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Enhancing quantum adversarial robustness by randomized encodings
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The interplay between quantum physics and machine learning gives rise to the emergent frontier of quantum
machine learning, where advanced quantum learning models may outperform their classical counterparts in
solving certain challenging problems. However, quantum learning systems are vulnerable to adversarial attacks:
adding tiny carefully crafted perturbations on legitimate input samples can cause misclassifications. To address
this problem, we propose an effective approach to protect quantum learning systems from adversarial attacks by
randomly encoding the legitimate data samples through unitary or quantum error correction encoders that are
unknown to the attackers. In particular, we rigorously prove that both global and local random unitary encoders
lead to exponentially vanishing gradients (i.e., barren plateaus) for any variational quantum circuits that aim
to add adversarial perturbations, independent of the input data and the inner structures of adversarial circuits
and quantum classifiers. In addition, we prove a rigorous bound on the vulnerability of quantum classifiers
under local unitary adversarial attacks. We show that random black-box quantum error correction encoders can
protect quantum classifiers against local adversarial noises and their robustness increases as we concatenate
error correction codes. To quantify the robustness enhancement, we adapt quantum differential privacy as a
measure of the prediction stability for quantum classifiers. Our results establish versatile defense strategies for
quantum classifiers against adversarial perturbations, which provide valuable guidance to enhance the reliability
and security for both near-term and future quantum learning technologies.

DOI: 10.1103/PhysRevResearch.6.023020

I. INTRODUCTION

The flourish of machine learning has led to unprecedented
opportunities and achieved dramatic success in both research
and commercial fields [1,2]. Some notoriously challenging
problems, ranging from predicting protein structures [3] and
weather forecasting [4] to playing the game of Go [5,6], have
been cracked recently. Meanwhile, the field of quantum com-
putation has also made tremendous progress in recent years
[7,8], giving rise to unparalleled opportunities to speed up,
enhance, or innovate machine learning [9–12]. Within this
vein, ideas and concepts from the physics domain have been
utilized as core ingredients for quantum machine-learning
algorithms [13–20]. Notable examples in this direction in-
clude the Harrow-Hassidim-Lloyd algorithm [13], quantum
principal component analysis [14], quantum generative mod-
els [12,15,16], quantum support vector machines [17], and
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variational quantum algorithms based on parametrized quan-
tum circuits [18–21], etc. Yet, an important issue regarding
quantum learning systems concerns their reliability and secu-
rity in adversarial scenarios, especially for noisy intermediate-
scale quantum (NISQ) devices [22]. Here, we introduce a
series of defense strategies by randomly encoding legitimate
data samples and analytically show their adversarial robust-
ness in a rigorous fashion (see Fig. 1 for illustration).

Adversarial machine learning is an emerging frontier that
studies the vulnerability of machine learning systems and de-
velops defense strategies against adversarial attacks [23,24].
In the classical scenario, the prediction of a deep neural net-
work can be susceptible to tiny carefully-crafted noises, which
are even imperceptible to human eyes, added to the legitimate
input data [25–29]. These adversarial noises can be generated
by either a malicious adversary or the worst-case experi-
mental noise from an unknown source. Recent works have
demonstrated that quantum learning systems are vulnerable
under adversarial settings similar to their classical coun-
terparts [30–32], sparking a new interdisciplinary research
frontier of quantum adversarial machine learning [30–35].
From the theoretical aspect, even an exponentially small per-
turbation can cause a moderate adversarial risk for a given
quantum classifier [32]. Furthermore, it has been shown that
there exist universal adversarial attacks for multiple quantum
classifiers or input data samples [31]. More recently, quantum
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FIG. 1. An illustration for exploiting randomized encoding to de-
fend against adversarial attacks. In the quantum learning task, Alice
prepares an input data sample and sends it to Bob for classification.
To protect the legitimate data against the potential adversary Eve,
Alice, and Bob share a codebook and Alice randomly chooses an
encoder in the codebook to transform the original data into encoded
data, from which Eve can barely obtain any useful information. Then
Alice sends Bob the encoded quantum data and classical information
about the encoder. Bob receives the messages, translates the encoded
quantum data into the original figure, and performs the classification.

adversarial learning has been experimentally demonstrated
with both large-scale real-life datasets and quantum datasets
on superconducting quantum devices [33]. To improve the
robustness of quantum machine learning algorithms and de-
fend against adversarial attacks, a straightforward approach
is to employ a quantum-adaptive adversarial training [30].
However, adversarial training in general requires generations
of a large number of adversarial samples and may only per-
form well for the same attacking method that generates those
samples.

In classical adversarial learning, randomness is suggested
to be the possible resource for developing defense strate-
gies against adversarial perturbations [36–42]. However, these
results are mostly empirical and there has been no unified
and rigorous framework for employing randomness in this
context. In quantum computation, quantum error correction
(QEC) codes are widely used to detect and correct experi-
mental errors. However, the errors that can be corrected are
assumed to be local while adversarial perturbations are either
carefully engineered or worst-case noises. In addition, the
vanishing gradients (i.e., barren plateaus) for quantum cir-
cuits with random parameters give potential protection from
most commonly used gradient-based adversarial algorithms
[30,43]. A potential approach to achieve provable adversarial
robustness for quantum classifiers is to combine randomness
with QEC and barren plateaus phenomenon studied in quan-
tum computation.

In this paper, we propose an approach employing a
randomized encoding procedure to protect the quantum learn-
ing systems from potential adversarial perturbations. Under

practical adversarial learning scenarios, adversarial perturba-
tions can originate from either carefully crafted perturbations
created by the attackers that have full access to the gradient
information [30] or the worst-case experimental noises from
unknown resources [44]. We show the effectiveness of our
scheme by using two concrete types of random encoders to
mask the gradient information from the adversary and im-
prove the robustness of quantum learning algorithms. The
first type uses random unitary encoders and is more practical
for NISQ devices, whereas the second type exploits QEC en-
coders that are necessary for the future fault-tolerant quantum
computation.

For the first type, we rigorously prove that a random global
unitary encoder that satisfies the 2-design property [45] leads
to exponentially small gradients for adversarial variational cir-
cuits, and thus creates barren plateaus [46–60] that may hinder
gradient-based algorithms in generating adversarial perturba-
tions. We further prove that even random encoders that can be
decomposed into tensor products of unitary 2-design blocks
of smaller sizes can generate barren plateaus for the adver-
saries as well. To benchmark the performance, we carry out
numerical simulations concerning the classification of topo-
logical phases of the cluster-Ising model [61,62] with different
loss functions and system sizes. For the second type of en-
coders, we consider local adversarial perturbations generated
by worst-case experimental noises. We prove a lower bound
for the adversarial risk in this setting based on the concentra-
tion of measure phenomenon in the high-dimensional space.
We analytically show that a random black-box QEC [63,64]
encoding procedure can improve the robustness of quantum
learning systems for local unitary attacks. In particular, we
show that it is sufficient to concatenate only O(log log(n))
levels of QEC encoders to bound the adversarial risk below a
constant value. We adapt quantum differential privacy (QDP)
[65–67] to measure the robustness of quantum classifiers
against adversarial perturbations. We prove an information-
theoretic upper bound for the adversarial risk of quantum
learning algorithms satisfying differential privacy.

The randomized encoding approach introduced in this pa-
per is distinct from previous literature that either exploit deter-
ministic encoders for binary classification [68] or adds white
noises [44]. Compared to the deterministic encoder scheme
which uses amplitude and phase encoding, our approach
uses variational unitary circuits that are more experimentally
compatible for NISQ devices. Whereas adding white noise
may diminish the performance of the quantum classifiers,
our approach will not influence the accuracy of classification
algorithms. Furthermore, in contrast to classical algorithms
that employ randomness against adversarial attacks, our ap-
proaches provide rigorous theoretical bounds rather than
empirical performance benchmarks. Our results not only es-
tablish a profound connection among QEC, QDP, barren
plateau phenomenon, and quantum adversarial robustness, but
also provide practical defense strategies that may prove valu-
able in future applications of quantum learning technologies.

The paper is organized as follows. In Sec. II, we intro-
duce the basic concepts and general framework for quantum
adversarial learning. In Sec. III, we present two theorems
demonstrating that both global and local randomized uni-
tary encoders on input data samples can lead to vanishing
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gradients, which may hamper gradient-based algorithms from
creating adversarial perturbations. We provide numerical
evidence concerning classifications on the phases of the
cluster-Ising model to benchmark the effectiveness of our
approach. In Sec. IV, we give two theorems, one proving the
vulnerability of quantum classifiers against local unitary ad-
versarial perturbations, the other demonstrating that black-box
QEC encoders can effectively defend the local unitary adver-
sarial noises on the input data samples. Finally, in Sec. V, we
discuss several open problems and conclude the paper.

II. BASIC CONCEPTS AND GENERAL FRAMEWORK

Machine-learning technologies have recently achieved re-
markable breakthroughs in various real-world applications
[1,2] including natural language processing [69], automated
driving [43], and medical diagnostics [70]. Meanwhile, se-
rious concerns have also been raised about the integrity and
security of such technologies in various adversarial scenarios
[23,25,26]. For instance, the medical recognition software
from a medical diagnostics or a sign-recognition system from
a self-driving car may cause catastrophic medical or traffic
accidents if they are not robust against some occasional mod-
ifications (which may even be imperceptible to human eyes)
in identifying medical scans or traffic images [71]. To address
these vital problems and concerns, the field of adversarial ma-
chine learning has been developed to construct and defend the
potential adversarial manipulations against machine-learning
systems under different scenarios [72]. The field has attracted
considerable attention and there are rapid developments for
both attack and defense strategies in different adversarial
settings. For simplicity and concreteness, we will only fo-
cus our discussion on the setting of supervised learning,
although generalizations to unsupervised or reinforcement
learning settings are possible and worth systematic future
investigations.

On the one hand, there have been a number of algorithms
proposed to transfer the adversarial attack problem into an
optimization one and solve the corresponding problem or
its variants through optimization strategies [25,27–29,72–77].
We divide the adversarial attacks into black-box and white-
box attacks according to the amount of information known
by the adversary about the target classifier. In the white-box
setting, the attacker has full information about the inner struc-
ture and algorithm of the classifier. Whereas, in the black-box
setting, the attacker possesses only partial or even no infor-
mation about the classifier. A crucial piece of information
under adversarial settings is the gradient information about the
classifier. The gradients can be calculated based on the inner
structure, algorithm, and the loss function of the classifier. In
the white-box setting, various algorithms such as the fast gra-
dient sign method (FGSM) [74], basic iterative method (BIM)
[29], projected gradient descent (PGD) [74], and momentum
iterative method (MIM) [78] have been developed based on
the gradient information. In the black-box setting, algorithms
that exploit the transferability property of neural-network
classifiers have been developed, including the transfer attack
[28], substitute model attack [73,75], and zeroth-order opti-
mization attack [77] methods. On the other hand, a number
of defense strategies against adversarial attacks have been

developed as well. Some notable examples include adversarial
training [79], defense generative adversarial network [80,81],
and knowledge distillation [82,83]. These algorithms have
achieved satisfactory robustness performance against partic-
ular types of adversarial attacks. In general, we cannot expect
a defense strategy that can promote the robustness of all
machine-learning algorithms against any adversarial attacks
as long as the adversary knows the information about the
classifier. An alternative protocol to protect the classifier is
to hide the information from the attackers. Some algorithms
along this direction include adding random noise or trans-
formations which smooth the gradients and the landscape of
the loss function [36–41]. As a trade-off, these approaches, in
general, would increase the difficulty in training the classifier.

Quantum classifiers are analogs of classical classifiers,
which aim to solve classification problems with quantum
devices [84]. In this paper, we propose a defense strategy
for quantum classifiers against adversarial attacks through
randomized encoders. We start with a brief introduction to
the basic concepts, notations, and ideas of quantum classi-
fiers and quantum adversarial learning. In general, a quantum
classification task in the supervised learning setting aims
to assign a label s ∈ S to a pure state input quantum data
sample |ψ〉 ∈ H, with S being a countable label set and H
being a subspace of the entire Hilbert space. The supervised
learning procedure aims to learn a function (called a hypoth-
esis function) h : H → S that outputs a label s ∈ S for each
input state |ψ〉 ∈ H. To achieve this goal, we parametrize
the hypothesis function with θ ∈ �, where � is the param-
eter space. We train the classifier with a set of training
data TN = {(|ψ〉(1), s(1) ), ..., (|ψ〉(N ), s(N ) )}, where |ψ〉(i) and
s(i) (i = 1, ..., N ) are the input states and the corresponding
labels. This procedure is usually achieved by minimizing a
chosen loss function minθ∈� LN (θ) over the parameter space
�, with LN (θ) = 1

N

∑N
i=1 L(h(|ψ〉(i); θ), s(i) ) denoting the loss

function averaged over the training set. A number of different
quantum classifiers with different structures, loss functions,
and optimization methods have been proposed [17,85–98].
Each approach bears its pros and cons, and the choice of the
classifiers depends on the specific problem. A straightforward
approach to construct a quantum classifier, known as a vari-
ational quantum classifier [85,86,88], is to exploit variational
quantum circuits [18–20] to optimize the loss function analo-
gously to quantum support vector machines [96]. There exist a
number of different variants on the structures of the variational
quantum circuits, including hierarchical quantum classifiers
[93] and quantum convolutional neural networks [91], etc.

Recent research has shown that quantum classifiers also
suffer from the vulnerability problem under adversarial at-
tacks [30–32,35], with an experimental demonstration marked
as recent progress [33]. Unlike the training procedure, find-
ing an adversarial example for quantum classifiers can be
regarded as a different optimization program on the input
data space. Specifically, our goal is to discover the unitary
perturbation Uδ within a restricted region � close to identity,
which after being added to the legitimate input states, will
maximize the loss function:

max
δ∈�

L(h(Uδ|ψ〉(i); θ), s(i) ). (1)

023020-3



GONG, YUAN, LI, AND DENG PHYSICAL REVIEW RESEARCH 6, 023020 (2024)

In the white-box setting, the inner structures of quantum
classifiers and the loss functions are known by the attackers.
Hence, the attackers can solve the optimization problem in
Eq. (1) by exploiting the gradient information of the loss
functions. There have been several algorithms to attack quan-
tum classifiers, such as quantum-adaptive BIM, FGSM, MIM
algorithms [30], etc.

The defense strategy under these quantum adversarial
settings remains largely unexplored, with most attention con-
centrated on proving the robustness of a given classifier
[68,99,100]. Some notable algorithms to boost the robustness
of a quantum classifier, such as adversarial training [30] and
adding random noises [44], still suffer from white-box adver-
sarial attacks or the loss of classification accuracy.

Here we propose an effective approach to protect the
quantum machine learning systems using black-box random-
ized encoders in adversarial settings. Our essential idea is
illustrated in Fig. 1. We interpret the classification task as
a three-party protocol, in which Alice prepares a legitimate
quantum input data sample, Bob receives the data sample and
performs the classification, and Eve is the potential adversary
performing adversarial manipulations. To protect the quantum
classification model from adversarial attacks, we assume that
Alice and Bob share a codebook C = {pi, Ei} consisting of
different encoders Ei with the corresponding decoders, and
the probability distribution {pi} of choosing Ei. The agreement
on the codebook can be realized by quantum key distribution
[101] or quantum teleportation [63].

We assume that Alice is trusted and honest in the sense
that she sends correctly encoded quantum data samples and
correct classical messages about the random encoders to Bob.
All the adversarial attacks by Eve are added during the trans-
mission of encoded quantum messages from Alice to Bob. We
remark that in our protocols while the quantum classifier is
a white box for the potential attacker Eve, the encoder and
decoder should be black boxes that are unknown by Eve.
If Eve has the concrete information of the encoder, she can
simply decode the quantum messages and add corresponding
adversarial perturbations to the data samples. We mention that
it is generally hard and requires exponentially many samples
to learn the description of the unitary encoder [102,103] for
Eve that only gets access to the encoded data. Alice and
Bob can further switch among many different codebooks to
prevent Eve from sampling the data using the same encoder
for a large number of times. Besides, our defending protocols
are not restricted to this three-party communication scenario.
For example, the adversarial perturbations can come from
the worst-case experimental noises occurring on some ex-
perimentally prepared quantum states that are waiting to be
classified.

We rigorously show that by randomly choosing an en-
coder from the codebook, the encoded quantum data can be
robust against adversarial perturbations. Roughly speaking,
the random transformation induced by the encoder masks the
information that can be obtained by the adversary, thus miti-
gating the adversarial risk. Specifically, we consider two types
of codebooks shared by Alice and Bob in the following two
sections concerning the variational quantum machine learn-
ing on NISQ devices and the fault-tolerant quantum machine
learning in the future. We provide analytical bounds for the

robustness of protected quantum machine-learning systems
under adversarial settings.

III. DEFENDING ADVERSARIAL ATTACKS
WITH BARREN PLATEAUS

We first consider the case of adding a random unitary
transformation as an encoder. As shown in Eq. (1), the goal of
the attackers in the quantum classification task is to implement
the optimal unitary perturbation Uδ that maximizes the loss
function L. To achieve this goal, most attacking algorithms
assume the white-box access to the gradients of the loss func-
tions. For instance, the quantum-adaptive BIM, FGSM, and
MIM algorithms all hinge on calculating the gradients of the
loss function L. To protect the quantum classifiers against the
gradient-based attacking algorithms, an effective approach is
to mask the gradient information of the loss functions from the
attackers through some specially designed encoding schemes.
Intuitively, random unitaries satisfying the unitary 2-design
property could yield exponentially small expectation values
when we compute their first and second moments. In particu-
lar, it has been rigorously proved that randomly parametrized
quantum variational circuits satisfying the unitary 2-design
could result in exponentially vanishing gradients [46], which
is known as the barren plateau phenomenon. Therefore, it is
natural to consider utilizing random unitary encoders to mask
the gradient information from the attackers. Under the ran-
dom unitary encoding scheme, the expected gradient values
obtained by potential attackers will be reduced to be exponen-
tially small.

Formally, we note that any adversary attack can be ef-
fectively implemented as adding a L-layer parametrized
variational quantum circuit (PVQC) U (θ), as shown in
Fig. 2(a). More concretely, we can write the adversarial PVQC
as

U (θ) = U (θ1, ..., θL ) =
L∏

l=1

Ul (θl )Wl , (2)

where Ul (θl ) = exp(−iθlAl ) is the parametrized variational
component in each layer, Al is a Hermitian operator, and
Wl is a unitary operator that represents the fixed component
in each layer. We assume the classifier V (�) is well-trained
with parameters �. It can be a general unitary operator
such as a P-layer PVQC shown in the figure. To perform
a prediction, we simply measure some particular qubits at
the output after the classifier and assign labels according
to the measurement outcomes. Given an input pure state
|ψ〉in, the loss function can be regarded as an expectation
value over a Hermitian operator H . For the legitimate in-
put and the adversarial input, the loss functions can be
written as L(�) = 〈ψ |inV †(�)HV (�)|ψ〉in and L(�; θ) =
〈ψ |inU †(θ)V †(�)HV (�)U (θ)|ψ〉in, respectively.

To protect the quantum classifier V (�) from the adver-
sarial PVQC U (θ), we exploit a random encoder E and
the corresponding decoder E† to encrypt the legitimate data
sample |ψ〉in. We note that the codebook C = {pi, Ei} con-
tains a particular set of encoders with probability distribution
{pi}. We assume that C is unitary 2-design [45], namely,
that the first and the second moments are equivalent to the
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FIG. 2. (a) An illustration of exploiting a random unitary encoder to defend against adversarial attack from a parametrized variational
quantum circuit. In the scenario without adversarial attacks, an input state |ψ〉in is input to the parametrized variational classifier V (�) directly,
while in the adversarial scenario, a parametrized adversarial variational circuit U (θ) is used to add an evasion attack [72], as sketched in the
upper panel. In the lower panel, a random unitary encoder E and the corresponding decoder E † are added before and after U (θ) to protect the
data sample against potential adversary Eve. (b) By using a random global unitary encoder, the landscape for any adversarial circuit exhibits
a barren plateau (i.e., vanishing gradients) regardless of the inner structure of the circuit. The variables θ1 and θ2 are variational parameters of
U (θ).

corresponding moments with respect to the Haar measure
dμH (E ),∑

i

piE
⊗t
i ME†⊗t

i =
∫

dμH (E )E⊗t ME†⊗t , t = 1, 2, (3)

where M is an arbitrary operator. As shown in
Refs. [104–107], quantum circuits can implement unitary
2-design efficiently—a circuit with only O(n2) [O(n)] gates is
sufficient for attaining exact (approximate) unitary 2-design.
The type of gates in the quantum circuits can be further
restricted to single-qubit rotations and nearest-neighbor
entangling gates. Therefore, such a random encoder Ei ∈ C
can be efficiently realized by a PVQC with O(n2) gates. In
this case, the loss function given a fixed encoder Ei can be
represented by

L(�, Ei; θ) = 〈ψ |inE†
i U †EiV

†HV E†
i UEi|ψ〉in, (4)

where U ≡ U (θ) and V ≡ V (�) are parametrized with θ and
�, respectively. In the adversarial setting, we assume that the
adversarial PVQC is initialized with θ0 such that U (θ0) = I ,
i.e., the adversary starts from a legitimate quantum sample
and explores the gradient direction to maximize the value of
the loss function. We denote ∂θl L(�, Ei; θ) to be the gradient
of L(�, Ei; θ) with respect to each parameter θl , l = 1, ..., L
in the adversarial PVQC. Now, we are ready to present our
first theorem regarding the expectation and variance on each
∂θl L(�, Ei; θ).

Theorem 1. Suppose we exploit a randomly chosen global
unitary encoder Ei from a unitary 2-design codebook C =
{pi, Ei}. The expectation and variance of the derivatives of the
loss function defined in Eq. (4) with respect to any component
θl ∈ θ satisfy the following (in)equalities:

EEi∈C
[
∂θl L(�, Ei; θ0)

] = 0, (5)

VarEi∈C
[
∂θl L(�, Ei; θ0)

]
� 2Tr

(
A2

l

)
d2 − 1

Tr
(
ρH2

V

)
, (6)

where θ0 are the initial parameters for the adversarial PVQC
with U (θ0) = I , ρ = |ψ〉in〈ψ |in is the density matrix of the
input state, Al is the Hermitian operator of the parametrized
variational component in the lth layer, HV = V †HV , and d =
2n is the dimension of the Hilbert space.

Sketch of proof. We give a brief sketch of the essential
idea here. The full proof is technically involved and thus
left to Appendix A. As we assume that the random encoder
C = {pi, Ei} satisfies the unitary 2-design properties and
U (θ0) = I , we can obtain the expectation and variance of
the gradients by calculating the first and second moments
using the Haar integral. To derive the analytical results,
the Haar integrals are calculated by Schur-Weyl duality
[108]. We first prove that the EEi∈C[∂θl L(�, Ei; θ0)] is
an integral over the first moment and thus vanishes. We
then calculate the variance of the gradient using VarEi∈C[∂θl L
(�, Ei; θ0)]=EEi∈C[∂θl L(�, Ei; θ0)2]−EEi∈C[∂θl L(�, Ei; θ0)]2

= EEi∈C[∂θl L(�, Ei; θ0)2]. The variance can thus be
obtained by a second moment integral, which results in
an exponentially small value and yields Eq. (6). �

This theorem guarantees that by choosing a random unitary
encoder from the codebook C, we can bound the variance
of gradients for any parameter in any potential adversarial
PVQC circuits with an exponentially small value. By using
the Chebyshev’s inequality, this theorem indicates that the
probability of finding a gradient along any direction of am-
plitude larger than a fixed constant is exponentially small.
Specifically, with probability at least 1 − δ, the absolute value
of the gradient ∂θl L(�, Ei; θ0) is upper bounded by the expo-

nentially small value
√

[2Tr(A2
l )Tr(ρH2

V )]/[δ(d2 − 1)]. It has
been proved in Ref. [32] that the vulnerability of a quantum
classifier also grows exponentially with system size n and
perturbations of only O(

√
1/d ), d = 2n can render a consid-

erable adversarial risk. However, this result does not crack
the security guarantee in our protocol because we prove that
the gradient vanishes at a more rapid speed O(1/d ). The
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exponentially small gradients for the adversarial PVQC lead
to the barren plateau, which requires exponentially large pre-
cision and iteration steps for the adversary that exploits any
gradient-based algorithm to construct an adversarial example.
Therefore, this algorithm protects the quantum machine learn-
ing systems by masking the gradient information from the
attackers. We emphasize that our protection encoder can be
efficiently realized using a circuit containing only O(n2) gates
to satisfy the unitary 2-design requirement, which is roughly
the same scaling as most quantum classifiers commonly used
in practice.

We also stress that the adversarial PVQC is restricted to a
small neighborhood of the identity operator, thus itself does
not satisfy unitary 2-design. The barren plateaus faced by the
adversary are induced by our random encoding scheme. This
is in sharp contrast to the barren plateaus for variational quan-
tum circuits studied in the previous literature [46,47], where
the variational quantum circuits themselves are required to be
unitary 2-design.

Theorem 1 can be further extended to other codebooks. For
example, we consider another model, where the encoder Ei

can be written as a tensor product of m-qubit blocks (m < n)
with each block satisfying unitary 2-design. We show that by
using these encoders, one can create barren plateaus for the
adversary PVQC with a less stringent requirement. Without
loss of generality, we assume that n = mξ and Ei = ⊗ξ

j=1 E j
i

such that ensemble {pj
i , E j

i } forms a unitary 2-design for all j.
We can similarly decompose the operator Al in each layer of
the adversarial PVQC as

Al =
∑

k

ck

ξ⊗
j=1

Aj
l,k . (7)

We assume that
∑

k,k′ ckck′ is bounded, Tr(Aj2
l,k ) �

2m,∀l, i, and Aj
l,k is traceless. We remark that this assump-

tion is reasonable, in the sense that it is satisfied by most
commonly used quantum variational circuits (e.g., those in
[47,49]). We have the following theorem:

Theorem 2. Assume we exploit a randomly chosen en-
coder Ei, which can be written as the tensor product of
ξ m-qubit blocks independently chosen from unitary 2-design
codebook C = {pj

i , E j
i } ( j = 1, ..., ξ ). We assume the opera-

tors in adversarial PVQC can be decomposed as Eq. (7) and
Aj

l,k is traceless with Tr(Aj2
l,k ) � 2m,∀l, i, k. The expectation

and variance of the derivatives of the loss function defined
in Eq. (4) with respect to any component θl ∈ θ satisfies the
following (in)equalities:

EE j
i ∈C

[
∂θl L(�, Ei; θ0)

] = 0, (8)

VarE j
i ∈C

[
∂θl L(�, Ei; θ0)

]
� O

((
2m + 1

22m − 1

)ξ
)

. (9)

Sketch of proof. We sketch the main idea for the proof here
and leave the technical details in Appendix A. As we assume
that each block E j

i in the encoder satisfies unitary 2-design
independently, we can obtain the expectation and variance of
the loss function by calculating the Haar integral separately on
each E j

i . According to the decomposition in Eq. (7), we regard

Al as a summation of terms that are tensor products of opera-
tors on each block and calculate these terms separately. In the
first step, we derive the zero expectation on the gradients in
Eq. (8) by calculating the first moment similar to Theorem 1.
Next, we compute the variance of the gradients by calculating
the second moment Haar integral for each E j

i . The result for
the integral contains 2ξ terms. We can derive the upper bound
for the variance in Eq. (9) based on the assumption that Aj

l,k is

traceless with Tr(Aj2
l,k ) � 2m,∀l, i, k. �

Theorem 2 indicates that, under reasonable assumptions
on the adversarial PVQC, even if the encoder only satisfies
unitary 2-design on each of the subspace SU (2m) for any
m � 2, the variance of the gradients for adversarial PVQC
still decreases exponentially as the system size increases. By
exploiting this scheme, we can reduce the gate count required
in Theorem 1 from O(n2) to O(ξm2) = O(n). Compared with
Theorem 1, the codebook requires fewer experimental re-
sources at the price of a larger upper bound on the variance
for the gradients. We mention that this encoding scheme car-
ries over to adversarial PVQCs with other inner structures,
although we can only analytically derive the variance bound
under some constraints for the adversary due to technical
difficulties.

We stress that our approach does not rely on any specific
properties of the quantum classifiers V (�). It does not require
that V (�) is unitary 2-design and applies to arbitrary quantum
classifiers. Therefore, we can avoid the barren plateau land-
scape when training the quantum classifier by using shallow
circuits or some quantum circuits with specific structures that
are not unitary 2-design, such as quantum convolutional neu-
ral networks [49,91]. Even though we only rigorously prove
the case for the loss function that can be regarded as an
expectation value over the Hermitian operator H , our method
can also effectively protect quantum classifiers equipped with
other loss functions. This claim is supported by the numerical
results using Kullback-Leibler (KL) divergence [109] in the
subsequent paragraphs.

To verify that the scaling results in the above theorem are
valid for quantum machine-learning models with modest sys-
tem sizes and different loss functions, we carry out numerical
simulations on classifying quantum phases of matter, which
is widely concerned for quantum classification tasks [110]. In
particular, we consider the ground states of the cluster-Ising
model [61,62],

H (λ) = −
n−1∑
i=2

σ x
i−1σ

z
i σ x

i+1 + λ

n∑
i=1

σ
y
i σ

y
i+1, (10)

where σα
i , α = x, y, z denotes the Pauli matrices on the ith

qubit and λ is the interaction strength. Here, we take the open
boundary condition. This model features a phase transition
at λ = 1, between the cluster phase for 0 < λ < 1 and the
antiferromagnetic phase for λ > 1. We sample the Hamilto-
nian with a different parameter λ from 0 to 2 and compute
the corresponding ground states. We then construct the data
set using these ground states with the corresponding labels.
We carry out the classification task using variational quantum
classifiers of varying systems sizes from four to fourteen
qubits and circuit depth being ten. We consider two types of
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FIG. 3. Numerical results for the gradients of adversarial variational circuits. (a) The mean values of ∂θl L(�, Ei; θ0 ) as functions of sample
size N for different system sizes n. The loss function is taken as the KL divergence. The mean values of gradients are averaged over all
parameters in the adversarial parametrized variational quantum circuits. (b) The average variances of ∂θl L(�, Ei; θ0 ) for the KL divergence and
normalized square loss as functions of the system size n. The encoders used here are global random parametrized variational quantum circuits.
(c) Similar to (b), whereas the encoders used here are tensor products of two-qubit random parametrized variational blocks.

loss functions for the classifiers: (i) the normalized square loss
1 − |〈φ|ψ〉out|2, where |ψ〉out is the output state at the end of
the circuit in Fig. 2 and |φ〉 is the state encoded by the target
labels; (ii) the KL divergence between |ψ〉out and |φ〉. We
construct the encoder via a PVQC of four layers and sample
the gradients from an adversarial PVQC of four layers. The
results are obtained by averaging over variational encoders
and adversarial PVQC with random parameters and input data
samples. Further details for numeric results are provided in
Appendix B. As shown in Fig. 3(a), the expectation values
of the gradient along any directions in the adversarial PVQC
converges to zero rapidly as we increase the number of sam-
ples, which is consistent with Eq. (5). From Fig. 3(b), we can
observe that the variance of the gradients decays exponentially
as the system size increases from four to fourteen qubits. The
outcome from this numerical simulation fits the results for the
global encoder setting given by Eq. (6). In Fig. 3(c), we per-
form numerical experiments for the local encoder settings at
m = 2 in Eq. (9). We construct the encoder by using a PVQC
that can be written as a tensor product of two-qubit blocks
(each satisfying unitary 2-design) by randomly changes the
parameters within the block. The two-qubit blocks are set to
be a two-layer variational quantum circuit with the inner struc-
ture described in Appendix B. We observe that the variance of
gradient approaches zero rapidly as the system size increases.
The numerical result shows the exponential decay of gradients
predicted in Eq. (9).

IV. DEFENDING LOCAL ADVERSARIAL NOISES BY
BLACK-BOX QUANTUM ERROR CORRECTION

As we mentioned in the previous section, the adversarial
perturbation can be regarded as experimental noises in the
worst case. Under realistic experimental settings, most opera-
tions and noises are local [7,111]. Therefore, in this section we
consider the case in which both the adversarial perturbation
and state preparation can be written as tensor products of
single-qubit rotations [30]. This setting is widely employed in
qubit-encoding quantum computation and machine learning
[112]. We consider the quantum classifier model C mentioned
in Sec. II. We first analytically evaluate the vulnerability of

quantum classifiers against such local adversarial perturba-
tions. We suppose the quantum classifier h : H → S maps
the locally encoded data from

⊗n
i=1 SU (2) to a label set S =

{s1, .., sK } that contains K labels. We assume that the input
data sample gρ is chosen from H according to a probability
measure μ(·). We denote μ(h−1(sk )) to be the fraction of data
that will be assigned the label sk by the classifier. We now
introduce the following measure of adversarial risk:

Definition 1. Consider a hypothesis function h : H → S.
Suppose the input data |ψ〉 is chosen from H according to the
measure μ(·) and an adversarial attack |ψ〉 → |ψ〉′,∀|ψ〉 ∈
H occurs under the constraint d (|ψ〉, |ψ〉′) � ε. We denote
M = {|ψ〉 ∈ H | h(|ψ〉) �= h(|ψ〉′)} to be the set containing
all the states that can be made as adversarial data samples.
The adversarial risk is defined as μ(M ).

We consider the set of input states that can be encoded
by a local unitary operator on a certain initial state (e.g., the
|0〉⊗n state) and thus the classification of the quantum data
is equivalent to the classification of special unitary groups⊗n

i=1 SU (2). For technical simplicity, we assume that the
input data sample gρ is uniformly chosen from H accord-
ing to the Haar measure for each qubit μ⊗n

H (·) and denote
μ⊗n

H (h−1(sk )) to be the fraction of data that will be assigned
the label sk by the classifier. For two states ρ = gρ |0〉⊗n

and σ = gσ |0〉⊗n, where gρ = ⊗n
i=1 gi

ρ and gσ = ⊗n
i=1 gi

σ are
chosen from

⊗n
i=1 SU (2), we exploit the normalized Ham-

ming distance to measure the difference between gρ and gσ :

dNH(gρ, gσ ) = 1

n

n∑
i=1

1
[
gi

ρ �= gi
σ

]
. (11)

This normalized Hamming distance measures the fraction of
unequal gi

ρ and gi
σ for all the qubits. We can then deduce

the following theorem concerning the effectiveness of local
unitary adversarial attack:

Theorem 3. Consider a quantum classifier that maps an in-
put sample from

⊗n
i=1 SU (2) to a K-label set S = {s1, ..., sK }.

Suppose we choose an operator gρ from
⊗n

i=1 SU (2) accord-
ing to the Haar measure on each qubit μ⊗n

H (·). Without loss of
generality, we assume μ⊗n

H (h−1(s1)) � μ⊗n
H (h−1(s2)) � ... �

μ⊗n
H (h−1(sK )). There always exists a perturbation gρ → gρ ′
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with dNH(gρ, gρ ′ ) � τ , such that the adversarial risk is greater
than R ∈ (0, 1) if

τ 2 � 1

n
min

k=2,3,...,K
ln

[
4k

μ⊗n
H (h−1(sk ))(1 − R)

]
. (12)

Sketch of proof. We provide the intuition here and the tech-
nical details for the full proof are provided in Appendix. C.
Notice that the input data space

⊗n
i=1 SU (2), when equipped

with the Haar measure μ⊗n
H (·) and the normalized Hamming

distance dNH(·), forms a (2, n/2n)-Levy family [113,114]. By
exploiting the concentration of measure phenomenon on the
Levy family [115,116], we show that the measure of all data
within distance τ from a subset H′ ⊆ ⊗n

i=1 SU (2) can be
bounded below by R′, if τ 2 � 1

n ln[ 4
μ⊗n

H (H′ )(1−R′ ) ]. We then
use De Morgan’s law to prove that in the case of a K-label
classification, by choosing k = 2, 3, . . . , K that minimizes
ln[ 4k

μ⊗n
H (h−1(sk ))(1−R)

], we can bound the adversarial risk below
by R. This ends the proof of the theorem. �

The above theorem indicates that, for any quantum clas-
sifiers receiving input data of n qubits, an adversarial attack
that only changes a fraction O( 1√

n
) of qubits will result in a

moderate adversarial risk bounded below by R. As the system
size n increases, the vulnerability of a quantum classifier be-
comes more severe even for local unitary adversarial attacks.
It has been shown in Ref. [32] that in the setting of global
encoding quantum data from SU(d ) (d = 2n) and global
adversarial perturbation, an perturbation of O( 1√

d
) strength

under the Hilbert-Schmidt distance measure can guarantee a
moderate adversarial risk. Compared with this global case,
the adversarial risk under a local unitary attack is not as
severe since additional constraints has been assumed for pos-
sible attacks. However, for large quantum machine learning
systems, Eq. (12) still shows that the prediction is unsta-
ble even under a tiny noise. We remark that Eq. (12) still
holds for other distance measures, such as the normalized
Hilbert-Schmidt distance dNHS(gρ, gσ ) = 1

n

∑n
i=1 dHS(gi

ρ, gi
σ )

that calculates the average Hilbert-Schmidt distance between
each qubit. This follows from the fact that the normalized
Hilbert-Schmidt distance is always bounded above by the
normalized Hamming distance.

QEC codes [63,64] are widely used in quantum compu-
tation to protect the computation from local noises and are
believed to be a crucial building block in the future imple-
mentation of quantum computers. Inspired by this, it would
be natural to think whether QEC codes can effectively protect
quantum machine-learning systems from local unitary adver-
sarial attacks. A typical QEC procedure contains an encoder
E , an error correction circuit C, and a decoder D. The encoder
E encodes a logical quantum state |ψ〉L from the logical
Hilbert space HL into a physical quantum state |ψ〉p from
physical Hilbert space Hp. When errors occur, we perform an
error correction on physical qubits to correct particular types
of errors and use the decoder to recover the original logical
state ρL. A popular choice for QEC is the [n0, k, t] code [63],
which encodes each k logical qubits into n0 physical qubits
and is able to correct 
 t

2� erroneous physical qubits for each
logical qubit. Without loss of generality, we consider the case
when k = 1 and t = 3. The corresponding QEC codes can
correct one local error for each logical qubit. Since the QEC

codes were originally designed to correct realistic experimen-
tal errors, it is natural to ask whether the QEC codes can help
to defend the adversarial perturbations that act locally on the
physical qubits. When the attackers have no prior knowledge
of the encoding scheme, we can intuitively expect the QEC
codes to correct a significant proportion of such adversarial
errors.

We consider the model in Fig. 4(a). The adversarial settings
are similar to Sec. III except that we assume both logical
state |ψ〉L and the adversarial attack are local. To protect
the quantum machine-learning systems from such adversarial
attacks, we consider applying a QEC encoder after the state
preparation stage and the corresponding decoder before the
classification stage. The QEC encoder is a black-box oracle
for the adversary and thus can be regarded as a random en-
coder that encodes each logical qubit into physical qubits and
is able to correct particular types of local errors on these phys-
ical qubits. We remark that the assumption of a random QEC
encoder can be experimentally practical. A straightforward
approach is to permutate the physical qubits randomly such
that the adversary does not know the corresponding encoding
structures between logical qubits and physical qubits. The fact
that short random circuits are good QEC codes [117] indicates
that random QEC codes can also be realized using circuits
only containing O(n log n) gates.

To quantify the enhancement of adversarial robustness,
we adapt the idea of QDP and utilize it as a measure for
adversarial robustness [67,118,119]. Differential privacy [66]
is the property of an algorithm whose outputs cannot be
distinguished when inputting neighboring data sets. We can
thus measure the sensitivity and vulnerability of the algorithm
when changing the input using the differential privacy. For
two input data samples that are separated by a small distance,
differential privacy bounds the distance of the outputs after the
algorithm. A formal definition of QDP is given below:

Definition 2. (Quantum differential privacy [67]) Consider
the quantum algorithm Q and a measurement M on its output.
The algorithm Q is said to be (ε(τ ), γ )-QDP if for all input
quantum states ρ, σ that satisfy d (ρ, σ ) � τ , the following
inequality holds for any possible subset Y of all possible
outcomes of the measurement:

Pr[M(Q(ρ)) ∈ Y ] � eε(τ ) Pr[M(Q(σ )) ∈ Y ] + γ , (13)

where ε(τ ) is a function of distance τ .
For technical simplicity, we focus on the case γ = 0, re-

ferred to as ε-QDP. As shown in Fig. 4(b), if we consider two
neighboring x and x′ input quantum data, the ε-QDP property
bounds the difference between the probability distributions
{p1, p2, p3, p4} and {p′

1, p′
2, p′

3, p′
4} after the classification by

bounding each pi/p′
i ∈ (e−ε, eε ). We focus on the locally

encoded states in this section and exploit the normalized
Hamming distance as a distance measure. It is shown in
Refs. [44,67,118] that adding any amount of white noise
can make the algorithm satisfy QDP under trace distance
and normalized Hamming distance. Therefore, it is reason-
able to assume that under experimental settings the quantum
machine-learning system satisfies QDP, as we can always
keep a tiny amount of quantum white noise whose influ-
ence is negligible. We remark that as distance τ increases,
the corresponding ε(τ ) will always increase according to the
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FIG. 4. (a) An illustration of exploiting black-box quantum error correction (QEC) encoders to defend against local unitary adversarial
attacks. An initial state |0〉⊗n is sequentially encoded by a local encoder and a QEC encoder into the logical state |ψ〉L and the physical state
|ψ〉p. The physical state is exposed to local adversarial attacks from potential adversaries. It then enters a QEC decoder and is classified by
a quantum classifier. (b) A sketch of the connection between quantum differential privacy (QDP) and adversarial robustness. The quantum
classifier maps input data x into a probability distribution {p1, ..., p4} and predicts its label according to the maximum likelihood. The different
labels are distinguished by different colors. Given a perturbed data x′ with d (x, x′) � τ , ε-QDP limits the shift on probability distribution by
bounding | ln(p′

i/pi )| � ε (i = 1, . . . , 4).

definition given by Eq. (13). For a quantum classification
algorithm Q : H → R|S| that maps a quantum data sample to
a probability distribution on the label set S, the QDP property
in Definition 2 has a direct connection with the quantum
adversarial risk in Definition 1. The adversarial risk for Q can
be explicitly written as

E|ψ〉∈H

[
sup

δ:‖δ‖�τ

Pr
s1∼Q(|ψ〉),s2∼Q(|ψ〉+δ)

(s1 �= s2)

]
, (14)

where δ is the adversarial perturbation and the expecta-
tion value is averaged over all choices of |ψ〉 according
to the measure μ(·). By Jensen’s inequality, the probability
for two random variables chosen from probability distribu-
tion P = (p1, ..., p|S|) and Q = (q1, ..., q|S|) having the same
value can be bounded by

∑
i piqi � exp(

∑
i pi log(qi )) =

exp(−dKaL(P, Q) − H (P)). Here, H (·) is the Shannon entropy
and dKL(·) is the KL divergence between two distributions.
Noticing that the algorithm Q is ε(τ )-QDP, P = Q(|ψ〉), Q =
Q(|ψ〉 + δ), and ‖δ‖ � τ , | ln(pi/qi )| is bounded by ε(τ ).
As a result, the KL divergence between P and Q is bounded
above by 2ε(τ )2 [120]. Therefore, we can derive the following
information-theoretic upper bound for the adversarial risk of
Q that is ε(τ )-QDP.

Proposition 1. Assume we have a quantum classifier Q :
H → R|S| that satisfies ε(τ )-QDP. When performing an
adversarial attack |ψ〉 → |ψ〉′ with d (|ψ〉, |ψ〉′) � τ , the ad-
versarial risk R(τ ) is bounded above by

R(τ ) � 1 − e−2ε(τ )2
E|ψ〉∈H[e−H (Q(|ψ〉))], (15)

where the expectation value is averaged over all |ψ〉 chosen
uniformly from H according to the measure μ(·).

It is worthwhile to mention that E|ψ〉∈H[e−H (Q(|ψ〉))] is a
constant that only depends on the property of the classifier
Q itself. When the classifier is well-trained and can provide
the correct label with a large confidence, E|ψ〉∈H[e−H (Q(|ψ〉))]
is close to 1. In particular, if Q predicts the labels with a

unity confidence, E|ψ〉∈H[e−H (Q(|ψ〉))] = 1. As we decrease
ε(τ ), the adversarial risk R(τ ) will decrease polynomially.
This indicates that one can improve the adversarial robustness
by simply amplifying the QDP property (i.e., decreasing the ε

parameter). This leads us to the next theorem concerning the
amplification of QDP using the black-box QEC encoding:

Theorem 4. Suppose we use a quantum classifier that sat-
isfies ε(τ )-QDP under the normalized Hamming distance. We
apply a QEC encoder which encodes each logical qubit into n0

physical qubits and is able to correct an arbitrary error on one
of these qubits. Assume that the inner structure of the QEC
code is unknown by the adversary. We randomly choose arbi-
trary ρ and σ on the physical qubits with dNH(ρ, σ ) � τ , then
for any subset Y of all possible outcomes of the measurement
M, Pr[M(Q(ρ)) ∈ Y ] � eεQEC Pr[M(Q(σ )) ∈ Y ], where

εQEC = ε

(
n0(n0 − 1)τ 2

δ

)
, (16)

with probability at least 1 − δ.
Proof. The normalized Hamming distance measures the

fraction of qubits that are different from the legitimate data.
Assume an adversarial attack ρ → ρ ′ occurs on the physical
qubits such that dNH(ρ, ρ ′) � τ . Under a black-box QEC pro-
cedure, a logical qubit becomes erroneous if it contains more
than two erroneous physical qubits. Therefore, the expected
fraction of logical qubits affected is O(n0(n0 − 1)τ 2) [63].
As a consequence, to achieve the bound in Theorem 3 on
the logical qubits, the adversary should alter at least O( 1

n1/4 )
fraction of physical qubits in expectation. The QEC encoder
mitigates the adversarial risk in expectation.

By the Markov’s inequality, one can choose ρ and ρ ′ from
physical quantum states such that dNH(ρ, ρ ′) � τ and

dNH(D ◦ C(ρ), D ◦ C(ρ ′)) � n0(n0 − 1)τ 2

δ
, (17)
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with probability at least 1 − δ. By the definition of QDP, it is
guaranteed with probability at least 1 − δ that Pr[M(Q(ρ)) ∈
Y ] � eεQEC Pr[M(Q(ρ ′)) ∈ Y ], where εQEC = ε( n0(n0−1)τ 2

δ
).�

The above theorem indicates that for a quantum classifier
satisfying QDP, a black-box QEC encoder can effectively am-
plify the QDP property with high probability. In particular, the
QEC encoder can promote the ε(τ )-QDP quantum classifier
to a new quantum classifier that satisfies ε( n0(n0−1)τ 2

δ
)-QDP

property for at least 1 − δ fraction of all possible input data
samples. Under the normalized Hamming distance, a QEC
encoder can always promote the robustness of the quantum
classifier against perturbations added on the input quantum
states with large probability, as long as τn0(n0 − 1)/δ � 1.
As n0 is a constant for a fixed QEC encoder, this is a constant
threshold for τ . We remark that a quantum algorithm satis-
fying QDP can be obtained through adding white noise [44].
However, white noise will erase the information required for
classification and should be suppressed for variational quan-
tum classifiers on NISQ devices. In contrast, our approach
only assumes the existence of tiny noise and can guarantee
ε-QDP for arbitrary small ε > 0 by concatenating QEC en-
coders. Compared with the previous work [44] that simply
relies on the white noise to produce QDP property, our ap-
proach prevents the risk of losing too much information due
to noises. Theorem 4 opens a door for studying the promotion
of adversarial robustness from the perspective of QEC. Intu-
itively, a QEC encoder can mitigate the adversarial risk from
the local unitary adversarial attack by reducing the bound in
Eq. (12) to O( 1

n1/4 ) with a large probability. This is because the
QEC can reduce the error rate from p to p2 in expectation [63].
We mention that it is necessary to keep the inner structure
of the QEC encoder confidential to the potential adversary. If
the QEC encoder is known by the attacker, the QEC circuit
together with the quantum classifier can be regarded as an
enlarged quantum classifier with system size nn0. According
to Theorem 3, such a quantum classifier is more vulnerable
under adversarial attacks.

In fault-tolerant quantum computation, the errors are as-
sumed to occur locally on each qubit for each quantum
operation independently with probability below the threshold
pthres. To mitigate the influence of these errors, multiple levels
of QEC codes are concatenated to bound the error below an
expected value ζ . It has been proved that O(log log(1/ζ ))
levels of QEC codes are enough [63]. As we mentioned in the
previous sections, adversarial perturbations are not random
experimental noises. Instead, these perturbations are either
carefully engineered noises from hostile adversary or worst-
case experimental noises. However, Theorem 4 indicates that
we can always decrease the ε parameter in the ε-QDP property
of the quantum classifier by concatenating additional levels of
QEC codes. We have shown in Theorem 3 that adversarial
perturbations with strength O( 1√

n
) can lead to a moderate

adversarial risk under local unitary adversarial attacks. To
reduce the potential adversarial risk, we should bound the
distance τ ′ = �( 1√

n
) after concatenating the QEC codes. We

can thus deduce the following corollary.
Corollary 1. We consider the classifier Q discussed in

Theorem 4. After concatenating LQEC levels of QEC codes,
one can guarantee with high probability that Q satisfies

ε( 1√
n

)-QDP for randomly chosen ρ and σ with dNH(ρ, σ ) �
τ , as long as

LQEC � O(log log n). (18)

The proof of this corollary follows from using Theo-
rem 4 repeatedly and fixing the δ in each level as δ

LQEC
. This

corollary indicates that only O(log log n) layers of repeated
QEC encoders can guarantee ε(O( 1√

n
))-QDP for the quan-

tum classifier. The number of levels of QEC required has a
double logarithmic scaling over the system size n. We show
through this theorem that fault-tolerant quantum computers
with black-box QEC codes are robust against local adversarial
attacks with a large probability. This result shows the effec-
tiveness of QEC under the condition of even the worst-case
experimental noises.

V. CONCLUSIONS AND OUTLOOK

In this paper, we proposed an effective approach to pro-
tect quantum learning systems in adversarial scenarios using
randomized encoders that are unknown by the attackers. We
rigorously proved that random unitary encoders forming a uni-
tary 2-design set can create barren plateaus for any adversarial
PVQC, which prevent the creations of adversarial perturba-
tions. To benchmark the performance of our approach, we
carried out numerical simulations on classifying topological
phases of ground states for the clustered-Ising Hamiltonian.
We remark that this approach is feasible on NISQ devices
as the classifiers, adversarial circuits, and encoders can be
implemented by variational quantum circuits. In addition, we
proved that black-box QEC encoders unknown to the ad-
versary can mitigate the adversarial risk by promoting the
differential privacy against local unitary noises. Our results
develop versatile defense strategies to enhance the reliability
and security of quantum learning systems, which may have
far-reaching consequences in applications of quantum artifi-
cial intelligence based on both near-term and future quantum
technologies.

Many questions remain and warrant further investigations.
For instance, our discussions in this paper mainly focus on
quantum supervised learning scenarios. Yet, unsupervised and
reinforcement learning approaches may also suffer from the
vulnerability problem [72]. Thus, it will be interesting and
important to develop similar defense strategies in the context
of quantum unsupervised or reinforcement learning, where
obtaining analytical performance guarantees in a rigorous
fashion might be more challenging. In addition, how to extend
our results to the scenario of quantum delegated learning with
multiple clients [121] is well worth future studies. Finally, it
is also of crucial importance to carry out an experiment to
demonstrate our defense strategies against adversarial pertur-
bations. This would be a key step toward secure and reliable
quantum artificial intelligence technologies.
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APPENDIX A: BARREN PLATEAU INDUCED BY RANDOM
UNITARY ENCODINGS

In this Appendix, we provide the detailed proofs for The-
orem 1 and Theorem 2 in the main text. We give further
analytical and numerical results concerning creating barren
plateaus for adversarial PVQC. To begin, we provide the
formal definition of unitary t design. Consider a polynomial
Pt,t (U ) with the homogeneous degree at most t in the entries
of a unitary matrix U , and degree t in the complex conjugates
of these entries. We can evaluate the average of Pt,t (U ) under
the Haar measure with

∑M
i=1 piPt,t (Ui ), where {U1, ...,UM}

equipped with probability {p1, ..., pM} is called to form the
unitary t design. The formal definition [45,46,105] is given as
follows.

Definition 3. Let Pt,t (U ) be a polynomial of unitary U and
its complex conjugate U †, with up to a given degree t . An
ensemble {pi,Ui}, i = 1, ..., M is called a unitary t design if

M∑
i=1

piPt,t (Ui ) =
∫

Pt,t (U )dμH (U ) (A1)

holds for any possible Pt,t (U ), where dμH (U ) is the Haar
measure.

The above expression can be either exact or approximate,
which corresponds to the exact unitary t design or the ap-
proximate unitary t design, respectively. The unitary t design
indicates that the t th moments are (approximately) the same as
the corresponding moments with respect to the Haar measure.
The first and second moments over the Haar measure are given
by Weingarten functions [108]:

∫
U †OUdμH (U ) = Tr(O)

d
I, (A2)∫

U †AUXU †BUdμH (U ) = dTr(AB) − Tr(A)Tr(B)

d (d2 − 1)
Tr(X )I + dTr(A)Tr(B) − Tr(AB)

d (d2 − 1)
X, (A3)

where d = 2n is the dimension of the unitary U . Below, we prove Theorem 1 in the main text.
Consider the adversarial PVQC equipped with parameters θ and the random unitary encoder satisfying the unitary 2-design

as shown in Fig. 2(a). When we fix an encoder Ei and initialize the adversarial PVQC with θ0 such that U (θ0) = I , the gradient
of the loss function L can be written as

∂θl L(�, Ei; θ0) = i〈ψ |inE†
i U †

−[Al ,U †
+EiV

†HV E†
i U+]U−Ei|ψ〉in, (A4)

where U− = ∏l−1
i=1 exp(−iAiθi )Wi and U+ = ∏L

i=l exp(−iAiθi )Wi. At θ0, U+U− = I . Since we have assumed the codebook C
equipped with the probability distribution {pi, Ei} forms unitary 2-design, the average gradients at θ0 are calculated as zero:

EEi∈C
[
∂θl L(�, Ei; θ0)

] = i
∫

dμH (E )〈ψ |inE†U †
−[Al ,U †

+EV †HV E†U+]U−E |ψ〉in

= iTr

{ ∫
dμH (E )|ψ〉in〈ψ |inE†U †

−[Al ,U †
+EV †HV E†U+]U−E

}

= i

2n
Tr[ρ(Tr(U †

−AlU
†
+)V †HV − Tr(U+AlU−)V †HV )] = 0, (A5)

where ρ = |ψ〉in〈ψ |in. Next, we prove the exponential decay variances of the gradients. Since VarEi∈C[∂θl L(�, Ei; θ0)] =
EEi∈C[∂θl L(�, Ei; θ0)2] − EEi∈C[∂θl L(�, Ei; θ0)]2 = EEi∈C[∂θl L(�, Ei; θ0)2], the variances can be calculated by the second mo-
ment integral:

EEi∈C
[
∂θl L(�, Ei; θ0)2

] = − Tr

{∫
dμH (E )ρE†U †

−[Al ,U †
+EV †HV E†U+]U−EρE†U †

−[Al ,U †
+EV †HV E†U+]U−E

}

= 2

d (d2 − 1)

[
dTr

(
A2

l

) − Tr2(Al )
][

Tr
(
ρH2

V

) − Tr2(ρHV )
]
� 2

d2 − 1
Tr

(
A2

l

)
Tr

(
ρH2

V

)
, (A6)

where HV = V †HV . This completes the proof of Theorem 1 in the main text.
We then prove Theorem 2 in the main text. We utilize the following Haar measure integral over tensor-product unitary matrices

[108]:

∫
U (d1 )

...

∫
U (dξ )

dμH (U1)...dμH (Uξ )(U1 ⊗ ... ⊗ Uξ )†X (U1 ⊗ ... ⊗ Uξ ) = Tr(X )
ξ⊗

j=1

I j

d j
, (A7)
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where d j is the dimension of the unitary matrix Uj and I j is the identity of d j dimensions. Therefore, the expectations of the
gradients in Eq. (A4) can be calculated as

EE j
i ∈C

[
∂θl L(�, Ei; θ0)

] =
∫

U (2m )
...

∫
U (2m )

dμH (E1)...dμH (E ξ )∂θl L
(
�, E = ⊗ξ

j=1E j ; θ0
) = 0. (A8)

Next, we calculate the variances for the gradients by VarE j
i ∈C[∂θl L(�, Ei; θ0)] = EE j

i ∈C[∂θl L(�, Ei; θ0)2]. We utilize the
following subspace Haar measure integral:∫

U (d1 )
(U1 ⊗ I2,...,ξ )†(A1 ⊗ I2,...,ξ )(U1 ⊗ I2,...,ξ )X (U1 ⊗ I2,...,ξ )†(B1 ⊗ I2,...,ξ )(U1 ⊗ I2,...,ξ )dμH (U1)

=
d2d3...dξ∑
ν,ν ′=1

[ ∫
U (d1 )

U †
1 A1U1(X 1

ν,ν ′ )U †
1 B1U1dμH (U1)

]
⊗ |ν〉〈ν ′|

= 1

d1
(
d2

1 − 1
) [(d1Tr(A1B1) − Tr(A1)Tr(B1))Tr1(X ) ⊗ Id1 + (d1Tr(A1)Tr(B1) − Tr(A1B1))X ]. (A9)

In the second line, we decompose the operator X into
∑

ν,ν ′ X 1
ν.ν ′ ⊗ |ν〉〈ν ′| using the orthogonal basis {|ν〉 :

ν = 1, 2, ..., d2d3...dξ }. By repeatedly using the above formula, we can evaluate the Haar measure integral of
the form

∫
U (d1 ) ...

∫
U (dξ )(U1 ⊗ ... ⊗ Uξ )†(A1 ⊗ ... ⊗ Aξ )(U1 ⊗ ... ⊗ Uξ )X (U1 ⊗ ... ⊗ Uξ )†(B1 ⊗ ... ⊗ Bξ )(U1 ⊗ ... ⊗

Uξ )dμH (U1)...dμH (Uξ ). Now, we are ready to compute the variances for the gradients in the adversarial PVQC U (θ).
We divide the variance into four terms:

VarE j
i ∈C

[
∂θl L(�, Ei; θ0)

] = − Tr

[ ∫
U (2m )

...

∫
U (2m )

dμH (E1)...dμH (E ξ )ρE†U †
−AlU

†
+EHV ρE†U †

−AlU
†
+EHV

]

− Tr

[ ∫
U (2m )

...

∫
U (2m )

dμH (E1)...dμH (E ξ )ρHV E†U+AlU−EρHV E†U+AlU−E

]

+ Tr

[ ∫
U (2m )

...

∫
U (2m )

dμH (E1)...dμH (E ξ )ρE†U †
−AlU

†
+EHV ρHV E†U+AlU−E

]

+ Tr

[ ∫
U (2m )

...

∫
U (2m )

dμH (E1)...dμH (E ξ )ρHV E†U+AlU−EρE†U †
−AlU

†
+EHV

]
, (A10)

where E = E1 ⊗ ... ⊗ E ξ , HV = V †HV , and ρ = |ψ〉in〈ψ |in. We calculate each term in Eq. (A10) using Eqs. (A7) and (A9):

Tr

[∫
U (2m )

...

∫
U (2m )

dμ(E1)...dμ(E ξ )ρE†U †
−AlU

†
+EHV ρE†U †

−AlU
†
+EHV

]

= 1

(22m − 1)ξ
∑
k,k′

ckck′
∑

J⊆{1,...,ξ}

∏
j∈J

(
Tr

(
Aj

l,kA j
l,k′

) − 1

2m
Tr

(
Aj

l,k

)
Tr

(
Aj

l,k′
))

×
∏
j /∈J

(
Tr

(
Aj

l,k

)
Tr

(
Aj

l,k′
) − 1

2m
Tr

(
Aj

l,kA j
l,k′

))
Tr

[
Tr j∈J (HV ρ) ⊗

⊗
j∈J

I2m · HV ρ

]
, (A11)

Tr

[∫
U (2m )

...

∫
U (2m )

dμ(E1)...dμ(E ξ )ρHV E†U+AlU−EρHV E†U+AlU−E

]

= 1

(22m − 1)ξ
∑
k,k′

ckck′
∑

J⊆{1,...,ξ}

∏
j∈J

(
Tr

(
Aj

l,kA j
l,k′

) − 1

2m
Tr

(
Aj

l,k

)
Tr

(
Aj

l,k′
))

×
∏
j /∈J

(
Tr

(
Aj

l,k

)
Tr

(
Aj

l,k′
) − 1

2m
Tr

(
Aj

l,kA j
l,k′

))
Tr

[
Tr j∈J (ρHV ) ⊗

⊗
j∈J

I2m · ρHV

]
, (A12)

Tr

[∫
U (2m )

...

∫
U (2m )

dμ(E1)...dμ(E ξ )ρE†U †
−AlU

†
+EHV ρHV E†U+AlU−E

]

= 1

(22m − 1)ξ
∑
k,k′

ckck′
∑

J⊆{1,...,ξ}

∏
j∈J

(
Tr

(
Aj

l,kA j
l,k′

) − 1

2m
Tr

(
Aj

l,k

)
Tr

(
Aj

l,k′
))

×
∏
j /∈J

(
Tr

(
Aj

l,k

)
Tr

(
Aj

l,k′
) − 1

2m
Tr

(
Aj

l,kA j
l,k′

))
Tr

[
Tr j∈J (HV ρHV ) ⊗

⊗
j∈J

I2m · ρ

]
, (A13)
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Tr

[ ∫
U (2m )

...

∫
U (2m )

dμ(E1)...dμ(E ξ )ρHV E†U+AlU−EρE†U †
−AlU

†
+EHV

]

= 1

(22m − 1)ξ
∑
k,k′

ckck′
∑

J⊆{1,...,ξ}

∏
j∈J

(
Tr

(
Aj

l,kA j
l,k′

) − 1

2m
Tr

(
Aj

l,k

)
Tr

(
Aj

l,k′
))

×
∏
j /∈J

(
Tr

(
Aj

l,k

)
Tr

(
Aj

l,k′
) − 1

2m
Tr

(
Aj

l,kA j
l,k′

))
Tr

[
Tr j∈J (ρ) ⊗

⊗
j∈J

I2m · HV ρHV

]
, (A14)

where the
∑

J⊆{1,...,ξ} sums over all possible subsets of {1, ..., ξ} and the operator Al in each layer of the adversarial PVQC is

decomposed as Al = ∑
k ck

⊗ξ
j=1 Aj

l,k [Eq. (7) of the main text]. By summing up these four terms, we obtain the variance of the
gradient as

VarE j
i ∈C

[
∂θl L(�, Ei; θ0)

] =
(

1

22m − 1

)ξ ∑
k,k′

ckck′
∑

J⊆{1,...,ξ}

∏
j∈J

(
Tr

(
Aj

l,kA j
l,k′

) − 1

2m
Tr

(
Aj

l,k

)
Tr

(
Aj

l,k′
))

×
∏
j /∈J

(
Tr

(
Aj

l,k

)
Tr

(
Aj

l,k′
) − 1

2m
Tr

(
Aj

l,kA j
l,k′

))
Tr

[
Tr j∈J (ρ) ⊗

⊗
j∈J

I2m · HV ρHV + Tr j∈J (HV ρHV )

⊗
⊗
j∈J

I2m · ρ − Tr j∈J (ρHV ) ⊗
⊗
j∈J

I2m · ρHV − Tr j∈J (HV ρ) ⊗
⊗
j∈J

I2m · HV ρ

]
. (A15)

We bound the following term with a constant C0, which does not increase with the total system dimension:

C0 = max
J⊆{1,...,ξ}

Tr

[
Tr j∈J (ρ) ⊗

⊗
j∈J

I2m · HV ρHV + Tr j∈J (HV ρHV ) ⊗
⊗
j∈J

I2m · ρ − Tr j∈J (ρHV )

⊗
⊗
j∈J

I2m · ρHV − Tr j∈J (HV ρ) ⊗
⊗
j∈J

I2m · HV ρ

]
. (A16)

According to the assumption of Theorem 2, Aj
l,k is traceless and Tr(Aj2

l,k ) � 2m,∀l, i, k. We have

Tr
(
Aj

l,kA j
l,k′

)
�

√
Tr

(
Ai2

l,k

)
Tr

(
Ai2

l,k′
)
� 2m, (A17)

∣∣Tr
(
Aj

l,k

)
Tr

(
Aj

l,k′
) − 1

2m
Tr

(
Aj

l,kA j
l,k′

)∣∣ � 1. (A18)

Hence, we bound the variance as

VarE j
i ∈C

[
∂θl L(�, Ei; θ0)

]
�

(
1

22m − 1

)ξ ∑
k,k′

ckck′
∑

J⊆{1,...,ξ}

∏
j∈J

2mC0 (A19)

=
∑
k,k′

ckck′

(
2m + 1

22m − 1

)ξ

C0, (A20)

which finishes the proof for Theorem 2.

APPENDIX B: MORE NUMERICAL RESULTS

In this Appendix, we provide the details for our numerical
simulations. The structure of PVQCs we used in numerical
simulations is shown in Fig. 5(a). In this P-layer PVQC clas-
sifier, we first prepare the input state as an (m + n)-qubit state
|ψ〉in ⊗ |0〉⊗m, where |ψ〉in is the quantum state that encodes
the data to be classified and |0〉⊗m are the ancillary qubits
for measurement outputs. Then we apply P layers of unitary
quantum operations with each layer containing two rotation
units and one entangling unit. Each rotation unit performs
an Euler rotation in the single-qubit Bloch sphere and each
entangling unit entangles different qubits using CNOT gates

between each pair of neighboring qubits. We can adjust the
rotation angles and these angles are collectively regarded as
variational parameters �. The final output state can be written
as

|ψ (�)〉 =
(

P∏
i=1

Ui

)
|ψ〉in ⊗ |0〉⊗m, (B1)

where Ui = [
∏n+m

j=1 Z (θ j
i,d )X (θ j

i,c)]Uent[
∏n+m

j=1 Z (θ j
i,b)X (θ j

a,1)]
denotes the quantum operation for the ith layer and Uent

denotes the entangling unit. For adversarial attacks and en-
coders, we set m = 0. For the quantum classifier, we employ
P = 10 for different system sizes. As the ground states
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FIG. 5. (a) The illustration for P-layer variational quantum circuits to construct encoders and classifiers in the numerical simulations. Each
layer contains two single-qubit rotation units (the green boxes) and one entangling unit (the red box). In each rotation unit, we perform and
Euler angle rotation Z (θ k

i,u)X (θ k
i,v ). (u, v) = (d, c) or (b, a) distinguishes the two rotation units. i = 1, 2, ..., P denotes the index of the layer.

k = 1, 2, ..., m + n denotes the qubit index. (b), (c) The loss and accuracy averaged over the training set and the validation set as the function
of epoch, for the 12-qubit quantum classifier with (b) the KL divergence and (c) the normalized square loss as the loss function. Each epoch
consists of ten iterations.

of the cluster Ising model has two phases, we set m = 1.
After the classifier, we measure the output ancillary qubit
ρout and compute Pr(y = m) = Tr(ρout|m〉〈m|), m = 0, 1. We
assign a label y = 0 if Pr(y = 0) � Pr(y = 1) and y = 1
otherwise.

For the adversarial PVQC U (θ), we require that the initial
parameters satisfy U (θ0) = I . Therefore, we employ an alter-
native version of variational quantum circuits. To guarantee
that U (θ0) = I , we add a complex conjugate entangling unit
at the end of each layer, and each Ui in Eq. (B1) becomes
Ui = [

∏n+m
j=1 Z (θ j

i,d )X (θ j
i,c)]Uent[

∏n+m
j=1 Z (θ j

i,b)X (θ j
a,1)]U †

ent. We
then initialize the adversarial PQVC with all rotation angles
being zero.

In the numerical simulations, we exploit the quantum-
adapted KL divergence LKL(h(|ψ〉in; �), p) and the normal-
ized square loss LNS (h(|ψ〉in; �), |y〉):

LKL(h(|ψ〉in; �), p) = −
2∑

i=1

pk log qk, (B2)

LNS (h(|ψ〉in; �), |y〉) = 1 − |〈y|ρout|y〉|2, (B3)

where q = (q1, q2) denotes the diagonal elements of the
output state ρout and p = (1, 0), (0, 1) for y = 0, 1. Dur-
ing the training procedure of the quantum classifier, we
exploit the gradient-based Adam optimization algorithm
[122,123] to minimize the empirical loss function LN (�) =
1
N

∑N
i=1 L(h(|ψ〉; �), y) over N training samples. To calculate

the gradients of the loss function, we employ the defi-
nition ∂LN (θ )/∂θ = limε→0

1
2ε

[LN (θ + ε) − LN (θ − ε)] and
estimate the value by choosing a small ε = 10−10. In
Figs. 5(b) and 5(c), we display the averaged loss and ac-
curacy in the training procedure for the 12-qubit classifier.
The overfitting risk is low [124] as the loss and accuracy are
close for validation data samples and training data samples.
The numerical simulations in this paper were implemented
based on the Yao.jl extension [125], the Flux.jl [126] and
the Zygote.jl [127] packages using the Julia programming
language [128].

APPENDIX C: ANALYTICAL DERIVATIONS FOR THE
ADVERSARIAL RISK OF LOCAL UNITARY ATTACKS

In this Appendix, we give a detailed proof for Theorem 3 in
the main text. We introduce the concepts of the concentration
function and the Levy family, and some basic results regarding
the adversarial machine learning.

Definition 4. For a subset H′ ⊆ H, a τ -extension for
H′ under the distance metric D is defined as H′

τ = {x ∈
H|D(x,H′) � τ }. The concentration function for a probabil-
ity measure μ is defined as α(τ ) = 1 − inf{μ(H′

τ )|μ(H) �
1
2 )}. A d-dimensional space equipped with the distance metric
D and probability measure μ is called an (l1, l2)-Levy family
if

α(τ ) = l1e−l2τ 2d . (C1)

We next introduce the following lemma showing that⊗n
i=1 SU(2) equipped with the Haar measure on each SU(2)

and the normalized Hamming distance is a Levy family.
Lemma 1. (Example 2.6 in Ref. [113]) Given a probabil-

ity measure space (X , μ), we consider the tensor product
space X⊗n equipped with μ⊗n and the normalized Ham-
ming distance dNH. The ensemble (X⊗n, μ⊗n, dNH) forms a
(2, n

dim(X )n )-Levy family with the concentration function sat-
isfying:

α(τ ) = 2e−τ 2n. (C2)

We refer to Refs. [113,114] for the proof of the above
lemma. The above lemma implies that the tensor space⊗n

i=1 SU (2) with the Haar measure on each qubit μ⊗n
H and the

normalized Hamming distance forms a (2, n
2n )-Levy family.

We recap the following lemma regarding the lower bound of
the measure of a τ -extension for a subspace H′.

Lemma 2. (Theorem 3.6 in Ref. [115]) For a subspace H′
chosen from a (l1, l2)-Levy family (H, D, μ), dim(H) = d ,
the measure of a τ -extension of H′ is greater than R if τ

satisfies

τ 2 � 1

l2d
ln

[
l2
1

μ(H′)(1 − R)

]
. (C3)
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Proof. We briefly recap the proof given in Ref. [32,115].
We decompose τ into two parts τ = τ1 + τ2. We choose
τ1 with μ(H′) > l1e−l2τ 2

1 d . There are two cases concerning
whether μ(H′) � 1

2 :
(1) For the case when μ(H′) � 1

2 , assuming μ(H′
τ1

) � 1
2 ,

we have μ(H\H′
τ1

) � 1
2 . For simplicity, we denote H′

τ1
=

H\H′
τ1

. By the definition of Levy family, we deduce that

α(τ1) � 1 − μ(H′
τ1

) = μ(H′) > α(τ1), which leads to a con-
tradiction.

(2) For the case when μ(H′) > 1
2 , it is straightforward to

see μ(H′
τ1

) > 1
2 .

Therefore, by choosing such τ1 we can guarantee that
μ(H′

τ1
) > 1

2 . Next, we consider the τ2-extension of H′
τ1

with
τ 2

2 � 1
l2d ln[ l1

(1−R) ]. Applying the definition of the Levy family
we can prove the lemma as μ(H′

τ1+τ2
) > 1 − α(τ2) � R and

τ 2 � τ 2
1 + τ 2

2 = 1
l2d ln[ l2

1
μ(H′ )(1−R) ]. �

Now we start to prove Theorem 3 in the main text.
We notice that (

⊗n
i=1 SU (2), dNH, μ⊗n

H ) forms a (2, n
2n )-Levy

family and dim((
⊗n

i=1 SU (2)) = 2n. Hence, for any subspace
H′ ⊆ ⊗n

i=1 SU (2), any τ -extension of H′ has measure at

least R∗ if

τ 2 � 1

n
ln

[
4

μ⊗n
H (H′)(1 − R∗)

]
. (C4)

Given k = 2, 3, ..., K , any data sample in the intersection
of the τ -extensions {h−1(si)τ }k

i=1 can be transformed into a
data sample in any h−1(si), when a perturbation ρ → ρ ′ of
amplitude τ occurs. The adversarial attack can thus change the
labels for all the data samples in this intersection set. By the
De Morgan’s law, the measure of this intersection set satisfies

μ⊗n
H

(∩k
i=1h−1(si )τ

)
� 1 −

k∑
i=1

μ⊗n
H (H\h−1(si )τ )

=
k∑

i=1

μ⊗n
H (h−1(si)τ ) − (k − 1). (C5)

After setting R∗ = k−1+R
k and H′ = h−1(sk ) in Eq. (C4),

we deduce that adversarial risk is bounded below by
μ⊗n

H (∩k
i=1h−1(si )τ ) � R. By choosing the minimal value

of all k = 2, 3, ..., K , we finish the proof for Theorem 3 in the
main text.
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