° ¢g=15
& o g=05 & ¢g=20
= x qg=0.7 q=3.0

0
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FIG. 24. Participation entropy Sf;’; vs the logarithm of the Fock
space dimension InD inthe UM at N =1 and: (a)J =1, « = 0.2,
b)J=05a=a, c)J=1,a=0a, and (d) J =1, « =0.9.
Lines are fits according to the ansatz in Eq. (20) for Fock space
dimensions of the total system in the range from D = 2! to D = 215,
They allow for the extraction of the fractal dimension dt(y"; and the
coefficient rt(y‘i,), plotted in Fig. 14.

dimension dt(y"p) is likely very small. The only exception may
be the case for ¢ = 0.1, see Figs. 24(a), in which St(y”; still
increases with InD even though at larger values of g we

observe no increase.

[1] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,
From quantum chaos and eigenstate thermalization to sta-
tistical mechanics and thermodynamics, Adv. Phys. 65, 239
(2016).

[2] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, Thermal-
ization and prethermalization in isolated quantum systems: A
theoretical overview, J. Phys. B 51, 112001 (2018).

[3] J. M. Deutsch, Eigenstate thermalization hypothesis, Rep.
Prog. Phys. 81, 082001 (2018).

[4] F. Borgonovi, F. Izrailev, L. Santos, and V. Zelevinsky, Quan-
tum chaos and thermalization in isolated systems of interacting
particles, Phys. Rep. 626, 1 (2016).

[5] J. M. Deutsch, Quantum statistical mechanics in a closed sys-
tem, Phys. Rev. A 43, 2046 (1991).

[6] M. Srednicki, Chaos and quantum thermalization, Phys. Rev.
E 50, 888 (1994).

[7] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and
its mechanism for generic isolated quantum systems, Nature
(London) 452, 854 (2008).

[8] T. Kinoshita, T. Wenger, and S. D. Weiss, A quantum New-
ton’s cradle, Nature (London) 440, 900 (2006).

[9]1 M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,
M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and J.
Schmiedmayer, Relaxation and prethermalization in an iso-
lated quantum system, Science 337, 1318 (2012).

[10] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U.
Schollwock, J. Eisert, and 1. Bloch, Probing the relaxation
towards equilibrium in an isolated strongly correlated 1D Bose
gas, Nat. Phys. 8, 325 (2012).

[11] F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann,
A. ]. Daley, and H.-C. Négerl, Quantum quench in an atomic
one-dimensional Ising chain, Phys. Rev. Lett. 111, 053003
(2013).

[12] T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler,
M. Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer, and
J. Schmiedmayer, Experimental observation of a generalized
Gibbs ensemble, Science 348, 207 (2015).

[13] G. Clos, D. Porras, U. Warring, and T. Schaetz, Time-resolved
observation of thermalization in an isolated quantum system,
Phys. Rev. Lett. 117, 170401 (2016).

[14] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,
P. M. Preiss, and M. Greiner, Quantum thermalization through
entanglement in an isolated many-body system, Science 353,
794 (2016).

[15] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z.
Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro, A.
Dunsworth, E. Jeffrey, J. Kelly, J. Mutus, P. J. J. O’Malley, C.
Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White
et al., Ergodic dynamics and thermalization in an isolated
quantum system, Nat. Phys. 12, 1037 (2016).

023030-20


https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature04693
https://doi.org/10.1126/science.1224953
https://doi.org/10.1038/nphys2232
https://doi.org/10.1103/PhysRevLett.111.053003
https://doi.org/10.1126/science.1257026
https://doi.org/10.1103/PhysRevLett.117.170401
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1038/nphys3830

SIMILARITY BETWEEN A MANY-BODY QUANTUM ...

PHYSICAL REVIEW RESEARCH 6, 023030 (2024)

[16] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol, S.
Gopalakrishnan, and B. L. Lev, Thermalization near integra-
bility in a dipolar quantum Newton’s cradle, Phys. Rev. X 8,
021030 (2018).

[17] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Liischen, M.
H. Fischer, R. Vosk, E. Altman, U. Schneider, and 1. Bloch,
Observation of many-body localization of interacting fermions
in a quasi-random optical lattice, Science 349, 842 (2015).

[18] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.
Hauke, M. Heyl, D. A. Huse, and C. Monroe, Many-body lo-
calization in a quantum simulator with programmable random
disorder, Nat. Phys. 12, 907 (2016).

[19] H. P. Liischen, P. Bordia, S. S. Hodgman, M. Schreiber, S.
Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch, and
U. Schneider, Signatures of many-body localization in a con-
trolled open quantum system, Phys. Rev. X 7, 011034 (2017).

[20] M. Rispoli, A. Lukin, R. Schittko, S. Kim, M. E. Tai, J.
Léonard, and M. Greiner, Quantum critical behaviour at the
many-body localization transition, Nature (London) 573, 385
(2019).

[21] Q. Guo, C. Cheng, Z.-H. Sun, Z. Song, H. Li, Z. Wang,
W. Ren, H. Dong, D. Zheng, Y.-R. Zhang, R. Mondaini, H.
Fan, and H. Wang, Observation of energy-resolved many-body
localization, Nat. Phys. 17, 234 (2021).

[22] M. Gong, G. D. de Moraes Neto, C. Zha, Y. Wu, H. Rong,
Y. Ye, S. Li, Q. Zhu, S. Wang, Y. Zhao, F. Liang, J. Lin,
Y. Xu, C.-Z. Peng, H. Deng, A. Bayat, X. Zhu, and J.-W.
Pan, Experimental characterization of the quantum many-body
localization transition, Phys. Rev. Res. 3, 033043 (2021).

[23] B. Chiaro, C. Neill, A. Bohrdt, M. Filippone, F. Arute, K.
Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends, S. Boixo,
D. Buell, B. Burkett, Y. Chen, Z. Chen, R. Collins, A.
Dunsworth, E. Farhi, A. Fowler, B. Foxen et al., Direct mea-
surement of nonlocal interactions in the many-body localized
phase, Phys. Rev. Res. 4, 013148 (2022).

[24] J. L. C. d. C. Filho, Z. G. Izquierdo, A. Saguia, T. Albash, 1.
Hen, and M. S. Sarandy, Localization transition induced by
programmable disorder, Phys. Rev. B 105, 134201 (2022).

[25] J. Léonard, S. Kim, M. Rispoli, A. Lukin, R. Schittko, J.
Kwan, E. Demler, D. Sels, and M. Greiner, Probing the on-
set of quantum avalanches in a many-body localized system,
Nat. Phys. 19, 481 (2023).

[26] D. Basko, 1. Aleiner, and B. Altshuler, Metal-insulator tran-
sition in a weakly interacting many-electron system with
localized single-particle states, Ann. Phys. 321, 1126 (2006).

[27] 1. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting
electrons in disordered wires: Anderson localization and low-
T transport, Phys. Rev. Lett. 95, 206603 (2005).

[28] V. Oganesyan and D. A. Huse, Localization of interacting
fermions at high temperature, Phys. Rev. B 75, 155111 (2007).

[29] A. Pal and D. A. Huse, Many-body localization phase transi-
tion, Phys. Rev. B 82, 174411 (2010).

[30] J. guntajs, J. Bonca, T. Prosen, and L. Vidmar, Quantum chaos
challenges many-body localization, Phys. Rev. E 102, 062144
(2020).

[31] J. Suntajs, J. Bonca, T. Prosen, and L. Vidmar, Ergodicity
breaking transition in finite disordered spin chains, Phys. Rev.
B 102, 064207 (2020).

[32] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer, and
J. Sirker, Evidence for unbounded growth of the number

entropy in many-body localized phases, Phys. Rev. Lett. 124,
243601 (2020).

[33] R. K. Panda, A. Scardicchio, M. Schulz, S. R. Taylor, and M.
Znidari¢, Can we study the many-body localisation transition?
EPL 128, 67003 (2020).

[34] P. Sierant, D. Delande, and J. Zakrzewski, Thouless time
analysis of Anderson and many-body localization transitions,
Phys. Rev. Lett. 124, 186601 (2020).

[35] P. Sierant, M. Lewenstein, and J. Zakrzewski, Polynomially
filtered exact diagonalization approach to many-body localiza-
tion, Phys. Rev. Lett. 125, 156601 (2020).

[36] D. Sels and A. Polkovnikov, Dynamical obstruction to local-
ization in a disordered spin chain, Phys. Rev. E 104, 054105
(2021).

[37] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer, and
J. Sirker, Slow delocalization of particles in many-body local-
ized phases, Phys. Rev. B 103, 024203 (2021).

[38] T. LeBlond, D. Sels, A. Polkovnikov, and M. Rigol, Univer-
sality in the onset of quantum chaos in many-body systems,
Phys. Rev. B 104, L201117 (2021).

[39] L. Vidmar, B. Krajewski, J. Bon¢a, and M. Mierzejewski,
Phenomenology of spectral functions in disordered spin
chains at infinite temperature, Phys. Rev. Lett. 127, 230603
(2021).

[40] D. Abanin, J. Bardarson, G. De Tomasi, S. Gopalakrishnan,
V. Khemani, S. Parameswaran, F. Pollmann, A. Potter, M.
Serbyn, and R. Vasseur, Distinguishing localization from
chaos: Challenges in finite-size systems, Ann. Phys. 427,
168415 (2021).

[41] A. L. Corps, R. A. Molina, and A. Relafio, Signatures of a
critical point in the many-body localization transition, SciPost
Phys. 10, 107 (2021).

[42] A. Prakash, J. H. Pixley, and M. Kulkarni, Universal spectral
form factor for many-body localization, Phys. Rev. Res. 3,
L012019 (2021).

[43] J. Schliemann, J. V. L. Costa, P. Wenk, and J. C. Egues, Many-
body localization: Transitions in spin models, Phys. Rev. B
103, 174203 (2021).

[44] M. Hopjan, G. Orso, and F. Heidrich-Meisner, Detecting
delocalization-localization transitions from full density distri-
butions, Phys. Rev. B 104, 235112 (2021).

[45] A. Solérzano, L. E. Santos, and E. J. Torres-Herrera, Mul-
tifractality and self-averaging at the many-body localization
transition, Phys. Rev. Res. 3, .032030 (2021).

[46] G. De Tomasi, I. M. Khaymovich, F. Pollmann, and S. Warzel,
Rare thermal bubbles at the many-body localization transition
from the Fock space point of view, Phys. Rev. B 104, 024202
(2021).

[47] B. Krajewski, L. Vidmar, J. Bonca, and M. Mierzejewski,
Restoring ergodicity in a strongly disordered interacting chain,
Phys. Rev. Lett. 129, 260601 (2022).

[48] P. J. D. Crowley and A. Chandran, A constructive theory of
the numerically accessible many-body localized to thermal
crossover, SciPost Phys. 12, 201 (2022).

[49] R. Ghosh and M. Znidari¢, Resonance-induced growth of
number entropy in strongly disordered systems, Phys. Rev. B
105, 144203 (2022).

[50] N. Bolter and S. Kehrein, Scrambling and many-body lo-
calization in the XXZ chain, Phys. Rev. B 105, 104202
(2022).

023030-21


https://doi.org/10.1103/PhysRevX.8.021030
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1038/nphys3783
https://doi.org/10.1103/PhysRevX.7.011034
https://doi.org/10.1038/s41586-019-1527-2
https://doi.org/10.1038/s41567-020-1035-1
https://doi.org/10.1103/PhysRevResearch.3.033043
https://doi.org/10.1103/PhysRevResearch.4.013148
https://doi.org/10.1103/PhysRevB.105.134201
https://doi.org/10.1038/s41567-022-01887-3
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1103/PhysRevB.102.064207
https://doi.org/10.1103/PhysRevLett.124.243601
https://doi.org/10.1209/0295-5075/128/67003
https://doi.org/10.1103/PhysRevLett.124.186601
https://doi.org/10.1103/PhysRevLett.125.156601
https://doi.org/10.1103/PhysRevE.104.054105
https://doi.org/10.1103/PhysRevB.103.024203
https://doi.org/10.1103/PhysRevB.104.L201117
https://doi.org/10.1103/PhysRevLett.127.230603
https://doi.org/10.1016/j.aop.2021.168415
https://doi.org/10.21468/SciPostPhys.10.5.107
https://doi.org/10.1103/PhysRevResearch.3.L012019
https://doi.org/10.1103/PhysRevB.103.174203
https://doi.org/10.1103/PhysRevB.104.235112
https://doi.org/10.1103/PhysRevResearch.3.L032030
https://doi.org/10.1103/PhysRevB.104.024202
https://doi.org/10.1103/PhysRevLett.129.260601
https://doi.org/10.21468/SciPostPhys.12.6.201
https://doi.org/10.1103/PhysRevB.105.144203
https://doi.org/10.1103/PhysRevB.105.104202

SUNTAJS, HOPJAN, DE ROECK, AND VIDMAR

PHYSICAL REVIEW RESEARCH 6, 023030 (2024)

[51] Y. Zhang and Y. Liang, Optimizing randomized potentials for
inhibiting thermalization in one-dimensional systems, Phys.
Rev. Res. 4, 023091 (2022).

[52] D. Sels, Bath-induced delocalization in interacting disordered
spin chains, Phys. Rev. B 1061020202 (2022).

[53] P. Sierant and J. Zakrzewski, Challenges to observation
of many-body localization, Phys. Rev. B 105, 224203
(2022).

[54] A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz, and
D. A. Huse, Avalanches and many-body resonances in many-
body localized systems, Phys. Rev. B 105, 174205 (2022).

[55] J. Sutradhar, S. Ghosh, S. Roy, D. E. Logan, S. Mukerjee,
and S. Banerjee, Scaling of the Fock-space propagator and
multifractality across the many-body localization transition,
Phys. Rev. B 106, 054203 (2022).

[56] F. B. Trigueros and C.-J. Lin, Krylov complexity of many-
body localization: Operator localization in Krylov basis,
SciPost Phys. 13, 037 (2022).

[57] Z. D. Shi, V. Khemani, R. Vasseur, and S. Gopalakrishnan,
Many-body localization transition with correlated disorder,
Phys. Rev. B 106, 144201 (2022).

[58] D. Sels and A. Polkovnikov, Thermalization of dilute impuri-
ties in one-dimensional spin chains, Phys. Rev. X 13, 011041
(2023).

[59] J. C. Peacock and D. Sels, Many-body delocalization from em-
bedded thermal inclusion, Phys. Rev. B 108, L020201 (2023).

[60] B. Krajewski, L. Vidmar, J. Bonca, and M. Mierzejewski,
Strongly disordered Anderson insulator chains with generic
two-body interaction, Phys. Rev. B 108, 064203 (2023).

[61] F. Evers and S. Bera, The internal clock of many-body
(de-)localization, Phys. Rev. B 108, 134204 (2023).

[62] W. De Roeck and F. Huveneers, Stability and instability to-
wards delocalization in many-body localization systems, Phys.
Rev. B 95, 155129 (2017).

[63] W. De Roeck and J. Z. Imbrie, Many-body localization: Sta-
bility and instability, Phil. Trans. R. Soc. A. 375, 20160422
(2017).

[64] D. J. Luitz, E. Huveneers, and W. De Roeck, How a small
quantum bath can thermalize long localized chains, Phys. Rev.
Lett. 119, 150602 (2017).

[65] T. Thiery, F. Huveneers, M. Miiller, and W. De Roeck, Many-
body delocalization as a quantum avalanche, Phys. Rev. Lett.
121, 140601 (2018).

[66] M. Goihl, J. Eisert, and C. Krumnow, Exploration of the stabil-
ity of many-body localized systems in the presence of a small
bath, Phys. Rev. B 99, 195145 (2019).

[67] S. Gopalakrishnan and D. A. Huse, Instability of many-body
localized systems as a phase transition in a nonstandard ther-
modynamic limit, Phys. Rev. B 99, 134305 (2019).

[68] I.-D. Potirniche, S. Banerjee, and E. Altman, Exploration of
the stability of many-body localization in d > 1, Phys. Rev. B
99, 205149 (2019).

[69] P.J. D. Crowley and A. Chandran, Avalanche induced coexist-
ing localized and thermal regions in disordered chains, Phys.
Rev. Res. 2, 033262 (2020).

[70] J. Suntajs and L. Vidmar, Ergodicity breaking transition in
zero dimensions, Phys. Rev. Lett. 129, 060602 (2022).

[71] P. J. D. Crowley and A. Chandran, Mean-field theory of
failed thermalizing avalanches, Phys. Rev. B 106, 184208
(2022).

[72] K. Pawllik, P. Sierant, L. Vidmar, and J. Zakrzewski,
Many-body mobility edge in quantum sun models,
arXiv:2308.01073.

[73] M. Hopjan and L. Vidmar, Scale-invariant survival proba-
bility at eigenstate transitions, Phys. Rev. Lett. 131, 060404
(2023).

[74] M. Hopjan and L. Vidmar, Scale-invariant critical dynam-
ics at eigenstate transitions, Phys. Rev. Res. 5, 043301
(2023).

[75] Y. V. Fyodorov, A. Ossipov, and A. Rodriguez, The Ander-
son localization transition and eigenfunction multifractality in
an ensemble of ultrametric random matrices, J. Stat. Mech.
(2009) L12001.

[76] 1. Rushkin, A. Ossipov, and Y. Fyodorov, Universal and non-
universal features of the multifractality exponents of critical
wave functions, J. Stat. Mech. (2011) L03001.

[77] P. von Soosten, and S. Warzel, The phase transition in the
ultrametric ensemble and local stability of Dyson Brownian
motion, Electron. J. Probab. 23, 1 (2018).

[78] E. Bogomolny and O. Giraud, Eigenfunction entropy and
spectral compressibility for critical random matrix ensembles,
Phys. Rev. Lett. 106, 044101 (2011).

[79] J. A. Méndez-Bermudez, A. Alcdzar-Lopez, and 1. Varga,
Multifractal dimensions for critical random matrix ensembles,
Europhys. Lett. 98, 37006 (2012).

[80] B. Gutkin and V. A. Osipov, Spectral problem of block-
rectangular hierarchical matrices, J. Stat. Phys. 143, 72 (2011).

[81] P. von Soosten and S. Warzel, Renormalization group analysis
of the hierarchical Anderson model, Ann. Henri Poincaré 18,
1919 (2017).

[82] E. Bogomolny and M. Sieber, Power-law random banded ma-
trices and ultrametric matrices: Eigenvector distribution in the
intermediate regime, Phys. Rev. E 98, 042116 (2018).

[83] P. von Soosten and S. Warzel, Delocalization and continu-
ous spectrum for ultrametric random operators, Ann. Henri
Poincaré 20, 2877 (2019).

[84] A. D. Mirlin, Y. V. Fyodorov, E.-M. Dittes, J. Quezada, and T.
H. Seligman, Transition from localized to extended eigenstates
in the ensemble of power-law random banded matrices, Phys.
Rev. E 54, 3221 (1996).

[85] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[86] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribu-
tion of the ratio of consecutive level spacings in random matrix
ensembles, Phys. Rev. Lett. 110, 084101 (2013).

[87] J. Suntajs, T. Prosen, and L. Vidmar, Spectral properties of
three-dimensional Anderson model, Ann. Phys. (Amsterdam)
435, 168469 (2021).

[88] J. guntajs, T. Prosen, and L. Vidmar, Localization challenges
quantum chaos in the finite two-dimensional Anderson model,
Phys. Rev. B 107, 064205 (2023).

[89] N. Macé, F. Alet, and N. Laflorencie, Multifractal scalings
across the many-body localization transition, Phys. Rev. Lett.
123, 180601 (2019).

[90] E. Evers and A. D. Mirlin, Fluctuations of the inverse partic-
ipation ratio at the Anderson transition, Phys. Rev. Lett. 84,
3690 (2000).

[91] A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A.
Romer, Multifractal finite-size scaling and universality at the
Anderson transition, Phys. Rev. B 84, 134209 (2011).

023030-22


https://doi.org/10.1103/PhysRevResearch.4.023091
https://doi.org/10.1103/PhysRevB.106.L020202
https://doi.org/10.1103/PhysRevB.105.224203
https://doi.org/10.1103/PhysRevB.105.174205
https://doi.org/10.1103/PhysRevB.106.054203
https://doi.org/10.21468/SciPostPhys.13.2.037
https://doi.org/10.1103/PhysRevB.106.144201
https://doi.org/10.1103/PhysRevX.13.011041
https://doi.org/10.1103/PhysRevB.108.L020201
https://doi.org/10.1103/PhysRevB.108.064203
https://doi.org/10.1103/PhysRevB.108.134204
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1098/rsta.2016.0422
https://doi.org/10.1103/PhysRevLett.119.150602
https://doi.org/10.1103/PhysRevLett.121.140601
https://doi.org/10.1103/PhysRevB.99.195145
https://doi.org/10.1103/PhysRevB.99.134305
https://doi.org/10.1103/PhysRevB.99.205149
https://doi.org/10.1103/PhysRevResearch.2.033262
https://doi.org/10.1103/PhysRevLett.129.060602
https://doi.org/10.1103/PhysRevB.106.184208
https://arxiv.org/abs/2308.01073
https://doi.org/10.1103/PhysRevLett.131.060404
https://doi.org/10.1103/PhysRevResearch.5.043301
https://doi.org/10.1088/1742-5468/2009/12/L12001
https://doi.org/10.1088/1742-5468/2011/03/L03001
https://doi.org/10.1214/18-EJP197
https://doi.org/10.1103/PhysRevLett.106.044101
https://doi.org/10.1209/0295-5075/98/37006
https://doi.org/10.1007/s10955-011-0162-6
https://doi.org/10.1007/s00023-016-0549-7
https://doi.org/10.1103/PhysRevE.98.042116
https://doi.org/10.1007/s00023-019-00809-z
https://doi.org/10.1103/PhysRevE.54.3221
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1016/j.aop.2021.168469
https://doi.org/10.1103/PhysRevB.107.064205
https://doi.org/10.1103/PhysRevLett.123.180601
https://doi.org/10.1103/PhysRevLett.84.3690
https://doi.org/10.1103/PhysRevB.84.134209

SIMILARITY BETWEEN A MANY-BODY QUANTUM ...

PHYSICAL REVIEW RESEARCH 6, 023030 (2024)

[92] M. L. Mehta, Random Matrices and the Statistical Theory
of Spectra (Academic Press, New York, 1991).

[93] P. Sierant, M. Lewenstein, and A. Scardicchio, Universality in
Anderson localization on random graphs with varying connec-
tivity, SciPost Phys. 15, 045 (2023).

[94] I. Garcia-Mata, J. Martin, R. Dubertrand, O. Giraud, B.
Georgeot, and G. Lemarié, Two critical localization lengths
in the Anderson transition on random graphs, Phys. Rev. Res.
2, 012020 (2020).

[95] I. Garcia-Mata, J. Martin, O. Giraud, B. Georgeot, R.
Dubertrand, and G. Lemarié, Critical properties of the An-
derson transition on random graphs: Two-parameter scaling
theory, Kosterlitz-Thouless type flow, and many-body local-
ization, Phys. Rev. B 106, 214202(R) (2022).

[96] D. J. Luitz, I. M. Khaymovich, and Y. Bar Lev, Multifractality
and its role in anomalous transport in the disordered XXZ
spin-chain, SciPost Phys. Core 2, 006 (2020).

[97] S. Roy and D. E. Logan, Fock-space anatomy of eigenstates
across the many-body localization transition, Phys. Rev. B
104, 174201 (2021).

[98] T. Orito and K.-I. Imura, Multifractality and fock-space lo-
calization in many-body localized states: One-particle density
matrix perspective, Phys. Rev. B 103, 214206 (2021).

[99] M. Tarzia, Many-body localization transition in Hilbert space,
Phys. Rev. B 102, 014208 (2020).

[100] Y. V. Fyodorov and A. D. Mirlin, Localization in ensemble of
sparse random matrices, Phys. Rev. Lett. 67, 2049 (1991).

[101] M. Pino, J. Tabanera, and P. Serna, From ergodic to non-
ergodic chaos in Rosenzweig—Porter model, J. Phys. A 52,
475101 (2019).

[102] V. E. Kravtsov, I. M. Khaymovich, E. Cuevas, and M. Amini,
A random matrix model with localization and Ergodic transi-
tions, New J. Phys. 17, 122002 (2015).

[103] A. Rodriguez, L. J. Vasquez, and R. A. Romer, Multi-
fractal analysis with the probability density function at the
three-dimensional Anderson Transition, Phys. Rev. Lett. 102,
106406 (2009).

[104] A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Romer,
Critical parameters from a generalized multifractal analysis at
the Anderson transition, Phys. Rev. Lett. 105, 046403 (2010).

[105] T. Devakul and D. A. Huse, Anderson localization transitions
with and without random potentials, Phys. Rev. B 96, 214201
(2017).

[106] E. Tarquini, G. Biroli, and M. Tarzia, Critical properties of
the Anderson localization transition and the high-dimensional
limit, Phys. Rev. B 95, 094204 (2017).

[107] A. De Luca, B. L. Altshuler, V. E. Kravtsov, and A.
Scardicchio, Anderson localization on the bethe lattice: Non-
ergodicity of extended states, Phys. Rev. Lett. 113, 046806
(2014).

[108] M. Pino, Scaling up the Anderson transition in random-regular
graphs, Phys. Rev. Res. 2, 042031 (2020).

[109] I. Garcia-Mata, O. Giraud, B. Georgeot, J. Martin, R.
Dubertrand, and G. Lemarié, Scaling theory of the Anderson
transition in random graphs: Ergodicity and universality, Phys.
Rev. Lett. 118, 166801(R) (2017).

[110] R. Ketzmerick, K. Kruse, S. Kraut, and T. Geisel, What de-
termines the spreading of a wave packet? Phys. Rev. Lett. 79,
1959 (1997).

[111] T. Ohtsuki and T. Kawarabayashi, Anomalous diffusion at the
Anderson transitions, J. Phys. Soc. Jpn. 66, 314 (1997).

[112] V. E. Kravtsov, A. Ossipov, and O. M. Yevtushenko, Return
probability and scaling exponents in the critical random matrix
ensemble, J. Phys. A 44, 305003 (2011).

[113] G. D. Tomasi, M. Amini, S. Bera, I. M. Khaymovich, and V.
E. Kravtsov, Survival probability in Generalized Rosenzweig-
Porter random matrix ensemble, SciPost Phys. 6, 014 (2019).

[114] S. Bera, G. De Tomasi, I. M. Khaymovich, and A. Scardicchio,
Return probability for the Anderson model on the random
regular graph, Phys. Rev. B 98, 134205 (2018).

[115] V. E. Kravtsov, A. Ossipov, O. M. Yevtushenko, and E.
Cuevas, Dynamical scaling for critical states: Validity of
Chalker’s ansatz for strong fractality, Phys. Rev. B 82,
161102(R) (2010).

[116] G. S. Ng, J. Bodyfelt, and T. Kottos, Critical fidelity at
the metal-insulator transition, Phys. Rev. Lett. 97, 256404(R)
(2006).

[117] E. J. Torres-Herrera and L. F. Santos, Dynamics at the
many-body localization transition, Phys. Rev. B 92, 014208
(2015).

[118] A. D. Mirlin and F. Evers, Multifractality and critical fluc-
tuations at the Anderson transition, Phys. Rev. B 62, 7920
(2000).

[119] www.hpc-rivr.si.

[120] eurohpc-ju.europa.eu.

[121] www.izum.si.

023030-23


https://doi.org/10.21468/SciPostPhys.15.2.045
https://doi.org/10.1103/PhysRevResearch.2.012020
https://doi.org/10.1103/PhysRevB.106.214202
https://doi.org/10.21468/SciPostPhysCore.2.2.006
https://doi.org/10.1103/PhysRevB.104.174201
https://doi.org/10.1103/PhysRevB.103.214206
https://doi.org/10.1103/PhysRevB.102.014208
https://doi.org/10.1103/PhysRevLett.67.2049
https://doi.org/10.1088/1751-8121/ab4b76
https://doi.org/10.1088/1367-2630/17/12/122002
https://doi.org/10.1103/PhysRevLett.102.106406
https://doi.org/10.1103/PhysRevLett.105.046403
https://doi.org/10.1103/PhysRevB.96.214201
https://doi.org/10.1103/PhysRevB.95.094204
https://doi.org/10.1103/PhysRevLett.113.046806
https://doi.org/10.1103/PhysRevResearch.2.042031
https://doi.org/10.1103/PhysRevLett.118.166801
https://doi.org/10.1103/PhysRevLett.79.1959
https://doi.org/10.1143/JPSJ.66.314
https://doi.org/10.1088/1751-8113/44/30/305003
https://doi.org/10.21468/SciPostPhys.6.1.014
https://doi.org/10.1103/PhysRevB.98.134205
https://doi.org/10.1103/PhysRevB.82.161102
https://doi.org/10.1103/PhysRevLett.97.256404
https://doi.org/10.1103/PhysRevB.92.014208
https://doi.org/10.1103/PhysRevB.62.7920
http://www.hpc-rivr.si
http://eurohpc-ju.europa.eu
http://www.izum.si

