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Comparing planar quantum computing platforms at the quantum speed limit
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An important aspect that strongly impacts the experimental feasibility of quantum circuits is the ratio of gate
times and typical error time scales. Algorithms with circuit depths that significantly exceed the error time scales
will result in faulty quantum states and error correction is inevitable. We present a comparison of the theoretical
minimal gate time, i.e., the quantum speed limit (QSL), for realistic two- and multi-qubit gate implementations
in neutral atoms and superconducting qubits. Subsequent to finding the QSLs for individual gates by means
of optimal control theory we use them to quantify the circuit QSL of the quantum Fourier transform and the
quantum approximate optimization algorithm. In particular, we analyze these quantum algorithms in terms of
circuit run times and gate counts both in the standard gate model and the parity mapping. We find that neutral
atom and superconducting qubit platforms show comparable weighted circuit QSLs with respect to the system
size.
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I. INTRODUCTION

Quantum computers promise to solve computational prob-
lems that are deemed hard or even intractable for classical
computers. Their potential applications include prime factor-
ing of large integers [1], quantum simulation [2], quantum
chemistry [3], combinatorial optimization [4], and even prob-
lems in finance [5]. Currently, quantum computing is in the
so-called noisy intermediate-scale quantum (NISQ) era [6],
characterized by imperfect qubit control, and qubit numbers
that prohibit quantum error correction [7] for relevant prob-
lem sizes. Nevertheless, recent proof-of-principle experiments
[8–11] demonstrated that a computational quantum advan-
tage over classical computers can be reached already with
NISQ hardware. However, it remains a crucial challenge to
go beyond the proof-of-principle stage, i.e., to demonstrate
a quantum advantage for practically relevant computational
tasks on resource-limited present-day devices.

To reach a practical quantum advantage regime [2] in
NISQ-era digital quantum computing it is of crucial impor-
tance to execute quantum algorithms as efficiently as possible
in order to minimize the time for noise mechanisms to im-
pair the quantum information processing. This effectively
makes a minimization of the quantum algorithm run times
and gate counts desirable—a task that can be addressed in
various ways. One option is to find an algorithm’s optimal
circuit representation, i.e., a circuit requiring a minimal circuit
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depth together with a minimal gate count for a given set of
available gates. Quantum circuit optimization has, e.g., been
done heuristically [12,13] or by machine learning techniques
[14,15] and several open-source packages are readily available
[16–18].

Another option for minimizing the algorithm run time
is to minimize the time for each elemental quantum gate
of a given quantum circuit. While protocols for fast, high-
fidelity quantum gates are nowadays routinely available and
implemented on all major quantum computing platforms
like neutral atoms [19,20], superconducting circuits [8,21] or
trapped ions [22,23], the ideal would be to execute every quan-
tum gate at its quantum speed limit (QSL). In general, the QSL
denotes the shortest time needed to accomplish a given task
[24]. It constitutes a fundamental limit in time and depends
on the system under consideration, i.e., its Hamiltonian and
the control knobs available to steer the dynamics.

Here, we determine the QSLs of quantum gates for two
major quantum computing platforms that allow for two-
dimensional (2D) qubit arrangements—neutral atoms and
superconducting circuits [25]. Our study reveals how close
the current experimental gate protocols are in comparison to
their QSLs and thus exemplifies what can theoretically still
be gained from further speeding up gate protocols. Moreover,
provided that every gate could be experimentally realized at
the QSL, our analysis gives an estimate of how many gates
can be executed realistically before decoherence takes over
and renders longer quantum circuits practically infeasible. To
this end, we consider two prototypical quantum computing
algorithms: (i) the quantum Fourier transform (QFT), required
for Shor’s algorithm for integer factorization [1], and (ii)
the quantum approximate optimization algorithm (QAOA),
used to solve combinatorial optimization problems [4]. Con-
sidering standard NISQ devices for both neutral atoms and
superconducting circuits with qubits arranged in a 2D grid
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architecture with only nearest-neighbor connectivity, we cal-
culate the circuit run times with gates at the QSL for both
algorithms. This allows for a direct comparison of both plat-
forms in terms of the maximal problem sizes that should
currently be feasible on their NISQ representatives.

A common challenge arising in 2D platforms with nearest-
neighbor connectivity is the requirement to perform gates
between non-neighboring qubits. In the standard gate model
(SGM), such gates can be replaced by sequences of uni-
versal single- and two-qubit gates using the available local
connectivity. However, this comes at the price of increas-
ing the circuit depths and gate counts. As an alternative to
the SGM, we also examine circuit representations using the
so-called parity mapping (PM). In brevity, the PM for quan-
tum computing [26] and quantum optimization [27,28] is a
problem-independent hardware blueprint that only requires
nearest-neighbor connectivity at the cost of increased qubit
numbers. Since for QAOA circuits in the PM it is beneficial
to use local three- and four-qubit gates [29,30], we also deter-
mine their QSLs on both platforms.

It should be noted that this paper focuses entirely on the
determination of the QSLs for various quantum gates and
how to turn these into a fair comparison of circuit run times
across platforms. A more detailed discussion of gate protocols
for specific quantum gates or platforms can, e.g., be found
in Refs. [31–33] for neutral atoms or in Refs. [34–36] for
superconducting circuits. Moreover, it should be noted that we
only consider the gate times, respectively circuit run times, as
well as the number of gates as indicators for the feasibility
of quantum circuits. While both quantities are doubtlessly
important, they are by no means the only quantities impacting
a circuit’s feasibility. A holistic figure of merit assessing a
circuit’s feasibility would also need to account for state prepa-
ration and measurement errors and various other error sources.

The paper is organized as follows. In Sec. II we present our
main result, i.e., an overview of circuit run times when using
gate times from the literature and gate times at the QSL—
evaluated both for neutral atoms and superconducting circuits
as well as for circuits in the SGM and the PM. In Sec. III we
then present the details of our numerical model. Section IV B
introduces the basic notion of QSLs and how quantum optimal
control theory (OCT) can be used for determining QSLs. A
detailed discussion of QSLs as well as which combinations of
available control fields allow to reach the QSLs, is given in
Sec. V. Section VI concludes the paper.

II. MAIN RESULT: QUANTUM ALGORITHMS
AT THE QUANTUM SPEED LIMIT

In this section, we compare the run times of QFT and
QAOA quantum circuits using gate set implementations avail-
able on neutral atom and superconducting circuit hardware.
To do so we consider two scenarios. In the first scenario,
we use literature values for gate times of state-of-the-art gate
implementations of the minimal universal gate set [referred
to as “standard gate set” (SGS) from now on] native to each
platform, which thus represents the canonical way of convert-
ing quantum algorithms into executable quantum circuits. In
the second scenario, we use an extended set of gates available
at each platform with gate times at the QSL [referred to as

“QSL gate set” (QGS) from now on], which thus yields the
current fundamental limits in circuit run times. We describe
both gate sets in Sec. II A and use them to analyze circuit run
times of QFT and QAOA quantum circuits both in the SGM in
Sec. II B and the PM in Sec. II C. A brief review of the basic
concepts and quantum circuits of a QFT and a single QAOA
step within the SGM and the PM is given in Appendix A.

A. Standard and QSL gate sets

In the SGM, each quantum algorithm is converted into
quantum circuits using gates from a universal set of quantum
gates. Such a universal set typically contains all the single-
qubit gates and at least one entangling two-qubit gate, e.g.,
the CNOT gate [38]. The row named “standard gate set” in
Table I summarizes the native universal gate sets and their
typical gate times for both platforms at comparable gate fi-
delities. For neutral atoms, we consider the controlled-Z gate,
CZ = diag{1, 1, 1,−1}, as the typical entangling two-qubit
gate. This is a common choice for neutral atoms [20] as it
has been successfully used for implementing quantum algo-
rithms [39,40]. For superconducting circuits, we have chosen
the iSWAP-like Sycamore gate as an entangling two-qubit
gate, motivated by its short gate time and successful usage
in recent quantum advantage experiments with quantum pro-
cessors based on tunable couplers [8,9].

In addition, we consider an extended, platform-
independent set of quantum gates operated at the QSL (see
“QSL gate set” in Table I). This set consists of all single-qubit
gates as well as several multi-qubit gates implementable
on both platforms: CZ, CNOT, SWAP, ZZZ, and ZZZZ.
The availability of a wider range of gates allows for more
flexibility in finding circuit representations with fewer gates
and shorter circuit run times. In addition, we also assume
that every gate in this set is executed at the QSL, which
allows for another speed-up of circuit run times. The run
times obtained for the QGS should therefore be viewed as
an estimate for the QSL of the circuit itself, i.e., the circuit
QSL—provided that no other, potentially faster and/or better
suited gates are available [41]. Note that the details regarding
the method to determine the QSLs and their results are
presented in Secs. IV B and V. The row “QSL gate set” in
Table I summarizes the gates of the extended set and lists the
QSL times for both platforms.

Table I indicates that absolute circuit run times for neutral
atoms will be longer compared to those for superconducting
circuits since their elemental gate times differ by more than
an order of magnitude. However, in order to ensure a fair
comparison of circuit run times the absolute gate times need
to be weighted by the finite coherence time and lifetime of
qubits and other levels involved in the gate mechanisms.

For neutral atoms, we take both the coherence time of the
qubit states, given by the dephasing time T ∗

2 = 4 ms [39],
and the lifetime of the Rydberg state, TRyd = 150 µs [39], as
typical error time scales against which we compare circuit run
times. We take the former as reference for single-qubit gates,
since they do not occupy the Rydberg level [42], and the latter
for two-qubit gates, where controlled transitions via Rydberg
levels constitute the primary gate mechanism [43]. For super-
conducting circuits, we take their intrinsic T1 time, T1 = 15 µs

023026-2



COMPARING PLANAR QUANTUM COMPUTING PLATFORMS … PHYSICAL REVIEW RESEARCH 6, 023026 (2024)

TABLE I. Overview of different gate sets and corresponding gate times on neutral atoms and superconducting circuits. While the row
“standard gate set” (SGS) represents typical gates and times used on the respective platform and are taken from literature, the multi-qubit gates
in the row named “QSL gate set” (QGS) correspond to an extended gate set with gate times at the QSL. These times are determined within
this study. The columns labeled as “time (rel.)” indicate the gate times weighted by the corresponding dissipation/decoherence times for the
respective platforms (see main text for explanation).

Neutral atoms Superconducting circuits

gate time (ns) time (rel.) gate time (ns) time (rel.)

local ∼1000 [20] ∼2.5×10−4 local 25 [37] 1.7×10−3Standard gate set
(SGS) CZ 350 [20] 2.3×10−3 Sycamore 12 [37] 8.0×10−4

local ∼1000 [20] ∼2.5×10−4 local 25 [37] 1.7×10−3

CNOTa 300 2.0×10−3 CNOT 14 9.3×10−4

QSL gate set
(QGS)

CZ 350 2.3×10−3 CZ 10 6.7×10−4

SWAP 400 2.7×10−3 SWAP 12 8.0×10−4

ZZZ 600 4.0×10−3 ZZZ 24 1.6×10−3

ZZZZ 600 4.0×10−3 ZZZZ 80 5.3×10−3

aThe CNOT gate is listed for completeness but not used in any circuits for neutral atoms, see Sec. V for details.

[8], as typical error time scale since it applies for both single-
and two-qubit gates. However, note that these choices are
rather conservative. For neutral atoms, any two-qubit gate
dynamics will naturally also involve the qubit levels, which
have much longer coherence times. Weighting two-qubit gates
exclusively by the Rydberg lifetime thus overestimates the
lifetime-induced error probability. For superconducting cir-
cuits, longer T1 times up to 500 µs have already been reported
[44].

B. Circuit times in the standard gate model

In the following, we calculate the circuit run times for
QFTs and single QAOA steps in the SGM using gates from
both the SGS and the QGS. As already outlined above,
we assume both hardware platforms to consist of qubits ar-
ranged in 2D arrays with only nearest-neighbor connectivity
(see Sec. III for details regarding the model). This requires
replacing all gates between nonconnected qubits with gate
sequences between physically connected qubits.

1. Standard gate set circuits

Using gates from the SGS, the circuit’s gate sequences
consist of single-qubit gates plus CZ gates in case of neu-
tral atoms and single-qubit gates plus Sycamore gates in
case of superconducting circuits (cf. Table I). Since the cir-
cuit for the QFT does by construction not require any gate
between non-neighboring qubits [45], we only replace the
controlled-phase gate and SWAP gate by gate sequences from
the SGS. The situation changes for the QAOA circuits, as
it assumes an all-to-all connected architecture and finding
a circuit representation with minimal depth while only re-
quiring nearest-neighbor connectivity is likely NP-hard [46].
As a remedy, we use the open-source pytket compiler [16]
to translate the QAOA’s bare quantum circuits to executable
quantum circuits that are in agreement with the hardware’s
nearest-neighbor connectivity and SGSs. We furthermore use
the compiler’s quantum circuit optimization features to opti-

mize the circuits in order to minimize gate counts and circuit
depths.

The squares in Figs. 1(a) and 1(c) show the resulting run
times for quantum circuits corresponding to QFTs and QAOA
steps, respectively, when executed on neutral atoms (orange)
and superconducting circuits (purple). Within each line, the
size of the problem instance increases from the lower left to
the upper right. Note that for a fair comparison between plat-
forms, all gate times have been weighted by each platform’s
intrinsic error time scales as described previously. Circuits
with run times significantly exceeding the platform’s intrinsic,
level-dependent error time scales, highlighted by the gray
area in Figs. 1(a) and 1(c), will most likely yield unreliable
results. We observe that despite the different time scales for
gates, the weighted circuit run times are almost identical for
both platforms and for both the QFT and QAOA, see squares
in Figs. 1(a) and 1(c), respectively. However, only problem
instances with relatively small qubit numbers seem to be cur-
rently doable on both platforms.

While the circuit run time is one deciding factor in whether
it is feasible on current NISQ hardware, this measure neglects
the fact that every gate comes with an intrinsic error proba-
bility. Assuming gate errors on the order of 0.1–1%, which
are realistic both for neutral atoms [20,40] and superconduct-
ing circuits [37], it is clear that also the gate count limits
the feasibility of quantum circuits and lower gate counts are
thus preferable. To this end, the squares in Figs. 1(b) and
1(d) show the number of two-qubit gates required for QFT
and single-step QAOA circuits, respectively. Note that circuit
representations in terms of the SGS require the same number
of two-qubit gates both on neutral atom and superconducting
qubit hardware. Hence, both cases are represented by a single
line in Figs. 1(b) and 1(d).

2. QSL gate set circuits

The circles in Figs. 1(a) and 1(c) show the circuit run
times for the same quantum algorithms and complexity levels
as used for the squares but when the QGS is employed to
generate circuit representations. The corresponding two-qubit
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FIG. 1. Comparison of the circuit run times and gate counts for the quantum Fourier transform (QFT) and quantum approximate
optimization algorithm (QAOA) between neutral atoms and superconducting circuits. The left (right) column corresponds to the QFT (QAOA)
and the orange (purple) marker correspond to neutral atoms (superconducting circuits). The circuit run times for both algorithms and various
problem instances of different size, N = 9, 16, . . . , 81 qubits for the QFT and N = 9, 16, . . . , 121 qubits for the QAOA, are given in panels
(a) and (c), respectively. The numbers of two- and multi-qubit gates in the corresponding circuits are given in panels (b) and (d), respectively.
The data for the squares [circles] is obtained using the standard gate model (SGM) using the gates and times from the standard gate set (SGS)
[QSL gate set (QGS)], cf. Table I. In contrast, the plus signs [crosses] represent the results when the same algorithms are realized in the parity
mapping (PM) using the SGS [QGS]. The pentagons correspond to an altered 2D architectures allowing for next-to-nearest-neighbor (NNN)
coupling between qubits. The run time for each circuit is given in units of typical platform-specific error times. The gray area in panels (a) and
(c) indicates where the circuit run times exceeds the error times.

gate counts are illustrated by the circles in Figs. 1(b) and
1(d). We observe an overall reduction in circuit run times and
gate counts for both platforms, both algorithms and any con-
sidered problem instance. This improvement is a combined
effect of using maximally fast quantum gates at the QSL and
taking advantage of the increased flexibility provided by the
extended set of gates. Especially the availability of SWAP
gates needs to be stressed as it directly reduces the gate count
and thus leads to a reduction in circuit run time even without
an additional speedup in gate times. Due to the fact that all
two-qubit gates in the QGS are by construction only between
nearest-neighbors and have identical gate errors—due to our
optimization—only the total number of gates matters. In order
to quantify the improvements achievable through the QGS,
Fig. 2(a) lists the average reduction in circuit run times and
gate counts for each algorithm and platform.

Our analysis demonstrates to which extent circuit run times
and gate counts can—from a theoretical perspective—still
be improved if standard gates are replaced by an extended
gate set with gate times at the QSL. However, even with the
improved gate set and its reduction in run time and gate count,
most of the quantum circuits, i.e., circles in Fig. 1, remain
likely infeasible using current NISQ hardware. Quantum error
correction codes could in principle address the issue of circuit
run times and gate counts exceeding the limits set by finite

lifetimes and gate errors. Nevertheless, since both lifetimes
[44,47] and qubit numbers [48] are constantly increasing,
more complex quantum circuits will likely reach the feasible
regime in the near future.

C. Circuits times in the parity mapping

Besides the representation of quantum algorithms using the
SGM, we now consider the representation of the same algo-
rithms within the PM. While the PM was originally designed
to tackle combinatorial optimization problems via quantum
annealing [27], it can also be utilized for digital quantum opti-
mization algorithms such as QAOA [30] as well as to achieve
universal quantum computing [26]. At its core, the PM cir-
cumvents the need for long-range interactions between qubits,
which in turn renders gates between nonadjacent qubits obso-
lete. However, this comes at the expense of requiring more
physical qubits and many-body constraints on 2×2 plaquettes
of qubits as specified in detail in Appendix A 2. Similar to our
analysis for the SGM (see Sec. II B) we use either gates from
the SGS or the QGS in the following.

1. Standard gate set circuits

The plus signs in Fig. 1(a) [1(b)] show the circuit run
times [two-qubit gate counts] of QFTs in the PM for the same
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FIG. 2. Reduction in weighted circuit run times and (two- and
multi-qubit) gate counts for the scenarios and data shown in Fig. 1.
In panels (a) and (b) the circuits in the standard gate model (SGM)
and parity mapping (PM) are compared when using the “QSL gate
set” (QGS) instead of the “standard gate set” (SGS). In panels (c) and
(d) the circuits in the SGS and QGS are compared when using the
PM instead of the SGM. All presented numbers are the average over
problem instances of different sizes, i.e., different numbers of qubits.

problem instances as used for the SGM [squares]. In both
cases and for both platforms, the gates and times of the SGS
have been used. We observe a reduction in circuit run times
and gate counts for both platforms with the comparison be-
ing made with respect to the values for the SGM [see also
Fig. 2(c)]. The same comparison can be done for the QAOA
steps with their circuit run times and gate counts given by
the plus signs in Figs. 1(c) and 1(d), respectively. Regard-
ing single-step QAOA resource requirements, we observe a
significant reduction in circuit run times [see also Fig. 2(c)]
due to the constant circuit depth in the PM [29,30]. However,
note that the circuit depth differs for neutral atoms and super-
conducting circuits due to the different coupling mechanisms
between qubits with neutral atoms having the deeper circuits,
cf. Appendix A 2. The reduction in circuit run time is ac-
companied by an increase in two-qubit gate counts compared
to the SGM, which we attribute to the decomposition of the
constraint gates, cf. Eq. (A6), into the natively available gates
within each platform.

2. QSL gate set circuits

The crosses in Fig. 1 show the results for circuit repre-
sentations in the PM when employing gates and times from

the QGS. For the QFT on neutral atoms, we do not ob-
serve any further reduction in circuit time or gate counts
compared to its representation utilizing the SGS. This is be-
cause its circuit representations [49] for neutral atoms contain
only single-qubit and CZ gates—gates for which the gate
times are identical within the SGS and the QGS. In contrast,
for superconducting circuits, we still observe an improve-
ment in circuit time since the CZ gate becomes directly
available in the QGS and must no longer be replaced by
Sycamore and single-qubit gates. However, the representa-
tions in the SGS and QGS only differ by single-qubit gates
and hence their two-qubit gate count is identical and also
identical to that of the neutral atoms. This is reflected in
Fig. 1(c) by a single line of superimposed plus signs and
crosses.

For the single-step QAOA circuits in the PM, we observe a
significant reduction both in circuit run time and gate counts
on both platforms when the QGS is used instead of the SGS.
This is due to the availability of the multi-qubit gates ZZZ(γ )
and ZZZZ(γ ), cf. Eq. (A6), where the gate-count reduction
originates from avoiding single- and two-body gate decom-
positions. In addition, it turns out to be much faster to use
control pulses that directly implement these multi-qubit gates
as opposed to serially applying control pulses to implement
the required single- and two-qubit gates. Figure 2(b) summa-
rizes the average run time and gate count reductions (in terms
of two- and multi-qubit gates) when replacing the SGS with
the QGS within the PM.

In contrast to panels (a) and (b) of Fig. 2, where the gate
set changes and the circuits stay in the SGM or PM, panels
(c) and (d) examine the opposite scenario, i.e., the gate sets
are kept constant but the circuit models change. In detail,
Figs. 2(c) and 2(d) show the average circuit run time and
gate count reduction when the SGM is replaced by the PM
while the gate set is given by the SGS and QGS, respectively.
Especially Fig. 2(d) needs to be emphasized as it reveals to
which extent the PM allows to reduce circuit run times and
gate counts compared to representations of the same circuits in
the SGM. As mentioned above and detailed in Appendix A 2,
the PM-specific improvements come at the only expense of
requiring more qubits. For the current state of NISQ hardware
and independent from the platform, we believe the SGM to
be better suited for QFTs, as more problem instances seem to
be feasible, judging by circuit run time and required qubits.
In contrast, for QAOA using the QGS, we find the described
parity representation of circuits (despite its overhead-induced
inferior success probabilities compared to direct SGM-QAOA
[50]) to be an advantageous option, as the run time and gate
count is drastically reduced for each QAOA step compared
to the SGM. In particular, the need for more PM-QAOA
steps compared to SGM-QAOA steps might be compensatable
given the resource reduction per PM-QAOA step. Given the
ongoing upscaling of quantum computers in terms of qubit
numbers, see, e.g., IBM’s quantum roadmap [48], the PM
seems to be a viable option for QAOA.

As a final remark, it should be noted that we only dis-
cussed optimization problems with all-to-all connectivity,
cf. Eq. (A1). However, many realistic optimization prob-
lems have rather sparse connectivity, which would lead to a
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significant reduction in required qubits [28] while maintaining
its strength of constant circuit depth.

III. MODELING NEUTRAL ATOM AND
SUPERCONDUCTING CIRCUIT PLATFORMS

In Sec. II we have presented the main result of our paper—
namely a calculation and comparison of circuit run times and
gate counts using neutral atoms and superconducting circuits
as quantum computing platform. In this section, we now in-
troduce the detailed physical models used for both platforms.
Since our focus is the description of dynamics, we focus
on the respective Hamiltonians including the various control
knobs typically available to steer the systems and implement
quantum gates.

A. Neutral atoms

Arrays of trapped neutral atoms laser coupled to highly
excited Rydberg states are a promising platform for quantum
computing [51,52] and quantum simulation [53] as qubits can
for example be encoded in long-lived hyperfine ground states.
High-fidelity single-qubit gates can be achieved using mi-
crowave fields [54], two-photon Raman transitions [55], or a
combination of microwaves and gradient fields for individual-
qubit addressing [56–58]. In contrast, entangling operations
between atoms, i.e., many-body gates, are typically realized
via strongly interacting Rydberg levels [19,59] and various
control schemes for two- and multi-qubit gates have been
experimentally demonstrated [20,60–63].

Such gates have been used in recent experiments [39,40]
with up to several hundreds of atoms arranged in a planar
geometry. If we consider the smallest building block of such a
2D array, it consists of N = 4 atoms with each atom described
by three relevant levels. In the rotating frame, its Hamiltonian
reads (h̄ = 1)

H(t ) = −
N∑

n=1

�n(t ) |rn〉 〈rn| +
N∑

n,m=1
n<m

Vnm |rnrm〉 〈rnrm|

+ 1

2

N∑
n=1

∑
l=↑,↓

[�l,n(t )eiϕl,n |rn〉 〈ln| + H.c.], (1)

where |↓n〉 and |↑n〉 denote the qubit levels of the nth atom
and |rn〉 its Rydberg level. The Rabi frequencies of the two
laser fields coupling the |↓n〉 and |↑n〉 states of the nth atom to
their respective Rydberg level |rn〉 are denoted by �↓,n(t ) and
�↑,n(t ) [64]. The phases of the respective laser fields are given
by ϕ↓,n(t ) and ϕ↑,n(t ) while �n(t ) denotes the detuning of
the laser field from the exact transition frequency. We assume
�n(t ) to be identical for both fields. The van der Waals (vdW)
interaction between atom n and m is denoted by Vnm. Since Vnm

is proportional to 1/R6
nm with Rnm the distance between atoms

n and m, the interaction strength is quickly vanishing between
non-neighboring atoms. All considered gates are assumed
to work in the Rydberg blockade regime (i.e., �/V � 1)
in order to avoid errors from populating states featuring
multiple Rydberg excitations. In addition, assuming a fixed
geometrical atom placement together with fixed maximal laser
Rabi frequencies and fixed choice of Rydberg state throughout

algorithm execution, the two-qubit gate duration slows down
drastically with increasing interqubit distance for reasonable
experimental parameters (see below). As a consequence, in
this scenario it is always faster to execute several gates among
nearest neighbors as opposed to include non-nearest-neighbor
two-qubit gates. Moreover, as our main objective is to find
lower bounds on the algorithm run times we focus solely
on two-qubit gates between nearest neighbors in Sec. II.
However, we want to emphasize, that larger connectivities
offered by neutral atom devices can be exploited also in this
framework by dedicated multi-qubit gates like the considered
four-qubit gate. Note that in Hamiltonian (1) we have omitted
fields responsible for single-qubit gates, i.e., fields coupling
the two qubit levels, since our focus is on multi-qubit gates for
which the Rydberg levels and their interaction are the primary
gate mechanism.

If not stated otherwise, we assume the laser fields to
act identically on all atoms, i.e., �↓,n(t ) = �↓(t ), �↑,n(t ) =
�↑(t ) and ϕ↓,n(t ) = ϕ↓(t ), ϕ↑,n(t ) = ϕ↑(t ) and �n(t ) = �(t )
for all n. In the following, we moreover assume by de-
fault a pseudo-2D architecture with Vnm = V as described in
more detail in Ref. [65]. Effectively, this corresponds to an
architecture with equally strong nearest-neighbor (NN) and
next-to-nearest-neighbor (NNN) coupling. However, it should
be noted that we do not exploit the NNN couplings when
constructing the quantum circuits in Sec. II. It thus does not
affect any of the single- or two-qubit gate times presented in
Table I as these times would be identical for an actual, pla-
nar 2D architecture where V is simply the coupling strength
between nearest neighbors. The assumption of of the pseudo-
2D architecture does only affect the multi-qubit constraint
gates ZZZ(γ ) and ZZZZ(γ ), cf. Eq. (A6), which are—within
our study—only relevant for the PM using the QGS, cf. the
crosses in Fig. 1(c).

B. Superconducting circuits

Qubits encoded in the lowest energy levels of supercon-
ducting circuits are another promising platform for quantum
computing [66]. Since their parameters can be to some ex-
tent chosen during their fabrication process, superconducting
circuits come in various variants and parameter regimes with
transmon qubits [67] being currently the most prominent ones
for quantum computing. Their qubit levels can be manipulated
via microwave fields to either implement single-qubit gates
[68,69] or two-qubit gates [70,71] with high fidelity. In con-
trast to neutral atom qubits, which interact directly via their
Rydberg levels, qubits encoded in superconducting circuits
often interact indirectly via intermediate coupling elements
[72]. In an architecture, where such couplers are made tun-
able [73], the effective interaction strength between the qubits
becomes tunable as well. Such qubit architectures have been
successfully used in recent quantum advantage experiments
[8,9] and thus are a prototypical NISQ quantum computing
platform.

The qubits in such a tunable coupler architecture are ar-
ranged on a 2D lattice with nearest-neighbor couplings. In
the following, we take the architecture from Ref. [8] as a
reference. The smallest building block within such a system
consists of N = 4 qubits. The Hamiltonian for this subsystem
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in a frame rotating with frequency ωrot reads [8]

H(t ) =
N∑

n=1

[
(ωn(t ) − ωrot )b†

nbn − αn

2
b†

nb†
nbnbn

]

+
N∑

n=1

1

2
[bn(�̄n,re(t ) + i�̄n,im(t ))

+ b†
n(�̄n,re(t ) − i�̄n,im(t ))] + Hint (t ), (2)

with

Hint (t ) = g12(t )(b†
1b2 + b1b†

2) + g2
12(t )

|η| b†
1b1b†

2b2

+ g23(t )(b†
2b3 + b2b†

3) + g2
23(t )

|η| b†
2b2b†

3b3

+ g34(t )(b†
3b4 + b3b†

4) + g2
34(t )

|η| b†
3b3b†

4b4

+ g41(t )(b†
4b1 + b4b†

1) + g2
41(t )

|η| b†
4b4b†

1b1, (3)

and

�̄n,re(t ) = Re{�n(t )e−i(ωrot−ω̄n(t ))t }, (4a)

�̄n,im(t ) = Im{�n(t )e−i(ωrot−ω̄n(t ))t }. (4b)

In the above equations, ωn(t ) is the frequency-tunable level
splitting of transmon n, αn its anharmonicity and bn its anni-
hilation operator. The tunable coupling between transmons n
and m is denoted by gnm(t ) and η is the nonlinearity of the
involved transmons, which is roughly constant αn ≈ η for all
n. The time-dependent amplitude and frequency of a local
X -type control field on transmon n, e.g., some microwave
field, is denoted by �n(t ) and ω̄n(t ), respectively.

While �n(t ) and ω̄n(t ) are the actual physical control
fields, we may take �̄n,re(t ) and �̄n,im(t ) as auxiliary control
fields, which capture the time-dependent nature of �n(t ) and
ω̄n(t ) in the rotating frame and the latter can be reobtained
from �̄n,re(t ) and �̄n,im(t ).

IV. DETERMINING QUANTUM SPEED LIMITS
VIA QUANTUM OPTIMAL CONTROL

After having introduced the physical model for neutral
atoms and superconducting circuits in Sec. III, we now review
the basic notion of QSLs in Sec. IV A and of quantum optimal
control theory in Sec. IV B since both build the theoretical,
respectively methodical, foundation for the results presented
in this work. Our method is described in Sec. IV C.

A. Quantum speed limits

The notion of quantum speed limits (QSLs) naturally arises
in the context of quantum control problems. To this end,
let us consider a quantum system described by the Hamil-
tonian H(t ) = H({Ek (t )}), which depends on a set of control
fields, {Ek (t )}, that can be externally tuned, e.g., by the time-
dependent amplitudes, phases or detunings in Eqs. (1) or (2).
A quantum control problem is then defined by a set of initial
states, {|ψ in

l 〉}, that should be transferred into a set of target

states, {|ψ trgt
l 〉},∣∣ψ trgt

l

〉 = U(T, 0; {Ek (t )})
∣∣ψ in

l

〉
, ∀l, (5)

where U(T, 0; {Ek (t )}) is the system’s time-evolution operator
and T the total time. Any choice of {Ek (t )}, which fulfills
Eq. (5) is considered a solution to the control problem. It is
important to note that solutions to quantum control problems
are usually not unique. Even for a fixed protocol duration T
there typically exist many and often infinite many solutions.

The QSL for a given control problem is defined by the
shortest protocol duration TQSL for which at least one solution
exists, i.e., for which at least one set of control fields {Ek (t )}
exists that fulfills Eq. (5). In the context of quantum comput-
ing and the NISQ era, where time is a limited resource due to
decoherence, it is desirable to implement quantum gates at the
QSL. In order to calculate TQSL analytically, U(T, 0; {Ek (t )})
must be analytically calculable for any set {Ek (t )} of con-
ceivable control fields—a requirement that typically limits
an analytical calculation of TQSL to simple systems [74]. We
would like to stress that in some cases, it is nevertheless pos-
sible to solve the entire control problem analytically, yielding
not only TQSL but also the time-optimal control fields {Ek (t )}.
A popular method to achieve that is, for instance, the quantum
brachistochrone formalism [75], although its application has
been mostly limited to simple systems [76–78].

Besides an analytical determination of TQSL, there are var-
ious methods to approximate it . One prominent method is
to calculate a lower bound Tbound � TQSL in order to get an
estimate for TQSL itself. For the simplest case of a state-to-state
control problem, lower bounds can be calculated analytically
[24]. In contrast, in case of multiple pairs of initial and final
states, which describe the implementation of quantum gates,
such lower bounds only exist for very simple systems [79].
In most cases, one needs to resort to numerical tools for esti-
mating TQSL. In that context, quantum optimal control theory
has proven to be very useful [80] as it not only estimates TQSL

quite accurately but additionally yields the control fields that
implement the desired dynamics, i.e., realizing the transition
from initial to target states, cf. Eq. (5). Since this is our method
of choice, we introduce it in more detail in the following.

B. Quantum optimal control theory

Quantum optimal control theory (OCT) [81] is a toolbox
providing analytical and numerical tools that allow to derive
optimized control fields, which solve a given control problem,
e.g., in shortest time or with minimal error. Mathematically,
an optimal control problem is formulated by introducing the
cost functional

J[{ψl}, {Ek}, T ]

= εT [{ψl (T )}] +
∫ T

0
Jt [{ψl (t )}, {Ek (t )}, t]dt, (6)

where {ψl (t )} is a set of time-evolved states and {Ek (t )}
a set of control fields to be optimized. The error measure
εT quantifies the distance between the time-evolved states
|ψl (T )〉 = U(T, 0; {Ek (t )}) |ψ in

l 〉 and the desired target states
|ψ trgt

l 〉 at the protocol’s final time T , cf. Eq. (5). The term Jt in
Eq. (6) captures time-dependent running costs. In most cases,
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the error measure εT is the crucial figure of merit. In order to
optimize for quantum gates, we use the error measure [82]

εT [{ψl (T )}] = 1 − 1

Ntrgt

Ntrgt∑
l=1

Re
{〈

ψ
trgt
l

∣∣ψl (T )
〉}

(7)

and take |ψ trgt
l 〉 = O |ψ in

l 〉 as the desired target states for the
target gate O. The set {ψ in

l } runs over the Ntrgt logical basis
states affected by O with Ntrgt = 4, 8, 16 for two-, three- or
four-body gates, respectively.

Since the cost functional J is formulated such that smaller
values correspond to better solutions of the control problem,
solving an optimal control problem becomes essentially a
minimization task, i.e., to find a set of control fields {Eopt

k (t )}
that minimizes J , respectively εT . This is an optimization
problem for which several numerical algorithms have been
developed [83–87]. Many of them are readily available in
open-source software packages [88–92].

C. Optimization procedure and method

In the context of determining TQSL numerically via OCT,
we search for the shortest protocol duration T for which the
error measure εT , cf. Eq. (7), is still sufficiently small. In
mathematical terms, we therefore define an error threshold
εmax and search for the shortest time T for which

min
{Ek}

[εT [{ψl (T )}]] � εmax (8)

has a solution. However, the minimization over all conceiv-
able control fields can not be done numerically—as there are
infinitely many fields to check—and thus must be replaced
by a sampling over finitely many fields in practice. In order
to explore the function space efficiently by finite sampling,
optimization algorithm as described in Sec. IV B can be used.
Since we are interested in the fundamental QSL, we put only
minimal limitations—apart from physically motivated limita-
tions on amplitudes—on the form of each control field Ek (t ).
Hence, we need an optimization algorithm that is capable of
exploring a function space of almost arbitrary field shapes.

As our method of choice we use Krotov’s method [93],
a gradient-based optimization algorithms for time-continuous
control fields. Due to the method’s built-in monotonous con-
vergence [85], we deem it fitting for determining the QSL,
although any other gradient-based optimization algorithm
might work similarly well. While a more detailed description
of Krotov’s method is given in Appendix B, its basic working
principle is outlined in the following. It consists of an iterative
update of the control fields {Ek (t )}. Starting from a set of
guess control fields {E0

k (t )}, Krotov’s method updates them
until either εT � εmax or a maximum number of iterations is
reached. This procedure can be viewed as a local but struc-
tured search within the space of all conceivable sets of control
fields—the so-called control landscape. The locally searched
area is thereby determined by the choice of the guess fields
{E0

k (t )}, which set the initial starting point of the search. While
the local nature of this search might appear contradicting to
the global search required for evaluating Eq. (8), it can be
turned into an approximate global search by using various sets
of randomized guess fields. The combined effect of all these

local searches “cover” a larger fraction of the control land-
scape. The total procedure for approximating TQSL using this
method is thus to start with a protocol duration T for which the
optimization algorithm finds solutions, i.e., optimized fields
giving rise to εT � εmax, and then to consecutively lower
T until none of the various sets of randomized guess fields
finds a solution anymore. Appendix C summarizes the details
regarding the generation of random guess fields as well as
each field’s parametrization within Krotov’s method.

Similar application of numerical optimal control tech-
niques have previously shown excellent agreement with
analytically provable QSLs [94,95]. At worst, this method
could overestimate the actual QSLs, in which case the actual
QSLs would be even smaller and the circuit and gate times in
Sec. II that use the QGS would be even better.

V. BENCHMARKING QUANTUM GATE TIMES
ON 2D ARCHITECTURES

In this final section, we now present the detailed results re-
garding the QSLs obtained via methods described in Sec. IV B
for the various gates listed in Table I and have been used to
calculate the circuit run times in Sec. II.

A. Neutral atoms

In this section, we determine the QSLs for different
gates on neutral atoms by utilizing the control knobs avail-
able in Hamiltonian (1). To this end, we set the vdW
interaction strength between Rydberg levels to V/2π =
40 MHz and assume a maximally achievable Rabi frequency
of �max/2π = 0.1V = 4 MHz for both �↓(t ) and �↑(t ) as
well as �max/2π = 0.3V = 12 MHz for |�(t )|. These param-
eters are in the same regime than those reported in recent
experiments [20,39,96].

The markers in Fig. 3 (left column) show the achievable
gate error εT , cf. Eq. (7), for various gates and various gate
times T on neutral atoms. Each individual marker thereby
indicates the result of a single optimization with Krotov’s
method [cf. Appendix (B)] i.e., the final error εT after 1500
iterations when starting from random guess fields generated
via Eq. (C1). In the following we set εmax = 10−3 for all gates
and stop any optimization as soon as this threshold is reached.

1. Two-qubit gates

Figure 3(a) shows the results for a CZ gate for three differ-
ent, paradigmatic configurations of control fields. The circles
correspond to the “parallel” configuration where all five pos-
sible control fields �↓(t ),�↑(t ), ϕ↓(t ), ϕ↑(t ), and �(t ) have
been optimized. In contrast, the crosses correspond to the
“phase” configuration, where only ϕ↑(t ) has been optimized
while �↑(t ) = �max, �(t ) = �max, and �↓(t ) = ϕ↓(t ) = 0
have been kept fixed. In both cases, we obtain a QSL of
T CZ

QSL = 350 ns. The third field configuration, which we called
“sequential” configuration (diamonds), consists of a sequen-
tial use of �↓(t ), ϕ↓(t ) and �↑(t ), ϕ↑(t ), i.e., the first half
of the protocol we have �↑(t ) = ϕ↑(t ) = 0 and in the sec-
ond half �↓(t ) = ϕ↓(t ) = 0. This configuration is inspired by
an adiabatic protocol for implementing ZZZZ(γ ) gates, cf.
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FIG. 3. Overview of the QSLs for the various gates of the “QSL gate set” (QGS) in Table I. The left (right) column shows the results
for neutral atoms (superconducting circuits) for three different configurations of control fields (specified in the main text), respectively. Each
marker represents the gate error εT , cf. Eq. (7), after either reaching εT � εmax = 10−3 or 1500 iterations of Krotov’s method, cf. Appendix B,
after starting from a set of random guess fields generated via Eq. (C1). While the lines connect the lowest errors reached for each gate time T
within a given field configuration, the shaded background color indicates the range between the lowest and highest error. The marker density
is shown at the right side of each panel as a histogram. The parameters for neutral atoms are V/2π = 40 MHz, 0 � �↓(t ),�↑(t ) � �max =
0.1V and |�(t )| � �max = 0.3V . The parameters for superconducting circuits are −40 MHz � gnm(t )/2π � 5 MHz, 6700 MHz � ωn(t ) �
7100 MHz (exact values depending on n and taken from Ref. [8]) and −50 MHz � �̄n,re(t ), �̄n,im(t ) � 50 MHz. The anharmonic ladder for
each transmon has been truncated after five levels with population in the highest level suppressed during optimization. The optimization results
for ZZZ(γ ) and ZZZZ(γ ), cf. Eq. (A6), have been obtained for the maximally entangling gate at γ = π/4. The results for the CNOT gate on
neutral atoms have been obtained using site-dependent control fields for each atom.

Eq. (A6) and Ref. [65]. Its QSL T CZ
QSL = 700 ns is twice as

long compared to the other two configurations.
In order to compare the results from the three configura-

tions in terms of how successful the optimization has been in
finding solutions, the histogram on the right side of Fig. 3(a)
provides the probability density for obtaining final errors εT

within certain ranges. For obtaining a solution with errors
εT � εmax, we find the lowest probability for the “sequen-
tial” configuration (diamonds)—coinciding with the highest
QSL—and the highest and almost identical probability for
the other two configurations. Among those two, the “phase”
configuration (crosses) needs to be emphasized in particular.
From a physical perspective, setting �↓(t ) and ϕ↓(t ) to zero
automatically ensures that |↓↓〉 is mapped onto itself—as
required by the CZ gate. This is not automatically guaranteed
by the other two configurations and the optimization needs
to explicitly ensure it and therefore needs to solve a slightly
more complex optimization problem. However, the advan-
tage of having one basis state automatically mapped correctly
does not translate into an advantage regarding the QSL of
T CZ

QSL = 350 ns or the reachable error in general. Interestingly,
both the “parallel” and “phase” configurations yield the same

achievable lowest errors for each gate time T . This is visually
highlighted by the lines connecting the lowest errors per T
in Fig. 3(a). Moreover, it should be stressed that these errors
εT are reached for almost every set of initial guess fields, i.e.,
independent of the initial starting point within the problem’s
control landscape, and obtained independently for both con-
figurations. This supports the conjecture that T CZ

QSL = 350 ns
is the actual QSL for a CZ gate and generally validates our
method in determining the QSL. From an optimal control
perspective, it is interesting to see that the flexibility origi-
nating from the extended set of available control fields in the
“parallel” configuration can not be turned into an advantage
in error or time compared to the “phase” configuration. From
a practical perspective, the latter is advantageous for experi-
mental realizations as it requires fewer physical resources.

While the three configurations discussed so far should only
be viewed as examples, we did not find any configuration giv-
ing rise to faster CZ gates. Hence, we assume T CZ

QSL = 350 ns
to be the fundamental QSL across all configurations. A natural
comparison for T CZ

QSL with a value from the literature would
be the gate time from the analytical protocol introduced in
Ref. [20], especially because it uses the same control fields as
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the “phase” configuration to implement the gate. For our pa-
rameters, we find T CZ

lit ≈ 340 ns as analytical gate time, which
we assume identical with our QSL T CZ

QSL = 350 ns given the
rather coarse sampling of gate times T in Fig. 3(a). However,
it should be noted that the analytical protocol of Ref. [20]
implements a CZ gate only up to local operations—operations
that are already contained in our optimized gate protocols at
the QSL. Nevertheless, for a fair comparison of analytical and
QSL gate times, as needed in Sec. II, as well as for simplicity,
we set both times to 350 ns in Table I.

The remaining panels (b)–(e) in the left column of
Fig. 3 show the results for other gates from the QGS
of Table I. The results for a CNOT gate are shown in
panel (b). It is the only gate for neutral atoms (among
those we considered) that requires individual instead of
global fields, i.e., it is the only gate for which we
did not assume �↓,n(t ) = �↓(t ),�↑,n(t ) = �↑(t ), ϕ↓,n(t ) =
ϕ↓(t ), ϕ↑,n(t ) = ϕ↑(t ), and �n(t ) = �(t ) for all n but actually
assume individual fields with unique field shapes directed
at each atom. We nevertheless consider the same three field
configurations as for the CZ gate in panel (a) but now applied
to the individual fields �↓,n(t ),�↑,n(t ), ϕ↓,n(t ), ϕ↑,n(t ), and
�n(t ) instead of their global versions. Even with this more
general setting of control fields, we find only the “parallel”
configuration (circles) to allow for the realization of a CNOT
gate with a QSL of T CNOT

QSL = 300 ns. In contrast, the “phase”
and “sequential” configurations do not allow to realize a
CNOT gate at all. These results demonstrate that CNOT gates
can be implemented using exclusively the site-dependent laser
couplings of the qubit and Rydberg levels and no control
knobs for single-qubit gates. However, an experimentally
more convenient option, requiring no full site-dependent con-
trol of coupling qubit to Rydberg states, is to realize CZ gates
with global laser pulses and convert them into CNOTs via
local operations. We nevertheless include the CNOT gate and
its QSL for completeness in our analysis as well as in the QGS
in Table I but exclude it from any quantum circuit for neutral
atoms in Sec. II for the reasons just mentioned.

Figure 3(c) shows the results for a SWAP gate. Like for the
CNOT gate, we find the “parallel” configuration—assuming
again global fields that are identical for each atom—to be
the only one capable of realizing a SWAP gate. We obtain
T SWAP

QSL = 400 ns as its QSL. The other two configurations
are not capable of realizing SWAP gates. However, since the
SWAP gate, in contrast to the CNOT gate, can be realized
with global control fields, we believe it to be experimentally
feasible and thus include it as a viable gate in the QGS in
Table I.

2. Three- and four-qubit constraint gates

So far, we have discussed the results for two-qubit gates in
Figs. 3(a)–3(c). These gates and their respective QSLs have
been used in determining the quantum circuits and calculating
the corresponding circuit run times in Sec. II—especially for
those circuits in the SGM discussed in Sec. II B. In contrast,
for QAOA circuits in the PM [29], circuit representations
without two-qubit gates exist, e.g., when the required three-
and four-qubit constraint gates ZZZ(γ ) and ZZZZ(γ ), cf.
Eq. (A6), are available natively and thus must not be decom-

FIG. 4. Panel (a) shows the entanglement power [97] of the
three- and four-qubit constraint gates ZZZ(γ ) and ZZZZ(γ ), cf.
Eq. (A6), as a function of γ . In contrast, panels (b) and (c) exam-
ine the QSLs for these gates under various conditions on neutral
atoms. In panel (b), the dependence of the QSL on the parameters
γ is shown. In panel (c), the impact of �max/�max is visualized. In
the latter case, we have γ = π/4 and a fixed �max while �max is
modified. The QSLs in panels (b) and (c) have been determined using
the parameters and “phase” configuration described in Fig. 3.

posed into single- and two-qubit gates. In the following, we
determine and discuss their QSLs.

It should first be noted that, from an algorithmic point of
view, it is irrelevant whether, e.g., ZZZ(γ ) or eiαZZZ(γ ), with
α some arbitrary phase, is realized in experiments. The latter
just changes the global phase of the quantum state during
circuit execution. The same holds for the ZZZZ(γ ) gate. In
both cases, we may choose α arbitrarily but, for practical
reasons, choose it such that the states |↓↓↓〉 and |↓↓↓↓〉 do
not acquire a phase from the respective constraint gates. In the
following, we therefore consider the phase-shifted constraint
gates

eiγ ZZZ(γ ), e−iγ ZZZZ(γ ), (9)

instead of the ones from Eq. (A6).
In the context of QAOA circuits in the PM, these constraint

gates need to be realized for various γ , cf. Eq. (A3). However,
since we can not determine their QSL for each value of γ , we
first analyze the gate’s entangling power [97] as a function of
γ in Fig. 4(a). We observe maximal entangling power for γ =
π/4 for both ZZZ(γ ) and ZZZZ(γ ) and thus decide to first
benchmark their QSLs for that particular value as we expect
the control problem in that case to be the hardest to solve and
consequently the QSLs to be the largest.

Figures 3(d) and 3(e) show the optimization results for
the phase-shifted constraint gates ZZZ(γ ) and ZZZZ(γ ), cf.
Eq. (9), for γ = π/4, respectively. We use the same three
configurations of control fields as for the two-qubit gates in
panels (a)–(c) and find all configurations to be capable of
implementing the constraint gates but observe the best per-
formance for the “parallel” and “phase” configuration. While
both configurations yield the same QSLs of T ZZZ

QSL = 400 ns
and T ZZZZ

QSL = 500 ns for ZZZ(γ ) and ZZZZ(γ ), respectively,
the “phase” configuration exhibits the better convergence be-
havior. Like for the CZ gate in Fig. 3(a), we observe every
set of guess fields for this configuration to reliably converge
towards the same final error εT for every T . Since the “par-
allel” configuration yields the same achievable errors as a
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function of gate time T and uses by definition a different
control strategy than the “phase” configuration, we believe to
have reliably identified the QSLs for the constraint gates. In
terms of experimental feasibility, the “phase” configuration
is advantageous as it requires fewer hardware and control
resources.

The fact that using ϕ↑(t ) as the only time-dependent con-
trol field suffices for implementing ZZZ(γ ) or ZZZZ(γ )
originates from considering the gates’ phase-shifted versions
of Eq. (9). In detail, since the states |↓↓↓〉 and |↓↓↓↓〉 are
the only states among the 8 or 16 basis states of ZZZ(γ ) or
ZZZZ(γ ) that technically require nonzero �↓(t ) and ϕ↓(t ) in
order to be phase configurable, we simply avoid this require-
ment by considering the gates’ phase-shifted version. For the
remaining 7 or 15 basis states, which all have at least one
atom initially in the |↑〉 state, the phase ϕ↑(t ) together with
a constant �↑(t ) = �max is sufficient to correctly adjust all
phases. The “phase” configuration thus represents a hardware-
efficient control scheme to realize fast ZZZ(γ ) and ZZZZ(γ )
gates.

Our results furthermore reveal that the “sequential” con-
figuration, which was recently introduced in Ref. [65] and
designed to implement high-fidelity ZZZZ(γ ) gates, seems
not to be ideal when it comes to gate time as its configuration-
specific QSL is roughly twice as long as the QSLs for the other
configurations. However, it should be noted that a comparison
of the protocol from Ref. [65] with protocols at the QSL is
not a fair comparison. On the one hand, the control scheme of
Ref. [65] is based on adiabaticity—a regime that we are far
away from in our numerical calculations. On the other hand,
while the parameter γ is a tunable variable in the adiabatic
control scheme, the results in Figs. 3(d) and 3(e) are only
valid for γ = π/4. If gates with a different γ are required,
one explicitly needs to optimize control fields for that purpose.
While it is beyond the scope of this paper to examine whether
there exists an analytical control scheme with configurable γ

at the QSL, in the following, we nevertheless provide an anal-
ysis of the QSLs for ZZZ(γ ) and ZZZZ(γ ) beyond γ = π/4.
In detail, after having identified the “phase” configuration as
the most reliable configuration to determine a gate’s QSL, we
provide the QSLs for other γ values in Fig. 4(b). We find
the QSLs to be almost constant for γ > 0 and only zero for
γ = 0, in which case ZZZ(γ ) and ZZZZ(γ ) coincide with the
identity operation. Interestingly, we do not observe a decrease
in the QSLs for γ = π/2 in which case the constraint gates
are no longer entangling, cf. Fig. 4(a), and should therefore
theoretically be implementable with local operations only. We
suspect that we do not see a decrease of the QSLs since
we do not consider any control fields for local operations in
Hamiltonian (1) and thus need to implement the local gates
by means of the Rydberg levels.

We moreover analyze the dependence of the QSLs on the
ratio �max/�max in Fig. 4(c). Surprisingly, we observe the
QSLs for both ZZZ(γ ) and ZZZZ(γ ) to be independent on
this ratio and find �max = 0 to be a viable option.

In general, we observe that the QSLs for ZZZ(γ ) and
ZZZZ(γ ) are only slightly larger than those of the two-qubit
gates. In view of quantum circuits for PM-QAOA, where such
constraint gates are required, it is thus advantageous to have
these gates natively available, since their representation via

single- and two-qubit gates [29] consumes significantly more
time. This effect can be seen in Fig. 1(c), where the plus signs
illustrate the data for constraint gates expanded in single-
and two-qubit gates and the crosses for the usage of native
constraint gates. One possible explanation for the short QSLs
for ZZZ(γ ) and ZZZZ(γ ) compared to those of the two-qubit
gates might be that the permutation symmetry of atoms within
the pseudo-2D architecture [65], i.e., Vnm = V , matches the
permutation symmetry of the gate operation itself.

At last, we therefore examine the impact of the pseudo-2D
architecture onto the constraint gates ZZZ(γ ) and ZZZZ(γ ).
For the three- and four-qubit constraint gates, the change
to an actual, planar 2D architecture implies that while the
couplings between nearest neighbors remain V , diagonal cou-
plings, i.e., couplings between next-to-nearest neighbors or,
in other words, qubits on opposite edges of a 2×2 square
plaquette, are replaced by V/8. The stars in Figs. 5(a) and
5(b) show the corresponding results for ZZZ(γ ) and ZZZZ(γ )
gates and γ = π/4, respectively. While their QSLs within
the pseudo-2D architecture are T ZZZ

QSL = 400 ns and T ZZZZ
QSL =

500 ns, they become T ZZZ
QSL,2D = T ZZZZ

QSL,2D = 600 ns in the actual,
planar 2D architecture. Interestingly, this corresponds only
to a relatively small increase in the QSLs for both gates. A
possible explanation might be that the gate speed for neutral
atoms is primarily determined by the maximal Rabi frequency
�max, which is identical for both examples, and not so much
by the interatomic interaction strength, which is different for
both architectures.

Although we believe the pseudo-2D architecture to be
viable in experiments due to the great flexibility to arrange
neutral atoms [98], we nevertheless take the QSLs for the
actual, planar 2D architecture to be the reference gate times
within the QGS in Table I and Sec. II. However, recall that
the constraint gates are—within our study—only relevant for
the QAOA circuits in the PM, cf. Fig. 1(c). In order to never-
theless allow for a comparison of the run times in the actual,
planar 2D architecture (orange crosses) with those using the
pseudo-2D architecture, we add the latter as orange pentagons
to Fig. 1(c).

B. Superconducting circuits

Similar to neutral atoms in Sec. V A, we now determine
and analyze the QSLs for the same quantum gates but for
superconducting circuits. The available control knobs to im-
plement these gates are the tunable qubit frequencies ωn(t ),
the tunable coupling strength gnm(t ) between qubits and the
(auxiliary) X-type local control fields �̄n,re(t ) and �̄n,im(t ) in
Hamiltonian (2). In order to remain experimentally realistic,
we take parameters from Ref. [8]. To this end, we single out
a 2×2 plaquette consisting of four qubits from the generally
larger 2D architecture. We take the qubit frequencies and their
tunable range to be given by 6700 MHz � ωn(t ) � 7100 MHz
and their anharmonicities given by αn ≈ 200 MHz, with exact
values depending on n. The tunable coupling strength is given
by −40 MHz � gnm(t ) � 5 MHz, as reported in Ref. [8].
Moreover, we assume the (auxiliary) X-type control fields
�̄n,re(t ) and �̄n,im(t ), which encode the physical X-type con-
trol fields �n(t ) and their tunable driving frequencies ω̄n(t ),
to satisfy −50 MHz � �̄n,re(t ), �̄n,im(t ) � 50 MHz.
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FIG. 5. Overview of different QSLs similar to Fig. 3 but exclusively for the three- and four-qubit constraint gates ZZZ(γ ) and ZZZZ(γ ),
cf. Eq. (A6). The left column shows results for neutral atoms, obtained using the “phase” configuration of Fig. 3, for the pseudo-2D architecture
(triangles) and an actual, planar 2D architecture (stars). The right column compares the results for superconducting circuits using the “no-X”
configuration from Fig. 3. The data correspond to the physical architecture of Ref. [8] where only nearest-neighbor (NN) couplings between
qubits are present (triangles) and where diagonal couplings, i.e., next-to-nearest-neighbor (NNN) couplings, are added (stars).

1. Two-qubit gates

Figure 3(f) shows results for a CZ gate on superconducting
circuits using three different configurations of control fields—
different, of course, from those used for neutral atoms. In
the “full” configuration (circles), all available control fields,
ωn(t ), gnm(t ), �̄n,re(t ), and �̄n,im(t ), are time dependent and
being optimized. In the “no-X” configuration (crosses), only
ωn(t ) and gnm(t ) are optimized while the X-type control fields
are set to zero, �̄n,re(t ) = �̄n,im(t ) = 0. At last, in the “in-
teraction” configuration only ωn(t ) is time dependent and
optimized while gnm(t ) = −40 MHz = gmax is set to its maxi-
mum magnitude and �̄n,re(t ) = �̄n,im(t ) = 0. For the CZ gate
in Fig. 3(f), we observe all three configurations to indicate the
same QSL of T CZ

QSL = 10 ns. In terms of convergence behavior,
the “interaction” configuration shows the best performance
as indicated by the probability density on the right side of
Fig. 3(f). In general, the three configurations show slightly
worse convergence behavior than the three configurations for
the neutral atoms, cf. Fig. 3(a). Nevertheless, since all three
configurations indicate the same QSL and, in general, yield
the same achievable error εT depending on T , we believe our
method to determine the QSL to yield reliable results also for
superconducting circuits and conjecture T CZ

QSL = 10 ns to be
the fundamental QSL for CZ gates. While there are reference
implementations for CZ gates on similar architectures with
tunable couplers [71,73,99,100], none of these architectures
matches our architecture and parameter regime. Hence, we
compare our QSL to the gate time of the fastest two-qubit gate,
the Sycamore gate, reported in Ref. [8]. We find T CZ

QSL = 10 ns

to be slightly faster than T Syc.
lit = 12 ns [37].

In Fig. 3(g), the results for a CNOT gate are shown using
the same three configuration as for the CZ gate. We find only
the “full” configuration to be capable of realizing a CNOT
gate, yielding the QSL T CNOT

QSL = 14 ns, while the other two
configuration are not capable of it. Among the available con-
trol knobs, the X-type control fields �̄n,re(t ) and �̄n,im(t ) are
crucial for a CNOT gate to be feasible. For the SWAP gate,
we again find all three configuration to converge, cf. Fig. 3(h),
with the “no-X” and “interaction” configuration showing the
best convergence behavior. We find a QSL of T SWAP

QSL = 12 ns.

2. Three- and four-qubit constraint gates

We now turn towards the three- and four-qubit constraint
gates ZZZ(γ ) and ZZZZ(γ ). However, note that in the follow-
ing and in contrast to neutral atoms, we do not consider their
phase-shifted versions, cf. Eq. (9), but their original versions,
cf. Eq. (A6).

Figures 3(i) and 3(j) show the results for the constraint
gates ZZZ(γ ) and ZZZZ(γ ), respectively. We use the same
three configurations of control fields as for the two-qubit
gates of panels (f)–(h). We observe the “interaction” con-
figuration to have the best convergence behavior while the
“no-X” configuration gives in both cases rise to the shortest
QSLs of T ZZZ

QSL = 24 ns and T ZZZZ
QSL = 80 ns for ZZZ(γ ) and

ZZZZ(γ ), respectively. Both QSLs have been determined for
γ = π/4. The QSL for ZZZ(γ ) has thereby been confirmed
independently by both the “full” and “no-X” configurations as
both yield almost identical achievable errors εT as a function
of gate time T . We thus assume the QSL T ZZZ

QSL = 24 ns to
be well backed up. The situation is different for ZZZZ(γ ),
for which we observe very different convergence behaviors
for the three configurations, cf. Fig. 3(j). While the “no-X”
configuration yields the shortest QSL of T ZZZZ

QSL = 80 ns, the
“full” configuration shows slightly better performance for
T < T ZZZZ

QSL , which might suggest that even shorter gate pro-
tocols for ZZZZ(γ ) may exist but our method did not find
them due, e.g., limited numbers of guess fields for exploring
the control landscape. In the following, as well as for the
calculation of circuit run times in Sec. II, we nevertheless
assume T ZZZZ

QSL = 80 ns to be the QSL for the ZZZZ(γ ) gate
as it is the fastest gate time T among the three configurations
of control fields for which Krotov’s method was able to find a
solution with εT � εmax.

Interestingly, while we observe the QSLs for ZZZ(γ ) and
ZZZZ(γ ) to be almost identical for neutral atoms and only
slightly longer than the QSLs for the two-qubit gates, we
observe the same only for the ZZZ(γ ) gate for supercon-
ducting circuits. The ZZZZ(γ ) gate has a much longer QSL
compared to the other QSLs on that platform. To rigorously
decide whether this is due to the nonideal convergence behav-
ior observed in Fig. 3(j) or has some deeper physical origin
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is beyond the scope of this study. In an attempt to tackle
this question nevertheless, we consider the scenario of having
additional diagonal couplings, i.e., next-to-nearest-neighbor
couplings, among the transmons in the superconducting cir-
cuit architecture. For Hamiltonian (3), this implies adding two
additional rows with couplings g13(t ) and g24(t ) in the same
form as the already present couplings g12(t ), g23(t ), g34(t ),
and g41(t ). This scenario is inspired by the pseudo-2D ar-
chitecture for neutral atoms, which also exhibits identical
nearest-neighbor (NN) and next-to-nearest-neighbor (NNN)
couplings and where having these couplings is advantageous.
Figures 5(c) and 5(d) show the results for the two cases
with only NN couplings (triangles) and with NN plus NNN
couplings (stars). Besides observing much better convergence
properties for the latter case, we also obtain improved QSLs of
T ZZZ

QSL,NNN = 20 ns and T ZZZZ
QSL,NNN = 60 ns for the ZZZ(γ ) and

ZZZZ(γ ) gate, respectively. However, despite improvements
in this scenario, the QSL of the ZZZZ(γ ) gate does not get
close to the QSL of the ZZZ(γ ) gate as it does for neu-
tral atoms. The presence of NNN couplings might therefore
be just a partial explanation of the QSL differences for the
constraint gates between neutral atoms and superconducting
circuits. Despite the scenario with NNN couplings not reflect-
ing the actual architecture for superconducting circuits, we
nevertheless add the circuit run times for the QAOA circuits
in the PM using these faster constraint gates to Fig. 1(c) for
reference purposes as purple pentagons.

VI. CONCLUSIONS

In this study, we have determined the QSLs for several
common two-qubit and two specific multi-qubit quantum
gates for two promising quantum computing platforms that
allow for a 2D arrangement of qubits—neutral atoms and
superconducting circuits. We have used OCT to determine the
QSLs, as it provides a generally applicable tool that warrants
a fair comparison of both platforms.

On the level of individual quantum gates, our study allows
assessing how close gate protocols from the literature are
compared to their fundamental QSLs or, in other words, how
much can (theoretically) still be gained in time if known gate
protocols are replaced by numerically optimized ones. We find
the QSLs for all investigated two-qubit gates, encompassing
CNOT, CZ, and SWAP, to be very similar within each plat-
form and close to the reference gate times for a CZ gate in
case of neutral atoms [20] and a Sycamore gate in case of
superconducting circuits [8].

On the level of quantum algorithms, our study has more-
over allowed us to determine the “QSLs” for entire quantum
circuits. To this end, we have assumed a 2D grid architecture
for both platforms and qubit connectivity that allows physical
quantum gates only between neighboring qubits. However,
we have assumed these gates to be executable at the QSL.
This has allowed us to calculate the circuit run times at the
“QSL” for two paradigmatic quantum algorithms—the QFT
and a single step of the QAOA. We find that the corresponding
weighted circuit run times scale comparably with respect to
the system size. Furthermore, we observe this to be inde-
pendent of the chosen gate set used to translate the quantum
algorithms into executable quantum circuits, i.e., independent

of whether the SGS or QGS is used. We observe platform
independently that the QGS yields circuit run times and gate
counts that are roughly half compared to those in the SGS. On
the one hand, this demonstrates that further speedup of circuit
run times is theoretically possible on both platforms. On the
other hand, it also shows that both platforms perform equally
well when running prototypical quantum circuits using typi-
cal, present-day NISQ hardware.

Besides a representation of the quantum circuits in the
SGM, we have also explored the representation of the same
quantum algorithms in the PM [26,27,29]. We observe a re-
duction in circuit run times as well as in gate counts in most
cases. This reduction comes at the expense of requiring more
physical qubits but without the need to change the geometrical
layout or the control hardware. In this context, we want to
specifically emphasize the circuit run times of a single QAOA
step in the PM. Compared to its representation in the SGM,
it offers a constant circuit depth independent on the problem
complexity but requires the implementation of local three- and
four-qubit constraint gates [29]. For superconducting circuits
we find their gate times at the QSL to be roughly similar to the
run times of their decompositions into single- and two-qubit
gates. In contrast, for neutral atoms we find the direct imple-
mentation of the constraint gates to be only slightly slower
than any single two-qubit gate and especially much faster
than their decompositions into single- and two-qubit gates. We
nevertheless observe for both platforms run times for a single
QAOA step on the order of 2–4% of the platform’s intrinsic
coherence time. While this corresponds to an improvement
of one order of magnitude for a problem size with N = 9
logical qubits, this grows to an improvement of three orders of
magnitude for N = 121. Since the gate counts, when the na-
tive implementations of the constraint gates are used, are also
smaller in the PM compared to the SGM, we believe the PM
to be advantageous in terms of the described resources for a
single QAOA step. It minimizes errors due to finite coherence
time and allows for large-depth QAOA. However, we want
to emphasize that deeper PM-QAOA circuits are in general
necessary to reach similar success probabilities compared to
lower-depth SGM-QAOA implementations.

While we want to emphasize that the feasibility of a quan-
tum circuit depends on more than just its run time and gate
count, our benchmark study demonstrates that at least these
two factors can be theoretically further improved using opti-
mized gate protocols. This holds for both neutral atoms and
superconducting circuits.

The data that supports the findings of this study are avail-
able from the corresponding author upon reasonable request.
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APPENDIX A: QUANTUM CIRCUITS FOR QFT AND QAOA

1. Standard gate model

The quantum Fourier transform (QFT) is a key ingre-
dient in Shor’s algorithm for integer factorization [1] and
thus a prototypical application for quantum computers. While
a typical circuit representation of a QFT contains exclu-
sively Hadamard gates, H , and controlled-phase gates, Rn =
diag{1, 1, 1, exp{2π i/2n}}, a more efficient representation
with fewer gates and lower circuit depths can be constructed
using SWAP gates [45]. Figure 6(a) illustrates the circuit for a
QFT with N = 4 qubits.

The quantum approximate optimization algorithm
(QAOA) aims at finding approximate solution to
combinatorial optimization problems [4]. For instance,
let us consider the task to find the ground state of the N qubit
spin glass Hamiltonian

Hz =
N∑

n,m=1
n<m

Jnmσ (n)
z σ (m)

z , (A1)

where Jnm denotes the interaction strength between qubits n
and m and σ (i)

z the Pauli-Z operator on qubit i. The QAOA
allows to find an approximate solution, i.e., an approximate
ground state for Hamiltonian (A1), by applying the procedure

|ψout〉 =
p∏

k=1

e−iαkHx e−iβkHz |ψin〉 , Hx =
N∑

n=1

σ (n)
x , (A2)

where |ψin〉 is the ground state of the so-called mixing
Hamiltonian Hx and αk, βk ∈ [0, 2π ) are angles—physically
corresponding to evolution times—that are iteratively opti-
mized via a classical, closed-loop feedback optimization and

the energy expectation value of |ψout〉 being the objective
to minimize. The number of steps is denoted by p. A sin-
gle step in the QAOA is thus given by the application of
the spin glass or problem Hamiltonian Hz followed by the
mixing Hamiltonian Hx. While the latter corresponds to a
parallel application of αk-dependent single-qubit X rotations,
Rk

x, in the associated quantum circuit—and is thus negligible
time-wise—the circuit implementation of the former requires
multiple CNOT gates as well as single-qubit phase gates,
Rnm

z = exp{−iβkJnmσz}, containing information about Jnm and
βk . Figure 6(b) shows the quantum circuit for a single QAOA
step for the Hamiltonian of Eq. (A1) and N = 4 qubits.

While Fig. 6 illustrates the ideal quantum circuits for the
QFT and QAOA, they need to be converted into circuits,
which are capable to run on existing quantum hardware—in
our study either neutral atoms or superconducting circuits—
and their connectivity and native gate sets. To this end, we use
the pytket compiler [16] to convert the quantum circuits. The
core steps of this process are the initial replacement of any
non-native two-qubit gate with a circuit identity consisting
of native gates, including gates between nonconnected qubits,
and a subsequent reduction and optimization procedure. The
latter squashes gates together wherever possible and uses
known gate identities to further reduce the number of two-
qubit gates. For details, we refer to Ref. [16].

2. Parity mapping

In the SGM, as described in Appendix A 1, every logical
qubit is given by exactly one physical qubit and gates on
logical qubits are equivalent to gates on physical qubits. This
is different for the PM, where K > N physical qubits are
required for a problem of N logical qubits and gates on logical
qubits become different gates or even gate sequences on the
physical qubits. However, due to the arrangement of physical
qubits according to the PM, all gates between physical qubits
are strictly local and thus require only nearest-neighbor con-
nectivity.

For the QFT, we need K = N (N + 1)/2 physical qubits in
the PM and find that Hadamard gates, H , on logical qubits
become equivalent to several single- and two-qubit gates on
neighboring physical qubits. In contrast, the logical two-qubit
controlled-phase gates Rn between any pair for logical qubits
is given by exactly three parallel single-qubit gates on phys-
ical qubits [26,49]. Hence, while the logical Hadamard gates
require more resources in the PM, the logical controlled-phase
gates require significantly less resources—especially for those
gates where the logical qubits are far away from each other.

For the QAOA, we need K = N (N − 1)/2 physical qubits
in the PM and Eq. (A2) becomes [29]

|ψout〉 =
p∏

k=1

e−iαkHphys
x e−iβkHphys

z e−iγkHc |ψin〉 , (A3)

where

Hphys
x =

K∑
k=1

σ̃ (k)
x , Hphys

z =
K∑

k=1

J̃k σ̃
(k)
z (A4)

are the modified mixing and spin glass Hamiltonians in the
PM, respectively. The local field strengths J̃k run over the
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N (N − 1)/2 interactions Jnm, cf. Eq. (A1), and σ̃ (k)
z encodes

the parity of the corresponding two-qubit interaction σ (n)
z σ (m)

z
[27]. In order to solve optimization problems using the PM,
we additionally need to constraint the dynamics to the 2N−1

dimensional subspace within the 2K dimensional physical
Hilbert space that corresponds to the 2N−1 eigenstates of
Eq. (A1) that have unique eigenvalues [101]. Hence, since not
every eigenstates of Hphys

z has a logical counterpart in Hz, it
needs to be energetically penalized as it would not be a valid
solution to the optimization problem. This is achieved by re-
alizing C = K − N + 1 local three- and four-qubit constraints
via [27]

Hc =
C∑

c=1

σ̃ (k1 )
z σ̃ (k2 )

z σ̃ (k3 )
z

(
σ̃ (k4 )

z

)
, (A5)

where “local” refers to k1, . . . , k4 being nearest-neighbor
physical qubits. For every QAOA step in Eq. (A3), this re-
quires C constraint gates of the form (neglecting tildes and
indices)

ZZZ(γ ) = exp {−iγ σzσzσz}, (A6a)

ZZZZ(γ ) = exp {−iγ σzσzσzσz}, (A6b)

with γ the effective constraint strengths, which—like in the
original QAOA scheme of Eq. (A2)—are optimized in a
classical, closed-loop feedback optimization. The gates in
Eq. (A6) can be either realized directly [65] or by decom-
posing them into single- and two-qubit gates, e.g., by using
four or six CNOT gates plus one γ -dependent single-qubit
phase-gate for ZZZ(γ ) or ZZZZ(γ ), respectively [29].

It is important to note that the constraint gates are the
only multi-qubit gates in Eq. (A3). Independent of N , their
implementation can be parallelized with at most nine [65]
or four [29] consecutive layers of constraint gates for neu-
tral atoms or superconducting circuits, respectively. However,
note that shallower circuits may be feasible by now [102]. The
difference between the two platforms originates from their dif-
ferent qubit-qubit coupling mechanism. The tunable coupler
architecture of superconducting circuits [8] allows to switch
off the coupling between any pair of qubits. As a consequence,

all constraint plaquettes that do not share a common qubit,
i.e., next-to-nearest-neighbor plaquettes, can be implemented
in parallel. A single QAOA step thus requires at most four
layers of constraint gates to realize all of them. Neutral atoms,
in contrast, interact via their Rydberg levels and therefore
require additional spatial separation between atoms that are
in their Rydberg levels but are not supposed to interact, i.e., to
suppress unwanted interactions. Assuming that a single line
of atoms in non-Rydberg levels suffices as a buffer between
plaquettes that are to be implemented in parallel, this corre-
sponds to two lines of plaquettes as a buffer in each spatial
direction. This yields a maximal number of nine layers of
constraint gates. Despite the platform-dependent differences,
all quantum circuits corresponding to Eq. (A3) have constant
circuit depth.

Note that the parity quantum circuits, in contrast to the cir-
cuits of the standard gate model as illustrated in Appendix A 1
and Fig. 6, are not modified or optimized by the pytket com-
piler [16] since their gates obey the hardware connectivity by
construction.

APPENDIX B: KROTOV’S METHOD FOR QUANTUM
OPTIMAL CONTROL

Krotov’s method [93] is an iterative, gradient-based
optimization algorithm for time-continuous control fields fea-
turing a build-in monotonic convergence [85]. To achieve the
latter, Krotov’s method requires a specific choice of the total
optimization functional J , cf. Eq. (6). In detail, while the error
measure εT at final time T remains the relevant figure of merit
that we want to minimized, Krotov’s method achieves its min-
imization only indirectly by minimizing the total functional J
where the time-dependent running costs Jt are give by [82]

Jt [{ψl (t )}, {Ek (t )}, t] =
∑

k

λk

Sk (t )

(
Ek (t ) − E ref

k (t )
)2

, (B1)

where E ref
k (t ) is a reference field for the control field Ek (t )

that is to be optimized, Sk (t ) ∈ (0, 1] is a shape function and
λk > 0 a numerical parameter. With the choice of Eq. (B1),
the update equation for field Ek (t ) becomes [85]

E (i+1)
k (t ) = E ref

k (t ) + Sk (t )

λk
Im

{∑
l

〈
χ

(i)
l (t )

∣∣∂H[{Ek′ }]
∂Ek

∣∣∣∣
{E (i+1)

k′ (t )}

∣∣ψ (i+1)
l (t )

〉}
, (B2)

where |ψ (i+1)
l (t )〉 are forward-propagated states and solutions

to the Schrödinger equations

d

dt

∣∣ψ (i+1)
l

〉
(t ) = −iH(i+1)(t )

∣∣ψ (i+1)
l (t )

〉
(B3a)

with boundary conditions given by the initial states∣∣ψ (i+1)
l (0)

〉 = |ψl (0)〉. (B3b)

In contrast, |χ (i)
l (t )〉 are backward-propagated costates and

solutions to the equations

d

dt

∣∣χ (i)
l (t )

〉 = iH(i)(t )
∣∣χ (i)

l (t )
〉

(B4a)

with boundary conditions

∣∣χ (i)
l (T )

〉 = − ∂εT

∂〈ψl |

∣∣∣∣∣
{� (i)

l (T )}
. (B4b)

The superscripts i and i + 1 in Eqs. (B2)–(B4) indicate
whether the corresponding quantity is calculated using the
“old” fields from iteration i or the updated fields from iteration
i + 1, respectively.

In order to turn Eq. (B2) into a proper update equation,
the reference field E ref

k (t ) is taken to be the field E (i)
k (t ) from

the previous iteration in which case the second term of the
left-hand side of Eq. (B2) becomes its update. This choice
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causes the time-dependent costs Jt , cf. Eq. (B1), to gradually
vanish as the iterative procedure converges. Hence, the error
measure εT at final time T becomes the dominant term within
the total optimization functional J , cf. Eq. (6), and is thus
predominantly minimized. Equation (B2) also reveals that
while λk can be used to control the general size of the update,
Sk (t ) can be used to suppress updates at certain times.

We refer to Ref. [85] for a more detailed introduction of
Krotov’s method and to Ref. [88] for a detailed discussion
about its numerical implementation.

APPENDIX C: FIELD GENERATION
AND PARAMETRIZATION

In this Appendix, we specify some of the technicalities for
the method described in Sec. IV C.

We generate randomized, albeit smooth, guess fields via
the formula [103]

f (t ) = a0 +
√

2
m∑

j=1

[
a j cos

(
2π jt

t1 − t0

)
+ b j sin

(
2π jt

t1 − t0

)]

(C1)

where a0, a j, b j are chosen randomly from a normal distribu-
tion N (μ, σ ) with center μ = 0 and variance σ = 1/(2m+1).

The integer m thereby not only determines the number of
frequency components in f (t ) but also the frequencies of each
component. Since we expect frequencies on the same time
scale than those contained in the Hamiltonian to be of greater
relevance for finding solutions, we chose m randomly from an
interval matching each Hamiltonian’s frequencies.

Besides the generation of randomized guess fields, we also
specify the internal parametrization of the fields. To this end,
note that some of the physical or auxiliary control fields in
Eqs. (1) or (2) are experimentally limited in range, i.e., have
a lower and upper bound that should not be violated by the
optimization algorithm. Let Emin � E (t ) � Emax be bounded.
In order to restrict E (t ) to its bounds and to avoid manual
truncation in case of violation of the bounds, we internally
parametrize E (t ) via

u(t ) = arctanh

(
2E (t ) − Emax − Emin

Emax − Emin

)
, (C2a)

E (t ) = Emax − Emin

2
tanh (u(t )) + Emax + Emin

2
. (C2b)

The auxiliary field −∞ < u(t ) < ∞ is the one optimized in
practice and can be optimized boundless since, by construc-
tion, it can never violate the boundaries of the actual field E (t ),
which it encodes.
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