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Entanglement forging based variational algorithms leverage the bipartition of quantum systems for addressing
ground-state problems. The primary limitation of these approaches lies in the exponential summation required
over the numerous potential basis states, or bitstrings, when performing the Schmidt decomposition of the
whole system. To overcome this challenge, we propose a method for entanglement forging employing generative
neural networks to identify the most pertinent bitstrings, eliminating the need for the exponential sum. Through
empirical demonstrations on systems of increasing complexity, we show that the proposed algorithm achieves
comparable or superior performance compared to the existing standard implementation of entanglement forging.
Moreover, by controlling the amount of required resources, this scheme can be applied to larger as well
as non-permutation-invariant systems, where the latter constraint is associated with the Heisenberg forging
procedure. We substantiate our findings through numerical simulations conducted on spin models exhibiting
one-dimensional rings, two-dimensional triangular lattice topologies, and nuclear shell model configurations.
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I. INTRODUCTION

In recent years, significant advances have been made in
simulating the static and dynamical properties of many-body
quantum systems using variational algorithms. For instance,
density matrix renormalization group methods based on
matrix-product states [1–3], neural networks quantum states
[4], equivariant neural networks [5], or kernels methods [6]
have accurately computed the ground-state energy of spin
systems [7], or also fermi systems, such as molecules [8] or
nuclei [9]. While neural network quantum states represent
wave functions using classical representations, we can also
consider their quantum counterpart, where the wave function
Ansatz takes the form of a parametrized quantum circuit [10],
such as in the popular variational quantum eigensolver (VQE)
[11]. Even if VQE has been successfully applied in various
areas, such as chemistry [11–13], spin chains [14–17], or
nuclei [18–21], it is still unclear whether VQE is a scal-
able algorithm. Hence, the optimization procedure becomes
increasingly difficult [22] with the system size because of
the presence of barren plateaus in the loss landscape [23].
It is consequently desirable to conceive variational quantum
algorithms acting on a minimal number of qubits.
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Although the VQE is already a hybrid algorithm, in the
sense that it relies on classical resources to perform the op-
timization, we take a step forward and design an algorithm
relying on both neural networks and quantum circuits. More
specifically, we consider VQE based on entanglement forging
(EF) [24], a circuit-knitting strategy that effectively performs
a Schmidt decomposition of the variational quantum state
and optimizes the two sub systems separately before recon-
structing the entanglement classically. This procedure has the
desirable properties of reducing the number of qubits while
still reproducing the ground-state energy with high accuracy.
It is similar in spirit to quantum-embedded density functional
theory [25], where quantum resources are only used for the
most challenging parts.

Besides computing ground-state energies, EF also allows
practical heuristic simulations, notably in analyzing bipartite
entanglement. This concept is fundamental in quantum me-
chanics, as its measurement provides an understanding of the
behavior of strongly correlated systems [26]. For instance,
bipartite entanglement has been used in condensed matter
physics to study phenomena such as quantum phase transi-
tions, topological order, and many-body localization [27,28].
Advances in experimental techniques have made it possible
to measure entanglement entropy in a variety of condensed
matter systems over the past few years, revealing insights into
their underlying quantum properties [29].

The main contribution of this paper is a Schrödinger
forging procedure using an autoregressive neural network
(ARNN) [30,31]. This method combines the versatility of
Schrödinger forging with controlling the computational re-
sources required via the introduction of a cutoff. Generative
neural networks have already been proposed for EF [32], but
only in the context of Heisenberg forging, which requires
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permutation symmetry of the two subsystems. Our method,
however, does not require permutation symmetry between
the two sub systems, making it a more versatile approach
to solving ground-state problems using quantum computers.
Moreover, our algorithm naturally includes a cutoff in the
number of basis states, limiting the required number of quan-
tum circuits.

This paper is structured as follows. We first introduce EF
in Sec. II A, as well as two ways to tackle its scalability issue
based on Monte Carlo sampling and neural networks. The
main contribution of this paper is then proposed in Sec. II B
as a third option. We conclude our work with numerical sim-
ulations in Sec. III, testing our hybrid architecture on various
physical models, such as one-dimensional spin chains, spins
on a triangular lattice with a random external field, and the
nuclear shell model.

II. METHODS

The general strategy of variational algorithms for ground-
state problems is to prepare a wave function Ansatz |ψ〉, using
the variational principle

E0 � 〈ψ | H |ψ〉
〈ψ〉 (1)

to approximate the ground-state energy E0 of the Hamiltonian
of interest H . The Ansatz can take the form of, e.g., a neural
network [4] or a quantum circuit [11], while the variational
parameters are usually optimized with, e.g., gradient-based
methods. In the following, we will explore hybrid classical-
quantum models aiming at describing a bipartite system with
quantum circuits, while the entanglement between the parti-
tions is forged classically.

A. Entanglement forging

The starting point of the EF procedure is to employ a
Schmidt decomposition, a direct application of a singular
value decomposition (SVD), to write a quantum state |ψ〉 of a
bipartite H = HA ⊗ HB quantum system, with dimensions NA

and NB, as

|ψ〉 = U ⊗ V
∑

σ

λσ |σ 〉A |σ 〉B . (2)

In the above, U and V are unitaries, and |σ 〉X ∈ {0, 1}NX

and λσ are the corresponding Schmidt coefficient. The latter
are positive, normalized

∑
σ |λσ |2 = 1, and the number of

Schmidt coefficients is called the Schmidt rank. We recall that
the distribution of the Schmidt coefficients is related to the
level of entanglement between the two subsystems, with the
von Neumann entropy being calculated by

SvN = −2
∑

σ

λ2
σ log(|λσ |). (3)

Therefore, maximal entanglement is characterized by a
uniform distribution, while minimal entanglement is charac-
terized by a dirac delta.

The variational state is obtained by parametrizing U and V
with two quantum circuits and considering the Schmidt coeffi-
cients as additional variational parameters. Following Eddins

et al. [24], the most direct way to compute the expectation
values, called Schrödinger forging, is to directly insert the
Schmidt decomposition, e.g., Eq. (2), into 〈O〉 = 〈ψ | O |ψ〉.
Assuming that the observable O admits a bipartition O =
OA ⊗ OB, the expectation value can then be expressed as

〈ψ | O |ψ〉 =
2N/2∑
n=1

λ2
n 〈σn|U †OAU |σn〉 〈σn|V †OBV |σn〉

+
2N/2∑
n=1

n−1∑
m=1

λnλm

∑
p∈Z4

(−1)p

× 〈
φp

σn,σm

∣∣U †OAU
∣∣φp

σn,σm

〉
× 〈

φp
σn,σm

∣∣V †OBV
∣∣φp

σn,σm

〉
, (4)

where |φp
σn,σm〉 = |σn〉 + ip |σm〉, Z4 = {0, 1, 2, 3}, and all the

bitstrings σ have been labeled with a number n (or m). De-
compositions with equally sized subsystems are considered:
NA = NB =: N/2. We note that this is not a strict requirement,
but we use it to simplify the notations.

We remark that this involves an exponential sum in the
system size. As such, two methods have been suggested to
solve this scalability issue [24]. The first uses an unbiased
estimator of 〈ψ | OA ⊗ OB|ψ〉 that can be evaluated by impor-
tance sampling according to ∼λnλm. The second approach is
to leverage permutation symmetry between the two subsys-
tems, producing another EF scheme. Since it is defined at
the operator level, we refer to it as Heisenberg forging. This
approach has been further developed by Huembeli et al. [32]
using ARNN. More details about Heisenberg forging can be
found in Appendix A.

B. Schrödinger forging with generative neural networks

In this section, we present an approach to Schrödinger
forging. The starting point is to remark that the Schmidt coef-
ficients decay exponentially if the two subsystems are weakly
entangled, as is the case in low-energy eigenstates of chemical
and spin-lattice model Hamiltonians. By introducing a cutoff
in the sum, it is therefore possible to improve the efficiency
of the estimation while keeping a sufficiently low additive
error. However, it requires a selection of a set of bitstrings
among the 2N/2 total possibilities, which represents an open
problem for EF. To this end, we propose to use generative
models (more specifically, ARNN [33]) to select the best
candidates. ARNN is a type of neural network architecture
commonly used in time-series forecasting and sequence mod-
eling tasks. The autoregressive property means that the output
at a given time step is regressed on its own past values. In fact,
autoregressive models predict the next value in a sequence
based on the previous values in that sequence. The use of an
ARNN is motivated by the fact that the Schmidt coefficients
are normalized and can thus be interpreted as a probability
density. Following Ref. [34], we propose an algorithm, which
is summarized in Algorithm 1. We note that this approach
shares some similarities with quantum-inspired genetic algo-
rithms, see, e.g., Ref. [35]. The parametrized unitaries and
the Schmidt coefficients are finally optimized with a gradient-
descent-based algorithm. A summary of the entire algorithm
is shown in Fig. 1.
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ALGORITHM 1. Generation of the set of bitstrings.

Inputs:
Cutoff k

Outputs:
Set of k bitstrings

Initialize:
Start with a random set A of k bitstrings

while the algorithm has not converged do
1. Generate a set of bitstrings G with

the ARNN
2. Using the bitstrings σ in the set A ∪ G,

find their Schmidt coefficient λσ by solving the
system of equations

∂〈H〉
∂λσ

= 0 with
∑
σ

|λσ |2 = 1

3. Create the set A′ composed of the bitstrings
from A ∪ G with the k biggest λσ

4. Train the ARNN such that it models p(σ ) ∼ |λσ |2
5. Update A ← A′

end while
return the set A of k bitstrings

First, we explain how to use an autoregressive neural net-
work to efficiently identify the relevant bitstrings. Since the
Schmidt coefficients are normalized as

∑
σ |λσ |2 = 1, they

can be interpreted as a probability density. The chain rule from
probability theory can be used to write

|λσ |2 ∼ p(σA, σB) =
∏

i

p((σ )i|{(σ ) j, j < i}), (5)

and the bitstring pairs, associated with λσ can be encoded
by stacking the bitstrings of subsystem B at the end of the
bitstrings of subsystem A,

σ = |σA, σB〉
= |(σ )1, . . . , (σ )N/2, (σ )N/2+1, . . . , (σ )N 〉 . (6)

Note that here (σ )i denotes the ith bit of the bitstring σ .

Neural networks, and more particularly, autoregressive
methods, are powerful tools to model such conditional den-
sities [36] by generating elements sequentially conditioned
on the previous ones. To build the autoregressive model, we
consider a dense ARNN whose architecture is very similar to
a dense feedforward neural network. The notable difference is
that the weights are tridiagonal matrices, ensuring the autore-
gressive nature of the model. From the ARNN, the bitstrings
can then be sampled directly and efficiently, as detailed in
Appendix B.

Exploring the full space of bitstrings is exponentially dif-
ficult, motivating the use of machine learning techniques to
select the basis states that contribute the most to the wave
function. Inspired by the work of Herzog et al. [34], we
introduce an algorithm whose primary objective is to bypass
exploring the extremely large space of basis states. Starting
from a random set of bitstrings A0, the strategy consists of
adding bitstrings generated according to the approximation of
the |λσ |2 modeled by the ARNN. Since the variational energy
is quadratic with respect to the Schmidt coefficient λσ , at each
iteration, they can be determined by solving the constrained
linear equation system

∂〈H〉
∂λσ

= 0

∑
σ

|λσ |2 = 1,
(7)

where the sum runs over the set A ∪ G, with A being the
current set of bitstrings while G is the set of bitstrings sampled
by the ARNN. The first equation ensures that the forged wave
function has minimal energy, while the second guarantees its
normalization. In a second step, the current set A is updated
by taking the k bitstrings with the highest Schmidt coeffi-
cients. The ARNN is finally trained to model p(σA, σB) ∼
|λσ |2 in a supervised way. These steps are iterated until con-
vergence, which is reached when the current set A is stable
and the loss of the ARNN is close to zero. The choice of the

FIG. 1. Schema of the end-to-end algorithm. The set of bitstrings is first generated by the ARNN, and is then used to perform the
Schrödinger forging VQE. This involves iteratively computing the variational energy on the quantum processing unit and classically optimizing
the variational parameters until convergence.
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TABLE I. Small models: number of bitstrings generated which are among the ones with the eight biggest Schmidt coefficients in the exact
decomposition. The proposed algorithm is evaluated with A ∪ G or A′ as training set T , with or without MA. Furthermore, the ARNN if trained
with the reversed KL, logcosh, and MMD loss. The final column shows the sum of the truncated Schmidt coefficients. The best results are
highlighted in bold.

Standard Proposed algorithm

approach logcosh MMD

Models reversed KL A ∪ G A′ A′ and MA A′ ∑7
k=0 |λk |2

TFIM 1D 14s 0/8 4/8 7/8 7/8 7/8 0.9641
Heis. 1D 14 spins 0/8 5/8 5/8 7/8 7/8 0.9605
J1J2 1D 14 spins 2/8 6/8 7/8 7/8 7/8 0.9163
TFIM 2D 12 spins 2/8 6/8 3/8 6/8 7/8 0.9842
tV (4 × 3) 2/8 5/8 5/8 4/8 7/8 0.9549

cutoff k is usually optimized by trial and error. Here, we start
with a small cutoff, and slowly increase it until no further
improvement is observed. We note that small cutoffs are of-
ten preferable, since they require less expensive calculations
but also make the ARNN easier to train. This is why the
ARNN plays an important role in choosing the optimal set
of bitstrings. In summary, the training is composed of two
stages: the training of the ARNN using some random ini-
tialization for U and V , followed by the optimization of the
two unitaries in order to tailor them to the set of bitstrings.
The ARNN is trained to model the distribution p(θ ) on the
target q obtained by solving the system of linear equations in
Algorithm 1.

The choice of the loss function L and training set T play
an important role in the training of the ARNN. For the train-
ing set, two possibilities are investigated: the model is either
trained on the current set A and the generated bistrings G or,
following Ref. [34], only on the non pruned bitstrings, i.e.,
the new set A′. Concerning the loss functions, we consider
the explicit logcosh loss [37] and the implicit maximum mean
discrepancy (MMD) loss [38]

LMMD(θ) =
∑

σ1,σ2∈T
q(σ1)q(σ2)K (σ1, σ2)

− 2
∑

σ1,σ2∈T
q(σ1)pθ (σ2)K (σ1, σ2)

+
∑

σ1,σ2∈T
pθ (σ1)pθ (σ2)K (σ1, σ2), (8)

where K (σ1, σ2) = e− ||σ1−σ2 ||22
2� is chosen to be a Gaussian ker-

nel, with || · ||2 the 2-norm and � the bandwidth parameter.
The latter determines the width of the kernel and controls
the sensitivity of the MMD measurement. A larger bandwidth
allows more global comparisons, while a smaller bandwidth
focuses on local details. The MMD loss function effectively
minimizes the difference between the mean embedding of
the two distributions. It involves a pairwise comparison of
every bitstring in the training set with their contribution being
controlled by the kernel.

As a benchmark, we also consider a more standard
approach for modeling probability distributions using the re-
versed Kullback-Leibler (KL) divergence for the loss of the

ARNN. A detailed description of this method is presented in
Appendix D.

III. NUMERICAL SIMULATIONS

In this section, we present numerical experiments. We be-
gin with the performance of the bitstrings selection algorithm
on small models. Then, we proceed to expound upon the bit-
strings selection and subsequent energy minimization process
on various models of increasing complexity.

A. Identify the relevant bitstrings

We investigate the performance of the generative algo-
rithm on small symmetric models: the transverse field Ising
model (TFIM), the Heisenberg and J1-J2 model on a one-
dimensional (1D) chain of 14 spins with periodic boundary
condition, the two-dimensional (2D) TFIM on a 4 × 3 trian-
gular lattice with a diagonal cut and open boundary condition,
and the t-V model on a 4 × 3 grid. These models, further
detailed in Appendix C, allow for an exact Schmidt decompo-
sition, enabling us to assess the algorithm’s performance by
examining how many bitstrings associated with high Schmidt
coefficients can be identified.

The results, for a cutoff dimension of k = 8 bitstrings,
are presented in Table I. More specifically, we can find the
performance of Algorithm 1 in terms of the number of cor-
rectly identified bitstrings using logcosh and MMD loss. Two
training sets are considered for the former: the union T =
A ∪ G and the pruned set T = A′. Furthermore, the impact
of the parameters’ initialization is attenuated by model aver-
aging (MA). The ensemble technique consists of training four
ARNNs with different initial weights and taking their average
as the starting point of a final ARNN. Results obtained with
the more standard reversed KL approach (see Appendix D) are
also presented. Finally, the last column of the table contains
the sum of the eight highest Schmidt coefficients squared from
the exact decomposition. It indicates the amount of entangle-
ment, the cutoff’s accuracy, and the probability distribution’s
sharpness.

The algorithm proposed in this paper is able to find the ma-
jority of the most important bitstrings. Moreover, the MMD
and logcosh loss function are superior to the standard ap-
proach based on the reversed KL divergence. Indeed, with the
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FIG. 2. Small models. Training of the generative algorithm for
different physical systems. Top: the number of bitstrings updates
between two consecutive iterations. Bottom: value of the MMD loss
at each iteration.

latter, relevant bitstrings can only be found if the system is
small or when the level of entanglement is high (leading to
a wide probability distribution). This is not suitable in most
applications, since low entanglement is important to guarantee
a low additive error with a cutoff dimension. The best results
are highlighted in bold, and are in general obtained with the
MMD loss. More precisely, with the MMD loss, it is always
able to find the four bitstrings with the highest Schmidt coef-
ficient. This loss enables the ARNN to generalize well and
make the algorithms converge quickly, as it can be further
appreciated for the 2D TFIM with 12 spins in Appendix G,
Fig. 17. In that case, the ARNN has only seen 24 bitstrings
in total during the training and it is able to find the seven
bitstrings with the highest Schmidt coefficients, containing the
five most important ones, in only two iterations.

To gain a better understanding of the dynamics of the
generative algorithm, the loss of the ARNN and the number
of bitstring updates between two iterations are presented. Fig-
ure 2 shows the results with the MMD loss on the five different
Hamiltonians. In all cases, we observe that the ARNN loss
converges to zero and that the generated set of bitstrings is
stable.

In general, the dynamics can be divided into two phases:
an initial phase where the loss is high and the model explores
a diverse range of bitstrings, followed by a second phase
where the model attempts to exploit its approximation of the
probability distribution to converge and generate bitstrings
with high Schmidt coefficients. This exploration-exploitation
trade-off can be modified by adjusting the number of bit-
strings sampled at each iteration and the learning rate of the
ARNN.

B. Complete entanglement forging scheme

In the last section, we shown that the ARNN is able to
identify the bitstrings with the highest Schmidt coefficients.

FIG. 3. One-dimensional TFIM 20 spins. Convergence of the
variational energy of forged quantum states. The blue curve repre-
sents the mean energy over ten sets of k = 8 random bitstrings, with
the shaded area displaying the standard deviation. The purple one is
instead showing the training using the set generated by the ARNN.
In addition, the simulation with the Heisenberg forging algorithm is
shown in pink.

We now test the complete EF scheme. First, spin systems on a
ring are considered, before going to a two-dimensional lattice,
and finally to the nuclear shell model.

1. Spins in one dimension

We begin by considering the one-dimensional TFIM. More
precisely, we consider a spin chain with periodic boundary
conditions, an even number N = 20 of spins, and set the
coupling and the external field coefficient to one. The Hamil-
tonian of the model can be written as

H =
N∑

i=1

ZiZi+1 + X i. (9)

Since the system is invariant under permutation symmetry,
we can compare our approach to the Heisenberg forging with
ARNN. Because of the symmetry, we can choose σA = σB,
which reduces the number of possible bitstrings. As above,
a cutoff dimension of k = 8 is chosen for the number of
bitstrings, which was chosen by trial and error. Figure 3 shows
the energy error ratio

� =
∣∣∣∣E − Eexact

Eexact

∣∣∣∣ (10)

for the three forging schemes, i.e., Schrödinger with a random
uniform set of bitstrings, Schrödinger with the generated set,
and Heisenberg forging with the generated set. Following
Ref. [32], a pretraining of the quantum circuit over 1000
iterations is performed. In both cases, the unitaries take the
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FIG. 4. Correlators in 1D. Correlators 〈ZiZ j〉 of the Schrödinger and Heisenberg forged states on the TFIM 20 spins in 1D. The pairs 〈i, j〉
are ordered as follows: [[〈i, j〉 for i < j] for 0 � i < N] . The neighboring cases, with j = i + 1, are highlighted with a black vertical line.

form of hardware efficient Ansatz

U (	) =
D−1∏
d=0

⎡
⎣U

(
θ0

d

) N/2∏
i=0

CXi,i+2 U
(
θ1

d

) N/2∏
i=1

CXi,i+2

⎤
⎦U (θD),

(11)

where D = 15 is the number of layers, CXi, j is a CNOT gate
with control qubit i and target j, while U (x) is N-fold tensor
product of arbitrary single-qubit rotation parametrized with
3N parameters. We denote with 	 the set containing all in-
dexed θ

j
i . Details on the training procedure, such as values for

the hyperparameters and the optimization algorithm, can be
found in Appendix E.

We observe that the choice of the random set has little im-
pact on the performance of the Schrödinger forging procedure.
Moreover, the models enhanced with the ARNN display better
results, both being quite similar.

To ensure that specific physical properties of the ground
state, outside of its energy, are correctly reproduced, the
spin-spin correlators 〈ZiZ j〉 of the forged states have been
calculated. They are shown in Fig. 4. We observe that the
accuracy is not degrading over the overlap, suggesting that the
error can be explained mainly by the training of the circuits
rather than the EF procedure. The error on the correlators
〈ZiZ j〉 is minimal when j = i + 1 and maximal if the two
spins are far apart in the chain. This can be explained by the
locality of the Ansatz, built using gates acting on neighboring
qubits.

2. Spins in two dimensions

We now move toward two-dimensional spin lattices, which
are more challenging due to local operators being mapped to
nonlocal ones when projected onto a line. We consider the
TFIM on a 2D topology described by a triangular lattice, as
shown in Fig. 13, see Appendix C. We break the permutation
symmetry of the two subsystems by applying a random exter-
nal field hi ∼ U [−1, 1]. Setting the coupling constant to one,
the Hamiltonian is given by

H =
∑
〈i, j〉

ZiZ j +
N−1∑
i=0

hiX
i, (12)

where 〈i, j〉 are neighbors according to the triangular topol-
ogy. The triangular lattice has a high coordination number,
leading to strong magnetic susceptibility [39], meaning that
the system is more sensitive to external magnetic fields and
can therefore exhibit stronger magnetic order and complex
physical phenomena, such as, e.g., disorder, localization, and
heterogeneity.

The two-dimensional lattice is divided with a cut along the
diagonal axis. We consider open boundary conditions (OBC),
cylindrical boundary conditions (CBC), and toroidal boundary
conditions (TBC). Since the boundary conditions can lead to
different levels of entanglement [40,41], they play an essential
role in the EF procedure, which is why different configura-
tions are considered.

The convergence of the variational energies for the three
boundary conditions are shown in Fig. 5. Like in the one-

FIG. 5. Two-dimensional TFIM 12 spins. Convergence of the
variational energy of forged quantum states. The colors indicate
different boundary conditions, while the shaded curves show the
mean energy over ten sets of k = 8 random uniform bitstrings.
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dimensional case, a cutoff of k = 8 is chosen in the Schmidt
decomposition. We observe that the bitstrings generated by
the ARNN lead to an improvement of approximately 10−2

in the error energy ratio with respect to taking a random set.
The most striking result, though, is that the gap between the
random and generated methods is increasing with respect to
the one-dimensional case, suggesting that sampling with the
ARNN is becoming more effective when considering systems
of increased complexity. On the other hand, no advantage can
be noted in the context of TBC. It seems that the parametriza-
tion of the unitaries is the limiting factor in improving the
energy error.

3. Nuclear shell model

Finally, we consider light nuclei in the shell model with
Cohen-Kurath [42] interactions, where the Hamiltonian can
be written in second quantization as

H =
∑

i

εiâ
†
i âi + 1

2

∑
i jkl

Vi jlk â†
i â†

j âk âl . (13)

Here, â†
i and âi are the creation and annihilation operators,

respectively, for a nucleon in the state |i〉. Single-particle
energies are denoted as εi and two-body matrix elements as
Vi jkl . The orbitals |i〉 = |n = 0, l = 1, j, jz, tz〉 are described
as functions of the radial n and orbital angular momentum l ,
the total spin j, its projection on the z axis jz its projection,
and the z projection of the isospin tz.

We consider nucleons in the p shell model space, which
includes six orbitals for the protons and six orbitals for the
neutrons, while each energy is computed with respect to an
inert 4He core. The shell-model Hamiltonian [see Eq. (13)]
is converted into a qubit Hamiltonian via the Jordan-Wigner
[43] transformation. Each single-particle state is represented
by a qubit where |0〉 and |1〉 refer to an empty and an oc-
cupied state, respectively. Therefore, each nucleus can be
distinguished by the number of excited orbitals, representing
the protons and neutrons on top of the 4He core.

The partition is made at the isospin level, meaning that
subsystem A consists entirely of protons while subsystem B
consists of neutrons. Therefore, the Schrödinger forging is the
only possible choice since the system is not symmetric under
proton-nucleon exchange. To build a chosen nuclei, we start
from an appropriate initial state, with the desired number of
nucleons, and act with an excitation preserving (EP) Ansatz.
EP Ansätze can be built as a product of two-qubit excitation
preserving blocks U (θ, φ), also known as hop gates [44,45],
of the form

U (θ ) =

⎛
⎜⎜⎝

1 0 0 0
0 cos (θ ) sin (θ ) 0
0 sin (θ ) − cos (θ ) 0
0 0 0 1

⎞
⎟⎟⎠. (14)

This set can be extended with four-qubit excitation-preserving
gates [46], defined as

Gi, j,k,l (ω) |0011〉 = cos(ω/2) |0011〉 + sin(ω/2) |1100〉
Gi, j,k,l (ω) |1100〉 = cos(ω/2) |1100〉 − sin(ω/2) |0011〉 .

(15)

FIG. 6. Convergence of the variational energy of the Schrödinger
forged states corresponding to the various nuclei of the nuclear p
shell model. The Schmidt rank being at most 20, all bitstrings have
been used in the Schmidt decomposition.

The parametrized circuit then takes the form of a layered
Ansatz composed of a product of excitation-preserving gates,
where the dth layer is described by

U (	d ) =
(

N−1⊗
i=0

RZi
(
φi

d

)) N/2−2∏
i=0

U2i,2i+1
(
θ i

d

)

×
N/2−3∏

i=1

U2i,2i+1
(
θ i

d

) N−4∏
i=0

Gi:i+3
(
ωi

d

)
. (16)

We denote by RZi(φ) a rotation of the ith qubit around the z
axis, and the subscript of the U and G gates indicate the qubit
the gate is acting upon (i : j is a slice from i to j). The large
	d parameters regroup all parameters in the dth layer, i.e.,
	d = {φi

d , θ i
d , ωi

d}. A sketch of the quantum circuit is depicted
in Appendix F.

Since the Schmidt rank of the p nuclear shell model is
at most 20, the generative algorithm is unnecessary, as all
bitstrings in the Schmidt decomposition can be used. The
energy minimization for the various nuclei is presented in
Fig. 6. We observe that every ground-state energy in the p
shell can be reproduced with an error ratio of at most 10−3,
even for the difficult nuclei such as 12C. Moreover, having
access to the Schmidt decomposition allows us to evaluate
the von Neumann entropy, whose evolution is presented in
Fig. 7, which can be of broader interest. Figure 7(a) shows
the evolution of the von Neumann entropy during the training,
while Fig. 7(b) displays a visualization of the von Neumann
entropy in the parameter space. To this end, a principal com-
ponent analysis (PCA) is performed on the entire history of
the Schmidt coefficient, and a scan of the entropy along the
two main components is presented. In addition, the entropy
value is shown for each training epoch (in gray) and the final
value (in red).

In the final experiment, nucleons in the sd shell model
space, including 12 orbitals for the protons and 12 orbitals
for the neutrons, are considered. For the latter, each energy is
computed with respect to an inert 16O core. Using the Jordan-
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FIG. 7. (a) Von Neumann entropy of the various nuclei during
the training. (b) Visualization of the two main components of the Von
Neumann entropy of the 11B in the variational space. In addition, the
value of the entropy at each training epoch is shown (in gray) as well
as the final value (in red).

Wigner mapping, this model leads to a 24-qubit Hamiltonian
and is composed of a total of 11 210 overlapping terms. This
high number can make EF particularly expensive, as it scales
linearly with it. However, since most of their coefficients are
close to zeros, an approximate Hamiltonian, consisting of the
38 overlapping terms with the most significant coefficients, is
instead considered. Despite this approximation, the Hamilto-
nian can still reproduce 97% of the ground-state energy of the
23Na nucleus, which is the focus of this experiment.

The 23Na nucleus is composed of three protons and four
neutrons on top of a 16O inert core. The ARNN sampler
has therefore been modified to generate bitstrings with three
ones in subsystem A (protons) and four ones in subsystem
B (neutrons). The energy minimization and the final Schmidt
decomposition of the 23Na are presented in Figs. 8 and 9,
respectively. Once again, a higher accuracy is obtained with
the generated set. Multiple states from the generated set are
contributing to the VQE, meaning that the ARNN is useful

FIG. 8. Convergence of the variational energy of the Schrödinger
forged states corresponding to the 23Na nucleus of the nuclear sd
shell model.

in selecting appropriate bitstrings. On the contrary, when the
random set is used, the variational circuit prefers to adapt to
one state, and set the contribution from the others to zero.

IV. DISCUSSION AND CONCLUSION

This paper proposes an alternative way to perform
Schrödinger forging using autoregressive neural networks.
We build on the work from Eddins et al. [24], which in-
troduced the EF-based VQE, and on Huembeli et al. [32],
which efficiently compute quantum expectation values as
statistical expectation values over bitstrings sampled by a
generative neural network. While their work leverages the
additional permutation symmetry, our work is fully general
and computationally efficient due to the introduction of a
cutoff dimension. Moreover, the latter is giving us additional
control over the amount of quantum resources required. This
is not the case in the Heisenberg forging scenario, as shown
in Appendix B, where the ARNN begins by sampling many

FIG. 9. Final Schmidt decomposition of the variational energy of
the Schrödinger forged states corresponding to the 23Na nucleus of
the nuclear sd shell model.
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bitstrings and finishes by using only one. Therefore, in this
specific case, the Heisenberg forging with neural networks
is expensive at the beginning of the training and loses its
expressive power at the end. On the other hand, Schrödinger
forging enables better control on the trade-off between expres-
siveness and computational expensiveness of the variational
model without having the assumption of symmetric permuta-
tion of the two subsystems. When the additional permutation
symmetry is present, we still recommend using Heisenberg
forging, since it requires less epochs to be trained. However,
we stress that many systems, such as molecules or nuclei, do
not exhibit this symmetry, providing important use cases for
Schrödinger forging.

Numerical simulations have been performed on ring and
triangular lattice spin systems. Schrödinger forging with the
ARNN consistently achieves better performance for the com-
putation of the ground-state energy and correlators, compared
with random sampling and Heisenberg forging with neu-
ral networks. In the case of the triangular lattice, different
boundary conditions are considered, directly affecting the per-
formance. The parametrization of unitaries is a limiting factor
when complex boundary conditions are considered.

The most striking result is that the performance gap be-
tween random sampling and using the ARNN increases with
the system’s complexity, thus suggesting that our approach
will be more profitable for larger systems. Finally, the nuclear
shell model is also solved using the Schrödinger forging case
up to the 10−3 error ratio for the most complex nucleus. The
ARNN is unnecessary since the maximum number of possible
bitstrings is 20, as all bitstrings can be used. The approach is
then tested on a larger nucleus in the sd shell model, 23Na.
Once again, the generated set results in better accuracy than a
random one.

Autoregressive models are easily interpreted and can natu-
rally generate bitstrings with a certain number of excitations.
They are also well suited for addressing the task at hand,
owing to their robustness as density estimators. They do
exhibit certain limitations, specifically in terms of sampling
speed and the requirement for fixed-order input decomposi-
tion [47]. Nevertheless, the limited number of samples in this
algorithm renders the issue of sampling speed inconsequen-
tial. Furthermore, experiments were conducted by varying the
decomposition orders, and it was determined that such alter-
ations did not yield any substantial changes in the obtained
results. Masked multilayer perceptrons are a straightforward
choice for building the autoregressive model. However, other
architectures could be more suitable in some cases. In partic-
ular, transformers [48] provide a strong alternative since they
are highly parallelizable and efficient in capturing the global
context and long-range dependencies due to their attention
mechanism.

At the beginning of this work, simulations were carried out
on small models. In these cases, all bitstrings could be taken
into account during the VQE. It was observed that the order
of the bitstrings, with respect to their coefficient (in absolute
value), did not significantly change during the VQE. There-
fore, choosing the bitstrings at the beginning of the circuit
training enables us to perform well. However, it could be
suitable in some cases to train the quantum circuits and ARNN
simultaneously, taking advantage of parameter sharing.

Finally, we note that there is not necessarily a correla-
tion between having sets of bitstrings associated with high
Schmidt coefficients and the trainability of the correspond-
ing variational state. Indeed, in some cases, taking a set of
bitstrings with lower Schmidt coefficients might be favorable
to make the variational circuits easier to train. Therefore, it
may be possible to include this feature in the algorithm by
choosing bitstrings that maximize the gradients. Alternatively,
an algorithm, adapting the form of each variational circuit,
an approach close to the ADAPT-VQE [49], could be investi-
gated.

The numerical simulations of the quantum circuits have
been performed with PENNYLANE [50], powered by a JAX
backend [51], while the NETKET library [52] has been used
for the ARNN. Solving the constraint systems of equations in
the generative algorithm involves a projected gradient descent
algorithm available in the JAXOPT library [53]. Moreover,
the Heisenberg forging code is available on GITHUB [54].
Visualization of the evolution of the von Neumann entropy
is performed using ORQVIZ [55]. The PYTHON code of this
project is accessible on GITHUB [56].
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APPENDIX A: HEISENBERG FORGING

In the section, we briefly cover the basis of Heisenberg
forging, covered in more detail in Refs. [24,32]. In this sce-
nario, we assume a symmetric bipartition, i.e., with UA =
VB ≡ U , and find a more efficient way to compute the expec-
tation value. We first need to decompose O as

OA ⊗ OB + OB ⊗ OA = a0

2
({OA, OB} ⊗ 1 + 1 ⊗ {OA, OB})

+
∑

α,β∈{0,1}
aα,βC∗

α,β ⊗ Cα,β, (A1)

where {·, ·} denotes the anticommutator, |aα,β | � 1 are real
coefficients, and Cα,β n-qubit Clifford operators that are de-
fined below. Combining this with the Schmidt decomposition,
and by symmetrizing the observable, we obtain

〈ψ |O|ψ〉 = a0

∑
n

λ2
σn

�(〈σn|U †OAOBU |σn〉)

+
∑

α,β∈{0,1}

aα,β

2

∑
n,m

λσnλσm |〈σm|U †Cα,βU |σn〉|2.

(A2)

Since OA, OB ∈ {1, X,Y, Z}⊗N/2, we either have [OA, OB] =
0 or {OA, OB} = 0. In the first case, we can find a Clifford
circuit V such that OA = V ZpV † and OB = V ZqV †. We can
then define

Cα,β = 1
2V (1 + (−1)αZp + (−1)βZq − (−1)α+βZpZq )V †.

(A3)
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FIG. 10. Description of the sampling procedure of a bitstring
with the ARNN. Each bit of the bitstring is generated sequentially
and randomly, according to the probability modeled by the network.
The latter is the output of the ARNN with the inputs being the values
of the previous bit, already generated. The illustrated situation corre-
sponds to a system of four qubits divided equally into two subsystems
of two qubits. Note that the picture describes in fact one ARNN used
in parallel to sample the different bits, and not multiples ARNN used
in a sequential manner, as could be induced by the arrows in the
diagram.

In the remaining case, we can simply use C0,0 = (OA +
OB)/

√
2, C0,1 = (OA − OB)/

√
2 and a1,0 = a1,1 = 0.

The estimation of the sums can be performed nontrivially,
using Monte Carlo sampling, where the number of samples
grows as 1/ε2, with ε the additive error. However, the sam-
pling step is not obviously scalable in the Schrödinger case,
and it will be discussed below. We also point out that, de-
spite a sampling overhead, the individual quantum circuits are
easier to implement than without the Schmidt decomposition
because they are shallower and require fewer qubits.

APPENDIX B: SAMPLING FROM THE ARNN

In this section, we provide more details on how to effi-
ciently and directly sample the bitstrings with the ARNN.
We proceed recursively, as shown in Fig. 10. We begin by
sampling the first bit of the string, which is then given as an
input to sample the second bit, and so on up to the last bit.

In the nuclear shell model, it is important to control the
number of value-one bits appearing in the string, since each
nucleus is defined by a certain amount k of excited orbitals.
Thus, the same procedure can be slightly modified to generate
bitstrings with a fixed number of ones. Indeed, we just need
to change the conditional probability in the sampling proce-
dure, which can be done by setting p(σi|{(σ ) j, j < i}) = 0 if∑

j<i(σ ) j = k. This ensures a maximum of k excitation. If,
on the other hand, there is only l < k excitation at the end of
the string, the last k − l bits are turned into one to correct for
it. While this leads to nonuniform sampling at the beginning
of the training, we expect the ARNN to overcome this issue
by incorporating it through the learning stage.

A notable difference between the Schrödinger and Heisen-
berg forging schemes is that for the latter, it is impossible to
control how many states one has to prepare on the quantum

FIG. 11. Comparison between the number of different bitstrings
sampled for Heisenberg and Schrödinger forging. In the Heisenberg
case, at the beginning, a large number of states are required to be
prepared on the quantum computer, while at the end, only one state
remains. For Schrödinger forging instead, we have full control over
the number of states we want to prepare.

hardware. Indeed, in this case, all bitstrings sampled by the
ARNN must be taken into account. In practice, as shown in
Fig. 11, many states must be prepared at the beginning of the
training and only one at the end. In the case of Schrödinger
forging, since the cut-off can be fixed at the beginning, the
number of states to be prepared on the hardware is constant.
Following Ref. [32], a 1000-epoch pretraining on the unitaries
has been performed as proposed in Ref. [32]. However, other
optimization strategies could be considered.

APPENDIX C: OVERVIEW OF THE MANY-BODY
HAMILTONIANS OF THE SMALL MODELS

Here, we present the many-body quantum Hamiltonians
used for the numerical simulations. First, we consider spin
models: the TFIM, Heisenberg, and J1-J2 model on a 1D chain
and the 1D TFIM on a triangular lattice. We also consider
fermionic models, such as the t-V model on a 4 × 3 grid and
the nuclear shell model.

The Hamiltonians of the 1D TFIM is

H = J
N∑

i=0

ZiZi+1 + X i. (C1)

The Hamiltonian of the 1D Heisenberg model is

H = J
N∑

i=0

X iX i+1 + Y iY i+1 + ZiZi+1, (C2)

while for the 1D J1-J2 model we have

H = J1

N∑
i=0

X iX i+1 + Y iY i+1 + ZiZi+1

+ J2

N∑
i=0

X iX i+2 + Y iY i+2 + ZiZi+2. (C3)

For these models, J = 1, J1 = 1, J2 = 0.2, and periodic
boundary condition (PBC), i.e., N ≡ 0, N + 1 ≡ 1, are used.
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FIG. 12. One-dimensional spin chain with PBC, N = 14 spins (a) and N = 20 spins (b). The blue cut represents the separation between
the two subsystems.

The topology of the spin chain with the separation between
the two subsystems is presented in Figs. 12(a) and 12(b) for
14 and 20 spins, respectively.

The Hamiltonian of the 2D TFIM is given by

H =
∑
〈i, j〉

ZiZ j +
N−1∑
i=0

X i, (C4)

where 〈i, j〉 are neighbors according to the triangular topol-
ogy, see Fig. 13, which also shows the different cuts and
boundary conditions. This model is more challenging due to
local operators being mapped to nonlocal ones when projected
onto a line. Moreover, it has a high coordination number,
which leads to a strong magnetic susceptibility [39], meaning
that the system is more sensitive to external magnetic fields
and can exhibit stronger magnetic order.

The Hamiltonian of the t-V model is

H = −t
∑
〈i, j〉

(a†
i a j + a†

j ai ) + V
∑
〈i, j〉

a†
i aia

†
j a j, (C5)

with ai and a†
i being, respectively, the creation and annihila-

tion operators on site i. A 4 × 3 system of spinless fermions
with periodic boundaries and t = V = 1 is considered. It is
mapped to a qubit Hamiltonian with the Jordan-Wigner trans-
formation. In this model, fermions are allowed to move on
the grid, modifying the energy of the system. In this spinless
version, there is only one spin orbit per site, giving a final
Hamiltonian of 12 qubits.

FIG. 13. Triangular lattices used for the simulations. Lattices of 12 spins with OBC, CBC, and TBC are shown in (a), (b), and (c),
respectively. The two subsystems are defined with a diagonal cut (blue).
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FIG. 14. Exact Schmidt decomposition on the TFIM 14 spins
with periodic boundary conditions. The coefficients have been ar-
ranged in descending order and are presented with a linear (blue)
and a logarithmic (purple) scale.

APPENDIX D: MODELING THE PROBABILITY
DISTRIBUTION WITH A MORE STANDARD APPROACH

In this section, we present a more standard approach for
modeling probability distributions using the reversed KL di-
vergence for the loss of ARNN. We show why it is unsuitable
for the considered problem situation.

This approach aims to model the full probability distribu-
tion |λσ |2. Since we only have samples from the approximated
probability distribution p(σA, σB), the reversed KL can be
used to learn the best representation of the distribution self-
consistently. Thus, at each iteration, the training set comprises
bitstrings sampled from the approximation distribution given
by the ARNN. The latter is then trained in a supervised way to
model the target distribution |λσ |2 by minimizing the reversed
KL divergence

Lrev-KLD
ARNN = E

σ∼p

[
log

p(σA, σB)

λ2
σ

]
. (D1)

With this choice, wherever p(σA, σB) has a high probability,
λ2

σ will also take a high value. This mode-seeking behavior
is desired since the objective is mainly to sample bitstrings
associated with a high Schmidt coefficient.

With weakly entangled systems, which is desirable to have
a low additive error with the cut-off in the Schmidt decom-
position, the target probability distribution is very sharp, as
shown in Fig. 14. Such probability densities are very difficult
to model with this approach. Indeed, with high probability,
the training sets are composed of bitstrings associated with
very small Schmidt coefficients. In this flat region (left of
Fig. 14), the probability density appears uniform, and it is
challenging to extrapolate the relevant bitstrings. Moreover,
due to the normalization constraint, the Schmidt coefficients
of a small set of bitstrings are not good estimators of the
Schmidt coefficients of the ground truth distribution.

However, this defeats our purpose of identifying bitstrings
with a high Schmidt coefficient rather than modeling the
entire probability distribution. Hence, adopting a training
strategy that keeps the bitstrings with high Schmidt coef-
ficients through the iterations is convenient. With such a

training strategy, employing a loss composed of an average
over the model data samples is impossible. The explicit form
of the reversed KL divergence

Lexpl-rev-KLD
ARNN =

∑
σ

p(σA, σB)

[
log

p(σA, σB)

λ2
σ

]
(D2)

would be an alternative if only the target probability distri-
bution is not very sharp. Hence, the reversed KL divergence
is not a symmetric measure. Consequently, the gradients ob-
tained from the reversed KL divergence may not provide
stable and robust updates for the model when the predicted
distribution diverges significantly from the target distribution.
This lack of robustness makes it challenging to learn in highly
uncertain situations or when the model needs to adapt to
changes in the training set, which is the case here. The log-
cosh and MMD loss were therefore used since they are more
robust and suitable for modeling sharp distributions. Indeed,
they do not suffer the same limitations since they focus on
individual samples rather than the overall distribution and do
not overemphasize outliers.

APPENDIX E: OPTIMIZATION DETAILS AND
HYPERPARAMETERS

In this section, details on the optimization procedure are
given. During the VQE stage of the training, the adabelief op-
timizer [57] is used to update the quantum circuit parameters,
while Nesterov’s accelerated gradient descent scheme [58] is
performed for the Schmidt coefficient. One iteration of the
Schmidt coefficient is done every ten iterations of the circuit
parameters. The hyperparameters of the adabelief optimizers,
following the convention of the original paper, are β1 = 0.9,
β2 = 0.999 and ε = 10−16, while for Nesterov, a momentum
coefficient of 0.6 is used. In both cases, we set the learning
rate between 0.1 and 0.01.

The generative algorithm is trained using adabelief with
the same hyperparameters and a learning rate of 0.001. The
ARNN comprises five hidden layers and a hidden neuron
density of α = 2. At each iteration of the generative algo-
rithm, the ARNN samples between 10 and 50 bitstrings to
build the set G, while the exact value has been manually
tuned for each simulation. This influences the performance
since low values cause the ARNN to converge very quickly,
leading to spikes caused by the lack of generalization and

FIG. 15. Variational quantum circuit used for parametrizing the
unitaries in the Schmidt decomposition for spin and fermionic
models.

023021-12



HYBRID GROUND-STATE QUANTUM ALGORITHMS BASED … PHYSICAL REVIEW RESEARCH 6, 023021 (2024)

FIG. 16. Variational quantum circuit used for parametrizing the
unitaries in the Schmidt decomposition for the shell models. The
gates correspond to the ones described in the main text.

overfitting. On the other hand, high values deteriorate the
algorithm’s computational efficiency, convergence speed, and
memory requirement in the same way as batches in stochastic
gradient descent. For ARNN, the Lecun normal initializer for
the weight, zero initial biases, and scaled exponential linear
unit (SELU) activation function λ = 1.0507 α = 1.6733 were
used [59].

APPENDIX F: VARIATIONAL CIRCUITS

In this section, we provide a visual example of the quantum
circuits used for VQE Ansätze. A layer of the variational
circuit used for the spin systems is shown in Fig. 15 for N = 4
qubits, while Fig. 16 shows one layer of the circuits used for
the nuclear shell model. We use the notation Rot to describe
a generic rotation around the Bloch sphere, composed of Ry,
Rz, and Ry rotation.

APPENDIX G: EVOLUTION OF THE GENERATED SET

A histogram was produced to visualize the ARNN training
set evolution. Shown in Fig. 17, it illustrates the number of

FIG. 17. TFIM 2D 12 spins, MMD loss: Histogram showing the
bitstrings seen by the ARNN (present in the set A′) with the re-
spective number of times (counts). The results after 50 iterations are
presented. The bitstrings contained in the final set A′ are highlighted
in purple and the bitstrings seen previously are illustrated in light
blue.

times each bitstring has been present in the training set T = A′
of the ARNN. The bitstrings present in the final set are shown
in purple and those present during the algorithm are shown
in light blue. The illustrated example is at the end of the algo-
rithm on the TFIM 2D 12 spins with the MMD loss. Bitstrings
are ordered in such a way that their associated Schmidt coef-
ficient decreases (in absolute value). The bitstrings associated
with the highest Schmidt coefficient are the most frequently
viewed by the ARNN.

At the end, the seven bitstrings associated with the biggest
Schmidt coefficient are present in the final set. The eighth
bitstring in the set is bitstrings number ten. Given that bit-
strings eight and nine were seen during the algorithm and that
their associated Schmidt coefficients squared are very low and
close to the one of bitstring ten, we can explain this lack by
numerical errors when determining the Schmidt coefficients.
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