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Hybrid optomechanical superconducting qubit system
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We propose an integrated nonlinear superconducting device based on a nanoelectromechanical shuttle. The
system can be described as a qubit coupled to a bosonic mode. The topology of the circuit gives rise to an
adjustable qubit-mechanical coupling, allowing the experimenter to tune between linear and quadratic coupling
in the mechanical degrees of freedom. Owing to its flexibility and potential scalability, the proposed setup
represents an important step towards the implementation of bosonic error correction with mechanical elements
in large-scale superconducting circuits. We give preliminary evidence of this possibility by discussing a simple
state-swapping protocol that uses this device as a quantum memory element.
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I. INTRODUCTION

In recent years, optomechanical systems, both in the opti-
cal and in the microwave regime, have become one of the most
prominent platforms for the investigation of quantum mechan-
ical phenomena. On the one hand, they have allowed scientists
to explore foundational aspects of quantum theory [1,2]; on
the other, they have provided the test bed for future technolog-
ical applications of quantum mechanics [3]. Prominent results
in the field include sideband [4] and feedback [5] cooling
to the ground state, squeezing [6,7], and entanglement [8,9]
of mechanical resonators. In the context of coupling be-
tween qubits and mechanical resonators, the generation of
quantum states of mechanical motion was recently realized
in high-overtone bulk acoustic-wave resonators (HBARs)
where the generation of Fock [10] and cat [11] states was
demonstrated.

In most of the examples mentioned above, the optome-
chanical system consists of a mechanical resonator (e.g.
a nanodrum) whose position is parametrically coupled to
a photon cavity. One of the outstanding goals in these
systems has been the realization of the so-called single-
photon strong-coupling limit. In this regime, the parametric
coupling energy between a single photon and the mechan-
ical mode becomes comparable to the bare optical cavity
linewidth and can therefore significantly alter the dynamics
of the system [12–20]. In microwave setups, several proposals
suggest that the addition of nonlinear elements, in the form of
Josephson junctions, can provide the resource needed to reach

*francesco.massel@usn.no

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the strong-coupling regime; realizations along these lines
include charge [12,21] and flux-mediated optomechanical
circuits [22].

Another intriguing aspect of these systems is the possibil-
ity of realizing a quadratic coupling between the mechanical
motion and the optical field. Arguably, its most prominent
application is the detection of phonon Fock states [23–27],
even though two-photon cooling and squeezing both of the
mechanical and the electromagnetic degrees of freedom have
been predicted [27] as well. In the optical frequencies range,
the quadratic coupling of an optical cavity with a mechanical
mode has been realized, e.g., in membrane-in-the-middle [23]
and ultracold gases setups [28]. In the microwave regime,
quadratic parametric coupling of a qubit to mechanical motion
was recently realized with drumhead mechanical resonators
coupled to superconducting circuits, exploiting the large mis-
match of mechanical and qubit resonant frequency [29,30],
where the generation of (non-Gaussian) number-squeezed
states was demonstrated.

In this work, we extend the nonlinear circuit approaches
mentioned above, integrating a mechanical shuttling element
into the design of the superconducting circuit of Fig. 1. The
shuttling element consists here of a portion of superconduct-
ing material that is free to perform mechanical oscillations
between two (superconducting) electrodes. Analogous shut-
tling devices were realized experimentally in normal (i.e.,
nonsuperconducting) circuits [31–33], demonstrating the abil-
ity of such devices to “shuttle” electrons along with the
oscillatory mechanical motion. In addition, an analogous
shuttling mechanism for Cooper pairs was theoretically in-
vestigated for superconducting circuits [34]. In our work, we
explore how the dynamical properties of a superconducting
shuttling element can be recast in terms of a (nonlinear)
optomechanical coupling between a superconducting circuit
and a mechanical mode, for which we believe this particular
charge shuttling mechanism certainly offers a new degree of
freedom [35].
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FIG. 1. Cartoon picture of a (grounded) X2MON shuttle and a lumped-element description of a transmon-like setup, including the
X2MON. Contacts between the shuttle (orange) and its terminals (blue) can be described by position-dependent Josephson junctions.

More specifically, we show how, in a lumped-element de-
scription, we are able to define a system constituted by a
superconducting qubit exhibiting an intrinsic quadratic cou-
pling to the mechanical motion, in addition to a tunable linear
one. The latter can be externally suppressed, leading to a dom-
inant coupling that is quadratic in the mechanical degrees of
freedom. At the same time, we will show that the tunability of
the linear coupling term allows for a coherent state exchange
between the qubit and the mechanical resonator.

II. THE DEVICE

Our device is constituted by a superconducting shuttle,
which is free to oscillate between two terminals, as shown
in Fig. 1. The terminals are gated to a voltage source Vg

through a gating capacitance Cg. The addition of a shunt-
ing capacitance Cb, meant to ensure protection from charge
fluctuations, defines a transmon qubit-like device [36] (the
X2MON) exhibiting nontrivial properties as a function of
the mechanical shuttle dynamics. The displacement of the
grounded island induces a shift in the Josephson and charging
energies of the two Josephson junctions (JJs), which translates
into a coupling between the superconducting circuit and the
mechanical motion. As anticipated, in our device, the coupling
between the mechanical degrees of freedom and a supercon-
ducting qubit can be externally tuned between a linear and a
quadratic coupling, depending on the external magnetic flux
through the loop defined by the two JJs. The setup we propose
here differs from the design of Refs. [29,30] inasmuch our
realization, for suitable values of the control parameter, is
intrinsically quadratic in the mechanical displacement—i.e.,
not relying on the relative value of the mechanical and qubit
frequencies—owing to the symmetry of the design.

From a quantum-computational perspective, the coupling
between a qubit and a bosonic mode—represented here,
as we will show, by a shuttling mechanical element—is
an extremely promising candidate for quantum error cor-
rection [37,38]. Most importantly, the tunability of the
qubit-mechanical coupling of our setup allows for a great
flexibility in the choice of different protocols for state prepa-
ration and statetransfer between qubit and mechanics. Further
advantages offered by mechanical resonators compared to
microwave cavities as the bosonic mode are represented
by their larger coherence times (mechanical linewidths

∼1 kHz [32] vs cavity linewidths ∼100 kHz), the lack of
“crosstalk” between the bosonic (mechanical) modes and,
with specific reference to shuttling mechanical elements, the
scalability of such platforms.

A. Lumped-element model

Following Koch et al. [36], we describe the Josephson
junction energy as the sum of a capacitive contribution EC and
the Josephson energy EJ. In our device, the lower portion of
the circuit—the orange element in Fig. 1—corresponds to the
actual island. As a consequence, the charging and Josephson
energies become dependent on the shuttle dynamics EC 1,2 =
EC 1,2(x0 ± δ), EJ 1,2 = EJ 1,2(x0 ± δ). Owing to the symmetry
of the device, the upper (lower) sign corresponds to junction
1 (junction 2).

The total charging energy for the circuit can be written as

EC = e2

2C�

(1)

with C� = CJ1 + CJ2 + Cb + Cg, where CJ1 and CJ2 are the
capacitances of the two Josephson junctions, Cg the gate ca-
pacitance, and Cb the shunting capacitance aimed at reducing
the effects of charge noise, as in a conventional transmon
setup.

In the following, we will assume that the geometric capaci-
tances associated with the Josephson junctions CJ1 and CJ2 can
be modeled by two (equal, parallel plate) capacitors CJ 1,2

.=
CJ/(1 ± δ/x0). Furthermore, we assume an exponential de-
pendence of EJ on the electrodes’ separation. This assumption
can be justified through the standard Ambegaokar-Baratoff
formula [39,40] arguing that the normal-state resistance is
given by RN = RN0 exp[x/ξ ] (x being the thickness of the
JJ), as a consequence of the exponential suppression of the
tunneling probability through a potential barrier, combined
with the Landauer formula [41], leading to

EJ 1,2 = EJ exp

[
∓ δ

ξ

]
(2)

with ξ = x0/ ln[ �RK
8EJRN0

] and EJ = EJ1(0) = EJ2(0) for sym-
metrical JJs. Here � is the superconducting gap and RK =
2π h̄/e2 the resistance quantum. For a typical NbN junction,
we can assume � = 4500 GHz, EJ = 20 GHz, RN0 = 50 �,
and x0 = 1 nm, allowing us to estimate ξ � 0.1 nm (h̄ = 1
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throughout the paper). Following Ref. [36], we can write the
system’s Hamiltonian as

H = 4EC(δ)(n − ng)2 − E� (δ) cos

(
φb

2

)
cos(φ)

− E�(δ) sin

(
φb

2

)
sin(φ) + E (xm, pm ), (3)

where n and φ are the excess number of charge carriers
and phase on the island, respectively, and E� (δ) = EJ1(δ) +
EJ2(δ), E�(δ) = EJ1(δ) − EJ2(δ). For a symmetric setup,
we have

E� (δ) = 2EJ cosh

(
δ

ξ

)
, (4a)

E�(δ) = 2EJ sinh

(
δ

ξ

)
, (4b)

where EJ is the Josephson energy associated with either junc-
tion. Furthermore, ng is related to the external bias voltage by
ng = −CgVg/2e and the phase φb is determined by the external
flux bias 	b = 	0/2π φb through the loop defined by the two
JJs (	0 = h/2e). Here, the JJs are assumed to be symmetrical,
but the full calculation with general junctions is presented in
the Supplemental Material [42]. Finally, the term E (xm, pm ) in
the energy associated with the dynamics of the center of mass
of the shuttle, which, in our analysis, we model as a simple
harmonic oscillator.

Expanding the Hamiltonian given in Eq. (3) in powers of
φ̂ up to the fourth order and in powers of the mechanical
displacement up to the second order, and focusing on the two
lowest-charge states, we have (see, e.g., [43])

H = ωq

2
σz + ωmb†b + g1(b† + b)σx + g2(b† + b)2σz, (5)

where σz = 2a†a − 1, σx = a† + a. The operators a (a†), b
(b†) are the lowering (raising) operators associated with the
electrical and mechanical degrees of freedom, respectively.
All coefficients in Eq. (5) (ωq, ωm, g1, g2) depend on the
external flux bias. The explicit dependence on 	b is given
in the Supplemental Material [42]. As shown in Fig. 2, g2 is
the dominating interaction when the bias flux through the JJ
loop is set to zero, since g1 vanishes in this case. However, g1

becomes the dominating term even for small deviations from
the 	b = 0 condition. As we will show below, this ability
to control the type of interaction between the qubit and the
mechanics makes this system very flexible in terms of possible
applications, such as preparing the mechanical oscillator into a
specific quantum state. For m � 5 × 10−19 kg, ωm = 1 GHz,
and ωq � 17 GHz (all other parameters defined above), we
have that xZPF/ξ � 3 × 10−3, g2 � 40 kHz. Also, note that
the Hamiltonian given in Eq. (5) is valid in the case of equal
JJs. If the JJs exhibit some degree of asymmetry, a linear
coupling to σz and a quadratic coupling to σx appear, in addi-
tion to a small qubit rotation (zeroth-order term in σx). While
the quadratic coupling to σx is negligible for all parameters,
the linear coupling between the displacement and σz becomes
comparable to the quadratic one when the asymmetry of the
Josephson energies is ∼ xZPF

2ξ
, which, for the parameters chosen

here, corresponds to �EJ = |EJ1 − EJ2| � 30 MHz. Further-
more, the zeroth-order term in σx is negligible whenever the

 

FIG. 2. The strengths of g1 (red) and g2 (blue) couplings and the
qubit frequency ωq (dashed black) as a function of the external flux
φb. The inset shows the crossover point near zero flux bias where
g1 becomes larger than g2. Parameters: EJ = 20 GHz, EC = 1 GHz,
xZPF/ξ = 3 × 10−3.

asymmetry d0 = |EJ1 − EJ2|/|EJ1 + EJ2| is (much) less than
unity. A discussion of the general case of different JJs is
presented in the Supplemental Material [42].

III. STATE SWAPPING PROTOCOL

A promising application for the setup proposed here is
bosonic error correction. On general grounds, bosonic error
correction provides key advantages over quantum error cor-
rection schemes utilizing multiple physical qubits, inasmuch
it eliminates the overheads and the potential issues arising
from crosstalk of multiple physical qubits. More specifically,
our mechanical implementation has further advantages over
a microwave cavity: mechanical resonators offer better ring-
down times than microwave cavities, shuttling resonators
offer a more compact design and relatively straightforward
scalability, and the qubit-mechanics (linear) coupling can be
externally tuned.

As a first step in this direction, we consider a state-swap
protocol that demonstrates the ability of this device to co-
herently transfer a qubit state to a quantum state of the
mechanical resonator. Given the relatively large frequency
mismatch between the qubit and the mechanics (ωq/ωm �
20), direct transitions between mechanics and qubit are highly
nonresonant. To induce such sideband transitions, we there-
fore modulate the flux through the JJs loop at a frequency
ω̄, corresponding to a phase modulation given by φb(t ) =
φb,0 cos(ω̄t ) (flux-driven sideband transitions). This technique
is analogous to the one employed in Ref. [44] for the case
of a transmon qubit coupled to a microwave cavity. In the
context of optomechanical systems, a similar approach was
also considered in [30], where the gate charge modulation
was used to induce single-phonon transitions in a mechanical
resonator coupled to a qubit. In general, these techniques go
under the name of ac-dither techniques [45].

As a consequence of the phase modulation, the coefficients
appearing in the definition of the Hamiltonian H in Eq. (5)
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FIG. 3. Demonstration of the state swapping protocol. Left panel: the qubit state |σz = 1〉 (red line) is transferred to the mechanical
oscillator Fock state |n = 1〉 (black line/black shade). Central panel: the linear coupling g1 is suppressed. The free evolution of the state
|n = 1〉 is subject to the (small) intrinsic dissipation of the mechanical resonator. Right panel: the state |n = 1〉 is transferred back to the qubit.
The fidelity of the swapping to the mechanical resonator and back, is compared with the free evolution of the |σz = 1〉 state under subject
to pure qubit decoherence (blue line). Parameters: EC = 1 GHz, EJ = 20 GHz, xZPF/ξ = 3 × 10−3, φb,0 = 0.5, mechanical angular frequency
ωm = 1 GHz, and damping rate γ = 1 kHz, qubit damping rate γσ = 100 kHz. In the simulations, we have assumed a finite temperature of
10 mK, both for the qubit and for the mechanical bath, corresponding to populations of nσ,th � 2 × 10−7 and nm,th � 0.87, respectively. The
time axis is reset to zero for each step in the protocol to better illustrate the different timescales.

become time dependent:

H = ωq(t )

2
σz + ωm(t )b†b

+ g1(t )(b† + b)σx + g2(t )(b† + b)2σz. (6)

It is possible to show that, in a nonuniformly rotating frame
for the qubit and the mechanics, if the driving frequency is
chosen in such a way that ω̄ = ω̄q − ωm, with ω̄q = ωq|φb=0 −
δq, δq = φ2

b,0ωp0/16, and ωp0 = √
16ECEJ cos(φb/2) for sym-

metrical JJs, the transformed Hamiltonian corresponds to a
state-swapping Hamiltonian

H ′ = gsw(b†σ− + bσ+), (7)

where gsw = ḡ1J0(δq/2ω̄) with J0(x) being the zeroth-order
Bessel function and ḡ1 the linear approximation of g1(t ) with
respect to φb,0.

Given that φb,0 is externally tunable, after the state-
swapping transition described above, it is possible to exter-
nally suppress the linear coupling between the qubit and the
mechanical resonator. Having this in mind, one can consider
using the mechanical mode as a low-decoherence memory
element, owing to the combined effect of the on-demand sup-
pression of lowest-order coupling between the qubit and the
mechanical resonator, and the intrinsically long decoherence
times of the mechanical element.

In Fig. 3, we depict a simple instance of the state-swap
protocol. Starting from the state |σz = 1, nm = 0〉, we first
perform a state swap between the qubit state and the me-
chanics (left), followed by the “free” evolution in the absence
of qubit-mechanics coupling, φb = 0, implying g1 = 0 (cen-
ter), transferring then the excitation back to the qubit (right).
We have compared this state-swapping protocol with the
free evolution of the |σz = 1〉 state in the presence of the
same environment (qubit decay rate γσ = 100 kHz) as for
the state-swap protocol. The |σz = 1, nm = 0〉 initial state can
be prepared resorting to a preliminary cooling step of the
mechanical mode. We would like to point out that, while
the parameters chosen here push the boundaries of what is

experimentally realizable, with values of the f Q product of
the order of 1014, record values of f Q = O(1018) have been
reported for bulk acoustic wave resonators [46,47].

IV. EXPERIMENTAL OUTLOOK AND PERFORMANCE

From an experimental point of view, the realization of
a shuttling island (orange box in Fig. 1) can be performed
with some additional processing steps. However, fabrication
of a superconducting island has turned out to be a challenge so
far, since standard superconducting materials, such as Al, tend
to oxidize through for small 503 nm3 islands. Our latest work
on that end shows that we can realize superconducting NbN
strips [48] with a Tc = 9 K, which avoids the aforementioned
issue and is fully compatible with our processing techniques.
Hence, the fabrication of superconducting islands in varying
circuit combinations is possible now. One of the circuits to be
implemented is shown in Fig. 1.

Additionally, the ability to perform precise ac-dither proto-
cols with the magnetic flux is required to successfully operate
the device as a platform for useful quantum operations. These
techniques are, in principle, possible with tuning either the
gate charge or the magnetic flux [45], and different kinds
of modulation schemes have been experimentally demon-
strated to be feasible, e.g., Ref. [30] for charge-based and
Refs. [44,49] for flux-based procedures.

Note that, in this work, we do not focus on parameter
optimization for our device, for example to maximize the
couplings or to minimize the noise in the circuit, but instead
we use fairly typical values for superconducting circuits. As
an example, one could introduce a larger shunting capacitance
to avoid charge noise effects thanks to the reduced charging
energy, placing the device firmly in the EJ � EC transmon
regime.

Even though we are not aiming to optimize the perfor-
mance of our device here, the accessible coupling strengths
between the qubit and the mechanics are promising when
considering the proposed device as a candidate for practi-
cal quantum computation protocols. We obtain a quadratic
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coupling g2 that is about an order of magnitude larger than
presently achievable linewidths for shuttling mechanical res-
onators using the parameters in Fig. 2 for a wide range of
flux biasing, and g2/ωm ≈ 4 × 10−5, which is comparable
to different state-of-the-art implementations of bosonic error
correction schemes. For example, in a recent demonstration of
quantum error correction beyond the break-even point using a
bosonic (photonic) GKP code [38], the corresponding ratio
was ∼1 × 10−5 with a superconducting cavity as the bosonic
system. However, we do not predict reaching the ultrastrong
coupling limit as in Ref. [30], but in terms of the linear cou-
pling g1 we still can attain significantly larger values than the
resonator linewidth with g1/ωm > 0.01 already starting from
a small flux bias.

We want to emphasize that the state swapping protocol
explored in this work is not meant to be a comprehensive
procedure for bosonic error correction, but instead a proof of
concept that our device could be useful in such applications.
Indeed, it is possible to create arbitrary phonon number states
with detailed control of the state swapping Hamiltonian [50]
and, additionally, other interesting and useful operations can
be realized with this interaction alone, such as the preparation
of mechanical cat states [11]. On top of this linear interaction
between the qubit and the mechanics, we also have access

to another resource, namely the quadratic coupling, that is
largely unexplored in this work.

V. CONCLUSIONS

In our work, we introduce a device (the X2MON) which
consists of a transmon coupled to a mechanical shuttle op-
erating in the quantum regime. We discuss the nature of the
coupling between the two. Furthermore, we demonstrate a
state-swap protocol, which, owing to the properties of the
shuttle, can be directly employed as a quantum memory.
Our work paves the way for bosonic error correction with
mechanical modes.
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