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Metastable patterns in one- and two-component dipolar Bose-Einstein condensates
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In this paper we study metastable states in single- and two-component dipolar Bose-Einstein condensates. We
show that this system supports a rich variety of states that are remarkably stable despite not being ground states.
In a parameter region where striped phases are ground states, we find such metastable states that are energetically
favorable compared to triangular and honeycomb lattices. Among these metastable states we report a peculiar
ring-lattice state, which is led by the competition between triangular and honeycomb symmetries and rarely seen
in other systems. In the case of dipolar mixtures we show that via tuning the miscibility these states can be
stabilized in a broader domain by utilizing interspecies interactions.
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I. INTRODUCTION

Ultracold quantum gases with long-range interactions dis-
play remarkably intriguing behavior and give access to
probing fundamental quantum behavior [1,2]. Dipolar Bose-
Einstein condensates (BECs) permit a controlled access to
such effects [3,4]. These include the recent experimental
advances in the observation of quantum droplets [5–7], su-
persolids [8–16], and their excitation spectra [17–20]. The
existence of these states of matter can be viewed as a
macroscopic signature for quantum fluctuations in that they
suppress dipolar collapse that would otherwise occur [21].
With that dipolar quantum gases emerged as an ideal platform
to observe fundamentally interesting and surprising physical
effects. One of these effects is the emergence of a point in
phase space where the superfluid-supersolid phase transition
becomes second-order [22], which means around that point
the physics becomes practically linear in the modulation am-
plitude and acquires a glasslike nature and rich variety of
patterns [23–26].

Generally, considering more than one species of atoms
in ultracold quantum gases [27,28] adds complexity and can
promote a range of intricate phenomena, including collapse
suppression even for short-ranged interactions [29,30] by

*zhangyc@xjtu.edu.cn
†F.Maucher@tudelft.nl

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

quantum-fluctuations in mixtures as well as tunable miscibil-
ity [31,32] between the components.

The recent observation of dipolar mixtures [33–35] paves
the way for a range of new perspectives and qualitatively
new behavior as it permits the combination of the intrigu-
ing behavior of two-component physics with long-range
interactions [36–39].

Metastability is ubiquitous in nature ranging from physics
[40,41], to chemistry [42], to material [43] science. Metasta-
bilty can lead to a variety of rich phenomena [44–49] and
permits gaining further insights into the overall physics of
the systems. The transition between metastable states has at-
tracted attention as well [50]. Previous works have found that
long-range interaction is a crucial ingredient for the appear-
ance of metastability [45–49,51,52]. For example, it has been
reported that dipolar atoms loaded in optical lattices can host a
number of metastable states in Mott-insulator regimes [46,47].
However, it is still unclear whether a continuous dipolar gas
can support metastable phases that feature a significantly dif-
ferent symmetry to the ground state as well.

Here we explore such metastable states that feature mul-
tiple length scales in single- as well as two-component
dipolar BECs. Close to the second-order point deformations
of small density modulations barely lead to a change in
energy due to the shallowness of the energy landscape. There-
fore, one can imagine that states with different symmetry
can be created via linear superposition; however, such su-
perpositions can be expected to be unstable. However, the
dynamics can become so slow that the density almost ap-
pears frozen. Farther from the second-order point, where the
periodic density modulations become larger and interactions
lead to a more pronounced energy landscape, the possibil-
ity of sufficiently deep local energy minima appears more
reasonable.
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To address that idea systematically, we start by considering
single-component systems and investigate the emergence of
superlattices by superposing two different patterns in regions
close to lines where they are energetically degenerate. To
avoid finite-size effects we consider the thermodynamic limit.
By thermodynamic limit we refer to the situation where the
plane perpendicular to the dipolar polarization direction z,
which corresponds to both trapping and polarization axis, is
infinitely extended. In this plane the average two-dimensional
(2D) density ρ2D is fixed, and a 2D symmetry breaking occurs.

After studying the single-component system we consider
dipolar mixtures. Here we have the additional degrees of
freedom due to the interaction between the two components.
By changing the miscibility we can tune between a situa-
tion where both components reach their maximum density at
the center of the trap and triple-layered density distributions,
where one component is “sandwiched” between two layers
of the other component. The interaction between the lay-
ers might render such metastable states unstable or possibly
stabilize them.

II. MODELING OF DIPOLAR BECS

A. Single-component BECs

A single-component dipolar BEC at zero temperature com-
posed of N dipolar bosonic atoms of mass m including
quantum fluctuations can be described via

i
∂

∂t
ψ (r) =

[
− ∇2

2
+ 1

2
ω2

z z2 + gρ(r)

+
∫
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]
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Here, ρ(r) ≡ N |ψ (r)|2 represents the condensate density with
the wave function ψ (r) being normalized to 1, we assume
trapping along the polarization direction only, in this case
the z direction, and ωz is the respective frequency of the
harmonic trap. Furthermore, g = as
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of which characterizing the dipole-dipole interaction strength.
V (r) = 1
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B. Two-component BECs

To generalize the single-component description to model
two-component dipolar condensates we assume the local den-
sity approximation and employ the model recently introduced
in [36,37]:
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(3)

where α, β = 1, 2, ρα (r) ≡ Nα|ψα (r)|2 with the wave func-
tion ψα (r) having been normalized to 1, ωz is the frequency of
the harmonic trap along the polarization direction, Vαβ (r) =√

aαα
dd aββ

dd

a11
dd

1
4πr3 (1 − 3z2/r2) is the usual dipole-dipole interaction

with aαβ
s being the s-wave scattering length, and aαα

dd the typi-
cal dipolar length characterizing the dipole-dipole interaction
strength. The LHY correction μ
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LHY is given by
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and δ = u11ρ1 − u22ρ2. For simplicity, we assume that
the atomic masses of the two components are equal (i.e.,
m1 = m2 = m), which is justified for the typical Dy-Dy
[36] as well as reasonable for Dy-Er [37] mixtures, and
the above equations have been nondimensionalized through
scaling spatial coordinates and time by l = 12πa11

dd and
ml2/h̄, respectively. Hereafter, our discussion will focus
on the Dy-Er mixture, i.e., a11

dd = 132a0 and a22
dd = 65.5a0

with a0 being the Bohr radius. The frequency of the trap
ωz is fixed to ωz = 0.08 for both the single- as well as the
two-component case.

III. RESULTS

In this section we present that both in single- as well as in
two-component dipolar BECs we can find metastable states
that can even feature two length scales, despite the fact that
there is only one roton minimum in the dispersion relation.
For that matter, in the first Subsec. III A, we illustrate in a
single-component BEC that new states with multiple length
scales can be thought of as a certain superposition of other
metastable states. Then, in Sec. III B we show that similar
arguments also apply for two-component systems.

A. Single-component BECs

Let us start with the single-component system and present
the ground-state phase diagram that has already been pre-
sented for a finite density, i.e., trapped in all three spatial
directions, in [23,24] and in the thermodynamic limit includ-
ing the stripe phase in [26,58].

To find stationary states we employ the Fourier split-step
method in combination with complex time evolution. Com-
plex time evolution means that one replaces t → −it and
renormalizes the wave function after each propagation step.
Therefore, if we consider a given initial state as a superpo-
sition of states with different energies, it can be expected
that this algorithm relaxes to the least “damped” state, i.e.,
the ground state, as it has the lowest energy. However, upon
seeding with appropriate initial states that are sufficiently
close to the metastable states one seeks to find, this algorithm
can relax to such states associated with local energy minima
under certain conditions as well, such as that the overlap to the
ground state is sufficiently small. Here by metastable states
we mean stationary stable states that have a higher energy
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FIG. 1. Ground-state phase diagram for a single-component
dipolar BEC. The white dashed line separates the domain where
patterns with stripe symmetry are the ground state into two re-
gions, one where the (metastable) honeycomb lattice and one where
the (metastable) hexagonal or triangular lattice are energetically
preferred with respect to each other. The white dashed line indi-
cates where the latter become energetically degenerate. The markers
indicate numerically obtained points. The newly added domain indi-
cated by the yellow lines corresponds to regions where a surprising
metastable ring state has a lower energy than both of the triangular
and the honeycomb states [cf. Fig. 2(g)].

than the ground state. Note that at this point it is crucial to
use an appropriate numerical box that minimizes the energy
to ensure that metastable states are not spurious and due only
to an inappropriately chosen numerical box.

The ground-state phase diagram is shown in Fig. 1.
We find that all phases emerge from the point where the
superfluid-supersolid phase transition becomes second-order
and coexistence terminates. The region where the stripe phase
is the ground state can be separated into two areas, depending
on whether the honeycomb (down-hexagons) or the triangular
(hexagonal) states are energetically favorable. This transition
is indicated by the white dashed line in Fig. 1. Whereas in
this area both the honeycomb as well as the triangular state
are metastable, they feature remarkable stability and robust-
ness. This is evidenced by the fact that these states were
found using complex time evolution rather than eigenvalue
or Newton solvers. Furthermore, the real-time evolution of
these metastable states features stability if slightly randomly
perturbed initially (not shown). Therefore, it appears reason-
able to ask whether this system robustly supports also more
complex metastable states, such as states with multiple length-
scales, two examples of which we present in the following.

A natural approach for finding metastable states that fea-
ture more involved geometries is to inspect regions in the
phase diagram (Fig. 1) close to where the metastable states
(i.e., honeycomb/triangular) feature equal energy, that is,
close to the earlier mentioned dashed line in Fig. 1. That is due
to the fact that at these points the system does not favor either
of them, and, therefore, one might be tempted to expect that
in this region they can be admixed in some way. This will be
used to explain the emergence of surprising metastable phases
in the next subsection.

(c) (d) (e) (f) (g)

FIG. 2. (a) Energy landscape of the ground as well as metastable
states at the density ρ2D = 312.5. The energy difference of each state
with respect to the dashed line in (a) is plotted in (b) to represent
the energies of different states more clearly. The density profiles
at z = 0 of the triangular, stripe, honeycomb, ring-droplet, and ring
states are shown in panels (c)–(g), respectively. Here the stripe state
(d), ring state (g), and honeycomb state (e) correspond to the phases
at as/add = 0.76, 0.75, and 0.78, respectively, while the remaining
states are at as/add = 0.74.

1. Rings and ring droplets

Let us come back to the numerical results shown in Fig. 1
and discuss the yellow region of Fig. 1, where isolated ringlike
densities emerge [cf. Fig. 2(g)]. These distributions of densi-
ties were originally found using complex time evolution from
quite different initial conditions. However, after convincing
ourselves that they actually exist, we seeded them directly.
It appears that the yellow region shrinks upon approaching
the second-order point, but does not converge to the second-
order point. This can be expected, as only ground states
can converge to the second-order point, whereas supporting
metastable states requires sufficiently large amplitude mod-
ulations, as the latter permit the formation of a sufficiently
deep local energy minima. The numerical results match this
qualitative expectation: Initially the “center of mass” of the
ring region appears to nicely follow the dashed transition line
upon decreasing density, yet at a certain point the domain
has to stay sufficiently far from the second-order point and
deviates from that trend.

Whereas the ring state is metastable with respect to the
stripe phase, it features a lower energy than both the trian-
gular as well as the honeycomb density distribution for the
solid yellow lines. Upon deviating from the dashed white line,
the ring state becomes energetically unfavorable compared to
both triangular and honeycomb states, yet continues to exist.
To distinguish that case we draw a dashed yellow line rather
than a solid yellow line in Fig. 1 closest to the second-order
point.

After this mostly qualitative discussion, let us now in-
spect the energies of the states in question and, thereby,
implicitly obtain an idea of the potential landscape involved
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(cf. Fig. 2). The energy per particle E is given by the
functional

E =
∫ (

|∇ψ |2
2

+ ω2
z z2

2
|ψ |2 + 2

5
γ N

3
2 |ψ |5

)
dr + EI, (5)

EI = N

2

∫ (
as

3add
|ψ (r)|4 +

∫
|ψ (r)|2

×V (r − r′)|ψ (r′)|2 dr′
)

dr, (6)

where N is the total particle number and the wave function
ψ (r) has been normalized to 1.

The situation is plotted in Fig. 2 for a fixed density ρ2D =
312.5. Figure 2(a) shows the comparison of the energies of
different states supported by the system in the region where
the striped density distribution is the ground state as function
of the as/add. To add further visual clarity, Fig. 2(b) shows the
energy difference between the respective states to the straight
dashed line as depicted in Fig. 2(a).

We find that for small values of as/add the ground state
is given by a triangular distribution of density droplets
[Fig. 2(c)]. Upon increasing as/add sufficiently the ground
state corresponds to a stripe phase shown in Fig. 2(d) and
finally, for large values of as/add is a honeycomb as depicted
in Fig. 2(e).

Let us now discuss the metastable states of Fig. 2(b) shown
in Figs. 2(f) and 2(g) and start with the domain where the
triangular or hexagonal lattice is the ground state. One might
be tempted to expect that the stripe state ought to be the first
metastable state, as it becomes the ground state for larger
as/add. However, for small as/add the first metastable state we
find corresponds to a droplet lattice that features two length
scales [see Fig. 2(f)]. Upon further increasing as/add we find
that the stripe phase becomes the first metastable state before
becoming the ground state. In the region where the stripe
phase is the ground state we can again distinguish two regions,
one where the triangular lattice is the first metastable state
(small as/add) and one that emerges upon increasing as/add.
This state is curious, as it features a density distribution that
is ringlike [see Fig. 2(g)] and is rarely seen in other pattern-
forming systems. The state shown in Fig. 2(f) resembles
the state Fig. 2(g), as it carries the same underlying sym-
metry apart from an additional azimuthal modulation along
the ring.

Let us now return to the discussion of Fig. 1, but from
the perspective of the length scales involved rather than the
earlier presented energetic arguments. The deviation of the
“center of mass” of the ring-state region from the white
dashed line can be understood as follows. At the second-order
point coexistence of all phases terminates and there is only
a single, fixed wave vector possible. This wave vector k can
be found by the Bogoliubov excitation of the unmodulated
state. In order to obtain a density distribution that features
multiple length scales, the dynamics needs to be “sufficiently
nonlinear” in the modulation amplitude, i.e., sufficiently far
from the second-order point at which there can only be one
length scale λ = 2π/k. It is the nonlinearity that gives rise to a
second length scale. This is again consistent with the fact that

FIG. 3. (a) Honeycomb lattice ρH that has been shifted to locate
its minimum on top of the maximum of the triangular state and
rotated by π/6, (b) a triangular lattice ρT, and (c) the superposition
of the two lattices by subtracting (b) from (a).

these ring states typically feature a large contrast, and we were
not able to find ring states with small modulation amplitude.

Rings on a triangular lattice are dramatically different from
the earlier mentioned more common patterns, as they can be
thought of as a mix of both triangular and honeycomb lattice.
To understand how they emerge and to furthermore identify
the two earlier mentioned length scales, let us superpose two
states close to the white dashed line in Fig. 1 such that the sum
amounts to metastable ring states in the following fashion:

ρT,H(r⊥, z) = ρ0(z)

⎛
⎝1 ± A

3∑
j=1

cos(k j · r⊥ + ϕ j )

⎞
⎠. (7)

Here we assume 0 < A � 1 as an ansatz for a weakly modu-
lated condensate with triangular symmetry ρT or honeycomb
symmetry ρH, respectively. A denotes the small amplitude of
the density modulation. The three wave vectors form an equi-
lateral triangle in the transverse plane with k1 + k2 + k3 = 0
and |k j | = k.

To see how we can obtain a ring state with these states, let
us superpose a triangular droplet lattice ρT with a honeycomb
lattice ρH in the following manner:

ρR = T R(φ)[ρH(r⊥, z)] − ρT(r⊥, z). (8)

Here R(φ) denotes a rotation perpendicular to the polarization
direction by an angle of φ and T represents a translational
shift operation. The idea of this ansatz is, basically, that the
ring state looks similar to a honeycomb lattice with cer-
tain connections (see the yellow dashed circles in Fig. 3)
being removed. To remove these connections as well as
the background, we subtracted a triangular lattice. To fur-
ther clarify the situation, the superposition process is shown
in Fig. 3.

This ansatz appears to capture the essence of the ring
state, and we can directly read off that there are two sets of

FIG. 4. Fourier transforms of the (a) triangular, (b) honeycomb,
and (c) ring states. This shows that the ring state emerges as a mixture
between a honeycomb lattice with a triangular lattice.
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FIG. 5. Real-time evolution of the ring state at as/add = 0.75
and ρ2D = 9 × 1011 cm−2 (the corresponding dimensionless average
2D density is 625) using the realistic parameters of the dysprosium
164Dy. Here we added 20% relative noise to the ring state obtained
via imaginary time evolution [see panel (a)] and then propagated it
in real time (b)–(c). The red surface represents the constant density
profile of ρ/ρmax = 0.8, while the bottom slice displays the density
distribution of the ring state in the z = 0 plane.

wave vectors k: kn =
√

3π
a (cos(2π/n), sin(2π/n)) and k′

n =
2π
a (cos(2π/n + π/6), sin(2π/n + π/6)) with n = 1, . . . , 6

[also see Fig. 4(c)]. Here a denotes the lattice constant.
Surprisingly, even upon employing variational analysis, we

find that such ring states can indeed be energetically prefer-
able compared to both the honeycomb as well as triangular
lattice state; however, the stripe phase remains the ground
state. To make sure that this result is not an artificial feature
due to the variational ansatz, we show numerical results to
confirm both the existence as well as stability of such ring
states.

To validate whether this ansatz is consistent with the states
we found numerically earlier in Fig. 2, we also show the
Fourier transform of the ring state as well as the triangular and
honeycomb states in Fig. 4. Evidently, the symmetry is correct
and the Fourier transform shows what has been expected from
this linear expansion.1

To probe whether these states are actually stable and robust
we considered a real-time evolution that is initially perturbed
by random white noise. The dynamics is displayed in Fig. 5,
affirming their stability and what we already suspected earlier
due to the fact that they were found employing complex time
evolution.

As these states are metastable, there is the obvious question
whether one can excite such states starting from a ground
state. For pursuing that we consider the following quenching
dynamics: We start in a parameter region where the honey-
comb is the ground state and then quench as/add to lower
values where the ground state is the striped phase. One can
suspect that it will take more time to break the symmetry
towards the stripes and that in a first step the connections will
break as schematically depicted in Fig. 3. Such an attempt is
shown in Fig. 6.

Interestingly, this ring-shaped state resembles the so-called
fairy circles that can be found in waterscarce areas [59–62],
as it shares the property of multiple inherent length scales

1It is useful to note that the Fourier transform of a rotated state is
the same as the rotated Fourier transform of the state.

FIG. 6. Attempt to excite the ring state from an initial honey-
comb state (b) with ρ2D = 9 × 1011 cm−2 by quenching as/add from
0.76 to 0.72. Initially, certain connections (c, d) of the honeycomb
lattice break (cf. Fig. 3). After that, there is a time interval (e) during
which the overall density distribution features several ring states;
however, they are not distributed on a triangular lattice. Finally, they
decay into several separated droplets (not shown). Here we used the
same parameters for 164Dy as in Fig. 5.

(ring-size and ring-to-ring distance). Moreover, we would like
to point out this ring state solely results from the strong non-
linear effect of dipolar condensates. This is in sharp contrast
to similar phenomena observed in spin-orbit coupled BECs as
well as unbalanced binary atomic mixtures, where the ringlike
lattices are led by either gauge fields or external trapping with
a ring geometry [63–66].

B. Two-component BECs

It is not a priori clear whether our findings in the single-
component case can be simply transferred to two-component
systems. The biggest difference is the possibility to form
miscible and immiscible or layered structures, and due to
the cross-component interaction these layers interact. This
interaction can be thought of as either being inhibiting or
catalyzing the formation of metastable states with multiple
length scales.

As a starting point to explore this more complicated sys-
tem it is reasonable to first analytically write an expression
that captures the immiscibility in a two-component system
neglecting the modulations. In other words, we first consider
unmodulated states and focus only on the new feature of
immiscibility in this simplified system. After that we aim at
transcribing the findings from the single-component to the
two-component case.

1. Miscibility of two-component unmodulated states

In this section we seek to find analytical approximations for
the unmodulated density distributions that capture their misci-
bility. As mentioned before, two-component systems can have
different degrees of miscibility depending on the parameter
regime [31,32,36–38].

Here we consider an unmodulated state for both compo-
nents and approximate the density distribution (i.e., ρ1 and
ρ2) of that state with a Thomas-Fermi profile in the trapping
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FIG. 7. Miscibility ρ2 (z=0)−ρ1(z=0)
ρ2 (z=0)+ρ1(z=0) is shown as function of a12

s /
√

a11
dda22

dd. The insets show different profiles. We fixed the density to ρ2D
1 =

ρ2D
2 = 625 and intracomponent interactions to a11

s /a11
dd = a22

s /a22
dd. The dashed and the dotted-dashed lines correspond to a11

s /a11
dd = 0.9 and 1.2,

respectively (cf. the horizontal dashed lines in Fig. 8).

direction z. After a bit of algebra, that allows us to find
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]1/3. Here we assumed the same average 2D density ρ2D

1 = ρ2D
2 = ρ2D for the two

components. ρ2 is the component that remains localized around z = 0, and ρ1 gets pushed out in the immiscible regime. That is
reflected by the fact that ρ1 is a piecewisely defined function. Equation (9) motivates us to introduce the parameter

η =
a12

s + 2
√

a11
dda22

dd

a22
s + 2a22

dd

. (10)

η = 1 represents the point where the transition from the miscible to the immiscible regime occurs. In the miscible regime (η < 1),
both ρ1 and ρ2 reach a maximum value at z = 0 as can be seen from Fig. 7(a). In contrast, for η > 1 the density of ρ1 becomes a
parabola close to z = 0 [see Eq. (9) and Figs. 7(b) and 7(c)]. Hence, ρ1 no longer has its maximum at z = 0, but it acquires two
maxima at the point where ρ2(z) becomes zero, while ρ2 retains the normal Thomas-Fermi profile. In contrast, both ρ1 and ρ2

deviate from the normal Thomas-Fermi distribution when η > μ1/μ2, where the strong contact interspecies repulsion eventually
fully separates the two components as shown in Figs. 7(d) and 7(e)]. In that case, ρ1 vanishes in a finite region around z = 0. In
other words the binary condensates enter the immiscible regime.

In the strong immiscible regime the density profiles of the two species can be expressed as follows:

ρ1(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if |z| � σz3

3a11
dd

(
μ1−ω2

z z2
)

a11
s +2a11

dd
if σz2 � |z| � σz1

3a11
dd

[(
μ1−ω2

z z2
)(

a22
s +2a22

dd

)
−
(
μ2−ω2

z z2
)(

a12
s +2

√
a11

dda22
dd

)](
a11

s +2a11
dd

)(
a22

s +2a22
dd

)
−
(

a12
s +2

√
a11

dda22
dd

)2 if σz3 � |z| � σz2

,

ρ2(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3a11
dd

(
μ2−ω2

z z2
)

a22
s +2a22

dd
if |z| � σz3

3a11
dd

[(
μ2−ω2

z z2
)(

a11
s +2a11

dd

)
−
(
μ1−ω2

z z2
)(

a12
s +2

√
a11

dda22
dd

)](
a11

s +2a11
dd

)(
a22

s +2a22
dd

)
−
(

a12
s +2

√
a11

dda22
dd

)2 if σz3 � |z| � σz2

, (11)
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where the chemical potentials μ1,2 take the same form as in
the former case. The critical points σz1,z2,z3 can be determined
by the constraint

∫
ρ1,2(z) dz = ρ2D. For the case of interme-

diate cross-interaction [cf. Fig. 8(d)], there remains overlap of
the two species in the region σz3 � |z| � σz2. However, if the
interspecies contact interaction exceeds the critical strength

(a12
s )c =

√
(a11

s + 2a11
dd )(a22

s + 2a22
dd ) − 2

√
a11

dda22
dd, the overlap

between the two components disappears completely [see
Fig. 8(e)], and it enters the completely immiscible regime.

2. Excitation spectrum of two-component unmodulated states

For convenience we report here an (approximated) ex-
citation spectrum of two-component unmodulated states as
their expressions are useful for the next subsection. The (ap-
proximated) excitation spectrum can be easily obtained from
linearization of the governing equation of motion (3). For
that matter, we use the expression obtained before Eq. (9)
for ρ1(z), ρ2(z) and integrate out the z direction. With that we
obtain the following expression that depends only on k⊥:

ω2 = k2
⊥
2

[
k2
⊥
2

+ ρ2D
1 g11 + ρ2D

2 g22 + ρ2D
1 v11 + ρ2D

2 v22

− ((
ρ2D

1 g11 + ρ2D
1 v11 − ρ2D

2 g22 − ρ2D
2 v22

)2

+ 4ρ2D
1 ρ2D

2 (g12 + v12)2
) 1

2

]
. (12)

Here ρ2D
α = ∫

ρα (z) dz (α = 1, 2) denotes the aver-
age 2D density of the condensate in the plane per-
pendicular to the polarization direction and vαβ (k⊥) =√

aαα
dd aββ

dd

a11
ddρ

2D
α ρ2D

β

∫
F[ρα (z)]F[ρβ (z)]( k2

z

k2
⊥+k2

z
− 1

3 )dkz. F[ρα] corre-

sponds to the Fourier transform of ρα , and gαβ =
aαβ

s

3a11
ddρ

2D
α ρ2D

β

∫
ρα (z)ρβ (z) dz represents the effective 2D contact

interaction. To obtain the above simple analytical excitation
spectrum, we have neglected the LHY correction terms. This
is not at all justified and serves for a qualitative discussion
only and is certainly quantitatively wrong.

The blue solid line in Fig. 8 shows the position where
he roton minimum of the unmodulated state’s excitation
spectrum touches zero as function of the scattering length
a12

s . Remarkably, this line displays distinct behaviors in the
weak and strong cross-contact interaction regime. In the
case of small scattering length a12

s , the roton instability can
be promoted either by the intercomponent interaction a12

s
or by the intracomponent interaction aii

s under a general
constraint.

In contrast, in the strong cross-interaction regime, this crit-
ical line no longer depends on a12

s and is solely determined by
the intracomponent interaction aii

dd. This can be understood as
follows. As can be seen from Fig. 7(e), there is no overlap
between the distributions of the two components at large a12

s .
Therefore, g12 becomes zero and the excitation spectrum ω

depends on the intracomponent contact interaction only [see
Eq. (12)]. In contrast, in case of small a12

s , the two components
are miscible and their overlap is determined by their cross-
interaction. This is why the excitation spectrum exhibits the
two different scalings.

FIG. 8. Phase diagram of two-component dipolar condensates
with fixed density of ρ2D

1 = ρ2D
2 = 625 and balanced intracompo-

nent interactions a11
s /a11

dd = a22
s /a22

dd. Again the ring state remains
metastable with respect to the stripe phase; however, in the region
indicated by the dashed yellow line it is energetically preferred com-
pared to the triangular and honeycomb states. The overall trend of
all lines can be estimated via the approximated excitation spectrum
(12), which amounts to the blue solid line. The two horizontal lines
correspond to the values of aii

s /aii
dd (i = 1, 2) for which the misci-

bility ρ2 (z=0)−ρ1(z=0)
ρ2 (z=0)+ρ1(z=0) is shown in Fig. 7. We find that the ring state

persists for a large range of miscibility. Furthermore, for the values
at hand, it appears that the miscibility does not affect the existence
regions of the states, as despite a dramatic change in the former, the
overall trend estimated from the (approximated) excitation spectrum
remains. The domain of triangular states is separated into two regions
by the white solid line. Left of this line the ground state is the
usual triangular lattice, whereas right of this line the ground state
features the triangular superlattice that will be discussed further in
Sec. III B 5.

The qualitative behavior is confirmed by numerical sim-
ulations (see the black solid line in Fig. 8). The significant
difference between the full numerical results (black line)
and the approximated excitation spectrum (blue line) is
clearly visible, and it is clear that for quantitatively cor-
rect results the LHY correction has to be taken into
account. Since the LHY correction acts like contact repul-
sive interactions, which tend to stabilize the unmodulated
state, the roton-instability critical line would be shifted to-
wards smaller ai j

s by quantum fluctuations as the numerical
results show.

3. Rings and ring droplets in two-component systems

We already established that we can find ring states in the
single-component system; however, it is unclear whether we
can find their analog in two-component systems. That is due
to the fact that the different layers interact and thereby might
prevent the formation of ring states.

To explore that, consider Fig. 9(a), which displays energy
differences to the energy of the stripe phase. Figures 9(b)–
9(e) display the densities of the different states involved. We
find again that close to where the triangular and honeycomb
state become energetically degenerate and the striped state is
the ground state, a metastable ring state emerges. Close to the
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FIG. 9. Energies (a) for four different (meta-)stable states shown

in (b)–(e) for a11
s

a11
dd

= a22
s

a22
dd

= 0.9. The ground state for most of the

considered region remains a stripe phase. In analogy to the single-
component case shown in Fig. 1, we find that in a two-component
BEC ring states are possible as well. As in the single-component
BEC, these ring states occur in a region close to where honeycomb
and triangular lattices become energetically comparable.

aforementioned energy degeneration, this ring state features
a lower energy than both the triangular state as well as the
honeycomb state, akin to what we already found in the single-
component case.

Now that we established that ring states are also possible in
dipolar BEC mixtures, let us address whether their existence is
promoted or suppressed when changing the miscibility. As we
have seen before in Eq. (10), one can alter the miscibility by
tuning the value of a12

s . The result is provided in Fig. 8, where
we show the phase diagram for a fixed density and varying
cross-contact interaction and contact interaction in Fig. 8(a).
Here we focus on the case of balanced intracomponent inter-
actions, i.e., a11

s /a11
dd = a22

s /a22
dd.

We see that for this set of parameters the regions of the
different phases are practically unaffected despite tuning the
miscibility dramatically from 0.3 to 1 (see Fig. 8). In other
words, the ring state, rather than ceasing to exist, even retains
its domain of existence. This shows that the ring states are
robust, as the cross-interaction can be considered as a per-
turbation to the single-component physics that deforms the
energy landscape significantly.

In fact, the opposite is true for the displayed case: The
cross-interaction with the other component actually stabi-
lizes the ring state as compare to the single-component
case beyond the otherwise critical line of as/add shown
in Fig. 1 of around as/add ≈ 0.79, where in the single-
component case all modulated states cease to exist in favor
of the unmodulated state. Therefore, in a way one might
say that these somewhat peculiar states actually emerge in
a broad parameter region in both single- as well as two-
component dipolar BECs. Moreover, the cross-interactions in
two-component systems can stabilize the existence of these
exotic states.

0.55 0.6 0.65 0.7
0

0.2

0.4

0.6

0.8

FIG. 10. Superfluid fraction of different stable states vary with
the interspecies contact interaction, while the intraspecies interaction
is fixed at a11

s /a11
dd = a22

s /a22
dd = 0.9, where the full (dashed) lines

indicate the superfluid fraction of the first (second) component. The
red, black, dark yellow, and blue lines represent the corresponding
superfluid fraction f s

1 ( f s
2 ) of the triangular, stripe, ring, and honey-

comb states, respectively. The regime of the stripe ground state is
denoted by the light gray, while the dark gray shadow illustrates that
the ring state is energetically favorable compared to the triangular
and honeycomb states in this region.

4. Superfluid fraction of modulated states

Thus far we did not yet consider the superfluid properties
of the different patterns we found. We will do that now using
Leggett’s bound [67,68],

f s
α = min

θ

[∫
L2

x∫ |ψα (x̄, ȳ, z)|−2 dx
dy dz

]
, (13)

where α = 1, 2, Lx is the size of the numerical box along x
direction, and we take the minimum with respect to all possi-
ble directions defined by the angle θ with x̄ = x cos θ − y sin θ

and ȳ = x sin θ + y cos θ [22]. Whereas the Leggett estimator
has been found to be quantitatively correct in certain set-
tings, e.g., [69,70], one has to be careful when interpreting
the superfluid fraction in higher dimensions [71]. Figure 10
presents the superfluid fraction of the triangular (red lines),
stripe (black lines), ring (dark yellow lines), as well as honey-
comb (blue lines) states in the vicinity of the critical region
from modulated states to a flat state. Here the interspecies
interaction is fixed at a11

s /a11
dd = a22

s /a22
dd = 0.9 (i.e., along the

black dashed line in Fig. 8). We note that the first component
(solid lines) possesses a large superfluid fraction compared
to the superfluid fraction of the second component (dashed
lines) which is practically negligible for small values of
a12

s . However, for sufficiently large values of a12
s , such that

the honeycomb can form in the second component (blue
dashed line), also the second component is able to increase
its superfluid fraction significantly due to the overlapping
wave function, i.e., atoms can flow along the bridges of the
honeycomb [22].

To gain further insight into why the two components
behave so distinctively different, let us consider the single-
component case. For the second component this individual
species has a much lower dipolar length (i.e., a22

dd = 65.5a0 vs
a11

dd = 132a0), and it would require a much larger average 2D
density to reach the second-order point where superfluidity
is large and from where new phases with higher superfluid
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FIG. 11. Density profiles of the deformed triangular states at
strong interspecies contact interaction, i.e., the right side of the white
line in Fig. 8(a), where the interactions are fixed at aii

s /aii
dd = 0.74

and a12
s /

√
a11

dda22
dd = 0.86, while the density is the same as Fig. 8(a).

Panels (a) and (b) present the 3D density profiles of ρ1 and ρ2,
respectively, via the slice plots. To clearly see the geometry of such
states, the 2D distributions ρ1(z = zc ) and ρ2(z = 0) are shown in
panels (c) and (d) as well. Here zc denotes the position where ρ1

reaches its maximum in the z direction.

fraction emerge [22]. Thus, for the case of balanced dipolar
mixtures considered here, the second component remains al-
most insulating. Nevertheless, as stated before, the situation
changes when the second component enters the honeycomb
regime.

5. Deformed triangular states at strong cross-interaction

As discussed in Sec. III B 1, the two-component dipolar
mixtures feature a transition from a miscible to an immiscible
distribution that can be controlled by the cross-contact inter-
action a12

s . Thus far, the discussion of miscibility has been
limited to polarization direction as we considered states that
are unmodulated in the transverse plane (perpendicular to the
polarization direction).

What is missing is whether there is a parameter region
of modulated states where we can see clear signatures of
immiscibility in the transverse plane. As a proof of principle
that such regions exist and to illustrate the effect of “transverse
immiscibility,” we go into the region of deeply crystallized
triangular states that appears for large values of a12

s (cf. Fig. 8,
right of the white line).

Figure 11 shows an example of deformed triangular states
that occur at strong cross-contact interaction a12

s /
√

a11
dda22

dd =
0.86. New “droplets” appear at the center of three neighboring
regular droplets as shown in Figs. 11(a) and 11(c). Further-
more, these new “droplets” spread across the z = 0 plane and
bridge the upper and lower layers of the first component and
slightly perturb its periodicity.

It is qualitatively clear that the deformation lowers the
energetic cost related to the trap, as less density of ρ1 is

located at large values of z where the energy related to the
trap becomes large. This comes evidently at the price of an
increase in kinetic energy, as there are additional oscillations
that occur. It is, however, mainly the dipolar energy that
renders these deformed triangular states energetically favor-
able despite the energies related to scattering and LHY being
increased.

As mentioned, the phase boundary between regular and
deformed triangular states is denoted by the white line in
Fig. 8. In contrast, the fully immiscible honeycomb or flat
states do not have links in between the outside layers, since
the second component possesses a significant superfluid back-
ground which prevents the formation of such layer links due
to the strong interspecies contact repulsion.

IV. CONCLUSIONS

In this paper we established that dipolar BECs support un-
usual metastable robust states featuring multiple length scales.
These states have the shape of a ringlike density distribution
whose azimuthal density modulation can be modulated via
tuning the scattering length. They appear in a domain where
the stripe phase is the ground state and in a region around the
line where the (metastable) triangular and honeycomb lattice
becomes energetically degenerate.

Moreover, these states can be stabilized in a much broader
regime in the binary dipolar BECs where only an unmodulated
flat state exists in the single-component counterparts. In sharp
contrast to other ringlike phenomena induced by gauge fields
and ring-shaped confinement in spin-orbit coupled or unbal-
anced quantum gas mixtures, the ring-lattice state reported
here is solely induced by the strong nonlinear effects.

Although such ring states do not emerge as ground states,
they underpin the variety of stable self-organized structures
in long-range interacting systems, as already featured in,
e.g., [46,47,49,72,73]. Therefore, dipolar BECs represent
a promising platform to explore metastable-state quantum
phase transition as well [40,74].

In addition to the various metastable states emerging close
to where the triangular and honeycomb states become energet-
ically degenerate, we also discovered a deformed triangular
superlattice ground state in the deeply modulated and im-
miscible regime. Usually, immiscibility is discussed as a
phenomenon occurring in the polarization direction (e.g.,
[36,37]) rather than the plane transverse to the polarization.
In this case the emergence of the triangular superlattices with
periodic density bridges displayed in Fig. 11 is a clear new
feature due to “transverse immiscibility” of two-component
BECs that is different from what has been discussed and has
no analog with a single-component dipolar BEC.

As an outlook, we think that further understanding of the
topology of this phase diagram can be found by studying
the bifurcation diagram [75]. Its dependency on tempera-
ture seems to represent an interesting endeavour as well
[76–78]. Furthermore, in this work we restricted our consid-
eration to a small subset of parameters, and extending that to,
e.g., unequal intracomponent interactions and unequal masses
to explore the rich spectrum of metastable states remains
to be done.
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