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Cooling dynamics of a free ion in a Bose-Einstein condensate
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We investigate the dynamics of an ion moving through a homogeneous Bose-Einstein condensate (BEC)
after an initial momentum is imparted. For this, we derive a master equation in the weak-coupling limit and
Lamb-Dicke approximation for the reduced density matrix of the ion. We study the time evolution of the ion’s
kinetic energy and observe that its expectation value, identified as the ion temperature Tion, is reduced by several
orders of magnitude in a time on the order of microseconds for a condensate density in the experimentally
relevant range between 1013 cm−3 and 1014 cm−3. We characterize this behavior by defining the duration at half
maximum as the time required by Tion to reach half of its initial value, and study its dependence on the system
parameters. Similarly, we find that the expectation value of the ion’s momentum operator is reduced by nine
orders of magnitude on the same timescale, making the ion’s position converge to a final value. Based on these
results, we conclude that the interaction with the bosonic bath allows for cooling and pinning of the ion by
decreasing the expectation value of its kinetic energy and velocity, which constitutes a result of direct relevance
for current atom-ion experiments.
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I. INTRODUCTION

Quantum mixtures of ultracold atoms and ions have at-
tracted the interest of an increasing part of the ultracold
quantum matter community in the last few years. Combin-
ing the high controllability of trapped ions with the long
coherence times of ultracold atomic systems, they provide
a fertile platform for the study of both few- and many-
body physics and their application to the advancement of
quantum technologies arising from the long-ranged character
of atom-ion interactions. Some of the most recent theoret-
ical investigations include ab initio quantum Monte Carlo
and multiconfiguration time-dependent Hartree methods for
bosons as well as diagrammatic techniques for the analysis
and characterization of polaronic states [1–3]. More recently,
studies have also focused on how the interaction between two
ions is mediated by the surrounding gas [4,5], while propos-
als to exploit ions in ultracold gases as quantum simulators
[6–9] or sensors [10] have been put forward. We refer to
Refs. [11,12] for an overview in the field. As far as experi-
ments are concerned, most of the recent achievements involve
the presence of external potentials that tightly trap the ion
[13]. In particular, sympathetic cooling was observed in such
setups with the ion confined in radio-frequency traps [14,15]
or in optical dipole traps [16,17]. Similar systems were also
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employed in the observation and study of few-body processes
and chemical reactions between ions and atoms [18–22]. On
the other hand, experiments based on the ionization of Ryd-
berg atoms [23,24] have explored the scenario where no trap
is present and the ion is driven by an external electric field, fo-
cusing on the transport properties of electrical charges inside
a Bose-Einstein condensate (BEC) [25,26] and the formation
of molecules in Rydberg-atom-ion systems [27,28]. However,
while the formation and behavior of neutral polarons in the
case of both Fermi [29–32] and Bose environments [33–35]
has made tremendous progress, the physics of mobile charged
impurities in ultracold gases is at an earlier stage compared
to its neutral analogous. This is due to the experimental chal-
lenges in reaching the ultracold regime involving only a few
partial waves, due to the notorious micromotion [36]. Theo-
retical challenges arise from the fact that the properties of the
systems depend not only on the scattering length and effective
range of the atom-ion potential, but also on the presence of
the long-range tail of the interaction, preventing the use of the
pseudopotential approximation [37,38].

Here, we study the quantum dynamics of a free, i.e., not
trapped, ion moving inside a bosonic quantum gas with a finite
initial momentum. Let us note that one-dimensional in-depth
investigations of the quantum dynamics of the motional de-
grees of freedom of an ion at both zero and finite temperature
interacting with matter waves confined in a double well have
been carried out in Refs. [39,40]. The ion-induced correlated
dynamics of a bosonic system after ionization has been ana-
lyzed in Ref. [41], where the ion, however, has been treated
as a static impurity. Specifically, we resort to the master equa-
tion approach developed in Refs. [42,43] to characterize the
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FIG. 1. Proposal for cooling an ion in an ultracold bosonic gas.
(a) An atom in a BEC is ionized by an ultrashort laser pulse via
a nonresonant two-photon process. The excess energy Eexc of the
ionization process determines the initial momentum k0 of the ion in x
direction. (b) Subsequently, the ion is slowed down due to the atom-
ion interaction arising from the polarizability of the atomic cloud. By
deriving a master equation, we can extract the time evolution of the
expectation value of the ion’s position 〈r̂x〉 and show that it is pinned
within a microsecond in a 87Rb BEC.

evolution of the expectation value of the ion’s kinetic energy,
velocity, and position. Our study is motivated by the recent
experimental advances involving untrapped ions in conden-
sates [25,44], where we note that optical control of the ion
movement in the atomic gas can be accomplished by means
of optical traps as well [45,46]. In this work, we are inspired
by the specific scenario that originates from the experiment
reported by Kroker et al. in Ref. [44]. As depicted in Fig. 1(a),
a laser pulse ionizes some of the 87Rb atoms in a BEC within
215 fs, hence instantly creating ions inside the bosonic gas
with a finite initial kinetic energy determined by the excess
energy of the ionization process. For this reason, we focus
mostly on the case of the homonuclear system 87Rb+ / 87Rb,
as this is the atomic species utilized in those experiments,
but we also provide a brief analysis of the case of ions with
a larger mass. We note that although in Refs. [44,47] the
initial kinetic energy of the ion is on the order of a few

microelectronvolts, this can be experimentally reduced by an
order of magnitude. Figure 1(b) illustrates that for the corre-
sponding initial momentum the ion can be cooled and pinned
within the BEC due to the long-range atom-ion interaction
arising from the polarizability of the atomic cloud. We char-
acterize the cooling of the ion and find it to be remarkably
robust against the initial ion velocity, density, and temperature
of the BEC as well as the mass ratio between the ion and
the atoms.

The paper is organized as follows: in Sec. II we intro-
duce the atom-ion interaction potential and the Hamiltonian
describing the hybrid atom-ion system, while in Sec. III we
derive the ionic master equation from which the equation of
motion of the most relevant observables are obtained. In
Sec. IV we analyze and discuss the results of the numerical
simulations, while in Sec. V we discuss the experimental
implications of the study. Finally, in Sec. VI we summarize
our findings and provide an outlook for future analysis.

II. SYSTEM

In this section, we briefly characterize the theoretical treat-
ment of our system. For a more thorough description, we refer
the interested reader to Refs. [42,43].

A. Atom-ion interaction potential

The interaction between a charged and a neutral particle
depends on their separation r = |r|. It is described asymp-
totically by the polarization potential V (r) = −C4/r4, where
C4 = αe2/(8πε0) with α the static polarizability of the atom,
e the electron charge, and ε0 the vacuum permittivity. This
potential has the characteristic length R� =

√
2μC4/h̄2 and

energy E � = h̄2/[2μ(R�)2], with μ as reduced mass. The
value of R� is much larger than the length scale of the van
der Waals interaction between neutral particles and, for typical
atom-ion systems, it is of the order of hundreds of nanome-
ters. In particular, for the 87Rb / 87Rb+ system we have R� �
265.81 nm and E � � kB×79 nK (kB is the Boltzmann con-
stant).

Due to the singularity of the polarization potential and the
fact that we shall have to calculate its Fourier transform, we
consider the following regularization [42]:

Vreg(r) = −C4
r2 − c2

r2 + c2

1

(r2 + b2)2
, (1)

where the energy spectrum and the atom-ion scattering length
aai are controlled by the parameters b and c [48]. The choice
of the values of those parameters is discussed extensively in
Ref. [43]. An example of the potential is displayed in the main
plot of Fig. 2.

The scattering amplitude in the first-order Born approxima-
tion is proportional to the Fourier transform of the potential,
and is given by

f (q) = − μ

2π h̄2

∫
R3

dr eiq·rVreg(r)

= c2π (R�)2

(b2 − c2)2q

{
e−bq

[
1 + (b4 − c4)q

4bc2

]
− e−cq

}
. (2)
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FIG. 2. Main plot: Atom-ion interaction potential in units of E �

as a function of the atom-ion separation r in units of R�. Dashed line:
polarization potential. Solid line: regularized potential in Eq. (1) with
parameters b = 0.07797 R� and c = 0.2239 R�, corresponding to an
atom-ion scattering length aai � R� and a single two-body bound
state with binding energy EBS � −1.43 E �. Inset: scattering ampli-
tude f (q) [see Eq. (2)] corresponding to the regularized potential in
the main plot. Note that f is in units of R�, whereas q is in units of
1/R�.

An example is shown in the inset of Fig. 2, where f (q)
approaches zero for large momenta, while at qR� � 7.37 it
exhibits a minimum. The expression of the scattering ampli-
tude is used in the derivation of the master equation, as we
shall discuss in Sec. III.

B. Hamiltonian

We consider a nontrapped ion of mass M coupled to an
ultracold bosonic gas with mass m, henceforth referred to as
the bath. The Hamiltonian is the sum of three terms: Ĥ =
Ĥion + Ĥbath + Ĥint , with Ĥion = p̂2/(2M ),

Ĥbath =
∫
R3

drb �̂
†
b (rb)

[
p̂2

b

2m
+ g

2
�̂

†
b (rb)�̂b(rb)

]
�̂b(rb),

(3)
and

Ĥint =
∫
R3

drb �̂
†
b (rb)Vib(rb − r̂)�̂b(rb), (4)

where the subscript b indicates the bosons of the bath, r̂
is the position operator of the ion, and Vib represents the
two-body potential between the ion and the particles of the
bath. Moreover, we assume the bath to be confined in a box
of length L and its atoms to interact via contact potential
with coupling strength g = 4π h̄2as

bb/m, as
bb being the three-

dimensional (3D) atom-atom s-wave scattering length.
The bosonic field operator can be written as an expan-

sion around the condensate density n0 = N0/L3 (N0 being the

number of condensed particles) as

�̂b(rb) = √
n0 + δ�̂b(rb), (5)

where the fluctuations are described within Bogoliubov
theory, i.e.,

δ�̂b(rb) = L−3/2
∑

q

(uqb̂qeiq·rb + vqb̂†
qe−iq·rb ), (6)

with [b̂q, b̂†
q′ ] = δq,q′ . By using Eq. (6) we can rewrite the bath

Hamiltonian as follows:

Ĥbath ≈ E0 +
∑

q

h̄ωqb̂†
qb̂q (7)

with E0 = gN2
0 /(2L3) the condensate ground-state energy, and

the phononic dispersion relation given by

ε(q) ≡ h̄ωq =
√(

h̄2q2

2m

)2

+ (h̄csq)2, (8)

where cs = √
gn0/m is the speed of sound of the gas. The

amplitudes of the Bogoliubov modes are given by [49]

uq =
√

h̄2q2/(2m) + gn0

2h̄ωq
+ 1

2

vq = −
√

h̄2q2/(2m) + gn0

2h̄ωq
− 1

2
. (9)

Hence, the atomic density operator reads

�̂
†
b (rb)�̂b(rb) = n0 + 	n̂(rb), (10)

and we can use the definition in Eq. (5) to write the last term
on the right-hand side as

	n̂(rb) = δn̂(rb) + δ2n̂(rb) (11)

with δn̂(rb) = √
n0[δ�̂b(rb) + δ�̂

†
b (rb)] and δ2n̂(rb) =

δ�̂
†
b (rb)δ�̂b(rb). In our description we only consider the

first of the two terms, thereby taking into account only
the density fluctuations proportional to the square root of
the condensate density n0. Let us note that the second order
is related to the noncondensed part of the gas. As we pointed
out in Ref. [43], its contribution becomes relevant when
the gas temperature approaches the critical temperature of
condensation from below, and is the only one contributing
in the absence of condensation. Here, however, our analysis
focuses on gas temperatures much lower than the critical
temperature, allowing the contribution of the quadratic terms
to be safely neglected. According to Eq. (6), we have

δn̂(rb) =
√

n0

L3

∑
q

[(uq + v∗
q )b̂qeiq·rb + (u∗

q + vq)b̂†
qe−iq·rb].

(12)

At this stage let us remark that we assume that the condensate
density is not affected by the presence of the ion and remains
homogeneous. As recently shown in Ref. [1], however, the
formation of many-body bound states can change the bath
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density around the ion substantially. Such many-body bound
states are not included in the present study, since their for-
mation remains negligible as long as no stimulated resonance
processes occur [50]. Under these assumptions, our open sys-
tem approach is justified.

Finally, the interaction Hamiltonian becomes

Ĥint =
∫
R3

drb Vib(rb − r̂)δn̂(rb)

= h̄
∑

q

(Ŝqb̂q + Ŝ†
qb̂†

q) (13)

with

Ŝq =
√

n0L3

h̄
(uq + v∗

q )eiq·r̂cq (14)

and

cq = 1

L3

∫
R3

dy eiq·yVib(y). (15)

Note that the coefficient cq is related to the scattering ampli-
tude f (q) by

cq = −2π h̄2

μL3
f (q). (16)

As discussed in Sec. II A, we model the two-body atom-ion
potential Vib with the regularization of Eq. (1), whose scatter-
ing amplitude is given in Eq. (2).

III. IMPURITY MASTER EQUATION

In this section we derive a master equation for the reduced
density matrix of the ion. We start from the master equation in
the Born and Markov approximation for an impurity in a
bosonic bath:

d

dt
ρ̂(t ) = − i

h̄
[Ĥion, ρ̂(t )] −

∑
q

∫ t

0
dτ �2

q {(nq + 1)[eiq·r̂, e−iq·r̂(t,τ )ρ̂(t )]e−iωqτ + nq[ρ̂(t )e−iq·r̂(t,τ ), eiq·r̂]e−iωqτ

+ (nq + 1)[ρ̂(t )eiq·r̂(t,τ ), e−iq·r̂]eiωqτ + nq[e−iq·r̂, eiq·r̂(t,τ )ρ̂(t )]eiωqτ }. (17)

Here, we defined

�2
q = |uq + vq|2

h̄2 |cq|2n0L3, (18)

while nq = [eβ(ε(q)−μB ) − 1]−1 is the Bose-Einstein occupa-
tion number based on the averages over the thermal state of
the bath B̂0 [see also Eq. (B7)]

Trb{b̂†
qb̂q′ B̂0} = nq δq,q′ , (19)

with μB the chemical potential of the bosonic gas at tem-
perature Tgas, and β = 1/(kBTgas). We note that Eq. (17)
corresponds to the first line of Eq. (41) in Ref. [43] and can
be applied to any kind of impurity in interaction with a bath
of bosonic atoms by specifying the scattering amplitude in the
definition of cq and the equation of motion of the impurity
r̂(t, τ ). For a detailed derivation we refer to Ref. [43].

A. Lamb-Dicke approximation

In order to render the master equation numerically treat-
able, we perform the Lamb-Dicke approximation to further
simplify it. Such an approximation is based on the assumption
that the average wavelength of the atoms in the bosonic bath,
corresponding to the de Broglie wavelength λdB(Tgas), is much
larger than the spatial extension of the ion, namely, the width
of the associated wave packet. The validity of this requirement
is discussed in Appendix A, while here we proceed with the
derivation of the master equation. In the Lamb-Dicke regime,
we Taylor expand the products of exponential functions con-
taining q · r̂ and q · r̂(t, τ ) and keep the terms up to second

order. For instance, the first commutator in Eq. (17) can be
written as

[eiq·r̂, e−iq·r̂(t,τ )ρ̂(t )]

� i[q · r̂, ρ̂(t )] + [q · r̂, q · r̂(t, τ )ρ̂(t )]

− 1
2 [(q · r̂)2, ρ̂(t )]. (20)

However, due to the assumed spherical symmetry of the bath,
the first term on the right-hand side of Eq. (20) is zero after
the sum over q is taken, and so are the terms containing
odd powers of qx, qy, or qz. Hence, the directions are de-
coupled and the contribution from the first commutator reads∑

ξ {[r̂ξ , r̂ξ (t, τ )ρ̂(t )] − [r̂2
ξ , ρ̂(t )]/2}, ξ = x, y, z.

We now explicitly substitute the equation of motion of
the free ion r̂ξ (t, τ ) = r̂ξ − ( p̂ξ /M )τ and perform the time
integration. We note that the latter is performed analytically
in the present study, which is in contrast with the usual ap-
proach in the literature [51] and with the previous works
[42,43], where the limit t → ∞ has been taken. For fur-
ther details we refer to Appendix B. Similarly to Ref. [43],
we use the master equation to derive the differential equa-
tions for the expectation value of the squared momentum
p̂2

ξ along the direction ξ (see Appendix C for an alternative
derivation),

d

dt

〈
p̂2

ξ

〉 =
∑

q

�2
qq2

ξ

{
2h̄2

ωq
(2nq + 1)sin(ωqt )

+ 4h̄

Mω2
q

[ωqt cos(ωqt ) − sin(ωqt )]
〈
p̂2

ξ

〉}
, (21)
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and for the squared position r̂2
ξ and covariance ĉξ = r̂ξ p̂ξ +

p̂ξ r̂ξ ,

d

dt

〈
r̂2
ξ

〉 = 1

M
〈ĉξ 〉

d

dt
〈ĉξ 〉 = 2

M

〈
p̂2

ξ

〉
+

∑
q

�qq2
ξ

{
2h̄

Mω2
q

[ωqtcos(ωqt ) − sin(ωqt )]〈ĉξ 〉

+ 2h̄2

Mω2
q

(2nq + 1)[cos(ωqt ) + ωqtsin(ωqt ) − 1]

}
.

(22)

In the limit of a large bath, where L → ∞, the quantized
values assumed by the wave vector qξ = 2πsξ /L with s ∈ Z
become closely spaced. In this regime, the sum over q can be
replaced with the integral L3/(2π )3

∫
R3 dq.

From the expectation value of p̂2 = p̂2
x + p̂2

y + p̂2
z , we cal-

culate the ion temperature. The latter, for an untrapped ion,
can be defined as the expectation value of the kinetic energy
in units of the Boltzmann constant:

Tion = 1

kB

1

2M
〈p̂2〉. (23)

For the sake of completeness, we remark that the definition
of the ion temperature can change for different systems. For
instance, in the case of Paul-trapped ions, both the secular
motion and micromotion have to be taken into account (see
Ref. [52] for details).

Finally, we report the equations of motion for the first
momenta, which are derived in a similar manner,

d

dt
〈r̂ξ 〉 = 1

M
〈p̂ξ 〉

d

dt
〈p̂ξ 〉 =

∑
q

�2
qq2

ξ

{
2h̄

Mω2
q

[ωqtcos(ωqt ) − sin(ωqt )]〈p̂ξ 〉
}
.

(24)

B. Initial quantum state after ionization

The aim of this section is to describe the density matrix
of the ion immediately after ionization of a bosonic quantum
gas. We assume the BEC with typical parameters presented in
Table I is confined in a harmonic potential with trap fre-
quencies ωξ = 2πνξ , which is typically realized by an optical
dipole trap. In the following, we consider two possible exper-
imental scenarios for the ionization process: either ionization
of a Rydberg excitation or direct ionization with an ultrashort
laser pulse. Let us note that once the ion is created, however,
it is no longer affected by the optical dipole trap confining
the condensate and no additional external potential for the ion
is assumed. Hence, the ion is free to move within the BEC.
Nonetheless, the ion inherits its spatial extent, as represented
by the squared modulus of its wave function, from the former
atom in the trapped condensate before ionization. Crucially,
the spatial extent of the ion must fulfill the requirements of
the Lamb-Dicke approximation at all times, as we discuss in
Appendix A. Finally, we assume that the ionization process

TABLE I. Typical experimental parameters for the homonuclear
system 87Rb+ / 87Rb. The initial kinetic energy of the 87Rb+ ion
corresponds to a two-photon ionization via a virtual intermediate
state by an intense femtosecond laser pulse with a duration of 200 fs
near the ionization threshold. The parameters of the Bose-Einstein
condensate are typical for 87Rb atoms in an optical dipole trap.

Ion

Kinetic energy 1.3×10−7 eV
Temperature 1 mK
Excess velocity 530 mm/s

BEC

Atom number 3×104

Peak density 2×1014 cm−3

Speed of sound 2.7 mm/s
Trap frequencies νξ 120–170 Hz
Cloud radius 5 µm

occurs on a time scale much faster than the atomic dynamics,
i.e., we treat it as an instantaneous process.

1. Ionization via Rydberg states

We begin by considering the case of ionization via Rydberg
excitation, for which the initial ionic state can be represented
as a thermal state. We assume that, before the ionization,
the bosons are in a trapped motional state due to their con-
finement. At low temperatures, all bosons are described by
the same single-particle state, to a very good approximation.
If a laser pulse is utilized to excite the internal state of the
atoms to a Rydberg state, and if the chosen Rydberg state is
such that the corresponding blockade radius is large enough
to guarantee a single excitation in the atomic ensemble, then
that excitation is delocalized over the entire atomic cloud.
Namely, a giant superposition state is created. The motional
state, however, to a very good approximation is the same as
before the Rydberg excitation took place. When a second laser
pulse is applied to ionize the Rydberg atom as in Ref. [24],
the quantum superposition with a single Rydberg excitation
is collapsed into a specific product state of the many-body
system. Nonetheless, the motional state is still well described
by the initial single-particle state of the bosonic ensemble
mentioned before, except for an imparted momentum due to
the two laser pulses. Specifically, we consider the atom before
ionization to be confined in a harmonic trap with trap fre-
quencies ωξ = 2πνξ and single-particle eigenenergies E (ξ )

nξ
=

h̄ωξ nξ with nξ = 0, 1, 2, . . . , that is, we neglect interactions
among them. Moreover, we assume that the ionization imparts
a momentum k0,ξ along the ξ direction at t = t0. Assuming
that the atom is not completely cooled down to the trap ground
state, the density matrix reads

ρ̂ξ (t0) = (
1 − e− h̄ωξ

kBTgas
)
eik0,ξ r̂ξ

×
∑

nξ

e−
E (ξ )

nξ

kBTgas |nξ 〉〈nξ |e−ik0,ξ r̂ξ , (25)

where |nξ 〉 are the states of the harmonic oscillator with fre-
quency ωξ and Tgas the gas temperature.
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The initial value of the squared momentum along the direc-
tion ξ is calculated as the average Tr{ p̂2

ξ ρ̂ξ (t0)} over the initial
density matrix ρ̂ξ (t0). Using the definition of the momentum
operator p̂ξ = i

√
h̄Mωξ/2(â† − â) and the properties of the

trace, we get to the following formula for the initial squared
momentum [53]:〈

p̂2
ξ (t0)

〉 = (
1 − e− h̄ωξ

kBTgas
)

×
∑

n

e− h̄ωξ

kBTgas
n
[

h̄Mωξ

2
(2n + 1) + h̄2k2

0,ξ

]
. (26)

In a similar fashion, we obtain the initial squared position:

〈
r̂2
ξ (t0)

〉 = (
1 − e− h̄ωξ

kBTgas
) ∑

n

e− h̄ωξ

kBTgas
n h̄

2Mωξ

(2n + 1), (27)

whereas the initial value of the covariance ĉξ is always zero.

2. Ionization with an ultrashort laser pulse

Another interesting scenario is the ionization procedure
employed in Ref. [44], where a femtosecond laser is focused
down to a waist w0 = 1 µm, which is small compared to
the size of the atomic cloud. Within a single pulse of 215 fs
duration, the number of ionized atoms can be precisely tuned
with the laser peak intensity. More details of the experimental
procedure are reported in Sec. V. In this case, the ionization
process can be interpreted as a continuous measurement pro-
cess, where the focused laser beam with Gaussian envelope
e−2r2/w2

0 is the probe field [54]. Therefore, the probability of
finding the ion at position r is given by

P(r) =
√

2

πw2
0

∫
R3

dr′ e
− 2

w2
0

(r′−r)2

〈r′|ρ̂BEC|r′〉, (28)

namely, the convolution between the Gaussian beam and the
probability density 〈r′|ρ̂BEC|r′〉 of the condensate. The initial
density distribution of the ion can be therefore identified with
Eq. (28), while the initial ion’s wave function can be defined,
apart from a global phase, as the square root of P(r), with
spatial extent determined by the beam waist. Consider an ul-
tracold bosonic gas with experimental parameters as listed in
Table I that corresponds to the experimental situation reported
in Ref. [44]. Hence, the bosonic density distribution is well
described by the Thomas-Fermi profile, which reads

〈r′|ρ̂BEC|r′〉 = n0

[
1 −

(
x′

Rx

)2

−
(

y′

Ry

)2

−
(

z′

Rz

)2
]

(29)

in the region defined by the ellipsoid with radii Rξ (ξ =
x, y, z), and zero elsewhere. The definitions of Rξ and other
details on the Thomas-Fermi approximation can be found,
e.g., in Ref. [55]. The integral in Eq. (28) can be computed nu-
merically in spherical coordinates. As anticipated, we define
the initial ion wave function as �0(r) = eik0,ξ r̂ξ

√
P(r), where

we added the contribution of the initial imparted momentum
along the ξ direction.

The initial state of the ion is used to calculate the initial
conditions for the equations of motion of the expectation val-
ues given in Sec. III A. For the parameters considered in our
study, however, no significant differences have been observed

between the initial states obtained after photoionization of a
Rydberg atom or of a ground-state atom with a femtosecond
laser pulse. Albeit the numerical analysis in the following
section refers to the thermal state (25), we note that the choice
of one or the other initial condition does not affect the conclu-
sions we are going to outline in Sec. IV.

IV. RESULTS

In this section, we report on the dynamics of an ion with
initial momentum in an ultracold bosonic cloud. The evolution
of the ion temperature, velocity, and position are obtained
by numerically solving Eqs. (21) and (24). We investigate
the impact of different experimental parameters such as the
initial momentum of the ion k0, the density of the atomic
cloud n0, and the atom-ion scattering length aai on the ion
dynamics. Unless stated differently, the system consists of a
87Rb+ ion in a bosonic bath of 87Rb atoms at Tgas = 1 nK,
with n0 = 2×1014 cm−3, and aai � R� corresponding to the
potential in Fig. 2 (see also Table I). Let us note that the
results obtained at fixed density do not depend on the specific
value of the temperature of the ultracold bosonic gas Tgas,
which is chosen according to the discussion in Appendix A.
Moreover, we consider the momentum imparted at t = t0 to
be directed along x, and we focus on the dynamics along the
same direction. In fact, although the initial conditions for T y,z

ion
may be different from zero depending on the choice of the
initial state and the direction of the imparted momentum, the
decoupling of the three directions allows us to consider just
one direction without any loss of generality [56].

A. Cooling dynamics

We start by comparing the ion temperature as a function of
time for different initial conditions.

1. Initial temperature of the ion

In Fig. 3, the results corresponding to initial ion temper-
atures in the millikelvin regime are shown. We can observe
from the main plot and inset that the time required for T x

ion to
converge to 2 µK is almost independent of its initial value at
t = t0. In other words, the larger the initial momentum, the
faster the cooling. On the other hand, the cooling dynamics
is strongly affected by the condensate density n0, as can be
observed by comparing the dark solid lines with the light
dashed lines. We refer to Appendix D for a comparison with
the dynamics corresponding to lower initial ion temperatures.

2. Atomic density

To systematically study the cooling dynamics, we define
the full duration at half maximum (FDHM) as the time it
takes for the ion temperature to reach half of its initial value
[see inset of Fig. 4(a)]. Note that small values of the FDHM
correspond to higher cooling rates: the larger the FDHM,
the smaller the atom-ion cross section and vice versa. The
time scale of the cooling dynamics is similar to the average
time scale for classical collisions with one atom in the bath
given by t = dWS/vx(t0) = 265 ns for an initial velocity of
vx(t0) = 0.4 m s−1 and with dWS = [3/(4πn0)]1/3 = 106 nm
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FIG. 3. Ion temperature T x
ion = 〈 p̂2

x〉/(2MkB) as a function of
time for n0 = 2×1014 cm−3 (solid lines) and n0 = 2×1013 cm−3

(light dashed lines). (a) The initial ion temperatures correspond to
T x

ion = 1.17 mK (blue), T x
ion = 0.84 mK (orange), and T x

ion = 0.51 mK
(green). The inset shows a magnification of the main plot in the
range from t = 0.8 µs to t = 0.9 µs, as indicated. From the latter,
we observe that the temperature corresponding to n0 = 2×1014 cm−3

converges to a value of around 2 µK, independent of the initial
condition.

being the Wigner-Seitz radius at a condensate density of n0 =
2×1014 cm−3.

The circles in the main plot of Fig. 4(a) show that the
FDHM is barely affected by the initial temperature of the ion.
Moreover, the same weak dependence is observed for n0 =
2×1014 cm−3 (full circles) and n0 = 2×1013 cm−3 (empty cir-
cles). Figure 4(b) quantifies how effective the cooling of the
ion is, depending on the density of the condensate (main plot)
and on the mean distance between the atoms (inset). The
initial temperature is fixed to T x

ion(t0) � 1.1 mK and the gray
squares are the values of the FDHM for different n0 (or d̄ =
1/ 3

√
n0 in the inset). As expected, a denser gas ensures a faster

cooling (i.e., a smaller FDHM) due to the stronger impact of
the atom-ion interaction on the ion dynamics. We observe that
the FDHM increases linearly with the mean distance. Both
the gas and the ion are treated fully three-dimensionally in
the master equation. However, due to the Lamb-Dicke ap-
proximation, solutions are given by the tensor product of the
density matrices of the three spatial directions. Figure 4(b)
exemplary shows the result for the x direction as the dynamics
is effectively one-dimensional for the ion moving into a fixed
direction. Because of this, the ion dynamics is characterized
by the mean distance between the bosons, which accounts for
the rate of atom-ion collisions in one direction: the larger the
distance, the larger the FDHM, i.e., the smaller the cooling
rate, and vice versa. This is in contrast with the expectation
that the cooling rate is linearly proportional to the gas den-
sity. In the future it will be interesting to find solutions to
solve the master equation without relying on the Lamb-Dicke

FIG. 4. (a) Main plot: FDHM for two atomic densities as a func-
tion of the initial ion temperature; solid lines connecting the points
are a mere guide to the eye. Inset: definition of FDHM. (b) FDHM
for T x

ion(t = t0 ) � 1.01 mK and aai � R� (gray squares). Main plot:
FDHM as a function of the gas density n0; the solid line connecting
the points is a mere guide to the eye. Inset: FDHM as a function of
the average particle separation d̄ = 1/ 3

√
n0; the dotted line is a linear

function fitting the data.

approximation to investigate the density dependence of the
FDHM as well as a maximum capture velocity for the cooling
and pinning dynamics.

3. Atom-ion scattering length

Another feature that we point out is the dependence of
the cooling dynamics on the atom-ion scattering length.
The recent observation of Feshbach resonances in compound
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FIG. 5. Main plot: scattering length dependence of the FDHM
for T x

ion(t0) = 1.17 mK (gray diamonds) and T x
ion(t0) = 100 nK (pur-

ple circles). The lines are a mere guide to the eye. Lower inset: time
dependence of the ion temperature for two values of the atom-ion
scattering length and initial ion temperature T x

ion = 1.17 mK. The two
values of the scattering length are indicated in the main plot by the
two arrows. Upper inset: time dependence of the ion temperature
for two regularized potentials supporting a different number of two-
body bound states: one bound state with EBS � −1.43 E � (blue) and
two bound states with EBS,1 � −1.39 E � and EBS,2 � −152.78 E �

(orange).

atom-ion systems [17] confirms the possibility of tuning the
atom-ion interaction via an external magnetic field. This de-
pendence can be exploited in experiments to achieve a higher
cooling rate without changing parameters such as the atomic
density or the ion initial temperature.

Since the cooling dynamics is closely related to the elastic
cross section, no strong dependence on the scattering length
would be expected at high collision energies, where the ion
can be treated classically. In contrast, such a dependence could
be expected at ion temperatures on the order of microkelvin
and below, where fewer partial waves contribute to scattering
events and quantum effects become relevant. On this regard,
we note that the number of partial waves contributing in the
millikelvin regime is on the order of ten. In the main plot of
Fig. 5 the nontrivial dependence of the FDHM on aai is shown
for two values of the initial temperature: T x

ion(t0) = 1.17 mK
and T x

ion(t0) = 100 nK, the latter being on the order of the
typical energy of the atom-ion potential E �/kB = 79 nK. We
observe a similar behavior for the two initial conditions. How-
ever, considering values of aai between ∼−2 R� and ∼2 R�,
the difference between the maximum and minimum FDHM
for the lower initial temperature of the ion is 24% larger com-
pared to the higher initial temperature (0.057 µs and 0.046 µs,
respectively). This shows that the dependence is indeed more
pronounced when the collision energy is lower, as expected.
The noticeably larger values of the FDHM observed for the
two values of aai below −2 R� could indicate the failure of
the Born approximation due to the strong atom-ion coupling.

FIG. 6. Time dependence of ion temperature for different ion
species immersed in a gas of 87Rb atoms with density n0 =
2×1014 cm−3. The initial ion temperature is T x

ion = 1.17 mK. The
corresponding values of R� are the following: 265.81 nm for 87Rb+,
294.67 nm for 138Ba+, and 307.23 nm for 174Yb+.

Another hypothesis to explain the dependence of the FDHM
on aai could be the binding of atoms to the ion. This would
increase the effective mass of the ion, which would modify
the scattering parameters with the bath as well as the cooling
dynamics.

Finally, we consider a regularized atom-ion potential sup-
porting two two-body bound states. In the upper inset of Fig. 5
we can observe that the cooling dynamics does not depend
qualitatively on the number of such bound states. Although
the FDHM corresponding to two bound states is about twice
the value obtained with one bound state, the reduction of T x

ion
takes place on similar timescales in the two cases. We remark,
however, that the choice of the potential with one bound
state is justified by the fact that the occupation of deeply
bound states is much less likely compared to the occupation of
loosely bound states because of the large energy gap between
them (see, e.g., Ref. [50]).

4. Ionic species

Similar simulations are repeated for different ionic species
moving in the 87Rb atomic gas. In Fig. 6, the time dependence
of T x

ion is shown for 138Ba+ and 174Yb+ compared to the ru-
bidium ion considered in the previous analysis. The observed
behavior is qualitatively the same, but the plot shows that
higher values of the ion-atom mass ratio M/m result in slower
cooling. We remark that the use of different ions affects the
value of the ratio M/m and hence the range of validity of the
Lamb-Dicke approximation (see Appendix A).

B. Pinning dynamics

Now, we discuss the evolution of the expectation value of
the position and momentum of the ion given by Eq. (24). Note
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FIG. 7. Time dependence of the ion’s velocity vx = 〈 p̂x〉/M
(main plot) and position (inset) along the x direction for different ini-
tial ion velocities: vx = 0.47 m s−1 (blue), vx = 0.40 m s−1 (orange),
and vx = 0.31 m s−1 (green). Solid lines correspond to a regular-
ized atom-ion potential with aai � R�, whereas the gray dashed line
corresponds to a neutral impurity in a gas with a short-range pseu-
dopotential with aai � 0.05 R�.

that all results are given in one dimension, since the initial
momentum k0 is assumed to be along x.

1. Ion velocity evolution

In the main plot of Fig. 7, we observe how the ion’s velocity
decays, reaching a value on the order of 10−10 m s−1 at t =
0.9 µs. Similar to what was observed for the decay of Tion, the
time required for the velocity to decay depends only weakly
on its initial value. For this reason, the ion’s final positions
are reached at approximately the same time for all values of
vx(t0) = h̄k0/M, as shown in the inset of Fig. 7.

This result is completely different from the dynamics of
a neutral impurity in a bosonic bath interacting via a short-
range pseudopotential, as shown in Fig. 7 by the dashed gray
lines. On the timescale relevant for the atom-ion dynamics,
the neutral impurity does not come to rest, and the neutral
impurity moves with constant velocity through the gas (see
inset). We attribute this difference to the long-range character
of the polarization potential, which cannot be adequately de-
scribed by taking only the s-wave scattering into account. For
a meaningful comparison, we choose a value of 0.05 R� for the
impurity-gas scattering length, corresponding roughly to the
range of the van der Waals interaction between 87Rb atoms.
Note that choosing a scattering length comparable to R� for
the neutral impurity would correspond to the unitary limit, and
the validity of the master equation description would likely no
longer hold.

2. Ion position evolution

The onset of the pinning dynamics is affected by the
gas density as shown in Fig. 8. There, the dashed blue line

FIG. 8. Time dependence of the ion’s position for T x
ion(t0) =

1.17 mK and different gas densities (solid gray lines). The values of
n0 are chosen uniformly in the interval between the indicated values
of n0 = 2×1013 cm−3 and n0 = 2×1014 cm−3. The dashed blue line
represents the position of a particle moving at constant velocity.

represents the position of a particle moving with constant
velocity, while the gray solid lines correspond to the ion’s po-
sition in the presence of a condensate with different densities.
The plot shows that, at short times, the ion’s position is not
affected by the presence of the gas, while at later times it is
deflected to its final value at a rate increasing with the density.

Interestingly, the initial linear time dependence of the ion
dynamics in the gas is an indication of the polaronic behavior.
Specifically, due to its interaction with the bosonic bath, the
ion is dressed by phononic excitations in such a way that it
can be considered as a quasi particle moving freely within the
gas. However, as time evolves, effects such as dephasing of
the phonon modes become dominant until the ion comes to
rest.

3. Friction coefficient evolution

Since the motion of the ion cannot be explained by a clas-
sical trajectory, we have analyzed the equation more closely
for the expectation value of the momentum [second line of
Eq. (24)]. That equation can be compared to the classical
equation of a particle subject to a friction. On this purpose,
we rewrite it as

d

dt
〈p̂ξ 〉 = −�(t )〈p̂ξ 〉, (30)

where we defined the friction �(t ) according to Eq. (24).
In Fig. 9 the time dependence of � for two values of the

scattering length and for a neutral particle is shown. In a
classical scenario the friction coefficient would be constant
in time, whereas here it is explicitly time dependent. Since
all properties of the atomic bath are constant in time, the
time-dependent friction observed here can only be explained
by a change in the properties of the impurity. Moreover,
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FIG. 9. Time-dependent friction in units of the condensate den-
sity n0 as a function of time for two different atom-ion scattering
lengths (solid and dashed) and for a neutral impurity (dotted).

we note that the qualitative difference between the friction
coefficient corresponding to the neutral and charged particle
highlights the key role of the long-range atom-ion potential in
our predictions. In the neutral case, the time evolution of the
friction can be associated to the formation of a Bose polaron:
as the impurity moves through the condensate, it gets dressed
by phononic excitations, resulting in the reduction of the
friction coefficient. For the ionic impurity, a transient phase
is observed at very short times where the friction is almost
zero for both scattering lengths. This phase corresponds to the
regime where the particle is not affected by the presence of the
gas, as shown in Fig. 8, that is, a polaronic-type behavior. The
increase in � at longer times is responsible for the pinning dy-
namics. We note that for large negative scattering lengths, we
observe much smaller values of �, corresponding to a slower
pinning. While for shorter time-scales the Bogoliubov phonon
modes behave coherently due to the superfluidity of the bath,
at longer times coherence is reduced, which we attribute to
dephasing of the phononic modes. Whether this phenomenon
is connected to the formation of two-body atom-ion states
supported by our regularized interaction is not possible to
quantify in the current formulation of the master equation.
It will be interesting in the future to investigate whether the
formation of many-body bound states as those predicted in
Refs. [1–3] occur and to understand if they are responsible
for the pinning dynamics we observe in this work. For this,
the description of the atomic gas needs to be modified and the
back action of the ion on the atomic gas has to be included.

V. EXPERIMENTAL CONSIDERATIONS

In this section, we will describe experimental settings that
should allow investigating the cooling and pinning dynamics
of an ion in an ultracold bosonic gas. Finally, previously

neglected inelastic processes and their impacts on the ionic
dynamics are discussed.

A. Results validation in future experiments

In order to experimentally validate the calculated dynam-
ics, it is necessary to instantaneously create an ion out of
an ultracold bosonic gas with a defined, but tunable, initial
velocity vx. Two-photon ionization via a virtual intermediate
state by an intense femtosecond laser pulse with adjustable
wavelength gives rise to a tunable excess energy Eexc. This
results in an adjustable initial velocity of the ion (compare
Fig. 1). The experiments in Refs. [44,47] use ultrashort laser
pulses of ∼200 fs duration and a rather high excess energy
of Eexc = 0.68 eV, which corresponds to an initial kinetic
energy of the 87Rb ion of ∼4 µeV or an initial temperature of
Tion = 33 mK [44]. However, by using an optical-parametric
amplifier, the wavelength of the laser pulses can be tuned
close to the ionization threshold so that the excess energy is
ultimately limited by the bandwidth of the laser pulse due to
the time-energy uncertainty relation. A Gaussian laser pulse
of 200 fs duration corresponds to a kinetic energy of 115 neV
for a 87Rb ion, which relates to an initial temperature of Tion =
890 µK. Such a regime is covered by the initial parameters of
our calculations and would allow stopping the ion within the
BEC.

In order to resolve the cooling and pinning dynamics of the
ion, it needs to be created in a localized region much smaller
than the extent of the BEC. This is possible by focusing the
laser beam to a diffraction limited spot with a high-resolution
microscope objective [44]. Because two 594-nm photons are
sufficient to excite the outermost electron of 87Rb just over
the ionization threshold, such a region would extend over the
distance of ∼600 nm. Subsequently, it is necessary to trace the
position of the ion with a high spatial and temporal resolution
on the order of 100 nm and 100 ns, respectively (compare
Fig. 8). An ion microscope [57,58] is capable of directly imag-
ing the ion’s position with a sufficient resolution as it does
not rely on optical detection, thus surpassing the resolution
limit of visible light. However, to avoid constant acceleration
of the ion, it is necessary to compensate for electric stray
fields as well as possible. Typically, related experiments reach
a residual stray field level of Estray = 0.1 V m−1 [24]. Such
a field would cause an acceleration of a = eEstray/M, yielding
an additional velocity of v = at = 0.1 m s−1 during the calcu-
lated time span of t = 1 µs that is below the initial velocities
assumed here. Thus, nonetheless, a slowing of the ion should
be observable experimentally. A more sophisticated approach
would need the derivation of a master equation with a constant
acceleration term due to the stray field, which is beyond the
scope of this work, but an obvious extension for future work.

B. Inelastic processes

In our analysis, we have studied the cooling dynamics of
the ion, which arises from elastic collisions with the atoms
of the gas. However, in the case of homonuclear systems
such as 87Rb+ / 87Rb, resonant charge exchange (RCx) can be
relevant [59,60]. This phenomenon consists of the charge of
the ion being transferred to a neutral atom after a collision. To
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estimate its impact, let us first recall that two-body collisions
can be divided into two groups: glancing collisions, where
the particle trajectories are slightly deflected, and Langevin
collisions, which can be classically represented as the two
particles getting close in a spiraling motion and being scat-
tered isotropically. In the same classical picture, Langevin
collisions occur when the impact parameter of the collision
is smaller than a critical value bc = (2C4/Ecol )1/4 [13], where
C4 is the prefactor of the polarization potential and Ecol is
the energy of the collision. It has recently been observed in
Ref. [61] that RCx associated with glancing collisions can
be the dominant process for collisional energies higher than
100 K kB, leading to fast cooling of the ion (so-called swap
cooling). On the other hand, for lower energies, RCx can
only occur by Langevin collisions, with a cross section given
by σRCx = σLgv/2. For the 87Rb+ / 87Rb system with Ecol =
1 mK kB, σRCx is about 10 times smaller than the elastic cross
section [13,59] and remains significantly lower than the latter
even for Ecol = 2 µK kB, where it reaches 1/3 of the elastic
cross section. Hence, resonant charge exchange is never dom-
inant in the energy range of the ion. However, note that the
previous reasoning is based on a semiclassical analysis, which
is accurate down to 1 mK kB. A more accurate estimation for
lower energies requires studies at the quantum level that are
not yet available.

Similar arguments can be applied to three-body recombina-
tion processes that lead to the formation of molecules. In this
regard, experiments involving a trapped 87Rb+ ion immersed
in an ultracold cloud of 87Rb atoms [18] showed that the three-
body recombination rate is on the order of a second for values
of the atomic density, comparable to the ones we considered
in this work. Although our study does not involve a trap and
our collision energies are lower than the ones considered in
the aforementioned experiment, we can assume the formation
of molecules not to play a significant role due to the short time
scales in which we expect the cooling and pinning dynamics
to take place.

VI. SUMMARY AND CONCLUSIONS

We studied the behavior of an ion moving in an ultra-
cold bosonic gas with an initial momentum resulting from
an ionization process. To this end, in Sec. III, we derived
the quantum master equation reported in Eq. (B10). Based on
this equation, we computed the differential equations for the
expectation value of the squared momentum [see Eq. (21)]
and the expectation value of the position and momentum
[see Eq. (24)]. We numerically solved these differential equa-
tions for different values of initial momentum k0, condensate
density n0, and atom-ion scattering length aai and showed
the corresponding results in Sec. IV. As a key observa-
tion, we demonstrated that the ion temperature defined as
Tion = 〈p̂2〉/(2MkB) decays in time. We quantified this behav-
ior by defining the FDHM (i.e., full duration at half maximum)
as the time required for Tion to halve. Interestingly, we found
a linear dependence of the FDHM on the mean distance be-
tween the bosons. Expanding on our key point of short cooling
times, we found that the FDHM is almost independent of the
initial temperature of the ion [Fig. 4(a)], whereas it is no-
ticeably affected by the density of the condensate [Fig. 4(b)].

Similarly, we observed that the ion’s velocity drops by nine
orders of magnitude in a time that is independent of the
ion’s initial velocity (Fig. 7), which we attribute to incoherent
dynamics of the phonon modes as a consequence of the en-
hancement of the friction coefficient (Fig. 9). In conclusion,
our study predicts the cooling and pinning of the ion due
to its interaction with the surrounding ultracold bosonic gas.
Moreover, we observed a substantial robustness of the results
against the parameters involved. These findings are relevant in
view of the upcoming experiments discussed in Sec. V, as the
time and length scales of the ion’s dynamics are compatible
with the expected experimental resolution.
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APPENDIX A: VALIDITY OF THE
LAMB-DICKE APPROXIMATION

The master equation derived in Sec. III relies on the Lamb-
Dicke approximation. We recall that the latter results in the
expansion in Eq. (20) and it is based on the assumption that
the average wavelength of the atoms in the bath is much larger
than the width of the ion. Here, we discuss the fulfillment of
such a condition during the evolution of the system in ques-
tion. Of course, the assumption has to hold regardless of the
choice of the initial state. Since the spatial extension of the ion
wave function at the initial time must fulfill the approximation
as well, this imposes a condition on the temperature of the gas.

Let us consider, for example, the ionization process via a
Rydberg state. In order to hold, the Lamb-Dicke approxima-
tion imposes that λdB(Tgas) � σav, where σav is the geometric

average of σξ =
√

〈r̂2
ξ 〉 − 〈r̂ξ 〉2 along the three directions and

represents the width of the ion wave packet (i.e., the standard
deviation), while λdB(Tgas) is the de Broglie wavelength of
the bosons in the gas at temperature Tgas. A rough estimate
is given by considering the ion to be in the ground state of
the harmonic trap in Eq. (25). Thus, we have at the initial
time σav = √

h̄/(2Mωav) with ωav = (ωxωyωz)1/3 being the
geometrical average of the harmonic trap frequencies. For a
homonuclear system and with the trap frequencies shown in
Table I, we get the following condition on the gas temperature:

Tgas � 4π h̄

kB

M

m
ωav, (A1)

which yields a value of Tgas on the order of nanokelvins. At
such a low temperature, the exponential weights in the sum
of Eq. (27) barely affect the value of 〈r̂2

ξ (t0)〉. For this reason,
we can safely use Eq. (A1) as a condition for our system to
be in the Lamb-Dicke regime at the initial time. Note that the
latter statement could be violated for ion-atom systems with a
different mass ratio.

In the case of ionization via an ultrashort laser pulse, the
condition for the validity of the Lamb-Dicke approximation
can be simply verified by comparing the de Broglie wave-
length of the gas with the value of the laser beam waist
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FIG. 10. Average spatial width of the ion as a function of time
as a percentage of the atomic de Broglie wavelength λdB(Tgas ) with
Tgas = 1 nK and n0 = 2×1014 cm−3. The three lines correspond to
the three initial temperatures considered in Fig. 3(a).

w0. Considering w0 = 1 µm, as it is expected in future ex-
periments, we can impose a condition on Tgas. Similarly, the
required value is on the order of nanokelvins.

The validity of the Lamb-Dicke approximation at later
times, however, has to be monitored numerically by solving
the equations for the first- [Eq. (24)] and second-order mo-
ments [Eqs. (21) and (22)]. In Fig. 10, we show the time
evolution of the spatial width of the ion σav for three different
initial temperatures. As it can be observed, the ratio between
σav and the de Broglie wavelength is always on the order of
one tenth, confirming that the Lamb-Dicke approximation is
rather well justified.

APPENDIX B: DETAILS ON THE MASTER EQUATION

For the sake of completeness, let us retrace the main steps
of the derivation starting from the von Neumann equation for
the density matrix of the total system (ion plus bath) χ̂ (t ):

d

dt
χ̂ (t ) = − i

h̄
[Ĥ , χ̂ (t )]. (B1)

Following the standard quantum-optical approach (see, e.g.,
Ref. [51]), we write the density matrix in the interaction
picture as

χ̃ (t ) = Û †(t )χ̂ (t )Û (t ) (B2)

with

Û (t ) = exp

[
− i

h̄
(Ĥion + Ĥbath )t

]
. (B3)

Recalling the definition of the total Hamiltonian Ĥ = Ĥion +
Ĥbath + Ĥint , we obtain the following equation:

d

dt
χ̃ (t ) = − i

h̄
[H̃int, χ̃ (t )], (B4)

whose formal solution reads

χ̃ (t ) = χ̃ (0) − i

h̄

∫ t

0
dt ′ [H̃int (t

′), χ̃ (t ′)]. (B5)

Here, H̃int is the interaction Hamiltonian in the interaction
picture.

We now insert Eq. (B5) in Eq. (B4) and we get
d

dt
χ̃ (t ) = − i

h̄
[H̃int (t ), χ̃ (0)]

− i

h̄2

∫ t

0
dt ′ [H̃int (t ), [H̃int (t

′), χ̃ (t ′)]]. (B6)

In order to proceed, we assume that at the initial time t = 0
the system and the bath are not correlated. This allows the
total density matrix to be factorized as χ̃ (0) = ρ̃(0) ⊗ B̂0,
where ρ̃(0) = ρ̂(0) is the initial density matrix of the ion,
while B̂0 is the initial density matrix of the Bose gas at thermal
equilibrium

B̂0 = e−β(Ĥbath−μGN̂ )

Z , Z = Trb{e−β(Ĥbath−μGN̂ )}, (B7)

where β = 1/(kBTgas), N̂ is the bath number operator, and the
chemical potential of the gas μG is zero for a Bose gas below
the critical temperature of condensation.

Note that the same assumption was made in Ref. [43],
where a Paul-trapped ion immersed in an ultracold gas was
considered. In that case, the assumption was well justified,
as the ion and the gas are typically prepared separately in
experiments, and no interaction occurs before they are brought
together. In the present case, we note that part of the simula-
tions will refer to a scenario where the ion is created after
ionizing one of the atoms in the gas. However, the interaction
between the gas atoms is weaker and of short-range nature
compared to the atom-ion polarization potential. Given the
fact that the ionization process occurs on a time scale much
shorter than every other time scale in our theoretical treatment,
we can reasonably assume that at the very initial moment of
the ion generation the interaction between the ion and the bath
is weak. Only subsequently, it becomes stronger, but in such a
way that the gas state is not significantly altered.

Now, we trace out the bath degrees of freedom from
Eq. (B6), obtaining an equation for the reduced density matrix
of the ion

d

dt
ρ̃(t ) = − 1

h̄2

∫ t

0
dt ′ Trb([H̃int (t ), [H̃int (t

′), χ̃ (t ′)]]), (B8)

and we finally perform the Born and Markov approximations.
The Born approximation relies on the fact that the coupling
between the ion and the bath is weak and that the bath is
very large. Therefore, the factorization χ̃ (t ′) � ρ̃(t ′) ⊗ B̂0 is
assumed to be valid at all times t ′. Instead, the Markov ap-
proximation is based on the assumption that the dynamics of
the bath is much faster than the dynamics of the ion. It consists
of the replacement ρ̃(t ′) → ρ̃(t ).

We then get to the so-called Redfield equation for the
reduced ion density matrix in the interaction picture:

d

dt
ρ̃(t ) = − 1

h̄2

∫ t

0
dt ′ Trb([H̃int (t ), [H̃int (t

′),ρ̃(t ) ⊗ B̂0]]).

(B9)
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From this equation, we can explicitly substitute H̃int and
transform back to the Schrödinger picture. After tracing out
the bath degrees of freedom, we get to the impurity master
equation provided in Eq. (17), where we performed the change
of variable τ = t − t ′ and r̂(t, τ ) = Û (t )Û †(t − τ )r̂Û (t −
τ )Û †(t ).

Here, we report for the interested reader the complete
master equation in the Born-Markov and Lamb-Dicke approx-
imation:

d

dt
ρ̂(t ) = − i

h̄
[ĤS, ρ̂(t )]

−
∑

ξ=x,y,z

{λξ (t )[r̂ξ , ρ̂(t ) p̂ξ ] − λ∗
ξ (t )[r̂ξ , p̂ξ ρ̂(t )]

+ φξ (t )([r̂ξ , r̂ξ ρ̂(t )] − [r̂ξ , ρ̂(t )r̂ξ ])}, (B10)

where we have introduced the following functions:

λξ (t ) =
∑

q

�2
q q2

ξ

{
2nq

mω2
q

[cos(ωqt ) + ωqt sin(ωqt ) − 1]

+ 1

mω2
q

[eiωqt (1 − iωqt ) − 1]

}
,

φξ (t ) =
∑

q

�2
q q2

ξ

[
(2nq + 1)

sin(ωqt )

ωq

]
. (B11)

Equations (21), (22), and (24) are computed by explicitly
calculating the expectation value of the corresponding observ-
ables with Eq. (B10) and by making use of the canonical
commutation relations between the position and momentum
operators.

APPENDIX C: ALTERNATIVE SQUARED
MOMENTUM DERIVATION

The same equation for the squared momentum in Eq. (21)
can be derived with a different approach. In particular, we can
calculate the variation in the ion’s energy due to the presence
of the gas. Specifically, to second order in the perturbative
expansion we have

d〈Ĥion(t )〉
dt

= i

h̄
〈[H̃int (t ), Ĥion]〉

− 1

h̄2

∫ t

0
dt ′ 〈[H̃int (t

′), [H̃int (t
′), Ĥion]]〉, (C1)

where the average value 〈. . . 〉 has to be intended as the trace
over a density matrix. By choosing the total system den-
sity matrix as the one we defined for the derivation of the
master equation, it is straightforward to show that the first
term on the right-hand side of Eq. (C1) vanishes due to the odd
number of bath operators, while the second gives rise to terms
proportional to nq and (nq + 1). After transforming back to
the Schrödinger picture, performing the time integrals and the
Lamb-Dicke approximation, one can retrieve Eq. (21).

FIG. 11. Ion temperature T x
ion = 〈 p̂2

x〉/(2MkB) as a function of
time for n0 = 2×1014 cm−3 (solid lines) and n0 = 2×1013 cm−3

(light dashed lines). The initial ion temperatures correspond to
T x

ion = 1 µK (red) and T x
ion = 0.1 µK (purple).

APPENDIX D: DYNAMICS FOR LOW INITIAL
ION TEMPERATURES

Here, we discuss the time evolution of the ion temper-
ature obtained for initial values in a regime comparable to
E �/kB = 79 nK and one order of magnitude higher. The re-
sults are shown in Fig. 11. Interestingly, the ion is heated
up at short times, meaning that the expectation value of its
kinetic energy increases. At later times, the ion tempera-
ture exhibits a maximum. This is positioned around ∼0.2 µs
for n0 = 2×10−14 cm−3 and ∼0.4 µs for n0 = 2×10−13 cm−3.
Similarly to what we observed for initial ion energies in the
millikelvin regime, the results in Fig. 11 only slightly depend
on the initial temperature, while they are noticeably affected
by the density of the condensate. In particular, a lower density
(light dashed lines) corresponds to a shift toward larger times
and flattening of the maximum. The behavior of Tion at short
times can be attributed to the long-range and attractive char-
acter of the atom-ion interaction generated after the ionization
process. Contrarily to a neutral impurity, which interacts with
a particle of the bath only when this is at its same position, the
increased range of the polarization potential causes the ion to
heat up due to the surrounding polarized bath atoms within a
radius given by R�. This dynamical behavior continues until
the frequency of collisions with the atoms in the bath is large
enough to cool down the moving ion. We note that a similar
initial heating, although with a lower peak, is also observed
with initial temperatures in the millikelvin regime. However,
the scale of temperatures in the main plot of Fig. 3 does not
allow this peak to be appreciated. It is also important to remark
that no maximum is observed in the expectation value of the
ion momentum 〈p̂x(t )〉, meaning that the heating of the ion at
short time does not correspond to an acceleration.
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limit to atom-ion sympathetic cooling in Paul traps, Phys. Rev.
Lett. 109, 253201 (2012).

023024-14

https://doi.org/10.1038/s42005-021-00597-1
https://doi.org/10.1103/PhysRevLett.126.243001
https://doi.org/10.1103/PhysRevLett.119.063001
https://doi.org/10.1103/PhysRevLett.129.153401
https://doi.org/10.1038/s41467-023-37153-0
https://doi.org/10.1103/PhysRevLett.111.080501
https://doi.org/10.1103/PhysRevB.90.155426
https://doi.org/10.1103/PhysRevB.100.205427
https://doi.org/10.1103/PhysRevResearch.2.033326
https://doi.org/10.1103/PhysRevResearch.4.023069
https://doi.org/10.1016/bs.aamop.2016.04.004
https://doi.org/10.1103/RevModPhys.91.035001
https://doi.org/10.1080/00107514.2013.854618
https://doi.org/10.1038/s41567-019-0772-5
https://doi.org/10.1103/PhysRevA.102.033109
https://doi.org/10.1103/PhysRevLett.124.053402
https://doi.org/10.1038/s41586-021-04112-y
https://doi.org/10.1103/PhysRevLett.109.123201
https://doi.org/10.1038/nphys2373
https://doi.org/10.1038/s41467-018-03373-y
https://doi.org/10.1080/00268976.2021.1881637
https://doi.org/10.1038/s41567-023-02158-5
https://doi.org/10.1103/PhysRevLett.120.193401
https://doi.org/10.1103/PhysRevLett.121.193401
https://doi.org/10.1103/PhysRevLett.126.033401
https://doi.org/10.1103/PhysRevA.102.041301
https://doi.org/10.1038/s41586-022-04577-5
https://doi.org/10.1103/PhysRevA.107.022807
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1038/nature11151
https://doi.org/10.1038/nature11065
https://doi.org/10.1103/PhysRevLett.118.083602
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1126/science.aax5850
https://doi.org/10.1103/PhysRevLett.109.253201


COOLING DYNAMICS OF A FREE ION IN A BOSE- … PHYSICAL REVIEW RESEARCH 6, 023024 (2024)

[37] Z. Idziaszek, T. Calarco, and P. Zoller, Controlled collisions of
a single atom and an ion guided by movable trapping potentials,
Phys. Rev. A 76, 033409 (2007).

[38] B. Gao, Universal properties in ultracold ion-atom interactions,
Phys. Rev. Lett. 104, 213201 (2010).

[39] J. Joger, A. Negretti, and R. Gerritsma, Quantum dynamics of
an atomic double-well system interacting with a trapped ion,
Phys. Rev. A 89, 063621 (2014).

[40] M. R. Ebgha, S. Saeidian, P. Schmelcher, and A. Negretti,
Compound atom-ion Josephson junction: Effects of finite tem-
perature and ion motion, Phys. Rev. A 100, 033616 (2019).

[41] J. M. Schurer, A. Negretti, and P. Schmelcher, Capture dy-
namics of ultracold atoms in the presence of an impurity ion,
New J. Phys. 17, 083024 (2015).

[42] M. Krych and Z. Idziaszek, Description of ion motion in a Paul
trap immersed in a cold atomic gas, Phys. Rev. A 91, 023430
(2015).

[43] L. Oghittu, M. Johannsen, A. Negretti, and R. Gerritsma, Dy-
namics of a trapped ion in a quantum gas: Effects of particle
statistics, Phys. Rev. A 104, 053314 (2021).

[44] T. Kroker, M. Großmann, K. Sengstock, M. Drescher, P.
Wessels-Staarmann, and J. Simonet, Ultrafast electron cool-
ing in an expanding ultracold plasma, Nat. Commun. 12, 596
(2021).

[45] T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller,
All-optical preparation of molecular ions in the rovibrational
ground state, Nat. Phys. 6, 275 (2010).

[46] A. Lambrecht, J. Schmidt, P. Weckesser, M. Debatin, L. Karpa,
and T. Schaetz, Long lifetimes and effective isolation of ions in
optical and electrostatic traps, Nat. Photon. 11, 704 (2017).

[47] P. Wessels, B. Ruff, T. Kroker, A. K. Kazansky, N. M.
Kabachnik, K. Sengstock, M. Drescher, and J. Simonet,
Absolute strong-field ionization probabilities of ultracold rubid-
ium atoms, Commun. Phys. 1, 32 (2018).

[48] Note that, to date, the short-range part of the atom-ion potential
has not yet been experimentally characterized.

[49] E. M. Lifshitz and L. P. Pitaevskii, Course of Theo-
retical Physics [“Landau-Lifshits”], Pergamon International
Library of Science, Technology, Engineering and Social

Studies (Pergamon Press, Oxford-Elmsford, 1981), Vol. 10,
pp. xi+452, translated from Russian by J. B. Sykes and R. N.
Franklin.

[50] R. Côté, V. Kharchenko, and M. D. Lukin, Mesoscopic molec-
ular ions in Bose-Einstein condensates, Phys. Rev. Lett. 89,
093001 (2002).

[51] H. J. Carmichael, Statistical Methods in Quantum Optics. 1,
Texts and Monographs in Physics (Springer-Verlag, Berlin,
1999), pp. xxii+361.

[52] H. A. Fürst, N. V. Ewald, T. Secker, J. Joger, T. Feldker, and R.
Gerritsma, Prospects of reaching the quantum regime in Li-Yb+

mixtures, J. Phys. B: At. Mol. Opt. Phys. 51, 195001 (2018).
[53] In the derivation of Eq. (26) we use the Baker-Campbell-

Hausdorff (BCH) identityeiĜλÂe−iĜλ = Â + iλ[Ĝ, Â] + (iλ)2
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