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From asynchronous states to Griffiths phases and back:
Structural heterogeneity and homeostasis in excitatory-inhibitory networks
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Balanced neural networks, in which excitatory and inhibitory inputs compensate each other on average, give
rise to a dynamical phase dominated by fluctuations called an asynchronous state, crucial for brain functioning.
However, structural disorder, which is inherent to random networks, can hinder such an excitation-inhibition
balance. Indeed, structural and synaptic heterogeneities can generate extended regions in phase space akin to
critical points, called Griffiths phases, with dynamical features very different from those of asynchronous states.
Here we study a simple neural-network model with tunable levels of heterogeneity able to display these two
types of dynamical regimes, i.e., asynchronous states and Griffiths phases, putting them together within a single
phase diagram. Using this simple model, we are able to emphasize the crucial role played by synaptic plasticity
and homeostasis to reestablish balance in intrinsically heterogeneous networks. Overall, we shed light onto how
diverse dynamical regimes, each with different functional advantages, can emerge from a given network as a
result of self-organizing homeostatic mechanisms.
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I. INTRODUCTION

Understanding the relationship between the basic structural
features of a neural network and its dynamical repertoire is
crucial if one aims to construct a general modeling framework
to describe brain function [1–3]. Neural populations must be
able to effectively process incoming signals while keeping
their activity sparse and segregated from other areas involved
in different tasks and might need to transmit their outputs to
other regions to integrate information at a higher level [4,5].
This segregation-integration balance is severely constrained
by the spatial distribution and connectivity patterns of differ-
ent cells [6,7].

Recent advances in recording techniques allow for the
measurement of the activity of thousands of neighboring cor-
tical neurons in a rather accurate manner, revealing that cells
tend to fire in an irregular fashion with high variability and
relatively low average pairwise correlation [8–11]. This type
of empirically observed collective dynamical regime, known
as an asynchronous state [12–15], is theoretically understood
as the outcome of the interplay between the opposing excita-
tory and inhibitory forces that together control the dynamical
state of neural populations [9,15–21]. More specifically, when
the connectivity pattern is such that excitatory and inhibitory
inputs to any given neuron nearly compensate each other on
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average, the activity of such a cell is dominated by fluctuations
of the input rather than by its mean value, which may be be-
low threshold. As a consequence, the resulting asynchronous
state of balanced networks is characterized by sporadic firing
events with high temporal variability, akin to a random Pois-
son process [16–20].

Early theoretical and modeling approaches succeeded at
reproducing this fluctuation-dominated asynchronous state
considering sparse random networks and/or synaptic weights
that were scaled down with network size [16–18,22]. In
particular, sparsity ensures that two given neurons share a
negligible proportion of presynaptic neighbors and inputs,
and hence their activity remains mostly uncorrelated. How-
ever, actual cortical populations are known to be densely
connected [23,24]. Thus, the prerequisite of network spar-
sity was later relaxed and more-refined models introduced
the possibility of a dynamical balance, by which the tem-
poral variations in excitatory input could be rapidly tracked
and compensated by variations of the inhibitory counter-
part, leading to low pairwise correlations even in densely
connected networks [15]. In particular, although pairwise
correlations are consistently found to be small on average
in empirical measurements of neural activity, more recent
studies have reported nontrivial correlation structures in cor-
tical circuits, such as nonmonotonic dependences on distance
[25], heterogeneous synaptic connections [26–28], and cor-
relation patterns extending across ranges considerably larger
than the typical reach of local synaptic connections [29,30].
These correlations give rise to so-called neural modes, i.e.,
specific activation patterns that capture the bulk of activity
variability in cortical populations, which are robustly ob-
served and have been proven to be crucial for brain
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functioning [10,31–33]. Improved models account also for
these features and thus the asynchronous-state paradigm of
neural dynamics has become something of the standard model
in computational neuroscience [15,19,25,26,29,34].

In parallel to these findings, recorded neuronal activity,
in both local circuits [35–37] and whole-brain measure-
ments [38–40], reveals the widespread occurrence of neuronal
avalanches, i.e., highly heterogeneous cascades of sponta-
neous activity characterized by scale invariance in space
and time [41–48]. Power-law scaling in avalanche size and
duration distributions constitutes a hallmark of critical be-
havior in stochastic models of propagating activity such as
the branching process (see, e.g., [49]). Scale-free avalanch-
ing behavior appears when the system is placed at a critical
point, i.e., at the edge of a transition separating a quiescent
phase, where activity decays to zero, and an active one, where
activity is self-sustained. The critical state is characterized by
the divergence of physical quantities such as the correlation
length and response to perturbations and has been argued
to entail important functional advantages for biological sys-
tems [41–45,50–52]. In particular, it has been shown that
neural-network functional properties such as dynamic range,
information transmission, and information capacity can be
optimized by setting the network dynamical state close to the
edge of a phase transition [43,44,50,53–57].

Let us highlight that the mostly uncorrelated activity of
asynchronous states stands in contrast to the huge spatiotem-
poral correlations near critical states [58–60]. To understand
this seeming dichotomy between asynchronous and critical
states, a crucial aspect of neural networks such as network
heterogeneity needs to be considered further. Indeed, an es-
sential feature of actual neuronal networks is that they are
far from regular; thousands of interconnected cells cluster
together in the cortex, forming a diverse and irregular set of
motifs [24,50,61,62]. Such an inherent heterogeneity entails
the emergence of local variability in neuronal densities, neu-
ronal types, and coupling strengths, giving rise to a complex
structural architecture, which in turn is at the basis of an
emergent rich dynamical behavior [26,63–67]. The resulting
complex structural and dynamical patterns constitute a sub-
strate for the emergence of varied and intricate computational
processes at the bases of cognitive functions, a richness that
does not emerge in perfectly regular substrates. Structural
disorder consequently plays a primary role in defining the
emergent collective behavior and therefore the functional ca-
pabilities of a neural network.

From the theory of critical phenomena [44,68,69] we know
that the introduction of structural heterogeneity or disor-
der, in the form of, for example, diverse coupling strengths
among neurons or in their spacial localization, may induce
the emergence of rare-region effects, namely, the spontaneous
formation of atypical local clusters with behavior differing
from the network average. Such clusters exert an influence
on nearby units, leading to nontrivial collective dynamical
properties of disordered systems [70–72]. In particular, it has
been reported that heterogeneous networks embedded in a
physical space can display an extended region in parameter
space, called a Griffiths phase, with critical-like features such
as generic power laws in avalanche distributions with varying
exponents, slow dynamics, divergence in response to stimuli,

etc. [73–77]. This stretching of a critical point into a broad
region, besides relaxing the need for fine-tuning that char-
acterizes criticality in ordered systems, is likely to emerge
in systems such as brain networks embedded in a physical
space and with a highly heterogeneous connectivity pattern
[75]. On the other hand, high degrees of heterogeneity can
severely hinder the possibility of achieving a local excitatory-
inhibitory balance, so it seems that the asynchronous state
itself might be compromised by the presence of heterogeneity.
In particular, heterogeneity in the spatial location of excitatory
and inhibitory neurons could possibly lead to a situation where
recurrent activity is concentrated in excitation-dominated re-
gions while the rest of the network might be inhibition
dominated and thus remain mostly silent [78].

Our aim here is to investigate a very simple network
model of binary neurons such that it supports the two main
paradigms of dynamical behavior in cortical networks: (i) an
asynchronous phase and (ii) an extended critical-like region,
i.e., a Griffiths phase. Employing networks with a tunable
degree of heterogeneity, we scrutinize the effects of spatial
structural disorder on the emergence and possible coexistence
of these two diverse dynamical regimes. In particular, we
show that for a regular network embedded in a physical (Eu-
clidean) space there is an asynchronous state with roughly
equal excitatory and inhibitory inputs to each single neuron.
However, this balance breaks down as the degree of hetero-
geneity is increased by randomly redistributing a fraction of
neurons in space. Thus, spatial heterogeneity generates a state
in which the activity reverberates for extended periods in local
overexcited clusters while inhibition-dominated areas produce
local quiescent states, i.e., a Griffiths phase. Furthermore,
we study the effect of two different homeostatic mechanisms
regulating the local dynamics through the modification of
synaptic weights, showing that both of them are able to dy-
namically restore the structurally broken excitatory-inhibitory
balance and generate self-organized balanced networks with a
standard critical point rather than a Griffiths phase, in spite of
the heterogeneous spatial distribution of neurons.

II. MODEL AND METHODS

We consider a simple rate model of binary neurons (intro-
duced in previous works [20,79] and similar to [80]) that aims
to capture the key ingredients of neural-network collective
dynamics in a parsimonious way. The model consists of a
network with N neurons, a fraction α = 0.8 of which are
excitatory (E ) while the rest are inhibitory (I). Each neuron
i ∈ [1, 2, . . . , N] can be in either an active state si(t ) = 1 or a
quiescent state si(t ) = 0 and it projects to every other neuron
within a circle of a given radius σk , with k = E , I (see below
and Fig. 1 for a model sketch of the network architecture).

At every discrete time step t = 1, 2, . . ., each neuron i
integrates all the weighted inputs from its neighboring (presy-
naptic) neurons

�i = γ

ki

∑
j

ωi j s j (t ), (1)

where ωi j are the corresponding synaptic weights from neu-
ron j to neuron i (positive for excitatory j neurons ωE > 0
and negative for inhibitory ones ωI < 0), ki is the in-degree
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FIG. 1. Network topology: from homogeneous to heterogeneous
network architectures. (a) Spatial connectivity pattern defining a
regular network (lattice) embedded in a two-dimensional substrate
(ε = 0). Note that 80% of the neurons are excitatory (red) and
the remaining 20% are of inhibitory (blue). Each excitatory (E ) or
inhibitory (I) neuron projects synapses or connections to all other
neurons within a given radius σE ,I (red and blue circles for excitatory
and inhibitory neurons, respectively). (b) Starting from the regular
lattice, a fraction ε of all neurons is randomly relocated, thus gener-
ating regions (such as the red shaded one) where excitatory neurons
are overrepresented as well as inhibition-dominated zones (such as
the blue shaded one). As ε increases, more heterogeneous networks
can be constructed (see the vertical arrow). The presence of large
rare regions with unbalanced connectivity patterns (marked with red
and blue shaded areas in the lowest panel) influences dramatically
the dynamical regime on such heterogeneous networks.

of the ith neuron (used to normalize as in previous works
[77,81,82]), and γ represents an overall coupling strength that
modulates the influence of neighboring neurons and serves as
an overall control parameter. If neuron i is quiescent (si = 0),
it becomes active with a probability Pi = f (�i), where f is a
nonlinear (piecewise linear) transfer function

f (�i ) =
⎧⎨
⎩

0, �i < 0
�i, 0 � �i � 1
1, �i > 1.

Conversely, if the focal neuron is active si = 1, then it be-
comes quiescent with complementary probability 1 − Pi.

The choice of f (x) as a piecewise linear function is made
for the sake of simplicity; however, even if the kind of non-
linearity can have an impact on some features of the system
(as we discussed in Ref. [20]), we have verified that the forth-
coming results are robust to the introduction of nonlinearities
in the gain function (see Appendix A). Similarly, without loss
of generality, the parameter values are fixed to ωE = 1, ωI =
−2.5, σE = 3.4, and σI = 2.3 (where σ = 1 is the distance
between two nearby E neurons in the regular network).

The previous dynamics is first run on a regular directed
network consisting of N neurons embedded in a Euclidean
space which, for the sake of simplicity and without loss of
generality, we consider to be two dimensional, with periodic
boundary conditions. The regular grid has excitatory neurons
at positions (i, j), with a single inhibitory neuron per every
four excitatory ones (as shown in Fig. 1). Hence, a system of
size L has N = 5L2/4 neurons. For most of the analyses, we
consider L = 120 and N = 18 000.

This homogeneous connectivity pattern enforces that every
single neuron has the same number of incoming E and I links
(see Fig. 1, top). In order to study the effects of heterogeneity
we also analyze the model dynamics on perturbed networks
in which the spatial location of each neuron is allowed, with
some probability ε, to shift to a new randomly selected po-
sition. Thus, ε = 0 describes a perfectly regular network and
ε = 1 characterizes a random spatial network (Fig. 1), so the
relocation parameter ε allows one to sample different system
architectures with tunable levels of heterogeneity.

For the sake of completeness, the spectra of the connectiv-
ity matrices for diverse degrees of heterogeneity are shown in
Appendix C.

III. RESULTS

The described neuron model has been previously studied
on nonspatial regular networks [20,83]. In particular, it has
been shown that the presence of a set of inhibitory neurons on
sparse networks gives rise to the emergence of an intermediate
phase between the standard quiescent phase in which all activ-
ity eventually ceases and a phase of saturated activity in which
all neurons are active, which does not exist in similar networks
composed of only excitatory neurons. This intermediate phase
stems from the balance between excitation and inhibition, is
dominated by fluctuations, and exhibits all the key statistical
properties of asynchronous states (see [15,20]). Thus, from
now on we will refer to it as the asynchronous state or phase.

A. Homogeneous case

To go beyond previous results in the literature, we first
verified that the same type of phase diagram arises for spatial
networks when excitatory and inhibitory neurons are regularly
placed in a lattice such as the one in Fig. 1, i.e., for ε = 0.
As reported in Fig. 2(a), there is a wide range of coupling
values γ that leads to intermediate levels of self-sustained and
irregular activity [see Fig. 2(a), top panel; light blue curve].
Such an intermediate phase is separated from a quiescent one,
where all activity eventually ceases, by a critical point γc1 ∼
1.365, as evinced by a marked increase in the variance of the
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FIG. 2. Phase diagram and main dynamical features. The statistics of the activity for regular and heterogeneous networks are shown.
(a) Average activity s (top), activity fluctuations (standard deviation of s, middle), and average coefficient of variation (bottom) for different ε

values measured for 100 network realizations along 105 time steps (see also Appendix D for a finite-size scaling of the variance). (b) Average
activity s (top), activity fluctuations (middle), and CV (bottom) as a function of coupling γ and disorder ε. (c) Slow decay of activity in the
Griffiths phase [blue bottom row, (γ , ε) = (1.30, 0.5)], displaying an active cluster that exerts influence on its neighboring zone (red arrow),
and self-sustained activity in the asynchronous phase for a regular network [green top row, (γ , ε) = (1.42, 0.0)]. (d) Distributions of average
single-cell activities can show large dispersion even for low heterogeneity levels (data for ε = 0.05 and increasing values of γ ). The inset
shows the width of the distribution of average single cell activities σ (si ) for increasing ε, for γ = 1.37, 1.43, and 1.49, from bottom to top; the
width of the distributions is zero at ε = 0 and increases more sharply with ε for larger synaptic weights.

overall activity [Fig. 2(a), middle panel]. On the other hand,
the asynchronous and the saturated phases are separated by
another critical point (γc2 ≈ 1.505), characterized by a more
prominent peak in the activity variance [Figs. 2(a) and 2(b),
middle panels]. Above this point, inhibition can no longer
counteract excitation and the network consequently saturates.
Time series illustrating the dynamics for different couplings
can be found in Appendix B.

The intermediate phase displays all the essential features
of the asynchronous state including irregularity in the spike
statistics, as quantified by the coefficient of variation (CV),
defined as the quotient between the standard deviation of
single-cell interspike intervals (ISIs) and its mean, equal to
σISI/μISI.1 Indeed, as shown in Fig. 2(a) (bottom light blue
curve), the CV displays a plateau of highly variable (super-
Poissonian) behavior (approximately equal to 1.2 > 1), which
extends to the entire intermediate phase [see Figs. 2(a)
and 2(b), bottom panels].

B. Heterogeneous case

When heterogeneous networks are considered, i.e., for ε >

0, the situation becomes qualitatively different, as we describe

1The ISI is measured here as the number of time steps between
deactivation and consecutive activation of a given cell.

in what follows. As previously summarized, the density of
E and I neurons changes locally in space and this leads to
the emergence of a heterogeneous architecture where some
local regions become more prone to generate activity due to
a locally increased E/I ratio, while in others, activity rapidly
decays given the local overabundance of inhibitory neurons
(see Fig. 1, bottom panel). This is illustrated in Fig. 2(c),
where we plot snapshots of the instantaneous state of activity
in the network both for homogeneous (upper panels) and het-
erogeneous (lower panels) networks, for three different times
(starting with an initially saturated state). In the first case
activity diffuses across the network in a rather variable way
without remaining confined to any spacial location, while in
the heterogeneous case it may remain strongly localized in
some specific regions (see red arrow), around which it may
reverberate for extended durations.

Heterogeneity has also an effect on the single-neuron
averaged-activity distributions: These become progressively
wider and start developing heavy tails as ε is increased
[see the inset of Fig. 2(d), where the variance of such a
distribution is plotted as a function of ε for different values
of γ ].

On the other hand, the steady-state network-averaged ac-
tivity shifts in a much less abrupt way from the quiescent
to saturated phase [Fig. 2(a), top panel] as ε grows. This is
due to the gradual recruiting of more and more activity-prone
regions as γ is increased [see also Fig. 2(d)]. Similarly, as

023018-4



FROM ASYNCHRONOUS STATES TO GRIFFITHS PHASES … PHYSICAL REVIEW RESEARCH 6, 023018 (2024)

FIG. 3. Griffiths phases in heterogeneous networks. Generic
power-law time decay of the network-averaged activity is plotted
for diverse values of γ = 1.24, 1.25, . . . , 1.32 (from bottom to top)
and ε = 1.0. The curves display a continuously varying exponent
s ∼ t−α(γ ) for an extended region in γ space, thus defining a Griffiths
phase.

heterogeneity increases the peaks in the variance are smoothed
out [Fig. 2(a), middle panel], and the CV continues to be
larger than 1 in a broad region of γ values [see Fig. 2(a),
bottom panel], being increased also for large γ values. Thus,
summing up, heterogeneity has the effect of widening the
intermediate phase of moderate and fluctuating activity.

The three panels of Fig. 2(b) generalize the previous results
for the activity, its variance, and the CV, respectively, by
plotting them as a function of both γ and ε. Overall, these
plots demonstrate that heterogeneity expands the intermediate
phase, resulting in a more gradual transition between quies-
cence and saturation.

We are now set to look for the possible existence of a
Griffiths phase for the heterogeneous-network case (ε > 0).
As illustrated in Fig. 3, the overall activity (starting from a
fully active initial condition) decays as a power law of time
all across an extended region in γ space, with continuously
changing exponents, which is one of the crucial identifying
characteristics of Griffiths phases [73–75]. As usual, the com-
bination of (exponentially) rare large clusters in which activity
can reverberate for (exponentially) large times gives rise to
this type of scale-free power-law behavior [70,73–75].

Finally, we have verified that heterogeneity yields also
changes in the network’s response to external inputs. For this,
we measured the dynamic range 	, defined as [84]

	 = 10 log

(
r0.9

r0.1

)
, (2)

where r0.1 and r0.9 represent the external input intensities r
where the system displays 10% and 90% of the maximum pos-
sible overall activity, respectively (see the inset in Fig. 4 for an
illustration). The external stimulus to each neuron i consists in
an additional driving rate r which, in the absence of recurrent
input, causes the ith neuron to activate spontaneously with a
probability f (r/ki ). As shown in Fig. 4, higher ε values lead
to an overall increase in the dynamical range of the network.
The peaks around γ ≈ 1.35 and 1.55 in the homogeneous
case, coinciding with the transition points, are hallmarks of
criticality [84]. Instead, in the heterogeneous case there is a
much broader peak with larger values of 	 almost all across
the parameter space, which is an identifying characteristic of
a Griffiths phase.

FIG. 4. Griffiths phases in heterogeneous networks. The dy-
namic range 	 (see the text for details) is plotted as a function of
the coupling strength for different heterogeneity levels. The inset
shows the mean activity as a function of the external input r for
the highlighted point in the main figure; the inset sketches how to
compute the dynamic range.

In summary, the asynchronous phase observed in the
homogeneous case becomes a Griffiths phase with the intro-
duction of structural heterogeneity.

C. Regulatory mechanisms restore balance

A situation in which a small subset of neurons presents
exceptionally high levels of activity while most of the network
remains mostly dormant does not seem to be biologically
realistic. As a matter of fact, neural networks in the brain
employ various strategies to maintain local balance and pre-
vent excessive local activations. Homeostatic mechanisms,
such as threshold adaptation, synaptic scaling [85,86], rapid
disinhibition, adaptation, and changes in intrinsic excitability,
are known to control neuronal firing rates within functionally
desirable limits [87–89]. For instance, it has been empirically
confirmed that certain types of inhibitory neurons enhance
their synaptic strength to neighboring (postsynaptic) neurons
if these present exceedingly high firing rates [90]. Thus, fol-
lowing Landau et al. [78], we implement a simplified version
of the synaptic scaling homeostatic mechanism [85,86,89] in
our model for heterogeneous networks.

More specifically, the plasticity mechanism is implemented
as follows. Each active inhibitory neuron is assumed to in-
crease the strength of its postsynaptic connections by a certain
amount ηp (potentiation), while the synapses of inactive in-
hibitory neurons are decreased by an amount ηd (depression).
In more mathematical terms, the synaptic scaling rule for the
synaptic strength of inhibitory neuron i is

|γi(t + 1)| = |γi(t )| + si(t )ηp − [1 − si(t )]ηd . (3)

Note that this scaling rule uses only local information and that
to implement it, the overall synaptic weight γ in Eq. (2) is pro-
moted in Eq. (3) to a neuron-dependent and time-dependent
synaptic strength γi(t ) for inhibitory neurons. On the other
hand, excitatory weights are kept fixed across the network
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FIG. 5. Effects of homeostatic plasticity. (a) Average input to in-
dividual neurons for both homogeneous and heterogeneous networks
for static (nonplastic) networks and for two choices of the ratio of
ηp = 0.01 and ηd = 0.1 (depression dominated) and ηp = 0.1 and
ηd = 0.01 (potentiation dominated). (b) Distribution of the CV of
the ISI of individual neurons for the same cases. Measurements
were taken over 105 time steps, averaged over 10 realizations, af-
ter 105 steps. (c) Distribution of weights after 106 steps in the
potentiation-dominated case. Observe that the distribution is fat
tailed. All simulations were performed with γ = 1.4.

and time. Let us remark that the two plasticity parameters
ηp and ηd can be interpreted as the speeds of the underlying
potentiation-depression process at a finer timescale.

The underlying idea behind Eq. (3) is that each inhibitory
neuron that is activated is likely to receive inputs from
an overly excitatory region; in this way, by increasing its
(inhibitory) weights it controls the excess of neighboring
excitatory activity. Reciprocally, if an inhibitory neuron is
inactive, weakening its weight promotes activity spreading
and enhances local excitability.

To gauge excitatory-inhibitory balance in model simula-
tions, we measure the mean input arriving at each single
neuron and compute the corresponding probability distribu-
tions in the steady state [see Fig. 5(a)]. One can see that,
in the absence of synaptic scaling (i.e., for the static case,
shown in the left plot), heterogeneous networks (brown curve)
exhibit an input distribution which is peaked at small positive

values and has a large variance and a long tail, which reveals
the existence of rare strong excitatory inputs. This is to be
compared with the homogeneous case (blue curves) where the
distribution of inputs is almost a δ function.

On the other hand, once synaptic scaling is switched on
for heterogeneous networks, they self-organize to a steady-
state input distribution which depends on the parameters ηp

and ηd of the synaptic-plasticity rule [91] [see Fig. 5(a)],
while it is rather insensitive to variations in ε. In particular,
we distinguish two different regimes: a depression-dominated
regime ηp/ηd < 1 and a potentiation-dominated regime for
ηp/ηd > 1. In the depression-dominated regime, all inactive
inhibitory neurons lose their weight quickly, thus leading to an
excitatory-driven network in which there is a large average in-
put with variability around it [central plots in Fig. 5(a)]. On the
contrary, if potentiation dominates, the weight of inhibitory
neurons increases significantly in the presence of activity, thus
compensating quickly for excitatory inputs and driving the
network towards a balanced state with close-to-zero inputs
and much less dispersion than in the previous case [see the
rightmost plots in Fig. 5(a)]. Therefore, the type of plasticity
dominated by potentiation more closely resembles what is
observed in actual biological networks.

Therefore, in the presence of a potentiation-dominated
homeostatic mechanism the network self-organizes to a bal-
anced asynchronous state, whereas the inputs almost vanish
on average, giving rise to a fluctuation-dominated state with
irregular activity [as evinced by, e.g., the large values of the
CV in Fig. 5(b)], but without large dispersion in input values.
Importantly, the degree of balance depends on the details of
the adaptation mechanism; for instance, the CV is relatively
small in the depression-dominated regime. Moreover, we ob-
serve that a progressively tighter balance can be achieved
by further enhancing the ratio ηp/ηd with both parameters
going to zero, a limit which resembles that of self-organized
criticality [92].

Remarkably, Fig. 5(c) reports the steady-state distributions
of inhibitory weights in the potentiation-dominated regime
(for both homogeneous and heterogeneous networks). Such
distributions exhibit a fat tail which spans for at least three
decades and are larger for the heterogeneous case, in good
agreement with previous theoretical and empirical observa-
tions that systematically report broad distributions of synaptic
strengths [26,27,78].

IV. DISCUSSION

In this work, we have investigated the role of structural
heterogeneity on the dynamics of spatially explicit excitation-
inhibition networks. For this, we analyzed a parsimonious
model of binary neurons [20,79]. Previous studies of such
a model showed that the introduction of an inhibitory pop-
ulation on sparse random networks induces the emergence
of an intermediate phase, in between the quiescent and sat-
urated standard ones, of intermediate self-sustained activity,
that does not exist in networks composed merely of excitatory
neurons [20,83]. Such a phase exhibits all the properties of
the asynchronous state [12–15,26]. However, previous studies
did not carefully analyze the spatial structure or the possibility
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FIG. 6. Results for a different response function. From top to
bottom, the average activity s, variance σ , and coefficient of variation
are plotted as a function of γ for f (x > 0) = tanh(x). Note that
the second transition becomes continuous, so the system does not
saturate.

of structural heterogeneity and rare-region effects such as
Griffiths phases (see, however, Ref. [29]).

When space is explicitly considered, as done here, there
is neuronal clustering, i.e., nearby neurons tend to share a
substantial proportion of neighbors, which is an essential
feature of actual brain networks [23]. In particular, starting
from a perfectly ordered and balanced network (the lattice
shown in Fig. 1), we built heterogeneous spatially embedded
networks by randomly relocating neurons in the embedding
space in a progressive way. The breaking of homogeneity
leads to the stochastic emergence of regions with an excess of
excitatory neurons, where activity may reverberate for a long
time, and regions where inhibition prevails, hindering activ-
ity propagation. As we have shown, this variability in local
excitability produces smearing of the well-defined boundary
between asynchronous and saturated phases, characteristic
of homogeneous networks. Moreover, the resulting clustered
structures lead to the emergence of a region in parameter space
characterized by a generic scale-free slow relaxation, i.e., an
identifying characteristic of a Griffiths phase. Such a variabil-
ity of dynamical timescales could be crucial for enabling and
shaping temporal input integration and segregation [93]. It is
noteworthy that, in the absence of external input, activity may
relax to the quiescent state before the synaptic-scaling mech-
anism has enough time to balance the network. In this sense,
the slow dynamics of the Griffiths phase might have a role in
allowing synaptic scaling (or other adaptation mechanisms)
to fully develop (for a discussion on the network’s response in
finite time, see [94]).

In addition, we have also shown that structural heterogene-
ity promotes a more gradual recruitment of active neurons
when an external input is applied, which significantly in-
creases the overall dynamic range of the network, a highly
desirable property in systems often exposed to sensory in-
puts that can range over several orders of magnitude. Such
a network could also present advantages to store information

FIG. 7. Time series. The fraction of active neurons of the ex-
citatory (red) and inhibitory (blue) populations and overall activity
(black) are plotted as a function of time. Rows represent the time se-
ries for different coupling strengths, while columns are for different
values of the heterogeneity parameter.

locally and thus be efficient for working memory [95]. In gen-
eral, the described dynamical regimes could potentially offer
functional advantages for heterogeneous networks compared
to homogeneous ones. However, our primary objective here
was not to examine the potential functional benefits of each
dynamical regime but rather to characterize them.

In order to reconcile heterogeneity with excitatory-
inhibitory balance, we implemented (inspired by recent work
by Landau et al. [78]) a synaptic-plasticity rule known as
synaptic scaling [85,86], which requires only local informa-
tion and that allows the network to adapt its behavior to
diverse dynamical regimes. In particular, we have shown that
synaptic scaling of inhibitory neurons suffices to dynami-
cally restore the network balance in heterogeneous networks.
Landau et al. found similar results for nonspatial networks
of integrate-and-fire neurons [78]. Thus, our work extends
the previous one by showing how synaptic scaling is able to
restore the balance in spatially embedded networks. For these,
heterogeneity induces stronger effects, including the emer-
gence of rare regions and the concomitant Griffiths phases.

Finally, depending on the relative weight of synaptic po-
tentiation and synaptic depression, networks can attain states
closer to or farther from a typical asynchronous state in a self-
organized manner. This makes it possible for such adaptive
networks to achieve a variety of potential dynamical regimes,
ranging from heterogeneous structures with unbalanced
excitatory and inhibitory inputs to balanced asynchronous
states, with different functional advantages for information
processing. We leave for future work the study of this
crossover between diverse dynamical regimes in biologically
more realistic models, including, for example, the possibility
of oscillations, i.e., a synchronization transition [96,97], and
scrutiny of the potential functional advantages of adaptive net-
works exploiting this spectrum of possibilities, ranging from
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FIG. 8. Matrix spectra. Real and imaginary parts of the spectra
of a matrix are generated using a system size with L = 40 (i.e.,
the matrix is 2000×2000) for increasing values of the heterogeneity
parameter.

heterogeneity-dominated Griffiths-like states to asynchronous
states. Finally, another long-term objective of ours is to con-
tribute to the design of neuronal networks in vitro by achieving
a suitable balance of excitation and inhibition [98,99].
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APPENDIX A: RESULTS FOR ANOTHER
RESPONSE FUNCTION

We have confirmed that our main results remain unchanged
when varying the considered response function, even if the
nature of the second transition (irregular activity to saturation)
can be affected by such a choice (we refer to the Supplemental
Material of [20] for an in-depth discussion). In particular,
Fig. 6 shows results analogous to those of Fig. 2 but using
f (x > 0) = tanh(x) and f (x � 0) = 0. Observe that there is
no significant change. Other properties, not reported here, also
remain robust against changes in the response function.

FIG. 9. Finite-size scaling. Variance of the activity is plotted as
a function of the coupling strength γ for several system sizes. Note
that N = 5L2/4.

APPENDIX B: TIME SERIES

Figure 7 shows representative time series for two differ-
ent couplings and two values of the heterogeneity parameter.
Observe that in the homogeneous case (left column) γ = 1.4
lies within the asynchronous irregular regime, while γ = 1.6
is almost saturated. In the heterogeneous case (right column)
there is no saturation and the irregular regime survives for
larger values of γ .

APPENDIX C: NETWORK SPECTRA

For the sake of illustration, we report the spectra of the our
adjacency matrices for different values of the heterogeneity
parameter in Fig. 8. The behavior of the system is always
dominated by the largest eigenvalue, but notice that for in-
termediate values of the heterogeneity there is a larger density
of eigenvalues close to the leading one, leading to the slow
timescales characteristic of the Griffiths phase [75].

APPENDIX D: FINITE-SIZE SCALING

We have performed a finite-size scaling of the phase di-
agram. We observe that variance of the activity tends to
increase with the system size, as expected in critical phase
transitions. Results are illustrated in Fig. 9.
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