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Detecting axion dark matter with Rydberg atoms via induced electric dipole transitions
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Long-standing efforts to detect axions are driven by two compelling prospects, naturally accounting for the
absence of charge-conjugation and parity symmetry breaking in quantum chromodynamics, and for the elusive
dark matter at ultralight mass scale. Many experiments use advanced cavity resonator setups to probe the
magnetic-field-mediated conversion of axions to photons. Here, we show how to search for axion matter without
relying on such a cavity setup, which opens a new path for the detection of ultralight axions, where cavity-based
setups are infeasible. When applied to Rydberg atoms, which feature particularly large transition dipole elements,
this effect promises an outstanding sensitivity for detecting ultralight dark matter. Our estimates show that it
can provide laboratory constraints in parameter space that so far have only been probed astrophysically, and
cover new unprobed regions of the parameter space. The Rydberg atomic gases offer a flexible and inexpensive
experimental platform that can operate at room temperature. We project the sensitivity by quantizing the
axion-modified Maxwell equations to accurately describe atoms and molecules as quantum sensors wherever
axion dark matter is present.
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I. INTRODUCTION

There is overwhelming astrophysical and cosmological ev-
idence that approximately 85% of matter in the universe is
in the form of nonluminous dark matter. Unfortunately, little
is known about its nature beyond its gravitational influence
on galactic and cosmological scales. While the search for
historically popular models like weakly interacting massive
particles (WIMPs) continues, it is important to expand exper-
imental efforts to other well-motivated candidates. One such
class of models, ultralight bosonic dark matter, is particularly
favored because of discrepancies that arise when simulations
of structure formation with WIMP-like dark matter are com-
pared to observations on galactic scales [1–3]. These tensions
are somewhat alleviated when the dark matter is modeled not
as a WIMP-like particle but as an ultralight boson with de
Broglie wavelength comparable to small-scale galactic struc-
tures, which corresponds to a mass of order 10−21 eV/c2.

The axion is a famous candidate of bosonic dark matter,
which was originally predicted as the symmetry consequence
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of the Peccei-Quinn model as new physics beyond the stan-
dard model of elementary particle physics [4–7]. It provides
a “missing” elementary particle capable of naturally explain-
ing why the charge-conjugation and parity symmetry (CP)
are preserved in quantum chromodynamics (QCD) but are
known to be violated in the electroweak interaction. This
crucial conundrum has been coined the “strong CP” prob-
lem in elementary particle physics. While these QCD axions
may be the dark matter [8–10], it is possible that the latter
are pseudoscalars, which, however, do not solve the strong
charge-parity problem. To distinguish them from the QCD
axion, such pseudoscalars are called axionlike particles, and
they can usually be searched for with the same tools and tech-
niques used to probe QCD axions. For the remainder of this
article, we will use “axion” to refer to a dark-matter candidate
regardless of whether it solves the strong CP problem or not
whenever the distinction is unimportant. It is interesting to
note that, aside from their key role in high-energy physics,
axions have also been predicted to exist in condensed-matter
systems [11–16] where they manifest in the form of mag-
netoelectric transport effects. Thus, a discovery of the axion
will have important implications for the strong CP problem
in QCD and the search for dark matter, potentially solving
both problems simultaneously [17]. We will focus on the latter
aspect in this work.

The axion-modified Maxwell equations predict that a mag-
netic field converts axions of energy h̄ωa � mac2 + 1

2 mav
2

(mass ma, velocity v) into photons of frequency ωa as sketched
in Fig. 1(a) [7]. As even the order of magnitude of the axion
mass is unknown, the search for this hypothetical particle

2643-1564/2024/6(2)/023017(19) 023017-1 Published by the American Physical Society

https://orcid.org/0000-0002-0791-3617
https://orcid.org/0000-0002-7264-8290
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.023017&domain=pdf&date_stamp=2024-04-04
https://doi.org/10.1103/PhysRevResearch.6.023017
https://creativecommons.org/licenses/by/4.0/


ENGELHARDT, BHOONAH, AND LIU PHYSICAL REVIEW RESEARCH 6, 023017 (2024)

FIG. 1. (a) Magnetic-field-meditated axion-photon conversion. (b) Typical resonator-based setup for the detection of axion dark matter.
(c) Illustration of the axion-induced electric dipole transition in an atom mediated by a magnetic field. The dipole transitions can be detected
spectroscopically. (d) Overview of the exclusion boundaries for ma and gaγ γ . Experimentally excluded regions are marked by a solid line. The
projected exclusion bounds using axion-induced dipole transitions in Rydberg atoms achievable within 1 s, 1 h, and 1 month measurement
time are outlined by dashed lines. Also shown are constraints from the CERN Axion Solar Telescope (CAST) [18], and resonant axion-photon
conversion around pulsars [19]. Other constraints shown in the plot for axions of a higher mass are from ADMX [20] and RBF-UF [21].

seems to remain an outstanding, long-lasting task. A typi-
cal experimental setup exploiting this resonant axion-photon
conversion for the detection of the galactic axion field con-
sists of two inductively coupled microwave resonators as
depicted in Fig. 1(b) [22]. A microwave photon, sourced
by the axion field in the first resonator, is detected in the
second resonator using a SQUID device, Rydberg atoms,
or comparable single-photon detectors. The RBF-UF [21],
ADMX [20], and HAYSTAC [23–25] experiments attempt to
detect the axion field in the narrow 1–200 µeV mass range
to which they are limited by construction. It should not be
surprising then that most constraints on axions in the mass
regime mac2 < 2 µeV are astrophysical or cosmological, such
as using the Planck Telescope [26], Pulsar Timing Arrays
(PTAs) [27], radio astronomy [28–30], spectroscopy from the
Chandra X Ray Telescope [31], or observations of galaxy
clusters [32,33]. However, while astrophysical systems of-
fer volumes and exposure times, and sometimes energies,
unattainable by terrestrial systems, they come with inherent
uncertainties due to their complex nature. This makes com-
plementary laboratory tests of experimental results derived
from astrophysical systems invaluable. Current approaches,
e.g., ABRACADBRA [34], ADMX SLIC [35], and SHAFT
[36] using lumped-element circuits to compensate for the
frequency mismatch, lose sensitivity as the mass of the axion
is lowered [37]. Higher sensitivities have been theoretically
proposed using electric sensing approaches [38] and twisted
cavity resonators [39]. Notably, a resonant cavity for the de-
tection of ultralight axions would be comparable in size to a
small galaxy.

In this article, we analyze the possibility to search for
the ultralight galactic axion field without relying on an
advanced cavity resonator setup. Based on a rigorous quan-
tization of the axion-Maxwell equations, which were first
derived in their classical form by Sikivie in 1983 [40,41],
and later proposed for advanced axion-electrodynamics in

condensed-matter systems by Wilczek in 1987 [7], we
derive an effective Hamiltonian that describes dipole transi-
tions induced by the axion-sourced electric field as sketched in
Fig. 1(c). Thus, highly sensitive electric field detectors using
quantum emitters and spectroscopic methods can be easily
repurposed for the search of axion dark matter.

The axion-induced dipole transitions are particularly well
suited to Rydberg states which feature long lifetimes,
large electric dipole moments, and polarizability [42]. Be-
ing quantum sensors, Rydberg atoms can take advantage
of quantized energy levels, quantum coherence, or many-
body entanglement to enhance detection sensitivity compared
to classical systems [43]. Their aforementioned properties
make them excellent candidates for electric field metrology
in the radiofrequency regime, allowing sensitivities up to
µVm−1/

√
Hz [44–48].

After introducing the axion-sourced electric field, we
proceed to estimate the sensitivity of Rydberg atoms in
a superheterodyne (superhet) detection configuration. For
measurement campaigns over a period between seconds to
months, we project constraints in the ultralight mass regime
that can outperform existing exclusion limits [see Fig. 1(d)].

This article is organized as follows: In Sec. II A, we rig-
orously quantize the axion-Maxwell equations and derive an
effective Hamiltonian that is convenient for a spectroscopic
analysis. In Sec. III, we calculate the exclusion boundaries for
axion dark matter for a superhet detector based on Rydberg
atoms. In Sec. IV, we discuss conclusions and future improve-
ments of our approach. Details of the derivations can be found
in the Appendixes.

II. MICROSCOPIC DERIVATION OF THE HAMILTONIAN

To build our experimental proposal on a solid theoreti-
cal footing, we first accurately quantize the axion-Maxwell
equations. Subsequently, we bring the quantized Hamiltonian
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into a suitable form for a sound spectroscopic analysis by
deriving an effective Hamiltonian describing the interaction
of the axion field with the quantum emitters (e.g., Rydberg
atoms) in a microscopic fashion.

A. Quantization of the axion Maxwell equations

The axion field, being a pseudoscalar, interacts with the
electric and magnetic fields via the Lagrangian term L =
−gaγ γ

√
ε0
μ0

aE · B, where E, B, and a denote the classical elec-
tric, magnetic, and axion fields, respectively, which interact
via a coupling constant gaγ γ . The constants ε0 and μ0 denote
the vacuum permittivity and permeability. The axion field is
measured in units of eV and the interaction constant gaγ γ in
units of (eV)−1.

After deriving the Euler-Lagrange equations, one obtains
the axion-Maxwell equations [7,40,41]

∇ · E = ρ

ε0
− cgaγ γ B · ∇a, (1)

∇ × B − Ė
c2

= μ0J + gaγ γ

c
(Bȧ − E × ∇a), (2)

∇ · B = 0, (3)

∇ × E + Ḃ = 0, (4)

ä − c2∇2a + m2
ac4

h̄2 a = h̄c3
√

ε0

μ0
gaγ γ E · B, (5)

where J is the electric current density. Clearly, these equa-
tions reduce to the common Maxwell equations for gaγ γ = 0.

The quantization of the axion-Maxwell equations follows
essentially the same lines as the quantization of the common
Maxwell equations, yet with replacing the electric field by

Ê = Êc − cgaγ γ âB̂, (6)

where Êc denotes the canonical electric field. The quantiza-
tion procedure reveals that the canonical electric field fulfills
canonical commutation relations rather than the actual physi-
cal electric field, which justifies its name. As we show in detail
in Appendix A, the canonically quantized axion-light-matter
Hamiltonian reads

Ĥ = 1

2

∫
d3r

[
ε0Ê

⊥2
c + 1

μ0
B̂

2
]

−
∫

d3r
[√

ε0

μ0
gaγ γ âÊc · B̂ − 1

2μ0
(gaγ γ â)2B̂ · B̂

]

+1

2

∫
d3r

[
π̂2

h̄c3
+ 1

ch̄
∇â · ∇â + m2

ac4

c3h̄3 â2

]

+
∑

η

[
p̂2

η

2mη

+ q2
η

2mηc2
Â

2
(r̂η )

]

+1

2
d3r [ρ̂φ̂ + Ĵ · Â], (7)

where the canonical electric field operator has been distributed

in the transversal and longitudinal fields Êc = Ê
⊥
c + Ê

‖
c . The

transversal contribution is defined by ∇ · Ê
⊥
c = 0, while the

longitudinal contribution is given by Ê
‖
c = Êc − Ê

⊥
c = −∇φ̂,

where φ̂ is the common electrostatic potential. The vector
potential and the magnetic field operators are denoted by Â
and B̂, respectively. The axion field is denoted by â, and π̂

denotes its conjugated momentum. Particles with charge qη

and mass mη at positions r̂η having momentum p̂η are labeled
by η ∈ {1, . . . , Np}. The coupling between light and matter
reflects the minimal coupling principle. The field operators
are quantized as

ρ̂(r) =
Np∑

η=1

qηδ(r − r̂η ), (8)

Ĵ(r) =
Np∑

η=1

qη
˙̂rηδ(r − r̂η ) + H.c., (9)

Â(r) =
∑
k,λ

ek,λ

√
h̄

2ωkε0V
(d̂†

k,λ
eik·r + d̂k,λe−ik·r), (10)

Ê
⊥
c (r) = i

∑
k,λ

ek,λ

√
h̄ωk

2ε0V
(d̂†

k,λ
eik·r − d̂k,λe−ik·r), (11)

Ê
‖
c (r) = −∇φ̂(r),

φ̂(r) = 1

4πε0

Np∑
η=1

qη

|r − r̂η| , (12)

B̂(r) = i
∑
k,λ

√
h̄

2ωkε0V
(k × ek,λ)(d̂†

k,λ
eik·r − d̂k,λe−ik·r).

(13)

The photonic operators d̂k,λ, which fulfill the canonical com-
mutation relations and quantize the electromagnetic field, are
labeled by wave vector k and polarization λ ∈ {�,↔}. The
frequencies of the photonic modes are given by ωk. The
quantization volume is denoted by V . The unit vectors ek,λ

describe the direction of polarization and are perpendicular to
the wave vector, i.e., ek,λ · k = 0. This fact readily ensures that
the electric and magnetic Gauss equations in Eqs. (1) and (3)
are fulfilled. Using the Heisenberg equations of motion and
the relation between canonical and physical electric fields in
Eq. (6), we can derive the axion-Maxwell equations (1)–(5)
in the classical limit by generalizing the derivation of the
common Maxwell equations [49].

B. Axion-sourced electric field

It is inconvenient to proceed with the minimal-coupling
Hamiltonian in Eq. (7), in particular, because of the appear-
ance of the vector potential Â(r), which is not a physical
observable. As the theoretical treatment of spectroscopy is
usually performed in terms of the multipolar Hamiltonian
[49], in which the matter directly couples to the electromag-
net field, we transform the axion-light-matter Hamiltonian in
Eq. (7) into the multipolar form by means of the Power-Zienau
transformation [50]. In doing so, we introduce the canonical
displacement field

D̂c(r) = ε0Êc(r) + P̂(r), (14)

which is sourced only by the density of free charges ρfree in
the electric Gauss equation, i.e., ∇ · D̂c = ρfree. The electric
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field sourced by the bounded charges is described by the
polarization density P̂(r). Details of this derivation can be
found in Appendix B. The displacement field can be under-
stood as the electromagnetic field in the absence of matter
and describes thus an external electric field or the quantized
electric field in a cavity. The polarization density describes
the electric field generated by the matter.

To allow for a simple spectroscopic analysis, we derive
an effective Hamiltonian in which the axion-field couples
directly to the matter system. To this end, we envision an
experimental setup with a strong static magnetic field, such
that the total magnetic field operator can be distributed as
B̂ = B + B̂f, where B̂ denotes the mean magnetic field and Bf

the quantum fluctuations. Likewise, we assume a macroscopi-
cally occupied axion mean field â → a(t ) as hypothesized for
the galactic halo [51]. Calculating the dynamics of the elec-
tromagnetic fields in lowest order perturbation in gaγ γ a(t ), we
arrive at an externally driven matter Hamiltonian, in which the
axion field directly couples to the polarization P̂(r). Details
of this calculation are provided in Appendix C, where the
externally driven matter Hamiltonian is given in Eq. (C20).

Let us consider an ensemble of N quantum emitters and
denote their eigenstates by |i, μ〉, where i labels the quantum
emitter, and μ represents the collective electronic, vibrational,
and rotational quantum numbers. In the dipole approximation,
the polarization density operator can be expressed in terms of
the eigenstates as

P̂(r) =
N∑

i=1

∑
μ,ν

d (i)
μ,ν |i, μ〉〈i, ν|δ(r − ri ), (15)

where δ(r) is the three-dimensional delta function, ri is the
position of the ith quantum emitter, and d (i)

μ,ν is the transition
dipole moment between the two eigenstates μ and ν. In doing
so, we can describe the interaction of the axion field and the
quantum emitters by means of the effective Hamiltonian

Ĥa-d = −
N∑

i=1

Ea(t ) · d (i)
μ,ν |i, μ〉〈i, ν|, (16)

where we have introduced the effective axion-sourced electric
field

Ea(t ) = gaγ γ ca(t )BS
(

mac

h̄
lB

)
. (17)

The form function S (x) takes the spatial dynamics of the
axion-sourced electric field into account. The exact form of
S (x) depends on experimental details, such as the shape of
the magnetic field, or the presence of a Faraday cage. Its
unitless argument x is a product of the axion mass ma and the
length scale lB of the magnetic field. For small arguments, it
scales with S (x) ∝ x2 for a spatially confined magnetic field
in the absence of free charges, i.e., the sourced electric field
is suppressed for small axion masses, constituting the main
challenge to detect ultralight axions. In this work, we assume
S (x) = x2 and a magnetic field length scale of lB = 0.1 m.

Relation (17) implies that one can repurpose sensitive
atomic and molecular detectors of electric fields to search
for axion dark matter. The (classical) magnetic field can be
considered as an experimental switch controlling the effective

interaction strength between the axion field and the quantum
emitters. This allows us to distinguish between a possible
axion signal and background electric fields.

III. RYDBERG ATOMS AS AXION DETECTORS

A. Exclusion boundaries

Ultralight axions in the galactic halo exhibit wavelike
behavior and must be treated as a classical time-varying back-
ground field [51], a(t ) = a0 cos(ωat + φa), where a0 is the
amplitude of the axion field, φa is its phase, and h̄ωa � mac2 +
1
2 mav

2 is its energy. Since the field has a small frequency
dispersion described by the dark matter velocity distribution
(average value 10−3c), a coherence time can be estimated to
be τC = 2h̄

mac2 106, which defines the time scale over which
the phase φa can be considered to be constant [52,53]. For
axions in the ultralight mass regime, this timescale will always
be much larger than the measurement time in question. The
amplitude a0 can be estimated via the galactic dark-matter en-
ergy density ρ = (m2

ac4a2
0)/(2h̄3c3) = 0.3 × 1015 eV

m3 . Solving
Eq. (17) for gaγ γ , we find that the sensitivity for the interaction
parameter is given by

gaγ γ ,∗ = |E∗|
c|B|

√
h̄

2ρc3m2
a l4

B

, (18)

which assumes that axions constitute 100% of the dark matter
in the universe.

Equation (16) shows that atoms with large transition dipole
moments, in particular Rydberg states, couple strongly to
the axion field. Using an advanced electromagnetically in-
duced transparency (EIT) based superhet detection protocol,
an electric field of |E∗| = 78 × 10−9 V m−1 could be detected
within 5000 s measurement time [44]. Taking this setup as
the basis for our sensitivity projection, we estimate that N =
104 Rydberg atoms are able to detect minimal electric fields
of |E∗| = 30 × 10−9, 500 × 10−12, and 18 × 10−12 V m−1

within a measurement time of tm = 1 s, 1 h, and 1 month,
respectively, under ideal conditions.

Taking these values for reference, Fig. 1(d) shows the pro-
jected minimal detectable gaγ γ ,∗ evaluated via Eq. (18) for a
magnetic field of |B| = 5.6 T. It can be readily seen that Ry-
dberg atoms can compete with the CAST helioscope bounds
[18] in the mass regime mac2 = (5 × 10−8) − (5 × 10−6) eV.
Also shown in the same plot are constraints inferred from the
resonant axion-photon conversion around pulsars [19]. Ryd-
berg atoms can thus set new leading experimental constraints
while being operationally simple to realize. Due to their level
structure, Rydberg atoms are particular sensitive in the small
frequency regime. Their electric-field sensitivity is thereby
relatively independent of the frequency for ω < 10 GHz. The
exclusion bound established by the Rydberg atoms scales
thus with gaγ γ ∝ m−1

a , as the suppression factor in Eq. (17)
scales with ∝ m2

a and the axion field amplitude with ∝ m−1
a .

For larger masses mac2 > 5 × 10−6 eV, Rydberg atoms per-
form significantly worse than the ADMX [20], and RBF-UF
[21] experiments, whose frequency regimes allows to amplify
the axion-sourced electric field in a resonator setup prior to
detection.
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FIG. 2. (a) Energy levels of a rubidium atom for n � 5 resolved for the angular momentum orbitals s, p, d, f . Part (b) depicts a
magnification of highly excited f orbitals that are coupled to the Rydberg level |3〉 with quantum numbers n = 100 and l = 2 (d orbital).
Part (c) is the same as (b), but for a finite external magnetic field B = Bres, which establishes a resonance condition between levels |3〉 with
(n, l, j, m) = (100, 2, 3/2, 1/2) and |4〉 with (n, l, j, m) = (99, 3, 5/2, 1/2). Gray lines depict the allowed dipole transitions for a linearly
polarized driving field. (d) Effective four-level system considered in the description of the Rydberg-atom superheterodyne detector. Levels |−〉
and |+〉 appear upon coupling the states |3〉 and |4〉. (e) Sketch of the spectroscopic setup, in which the probe and coupling fields propagate in
the opposite direction to mitigate the Doppler effect as explained in Appendix D 7. (f) Absorption rate α(ωp) of the probe beam as a function of
�ωC = ωC − (ε3 + ε2)/h̄ at resonance h̄ωp = ε2 − ε1. The left inset depicts the absorption rate for small |�ωC| � γ . The right inset depicts
the signal-to-noise ratio (SNR) as a function of the local oscillator �LO at �ωC = 0. Other parameters are �p = 1.7 MHz, �C = 23 MHz,
Bres = 5.6 T, temperature T = 300 K, and N = 104 rubidium atoms.

B. Level structure of Rydberg atoms

Rydberg atoms are highly excited atoms featuring large
dipole moments and polarizability. Each eigenstate can be
characterized by the quantum numbers n, l, j, m. The en-
ergies εμ depend mainly on the principal quantum number
n ∈ {1, 2, 3, . . . } and the angular-momentum quantum num-
ber l = 0, . . . , n − 1 (also denoted by s, p, d, f , . . . ). The
numbers j and m characterize the total angular momentum
quantum number and its z projection, respectively. The spec-
trum of a rubidium atom is depicted in Fig. 2(a), where each
column represents a different l . The energy splitting between
the highly excited Rydberg states n � 1 rapidly decreases
as n becomes large. In the presence of a static macroscopic
magnetic field B ‖ ez, the eigenstates |μ〉 are subject to a
Zeeman shift, whose linear contribution reads

�εμ = μB|B|
h̄

〈μ|(L̂z + gzŜz )|μ〉 ≡ Kμ|B|, (19)

where μB is the Bohr magneton, L̂z is the z projection operator
of the angular momentum, Ŝz is the projection of the spin,
and gz is the corresponding gyromagnetic factor. The Zeeman
effect can be used to tune specific energy states such that the
monochromatic axion field fulfills a resonance condition.

Because the electron is excited so far away from the
nucleus, the transition dipole moments of two neighboring
Rydberg states with principal quantum numbers n′ = n ± 1
are very large and scale as |dμ,ν | ∝ n2, given that no optical
selection rules are violated; cf., Fig. 2(d). Thus, due to their
energy spacing and the scaling of their dipole elements, Ryd-
berg atoms are very sensitive to low-frequency and quasistatic
electric fields.

C. Sensitivity estimation

Recent experiments using EIT have demonstrated an out-
standing sensitivity of Rydberg-atom superhet detectors for
sensing electric fields [44]. The superhet configuration con-
sists of two low-energy states |1〉, |2〉, and two Rydberg states
|3〉, |4〉, whose energetic locations are marked in Figs. 2(a)
and 2(b). The states |1〉 and |2〉 are coupled by the probe
laser of frequency ωp and transition frequency (i.e., Rabi
frequency) �p, while the states |2〉 and |3〉 are coupled by
the coupling laser of frequency ωC and Rabi frequency �C.
The Rydberg states are coupled by the axion field of fre-
quency ωa and Rabi frequency �a = gaγ γ ca0|d3,4 · B|/h̄S .
The corresponding energies ε3 and ε4 are assumed to be close
to resonance ε4 − ε3 ≈ h̄ωa. The resonance condition can be
adjusted using the Zeeman effect [see Fig. 2(c)]. To enhance
the signal, the superhet detector uses a local oscillator with
frequency h̄ωLO = ε4 − ε3 and Rabi frequency �LO � �a

which heterodynes the axion field.
The coupled Rydberg states form the states |−〉 and

|+〉, which exhibit a slow monochromatic energy splitting
h̄�(t ) = ε+(t ) − ε−(t ) = h̄�LO + h̄�a cos[(ωa − ωLO)t]. As
ωa ≈ ωLO, we consider �(t ) to be quasistatic. Both states
are coupled to state |2〉 with Rabi frequency �C/

√
2. The

resulting four-level system is depicted in Fig. 2(d).
The superhet detector senses the axion field via a change

of the transmission of the probe laser propagating through
a cloud of Rydberg atoms, as sketched in Fig. 2(e). The
transmitted intensity as a function of position z is given as
I (z) = I0 exp[−α(ωp)z], where α(ωp) denotes the linear ab-
sorption rate. In the presence of an external electric field,
e.g., produced by the axion field, the absorption rate is mod-
ified, which can be detected by an intensity change of the
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transmitted probe laser. The calculation of the absorption rate
and the resulting signal-to-noise ratio of the superhet detector
is given in detail in Appendix D. As the absorption rate is a
property in the nonequilibrium stationary state of the atoms,
this measurement can run for arbitrary long times.

The absorption rate for the resonance condition h̄ωp =
ε2 − ε1 is shown in Fig. 2(g) as a function of �ωC = ωC −
(ε3 + ε2)/h̄. The absorption rate exhibits a dip around �ωC =
0 for � = 0 (not shown). This is the celebrated EIT affect,
which is induced by a destructive interference between the
transitions from |1〉 to |2〉 and |3〉 (|4〉) to |2〉 in the system’s
stationary state, preventing the absorption of the probe laser
[54,55].

For a finite �, the atoms are not perfectly transparent
closely around |�ωC| ≈ 0. The energy splitting between the
two states |−〉 and |+〉 results into two new transparency fre-
quencies at �ωC = ±�/2. Their interference shifts the ideal
transparency, which would appear for � = 0 at �ωC = 0,
and gives rise to high sensitivity of the absorption rate as
highlighted in the left inset of Fig. 2(g), which compares the
absorption rate for � = �LO and � = �LO + �a. A thorough
analysis in Appendix D reveals that the signal-to-noise ratio
(SNR) for a total measurement time tm is given by

SNR =
√

N�aτ, (20)

where N is the number of Rydberg atoms, τ = √
Tc tm is the

effective measurement time, and Tc is the effective coherence
time,

Tc = 4�2
p�

4
C(1 + �′)2[(

γ2 + ωpσ

c �
)(

�2
LO + γ 2

) + �2
Cγ

]3

γ 2�2
LO(

�2
LO + γ 2

) (21)

with γ = (γ3 + γ4)/2, where γ2, γ3, and γ4 are the inverse
lifetimes of the states |2〉, |3〉, and |4〉, respectively. The
Doppler effect for atoms of mass mR at temperature T is
described by the function � = �[ζ/(

√
2σ )] � 0, where ζ =

γ2 + γ�2
C/(�2

LO + γ 2) and σ 2 = kBT/mR, which is given in
Eq. (D37). Its derivative �′ = ∂x�(x) |x→ζ/(

√
2σ ) is bounded

by −0.5 < �′ < 0 and has a minor impact on Tc. The Doppler
effect thus enhances the dephasing rate γ ′

2 → γ2 + ωpσ

c �,
which is discussed in detail in Appendix D 7. Equation (20)
accounts for the projection noise in the atomic system, which
sets the only fundamental limit for the SNR, while photon-
shot and measurement noises have been neglected here [48].

As shown in the inset of Fig. 2(g), the SNR exhibits a
turnover as a function of the local oscillator strength. For
small �LO, it increases linearly with �LO until it reaches a
maximum around �LO ≈ 5γ . For large �LO, the SNR van-
ishes with �−3

LO. The maximum value of the coherence time is
Tc ≈ (�p/�C)2/γ , which determines the optimal SNR.

Using Eqs. (17) and (20), we find an explicit expression for
the projected sensitivity of the axion field,

gaγ γ ,∗ =
( |K3 − K4|

|ε3 − ε4| − mac2

)
h̄

τ
√

N |d3,4|

√
h̄

2ρc5m2
a l4

B

, (22)

where K3, K4 are defined in Eq. (19). The first fraction repre-
sents the inverse magnetic field Bres required for establishing
a resonance condition, which suggests using states featuring
similar Zeeman parameters K3 ≈ K4 and a large detuning,
as long as the external magnetic field Bres � 10 T is exper-
imentally feasible. In the proposed Rydberg-atom detector,
the magnetic field fulfills thus two tasks: (i) it establishes
the resonance condition between the Rydberg states, which
enhances the sensitivity to the electric field; (ii) it generates
the axion-sourced electric field according to Eq. (17). The
second fraction in Eq. (22) represents the minimal electric
field which can be detected with the superhet configuration.

To estimate the projected sensitivity achievable with
Rydberg atoms, we consider the states |1〉 = (n = 5, l =
0, j = 1/2, m = 1/2), |2〉 = (n = 100, l = 1, j = 3/2, m =
1/2), |3〉 = (n = 100, l = 2, j = 5/2, m = 1/2), and |4〉 =
(n = 99, l = 3, j = 7/2, m = 1/2) of rubidium atoms. Their
energies and dephasing rates can be calculated using the ARC
package [56]. The dipole matrix element of the Rydberg states
is |d3,4| = 6425ea0 (Bohr radius a0). In the ultralight axion
regime, the optimal magnetic field |Bres| ≈ 5.6 T determined
by the first fraction in Eq. (22) is almost independent of the
axion mass as mac2 � εd − εc. The projected minimal electric
fields and the related exclusion limits for gaγ γ for the measure-
ment times tm = 1 s, 1 h, and 1 month have been discussed in
Sec. III A.

According to Eq. (22), the sensitivity scales with N−1/2

(i.e., the standard quantum limit) and can thus be fur-
ther improved by increasing the number of atoms. When
using N = 106 instead of N = 104 atoms, the minimal de-
tectable gaγ γ could thus reduce by an additional factor of
10. However, when the density of atoms is too high, inter-
action effects between the atoms must be taken into account,
which might lead to a deviation from the standard quantum
scaling.

IV. DISCUSSION

In this article, we have discussed the possibility of detect-
ing the galactic axion field by deploying quantum emitters
such as atoms and molecules without using an advanced cav-
ity resonator setup. Our proposal thus facilitates the search in
the ultralight axion regime, where the required cavity length
becomes unreasonably long. Based on a rigorous quantiza-
tion of the axion-Maxwell equations, we have derived an
effective Hamiltonian that microscopically describes dipole
transitions in atoms, molecules, and trapped ions driven by the
axion-sourced electric field. This presents an exciting oppor-
tunity for repurposing existing electric field detectors based
on atomic quantum sensors, which promise performance en-
hancement by means of quantum engineering [57] for axion
detection. In this article, we proposed one such method using
highly excited Rydberg states, whose large transition dipole
elements make them excellent probes of axion-induced dipole
transitions. The proposed protocol offers flexibility and has
much potential for improvement, such as an optimized choice
of the Rydberg states. Also, other protocols for electric field
detection, e.g., based on microwave-optical photon conversion
featuring an improved sensitivity by two orders of magnitude
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compared to the superhet detector [58,59], can be investigated
for their potential as dark-matter detectors.

We further conjecture that the dipole transitions can also
enhance the sensitivity of other axion detectors, such as he-
lioscopes [18] and phonon polaritons [60]. We note that the
direct detection scheme proposed here is different from previ-
ous protocols using Rydberg atoms, which employ either the
atoms for an indirect detection of the axion-sourced photon in
a cavity [61], or the coupling of the electron spin to the axion
wind [62–64].

As with all axion detectors, the sensitivity and a possible
dark-matter signal method can be easily tested: (i) via the ex-
pected long-lasting temporal correlation of the axion field; (ii)
by checking the response to mock electric signals mimicking
the axion-sourced field; (iii) by switching off the magnetic
field, for which the axion-sourced signal will disappear. The
last criterion can be regarded as a smoking gun for dark-matter
detection.

It is useful to consider further sensitivity improvements
of our setup. The sensitivity may be improved for longer
measurement campaigns over several years, similar to the
one performed by the BACON collaboration [65] searching
for the time variation of fundamental constants. In this case,
one would also have to carefully account for the stochastic
fluctuations of the axion dark matter field. Another avenue
might be to seek improvements in the measurement process
itself to facilitate sensing of weaker electric fields, e.g., by
using stronger probe fields. The sensitivity estimate of the
superhet detector for weak probe fields shows that the SNR
is proportional to �p/�C, i.e., it improves for stronger probe
fields. However, this requires the development of nonpertur-
bative theoretical methods, e.g., based on the photon-resolved
Floquet theory [66], to accurately predict the spectroscopic
signatures of the axion dark matter. One interesting possibility
proposed in [67] is to use trapped ion crystals, which can
achieve electric field sensitivities of 100 nV m−1. Moreover,
trapping the Rydberg atoms in an optical lattice can further
help to mitigate the Doppler effect, and would allow for
complex quantum operations to mitigate measurement noise
[43,68].
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APPENDIX A: QUANTIZATION OF THE
AXION-MAXWELL EQUATIONS

Here, we perform a rigorous quantization of the axion-
Maxwell equations. The structure of this Appendix is as
follows: In Appendix A 1 we introduce the classical axion-
Maxwell equations. In Appendix A 2, we show how to
accurately quantize these equations by microscopically deriv-
ing the corresponding Hamiltonian.

1. Classical axion-Maxwell equations

The relativistic Lagrangian density describing the dynam-
ics of the pseudoscalar axion field a is given by [7]

L = − 1

4μ0
FαβFαβ − AαJα

+ 1

2ch̄
∂αa∂αa − 1

2

m2
ac4

c3h̄3 a2 − gaγ γ

4μ0
aFαβ F̃αβ, (A1)

where the covariant electromagnetic field tensor Fαν =
∂αAβ − ∂βAα can be expressed in terms of the covari-
ant 4-vector potential Aα = (φ, A). The labels α, β, γ , δ ∈
{ct, x, y, z} represent space-time coordinates. The covariant
electric 4-current is given as Jα = (cρ, J). The dual tensor
of the electromagnetic field is defined by F̃αβ = 1

2εαβγ δFγ δ ,
where εαβγ δ is the dyadic tensor. The electric and magnetic
fields can be obtained via

E = −∇φ − Ȧ and B = ∇ × A. (A2)

Using the Euler-Lagrange equations and the Bianchi identity,
we find the following relativistic equations of motion for the
above-introduced fields:

∂αFαβ = Jβ − gaγ γ F̃αβ∂αa,(
1

2ch̄
∂α∂α + m2

ac4

c3h̄3

)
a = −gaγ γ

4μ0
Fαβ F̃αβ,

∂αF̃αβ = 0, (A3)

which in terms of the electric, magnetic, and axion fields
provide the axion-Maxwell equations given in Eqs. (1)–(5).

2. Quantization

Using the definition of the electromagnetic field operators
in Eqs. (10)–(13), we can show that the canonical commuta-
tion relations are indeed fulfilled:

[â(r), π̂ (r′)] = ih̄2c3δ(r − r′),

[Âα (r), B̂β (r′)] = 0,

[Âα (r), Ẽ⊥
c,β (r′)] = − h̄

ε0
· δ⊥

α,β (r − r′),

[B̂α (r), Ẽ⊥
c,β (r′)] = h̄

ε0
εα,β,γ

d

dxγ

δ(r − r′), (A4)

where α, β, γ ∈ {x, y, z}. All other commutation relations
vanish. We refer to Ref. [49] for the technical definition of
δ⊥
α,β (r).

We are now in a position to derive the nonrelativistic
axion-Maxwell equations. The electric and magnetic Gaus-
sian equations are fulfilled since

∇ · Êc = ∇ · (Ê
⊥
c + E‖

c ) = ρ̂

ε0
, (A5)

where we have used that ∇ · Ê
⊥
c = 0 and ∇ · E‖

c = ρ̂/ε0 be-
cause of the parametrization in Eqs. (11) and (12). Using
now the relation of the canonical and physical electric fields
in Eq. (6), we obtain the electric Gauss equation. For the
same reason, we also find ∇ · B̂ = 0, i.e., the magnetic Gauss
equation in Eq. (3).
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The Faraday and Ampere equations can be constructed by
means of the Heisenberg equations of motion,

˙̂O = i

h̄
[Ĥ , Ô]. (A6)

The derivation follows essentially the same lines as the com-
mon Maxwell equations upon simply replacing Ê by Êc.
Using the commutation relations in Eq. (A4), we obtain

˙̂B = −∇ × Ê
⊥
c + cgaγ γ ∇ × (âB̂),

˙̂E‖
c = − 1

ε0
J‖,

˙̂E⊥
c = − 1

ε0
J⊥ + c2∇ × B̂

−∇ × [cgaγ γ â(Êc − cgaγ γ âB̂)]. (A7)

In the magnetic equation, we can replace Ê
⊥
c → Êc as ∇ ×

Ê
‖
c = 0 since Ê

‖
c = −∇φ̂ for the electrostatic potential φ̂ de-

fined in Eq. (12). Moreover, the notion and derivation of J⊥

and J‖, which fulfill J = J‖ + J⊥, can be found in standard
textbooks on quantum electrodynamics, e.g., [49]. We proceed
to combine the longitudinal and transversal electric equations

˙̂Ec = ˙̂E‖
c + ˙̂E⊥

c

= − J
ε0

+ c2∇ × B̂ − cgaγ γ ∇ × (âÊc)

+ c2g2
aγ γ â∇ × (âB̂) − c2g2

aγ γ (âB̂) × ∇â. (A8)

Resolving the magnetic equation in Eq. (A7) for cgaγ γ ∇ ×
(âB̂) and inserting into the electric equation (A8), we obtain

˙̂Ec = − J
ε0

+ c2∇ × B̂ − cgaγ γ ∇ × (âÊc)

+cgaγ γ â ˙̂B + cgaγ γ â∇ × Ec − c2g2
aγ γ (âB̂) × ∇â

= − J
ε0

+ c2∇ × B̂ + c2gaγ γ â ˙̂B

+cg(Êc − cgaγ γ âB̂) × ∇â. (A9)

Using now the relation of the canonical and physical electric
field operators in Eq. (6), we readily find the Faraday and
Ampere equations in Eqs. (4), (2), and (5), respectively.

We continue to construct the Heisenberg equations of mo-
tion for the axion field, which read

ȧ = π, (A10)

π̇ = c2∇2â − m2
ac4

h̄2 â + h̄c3
√

ε0

μ0
gaγ γ Êc · B̂

−h̄c3 1

μ0
g2

aγ γ âB̂ · B̂. (A11)

Upon replacing the canonical electric field by the physical one
according to Eq. (6), we obtain

π̇ = c2∇2â − m2
ac4

h̄2 â + h̄c3
√

ε0

μ0
gaγ γ Ê · B̂. (A12)

Deriving Eq. (A10) with respect to time and inserting
Eq. (A12), we readily obtain the axion equation of motion in
Eq. (5).

APPENDIX B: MULTIPOLAR HAMILTONIAN

The minimal-coupling Hamiltonian in Eq. (7) is incon-
venient to deal with because of the vector potential Â that
appears quadratically. This causes more complicated expres-
sions when calculating, e.g., the spectroscopic response of
quantum systems. Moreover, the vector potential Â is not a
physical observable. For this reason, we will bring the Hamil-
tonian into the so-called multipolar form that contains only the
electric and magnetic fields [49]. This is done by means of the
Power-Zienau transformation, which we review here shortly
[50]. To this end, we restrict our investigation to systems with
only bounded charges, such as atoms, molecules, and similar
quantum emitters. We will specify atoms in the following for
clarity. Accordingly, the summation over η in Eq. (7) will
be modified into a double summation over i ∈ {1, . . . , N},
labeling atoms, and j ∈ {1, . . . , Nc}, labeling the charges as-
sociated with a particular atom. The center of mass of atom
i will be denoted by Ri, while the position of the charges
belonging to this atom is denoted by ri, j .

The Power-Zienau transformation is defined by the unitary
operator

Û = exp

[
−i

1

h̄

∫
dr3P̂(r) · Â(r)

]
, (B1)

where

P̂(r) =
∑
i, j

n̂i, j (r),

n̂i, j (r) = qi, j (r̂i, j − Ri )
∫ 1

0
du δ[r − Ri − u(r̂i, j − Ri )]

(B2)

denote the macroscopic polarization and the polarization
generated by the particles η = (i, j) carrying charge qi, j ,
respectively. The Power-Zienau transformation has the fol-
lowing effect on the system operators:

r̂′
i, j = r̂i, j,

p̂′
i, j = p̂i, j − qe

c
Â(r̂i, j ) −

∫
dr3n̂i, j (r) × B̂(r),

d̂ ′
k,λ = d̂k,λ +

(
i

h̄

)√
h̄

2ε0ωk
ek,λ · P̂(k). (B3)

Consequently, the electromagnetic field operators become

Â
′
(r) = Â(r),

B̂
′
(r) = B̂(r),

Ê
⊥′
c (r) = Ê

⊥
c (r) + 1

ε0
P⊥ ≡ 1

ε0
D̂

⊥
c (r),

P̂
′
(r) = P̂(r). (B4)

Thus, only the transverse canonical electric field becomes
modified and is shifted by the polarization. The transformed
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canonical electric field is called the canonical displacement
field D̂c(r). Importantly, the displacement field is quantized in
terms of the new photonic operators d̂ ′

k,λ:

D̂
⊥
c (r) = i

∑
k,λ

√
h̄ωkε0

2V
ek,λ[d̂ ′

k,λeik·r − d̂ ′†
k,λ

e−ik·r], (B5)

and not the canonical electric field Êc(r). However, one
should keep in mind that the electric field Ê is the actual
physical observable. Away from the matter where P̂(r) = 0,
the canonical displacement field is equivalent to the canonical
electromagnetic field D̂c(r) = ε0Êc(r). In the absence of free
charges, the displacement field is entirely transverse and reads

D̂
⊥
c (r) = D̂c(r) = ε0Êc(r) + P̂ (B6)

as the longitudinal polarization fulfills P̂
‖ = ε0Ê

‖
c = 0 in the

absence of free charges as considered here.
The multipolar Hamiltonian reads

ĤALM = ĤM + ĤL + ĤLM + ĤA + ĤInt, (B7)

where the transformed matter Hamiltonian is given by

ĤM =
∑
i, j

p̂2
i j

2mi j
+ 1

2ε0

∑
i, j,i′, j′

qi jqi′ j

|r̂i j − r̂i′ j′ |

+ 1

2ε0

∫
dr3|P̂⊥

(r)|2. (B8)

The last term represents the polarization self-energy. The elec-
tromagnetic field Hamiltonian is now given as

ĤL = 1

2

∫
dr3

[
1

ε0
D̂

⊥2
c (r) + 1

μ0
B̂

2
(r)

]

=
∑
k,x

h̄ωk

(
d̂ ′†

kλ
d̂ ′

kλ + 1

2

)
, (B9)

where in the second equality we have expressed it in terms
of the new photonic operators. The transformed light-matter
coupling now reads

HLM = −
∫

dr3P̂(r) · D̂
⊥
c (r) −

∫
dr3M̂(r) · B̂(r)

+
∑

i j

1

2mi jc2

{∫
dr3[n̂i j (r) × B̂(r)]

}2

. (B10)

The first term describes the coupling of the electric dipole
moment to the displacement field. The second term is the
coupling of the magnetic dipole moment (thoroughly defined
in Ref. [49]) to the magnetic field. The third term describes the
coupling of the electric dipole density to the magnetic field.
Yet, as it is divided by the rest energy of the charges mi jc2,
this term can be safely neglected.

The free axion Hamiltonian

ĤA = 1

2

∫
dr

[
π̂2

h̄c3
+ 1

ch̄
∇â · ∇â + m2

ac4

c3h̄3 â2

]

remains unchanged, while the transformed axion-light-matter
coupling Hamiltonian now reads

ĤInt =
∫

dr3 cgaγ γ [â(D̂c − P̂) · B̂]

+
∫

dr3 1

2μ0
g2

aγ γ â2B̂ · B̂, (B11)

where we have used that c2 = 1/(ε0μ0).

APPENDIX C: DERIVATION OF THE
EFFECTIVE HAMILTONIAN

1. Decoupling transformation

To simplify the following analysis, we consider a strong
static magnetic field B, which is in agreement with our exper-
imental proposal. The total magnetic field thus reads

B̂ = B + B̂f, (C1)

where B̂ f denotes the quantum fluctuations of the field. We
now carry out the unitary transformation

Û = exp

[
i
ε0

h̄

∫
dr3cgaγ γ ÂBâ

]
, (C2)

which has the following effect on the system operators:

Û D̂cÛ
† = D̂c − ε0cgaγ γ Bâ ≡ D̂,

Û π̂Û † = π̂ − ε0c4h̄gaγ γ ÂB ≡ π̂tr. (C3)

Note that these new field operators also fulfill the canonical
commutation relations. Yet, the transformed axion momentum
π̂tr is not a physical observable because of the appearance of
the electromagnetic vector potential. Thus, the transformed
Hamiltonian now reads

Ĥ =
∑
i, j

p̂2
i j

2mi j
+ 1

2ε0

∑
i, j,i′, j′

qi jqi′ j∣∣r̂i j − r̂i′ j′
∣∣

+ 1

2ε0

∫
dr3|P̂⊥|2

+1

2

∫
dr3

[
1

ε0
D̂

⊥2 + 1

μ0
(B + B̂f )

2

]

−
∫

dr3 1

ε0
P̂ · D̂

⊥ −
∫

dr3M̂ · (B + B̂f )
2

+
∑

i j

1

2mi jc2

[∫
dr3[n̂i j × B̂]

]2

− cgaγ γ

∫
dr3 [â(D̂ − P̂) · B̂f]

+
∫

dr3

[
1

2μ0
g2

aγ â2(B + B̂ f )2

]

+1

2

∫
dr

(π̂tr + ε0c4h̄gaγ γ ÂB)2

h̄c3
.

+1

2

∫
dr

[
1

ch̄
∇â · ∇â + m2

ac4

c3h̄3 â2

]
. (C4)

In the transformed Hamiltonian, the axion-polarization cou-
pling is mediated only by the fluctuations of the magnetic field
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B̂ f , which can thus be neglected. As we see in the fourth line,
the polarization couples to the displacement field. For this rea-
son, we have to determine its dynamics to predict whether the
axion field can induce some physically measurable effect on
the polarization. The equations of motion of the displacement
field read

d

dt
D̂ = −ε0cgaγ γ π̂tr(t )B + c2∇ × B̂ f + c2∇ × M̂

+O(gaγ γ B̂f ),

d

dt
B̂f = −∇ × D̂, (C5)

which are a linearized version of the axion-Maxwell equa-
tions in Eqs. (1)–(5). As c2 is a large number, we have also
constructed the equation of motion for the magnetic field
fluctuations. For simplicity, we assume that the axion field is
in a coherent state, such that its impulse has the following time
evolution:

π̂tr(t ) ≈ π̂ (t ) = ȧ(t ) = a0
mac2

h̄
sin

(
mac2

h̄
t

)
, (C6)

i.e., we neglect the term linear in gaγ γ [which would give only
a contribution ∝ g2

aγ γ in Eq. (C5)], and we consider π̂ (t ) as a
classical source term.

2. Solution of the axion-Maxwell equations

To solve the axion-Maxwell equations, we derive the first
equation in Eq. (C5) with respect to time, and then insert
the magnetic field expression of the second equation. Using

identities of vector calculus, we readily arrive at the inhomo-
geneous wave equation[

c2� − d2

dt2

]
D̂(r) = −ε0cgaγ γ

˙̂π (t )B(r), (C7)

where the axion field acts as a source term. This equation has
the well-known solution

D̂(r, t ) = − 1

4π

∫
d3r′ f (r′, t − |r − r′|/c)

|r − r′| , (C8)

which can be derived, e.g., using the Green’s function formal-
ism [69]. In our case, the source term explicitly reads

f (r, t ) = ε0cga,γ γ m2
aa0 cos(mat )B(r). (C9)

Without loss of generality, we consider the position r = 0
in the following, as we can place the origin of the coordinate
system at the position where we want to sense the displace-
ment field. Expanding the magnetic field in terms of spherical
harmonics Yn,l (θ ′, ϕ′),

B(r′) = B(r′, θ ′, ϕ′)

=
∑
n,l

Bm,l (r
′)Ym,l (θ

′, ϕ′), (C10)

we find the following expansion for the displacement field:

D̂(0, t ) =
∑
l,m

D̂l,m(0, t ). (C11)

The partial displacement fields can be expressed as

D̂l,m(0, t ) = −ε0cga,γ γ a0m2
a

4π

∫ ∞

0
dr′

∫
dθ

∫
dϕBl,m(r′)Yl,m(θ ′, ϕ′) cos (ma(t − r′/c))r′ sin θ

= −ε0cga,γ γ a0m2
a

4π
Km,n

∫ ∞

0
dr′Bl,m(r′) cos (ma(t − r′/c))r′, (C12)

where the angular dependence is described by the coefficients

Km,n = 1

2π

∫
dθ

∫
dϕYm,n(θ, ϕ) sin θ. (C13)

We emphasize that Eqs. (C11) and (C12) comprise an exact
solution of the inhomogeneous wave equation in Eq. (C7).

For a practical reason, we want to bring Eq. (C11) into a
more compact form. To this end, we assume that all Bl,m(r′)
are parallel to the magnetic field at the origin B(0). In this
case, the displacement field can be expressed as

D̂(0, t ) = ε0cga,γ γ a0 cos(ωat + φ̃)B(0)SB(ma), (C14)

where we have introduced

SB(ma) = |F |,
φ̃ = argF ,

F = −
∑
l,m

Km,n

4π |B(0)|
∫ ∞

0
dr|Bl,m(r)|e−imar/cr, (C15)

which incorporates the form of the magnetic field. The phase
φ̃ will be neglected in the following. It is interesting to analyze
the form factor F for small masses ma, such that e−imar′/c ≈ 1.
Rescaling the argument of the magnetic field B′(r) = B(r/α),
we find that F ′ → α2F . We thus conclude that the suppres-
sion factor

SB(ma) ≡ S
(

mac

h̄
lB

)
, (C16)

where lB parametrizes the spatial extend of the magnetic field,
scales according to S (x) ∝ x2 for small x. The scaling for
large x depends on the particular form of the magnetic field.

3. Example

To illustrate the physical implications of the general solu-
tion of the wave equation in Eq. (C11) on a concrete example,
we consider an exponentially decaying magnetic field,

Bl,m(r′) = Bl,m;0e−γ r′
, (C17)
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where γ = 1/lB denotes the inverse decay length. Inserting this into Eq. (C12) and evaluating the integral, we obtain

D̂l,m(0, t ) = −cga,γ γ a0m2
aeimatKm,nBl,m;0

∫ ∞

0
dr′e−γ r′

e−imar′/cr′

= −cga,γ γ a0m2
aeimatKm,nBl,m;0

∫ ∞

0
dr′e(−γ r′−ima/c)r′

r′

= cga,γ γ a0m2
aeimatKm,nBl,m;0

∫ ∞

0
dr′ 1

−γ − ima/c
e(−γ−ima/c)r′

= −cga,γ γ a0m2
aeimatKm,nBl,m;0

1

(−γ − ima/c)2 . (C18)

The maximum amplitude of this field has the following scal-
ing properties:

D̂
max
l,m = ε0cga,γ γ a0Bl,m;0Km,n

{
m2

a l2
B, malB � 1,

1, malB � 1.
(C19)

For small axion masses malB � 1, this relation shows that
the axion-sourced displacement field is strongly suppressed,
in agreement with Eq. (C16). In contrast, for malB � 1, the
axion-sourced displacement field becomes independent of the
axion mass and approaches the solution of the translationally
invariant system.

4. Effective Hamiltonian

Based on the previous derivations, we introduce here an
effective Hamiltonian, which we use to predict the sensitivity
of Rydberg atoms. First, we neglect the fluctuations of the
electromagnetic fields and the axion field in the Hamiltonian
in Eq. (C4). In doing so, the Hamiltonian reduces to

Ĥ (t ) =
∑
i, j

p̂2
i j

2mi j
+ 1

2ε0

∑
i, j,i′, j′

qi jqi′ j∣∣r̂i j − r̂i′ j′
∣∣

+ 1

2ε0

∫
dr3|P̂⊥

(r)|2 −
∫

dr3 1

ε0
P̂(r) · D⊥(r, t )

−
∫

dr3M̂(r) · B(r). (C20)

The magnetic field is considered to be static. The dynamics of
the displacement field D⊥(r, t ) is given by Eq. (C14). Thereby,
we implicitly assume that all atoms are located close to the
origin as compared to the spatial variation of the magnetic
field, i.e., r j ≈ 0.

Next, we represent the matter Hamiltonian in the energy
basis of the atoms, such that it reads

Ĥ0 =
∑
i, j

p̂2
i j

2mi j
+ 1

2ε0

∑
i, j,i′, j′

qi jqi′ j

|r̂i j − r̂i′ j′ |

=
N∑

i=1

∑
μ,ν

ε (i)
μ |i, μ〉〈i, μ|, (C21)

where ε (i)
μ denotes the energies. Likewise, we expand the

magnetization operator

M̂(r) =
N∑

i=1

∑
μ

m(i)
μ |i, μ〉〈i, μ|δ(r − ri ) (C22)

and the polarization operator

P̂(r) =
N∑

i=1

∑
μ,ν

d (i)
μ,ν |i, μ〉〈i, ν|δ(r − ri ), (C23)

where δ(r) is the three-dimensional delta function. Please
note that the magnetization is assumed to be diagonal here,
such that it describes the common Zeeman shift in atoms. We
assume that the atoms are far apart from each other, such that
we can neglect the polarization interaction operator, i.e., the
third term in Eq. (C20).

After carrying out all these changes, the effective Hamilto-
nian reads

Ĥeff(t ) =
N∑

i=1

∑
μ

[
εμ − m(i)

μ · B0
]|i, μ〉〈i, μ|

−
N∑

i=1

Ea(t ) · d (i)
μ,ν |i, μ〉〈i, ν|, (C24)

where the axion-sourced electric field is given by

Ea(t ) = gaγ γ ca(t )B0S
(

mac

h̄
lB

)
. (C25)

Thereby, we have defined B0 = B(r = 0) as the magnetic field
at the origin. The suppression factor, which depends on the
axion mass ma and the spatial shape of the magnetic field, has
been defined in Eq. (C16). The second term in Eq. (C24) is
equivalent to Eq. (16) in the article.

APPENDIX D: SENSITIVITY OF ATOMIC
SUPERHETERODYNE DETECTORS

In this Appendix, we give a microscopic derivation of the
projected signal-to-noise ratio (SNR) given in Eq. (20) in the
main text.

1. Hamiltonian

We describe the system as an effective four-level system
whose states are denoted by |1〉, |2〉, |3〉, |4〉. Their energetic
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positions are shown in the spectrum in Fig. 2. The correspond-
ing Hamiltonian reads

H (t ) = ε1|1〉〈1| + ε2|2〉〈2| + ε3|3〉〈3| + ε4|4〉〈4|

+ h̄

2
[�peiωpt |2〉〈1| + H.c.]

+ h̄

2
[�CeiωCt |3〉〈2| + H.c.]

+ h̄

2
[(�LOeiωLOt + �aeiω1t )|4〉〈3| + H.c. ], (D1)

where εx with x = 1, 2, 3, 4 denote the level energies. The
parameters in Eq. (D1) have been already introduced in
Sec. III C.

In general, ωa �= ωLO, but if |ωa − ωLO| is smaller than all
other frequencies in the system, the two Rydberg states can be
considered to be coupled by an effective field with frequency
ωLO and an adiabatically varying Rabi frequency �(t ) =
�LO + �aei(ωa−ωLO )t . To enable analytical calculations, we
will consider � to be constant and parametrize it as � =
�LO + �a.

To analytically describe the EIT in the four-level system
which is subject to dissipation, we describe the dynamics by
the Bloch equation,

d

dt
ρ = − i

h̄
[H (t ), ρ] + γ2D|1〉〈2|ρ + γ3D|1〉〈3| + γd D|1〉〈4|ρ,

(D2)
where the dissipator is defined by

DÔρ = ÔρÔ† − 1

2
(Ô†Ôρ + ρÔ†Ô), (D3)

and γ2, γ3, and γ4 denote the inverse lifetimes of states |2〉,
|3〉, and |4〉, respectively.

For the ongoing analysis, we assume the resonance con-
dition ε4 − ε3 = h̄ωa. Such a resonance condition can be
fulfilled by adjusting the energies ε3, ε4 using the Zeeman
effect. Transforming the subsystem consisting of the states
ε3, ε4 into a frame rotating with ωa, and expressing the Hamil-
tonian using the diagonal basis of this subsystem, it becomes

H (t ) =
∑

x=1,2,−,+
εx|x〉〈x|

+ h̄

2

[
�peiωpt |2〉〈1| + 1√

2
�CeiωCt |−〉〈2|

+ 1√
2
�CeiωCt |+〉〈2| + H.c.

]
, (D4)

where the energies in the diagonalized subspace are given
by ε− = ε3 − h̄�/2 and ε+ = ε3 + h̄�/2. Accordingly, the
Bloch equation reads

d

dt
ρ = − i

h̄
[H (t ), ρ] + γ2D|1〉〈2|ρ + γ D|1〉〈−|ρ + γ D|1〉〈+|ρ,

(D5)
where the dissipation rate γ is given by γ = 1

2 (γ3 + γ4).

2. Signal operator

In the superhet detection scheme, an external electric field
is detected by a change of the transmission of the probe laser

through the atom cloud. The transmitted intensity follows
thereby the Beer’s absorption law

I (z) = I0 exp[−ρNκ (ωp)z], (D6)

where ρN is the density of atoms and κ (ωp) is the absorption
cross section of the probe laser. The product of density and
absorption cross section is denoted as absorption rate α(ωp) =
ρNκ (ωp). Using standard methods of spectroscopy [49], one
can show that the absorption cross section is proportional to
the imaginary part of the susceptibility χ (ωp):

κ (ωp) = 2π
ω Im χ (ωp)

cρAn(ωp)
,

n(ωp) = √
1 + 4π Re χ (ωp), (D7)

where n(ω) denotes the refractive index. For small densities
ρN , we can approximate n(ω) = 1. Moreover, for a small
product ρNκ (ωp)z, we can linearize Eq. (D6) such that

I (z) ≈ ωp

c
Im χ (ωp)z, (D8)

which shows that the transmitted intensity is proportional to
the imaginary part of the susceptibility.

As we show in the next section, the susceptibility is inti-
mately linked to the operator X̂ = ∑N

i=1 X̂i, where i labels the
N atoms in the system, and

X̂i =
∫ tm

0
dtP̂ (i)

2,1(t )ei(ωpt+ϕ) + H.c.,

P̂ (i)
2,1(t ) ≡ Û †(t )(|2〉i〈1| + |1〉i〈2|)Û (t ), (D9)

where Û (t ) is the time-evolution operator determined by the
Hamiltonian in Eq. (D1). The phase ϕ is a free parameter.
The operator X̂ acts nonlocal in time, which is well defined
in the Heisenberg picture. As we will show in the following,
the expectation value for ϕ = π/2 and the variance for all ϕ of
X̂ are proportional to the imaginary part of the susceptibility
in the linear-response regime, i.e.,

〈X̂ 〉 ∝ 〈X̂ 2〉 ∝ Im χ (�p), (D10)

where the expectation value is defined by 〈•〉 = tr[•ρst] with
the stationary state of the system for �p = 0 given by ρst =
|1〉〈1|. Due to its close relation to the susceptibility (and thus
to the absorption rate), we refer to X̂ as the susceptibility
operator in the following. In Appendix D 8, we thus take
the operator X̂ as the basis to determine the SNR of the
experimental setup. In doing so, we accurately account for
the projection noise, which is the only fundamentally limiting
noise source in the experiment [47]. Other noises, like photon
shot noise or detection noise, are not considered here.

3. Susceptibility

The susceptibility can be expressed in terms of the linear-
response function S(r, t ), which determines the polarization
in response to an external probe electric field Ê p(r, t ) =
E p,0 cos(kr − ωpt ) [49], i.e.,

P̂(r) = ε0

∫
d3r

∫ t

0
S(r − r′, t − t ′)Ê p(r′, t ′)dt ′. (D11)
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We assume here that the probe frequency is close to resonance
with the transition between |1〉 and |2〉 in the Hamiltonian in
Eq. (D1). For this reason, it is sufficient to parametrize the
polarization operator as

P̂(r) =
N∑

i=1

d (i)
1,2P̂

(i)
2,1δ(r − ri ). (D12)

Applying standard first-order perturbation theory to the
Hamiltonian in Eq. (D1), we find that the linear-response
function is given by [49]

S(r, t ) = −iρN
|d1,2|2
ε0h̄

〈[P̂2,1(t ), P̂2,1(0)]〉�p=0 δ(r), (D13)

where ρN denotes the atom density. Here, we have assumed
that all atoms are equal, such that we can neglect the super-
script i. The time-evolution is thereby determined for �p = 0.
The linear susceptibility can be obtained from the linear-
response function via Fourier transformation

χ (ωp) =
∫

d3r
∫ ∞

0
S(r, t )eiωpt dt

= (−i)ρN
|d1,2|2
ε0h̄

[C(ωp) − C(−ω)∗]

≈ (−i)ρN
|d1,2|2
ε0h̄

C(ωp). (D14)

For later purpose, we have introduced the correlation function

C(t, t ′) = 〈P̂1,2(t )P̂1,2(t ′)〉|�p=0

= 〈P̂1,2(t − t ′)P̂1,2(0)〉|�p=0

= C(t − t ′). (D15)

Its Fourier transformation is defined via

C(ω) =
∫ ∞

0
C(t )eiωt dt . (D16)

In the approximation in Eq. (D14) we have deployed the
Kubo-Martin-Schwinger relation C(ω) = C(−ω)eβ h̄ω assum-
ing room temperature 1/β ≈ 25 meV and probe frequency
h̄ωp > 1 eV.

4. Calculation of the signal

We calculate the expectation value of the operator X̂i

in Eq. (D9) in the presence of the probe field Ê p(r, t ) =
E p,0 cos(kr − ωpt ) in first-order perturbation theory in �p =
|d1,2 · E p,0|/h̄. As trivially 〈X̂i〉�p=0 = 0, we find

〈X̂i〉 ≈ �p

∫ tm

0
dt

∫ t

0
dt ′(−i)[C(t, t ′) − C(t ′, t )]

× cos(ωpt ′) cos(ωpt + ϕ). (D17)

In agreement with the RWA in the Hamiltonian in Eq. (D1),
we neglect the fast oscillating terms e±2ωpt . In doing so, we
find

〈Xi〉 → �p

∫ tm

0
dt

∫ t

0
dt ′(−i)[C(t, t ′) − C(t ′, t )]

×[
ei(ωpt ′−ωpt+ϕ) + e−i(ωpt ′−ωpt+ϕ)

]

= �p

∫ tm

0
dt

∫ t

0
dt ′(−i)[C(t ′) − C(−t ′)]

×[ei(−ωpt ′+ϕ) + e−i(−ωpt ′+ϕ)]

≈ �p

∫ tm

0
dt

∫ ∞

0
dt ′(−i)[C(t ′) − C(−t ′)]

×[ei(−ωpt ′+ϕ) + e−i(−ωpt ′+ϕ)]

= �p

∫ tm

0
dt (−i)[C(ωp)eiϕ − C(−ωp)∗e−iϕ + H.c.]

= �ptm(−i)[C(ωp)eiϕ − C(−ωp)∗e−iϕ + H.c.].

(D18)

Setting ϕ = π/2 and comparing with Eq. (D14), we obtain

Im χ (ωp) = 1

2�ptm

ρN |d1,2|2
ε0h̄

〈X̂ 〉, (D19)

which establishes the desired relation between the operator X̂
and the susceptibility.

5. Calculation of the noise

In the same manner, we evaluate the variance of the observ-
able X̂ . As �p is assumed to be small, it has a minor influence
on the result, and we can set �p = 0. Explicitly, the variance
can be evaluated to be

〈X̂iX̂i〉 =
∫ tm

0
dt

∫ tm

0
dt ′〈X̂1,2(t )X̂b,a(t ′)〉�p=0

× cos(ωpt ′ + ϕ) cos(ωpt + ϕ)

→ 1

2

∫ tm

0
dt

∫ tm

0
dt ′C(t, t ′)ei(ωpt ′−ωpt )

= 1

2

∫ tm

0
dt

∫ tm

0
dt ′C(t − t ′)ei(ωpt ′−ωpt )

= 1

2

∫ tm

0
dt

∫ t

0
dt ′C(t − t ′)e−i(ωpt ′−ωpt )

+
∫ tm

0
dt

∫ tm

t
dt ′C(t ′ − t )∗e−i(�pt ′−ωpt )

= 1

2

∫ tm

0
dt

∫ t

0
dt ′C(t ′)eiωpt ′

+
∫ tm

0
dt

[∫ tm−t

0
dt ′C(t ′)eiωpt ′

]∗

= 1

2

∫ tm

0
dt

∫ ∞

0
dt ′C(t ′)eiωpt ′

+
∫ tm

0
dt

[∫ ∞

0
dt ′C(t ′)eiωpt ′

]∗

= 1

2
tm[C(ωp) + C(ωp)∗]. (D20)

Comparing this result with Eq. (D14), we infer that

Im χ (ωp) = 1

tm

ρN |d1,2|2
ε0h̄

〈X̂ 2〉, (D21)

where we have again deployed the Kubo-Martin-Schwinger
relation.
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6. Electromagnetically induced transparency
in a four-level system

In Appendixes D 4 and D 5, we have derived formal expres-
sions for the signal and the noise in terms of the susceptibility.
It remains to express the susceptibility in terms of the mi-
croscopic system parameters. We achieve this by solving the
Bloch equation in Eq. (D2) and finding an explicit expres-
sion for the matrix element ρ12(t ). To connect this to the
susceptibility, we use the relation in first-order perturbation
theory,

ρ12(t ) =
∫ t

0
(−i)〈[|1〉〈2|(t ), |2〉〈1|(t ′)]〉�p=0�peiωpt ′

=
∫ t

0
C̃(t − t ′)�peiωpt ′

, (D22)

where we have introduced the correlation function C̃(t ) for a
notation reason. Performing a (normalized) Fourier transfor-
mation, we find

ρ21(ωp) = lim
τ→∞

1

2τ

∫ τ

−τ

ρ12(t )e−iωpt dt

= �pC̃(ωp), (D23)

where normalization with 2τ is necessary to avoid a di-
vergence. We note that due to the Kubo-Martin-Schwinger
relation and within the RWA, C̃(ωp) ≈ C(ωp). We thus obtain
C(ωp) and consequently the susceptibility in Eq. (D14) via

C(ωp) = d

d�p
ρ21(ωp)

∣∣∣∣
�p=0

. (D24)

To find an expression for ρ21, we generalize the standard
treatment of the EIT in three-level systems (see, e.g., the
textbook by Scully [54]) to the four-level system in Eq. (D1).
To start with, we transform the Hamiltonian into a frame
rotating with frequencies ωp and ωC, such that the resulting
time-independent Hamiltonian reads

H = ε1,�|1〉〈1| + ε2,�|2〉〈2| + ε−,�|−〉〈c1| + ε+,�|+〉〈+|

+h̄
�p

2
[|2〉〈1| + |1〉〈2|] + h̄

�C

2
√

2
[|−〉〈2| + |b〉〈−|]

+h̄
�C

2
√

2
[|+〉〈2| + |2〉〈+|], (D25)

where the detuned energies are defined by ε1,� = ε1, ε2,� =
ε2 − h̄ωp, ε−,� = ε− − h̄ωp − h̄ωC, and ε+,� = ε+ − h̄ωp −
h̄ωC. The dissipation terms in the Bloch equation in Eq. (D5)
remain unchanged. Explicitly, the Bloch equations for the
density matrix ρ̃ in the rotating frame read

d

dt
ρ̃11 = γbρ̃22 + γ ρ̃−− + γ ρ̃++ − i

�p

2
ρ̃21 + i

�p

2
ρ̃12,

d

dt
ρ̃12 = −γb

2
ρ̃12 − i

h̄
(ε1,� − ε2,�)ρ̃12 − i

�p

2
ρ̃22 + i

�p

2
ρ̃11 + i

�C√
8
ρ̃1− + i

�C√
8
ρ̃1+,

d

dt
ρ̃1− = −γ

2
ρ̃1− − i

h̄
(ε1,� − ε−,�)ρ̃1− − i

�p

2
ρ̃2− + i

�C√
8
ρ̃12,

d

dt
ρ̃1+ = −γ

2
ρ̃1+ − i

h̄
(ε1,� − ε+,�)ρ̃1+ − i

�p

2
ρ̃2+ + i

�C√
8
ρ̃12,

d

dt
ρ̃22 = −γ2ρ̃22 − i

�p

2
ρ̃12 + i

�p

2
ρ̃21 − i

�C√
8
ρ̃−2 + i

�C√
8
ρ̃2− − i

�C√
8
ρ̃+2 + i

�C√
8
ρ̃2+,

d

dt
ρ̃2− = −1

2
(γ2 + γ )ρ̃2− − i

h̄
(ε2,� − ε−,�)ρ̃2− − i

�C√
8
ρ̃−− − i

�C√
8
ρ̃+− + i

�C√
8
ρ̃22 − i

�p

2
ρ̃1−,

d

dt
ρ̃2+ = −1

2
(γ2 + γ )ρ̃2+ − i

h̄
(ε2,� − ε−,�)ρ̃2+ − i

�C√
8
ρ̃++ − i

�C√
8
ρ̃−+ + i

�C√
8
ρ̃22 − i

�p

2
ρ̃1+,

d

dt
ρ̃−− = −γ ρ̃−− − i

�C√
8
ρ̃2− + i

�C√
8
ρ̃−2,

d

dt
ρ̃−+ = −γ ρ̃−+ − i

h̄
(ε2,� − ε−,�)ρ̃−+ − i

�C√
8
ρ̃2+ + i

�C√
8
ρ̃−2,

d

dt
ρ̃++ = −γ ρ̃++ − i

�C√
8
ρ̃2+ + i

�C√
8
ρ̃+2. (D26)
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We aim to find an expression for ρ̃12 in the leading order of �p. As inspection of the Bloch equations reveals that ρ̃11 ≈ 1 �
ρ̃22, ρ̃2−, ρ̃−2, ρ̃−−, ρ̃2+, ρ̃−+, ρ̃++ ∝ �2

p, we neglect corresponding terms. The three remaining equations are thus

zρ̆12 = −iε̃12ρ̆12 − i
�p

2
ρ̆22 + i

�C√
8
ρ̆1− + i

�C√
8
ρ̆1+ + i

�p

2
ρ̆11,

zρ̆1− = −iε̃1−ρ̆12 − i
�p

2
ρ̆2− + i

�C√
8
ρ12,

zρ̆1+ = −iε̃1+ρ̆12 − i
�p

2
ρ̆2+ + i

�C√
8
ρ̆12, (D27)

which we have already transformed into Laplace space under
the assumption that ρ12(0) = ρ1−(0) = ρ1+(0) = 0. Opera-
tors in Laplace space are marked by an inverted hat, i.e., •̆.
Moreover, we have defined

ε̃12 = 1

h̄
(ε1 − ε2) − ωp + i

γ2

2
,

ε̃1− = 1

h̄
(ε1 − ε−) + ωp + ωC + i

γ

2
,

ε̃1+ = 1

h̄
(ε1 − ε+) + ωp + ωC + i

γ

2
(D28)

for a notation reason. Resolving Eq. (D27) for ρ̆12, we obtain

ρ̆12 = i�pρ̆11

z + iε̃ab + 1
8

�2
C

z+iε̃1−
+ 1

8
�2

C
z+iε̃1+

. (D29)

We are interested in the long-time behavior of ρ̃12(t → ∞).
Using ρ11(t ) ≈ ρ11(0) = 1, which in Laplace space becomes
ρ̆11 = ρ11(0)/z, we find

ρ̃12(t → ∞) = lim
z→0

zρ̆12(z) = −�p

ε̃12 − 1
8

�2
C

ε̃1−
− 1

8
�2

C
ε̃1+

= ρ12(ωp). (D30)

To establish the second equality, we have transformed the
density matrix into the laboratory frame via ρ12(t → ∞) =
ρ̃12(t → ∞)eiωpt , and we carried out the scaled Fourier trans-
formation in Eq. (D23).

7. Temperature dependence

Usually, the superhet detector is operated at a finite temper-
ature (e.g., T = 300 K), which will deteriorate its sensitivity.
Two effects have to be taken into account. First, the dephas-
ing rates of the excited states γ2, γ3, and γ4 will increase.
The temperature-dependent dephasing rates can be calcu-
lated using the Alkali-Rydberg-Calculator (ARC) package
[56]. Overall, this effect is relatively small. Secondly, the
temperature-induced motion of the atoms will give rise to
a Doppler shift concerning the probe and coupling beams.
To mitigate this effect, the probe and coupling beams shall
propagate in opposing directions, as sketched in Fig. 2(f) in
the article. Consequently, both laser frequencies are Doppler-
shifted as

ωp → ωp − 2π

λp
v,

ωC → ωC + 2π

λC
v, (D31)

where λp = 2πc/ωp (λC = 2πc/ωC) is the wavelength of the
probe (coupling) beam, and v is the velocity of an atom
parallel to the beams.

The Doppler-averaged density matrix elements can be ob-
tained by evaluating the integral

ρ12D(ωp)

=
∫ ∞

−∞
ρ̃12

(
ωp − 2π

λp
v, ωC + 2π

λC
v

)
e− mRv2

2kBT

√
2πkBT/mR

dv

=
∫ ∞

−∞

−�p

ε̃12 − 2π
λp

v − 1
8

�2
C

ε̃1−
− 1

8
�2

C
ε̃1+

e− mRv2

2kBT

√
2πkBT/mR

dv

=
∫ ∞

−∞

c1

c2 − v

1√
2πσ

e− v2

2σ2 dv, (D32)

where mR denotes the mass of the Rydberg atoms, and T is
the temperature of the thermal cloud. For notation purposes,
we have introduced the parameters

c1 = −�pλp

2π
,

c2 = λp

2π

(
ε̃12 − 1

8

�2
C

ε̃1−
− 1

8

�2
C

ε̃1+

)
,

σ =
√

kBT

mR
. (D33)

This integral can be solved analytically. Using that Im c2 > 0,
we can transform

ρ12D(ωp) =
∫ ∞

−∞
dv

∫ ∞

0
dx(−i)

c1√
2πσ

ei(c2−v)xe− v2

2σ2

= (−i)
c1√
2πσ

√
2πσ

∫ ∞

0
dxe− σ2

2 x2+ic2x

= (−i)
c1√
2πσ

√
2πσe− c2

2
2σ2

∫ ∞

0
dxe− σ2

2 (x−i c2
σ2 )2

= (−i)
c1√
2πσ

√
2πσe− c2

2
2σ2

∫ ∞

−i c2
σ2

dxe− σ2

2 x2

= (−i)
c1√
2πσ

√
2πσe− c2

2
2σ2

√
2

σ

∫ ∞

−i c2√
2σ

dxe−x2

= (−i)c1

√
2

σ
e− c2

2
2σ2

√
π

2

[
1 − erf

(
−i

c2√
2σ

)]
,

(D34)
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FIG. 3. (a) Absorption rate as a function of �ωC for three different temperatures. (b) Doppler-effect form function �(x) and its derivative
�′(x). (c) SNR as a function of local oscillator strength for three different temperatures. Parameters are �p = 1.7 MHz, �C = 23 MHz, and
Bres = 5.6 T. If not specified differently, the parameters are the same as in Fig. 2(g).

where in the last step we have introduced the complex-valued
error function erf(z). We continue to bring this into a form that
can be more conveniently analyzed. To this end, we expand
the error function as a continued fraction,

erf(z) = 1 − 1√
π

e−z2

z + 1
2z+ 2

z+ 3
z+···

, (D35)

such that we can express the density-matrix element as

ρ̃12D(ωp) = c1

c2 + iσ�[−ic2/(
√

2σ )]
, (D36)

where we have defined the form function

�(z) =
√

2

2z + 2
z+ 3

z+···

=
√

2√
π

e−z2

1 − erf(z)
−

√
2z. (D37)

As this function describes the impact of the Doppler effect on
the susceptibility, we will refer to it as the Doppler-effect form
function in the following.

Putting everything together, the imaginary part of the sus-
ceptibility is given by

Im χ (ωp) = ρN |d1,2|2
ε0h̄

Im
c1

c2 + iσ�[−ic2/(
√

2σ )]
,

(D38)

which is proportional to the absorption rate α(ωp). We empha-
size that this expression is nonperturbative for all parameters.
Inspection of Eq. (D38) shows that the Doppler effect en-
hances the dephasing rate γ ′

2 → γ2 + ωpσ

c �[−ic2/(
√

2σ )].
We depict the absorption rate as a function of coupling laser
frequency detuning �ωC = ωC − (ε3 − ε2)/h̄ for different
temperatures in Fig. 3(a).

Without local oscillator �LO = 0, the absorption rate ex-
hibits a broad single dip at �ωC = 0, which is the celebrated
EIT. Since Im χ (ωp) ∝ γ , the EIT is not complete for T =
300 K, as γ increases for increasing temperature. The width

of the dip scales with ∝ 1/γ ′
2 and thus decreases for larger

temperatures.
For a finite local oscillator strength � = 0.1 MHz, the two

levels |3〉 and |4〉 mix, which leads to constructive interference
at �ωC = 0 and destroys the EIT. This generates a peak in the
absorption rate, whose width is proportional to γ . The height
of the peak sensitively depends on �.

8. Signal-to-noise ratio

As the susceptibility sensitively depends on � at the res-
onance condition �ωC = 0, the superhet detector operates
under these circumstances, in which

c2 = i
λp

2π

(
γ2 + �2

Cγ

�2 + γ 2

)
. (D39)

Based on Eqs. (D19), (D21), and (D38), we can now eval-
uate the SNR for the operator X̂ . Recalling that the total
Rabi coupling between the Rydberg states consists of the
local oscillator and the axion-induced dipole transitions � =
�LO + �a, we find that the signal for small �a is given by

δ〈X̂ 〉 = �a
d

d�a
〈X̂ 〉|�a=0

= 2(1 + �′)(
γ2 + ωpσ

c � + �2
Cγ

�2
LO+γ 2

)2

�2
Cγ 2�LON�p�atm(

�2
LO + γ 2

)2 ,

(D40)

where we have defined � = �[ζ/(
√

2σ )] with ζ = γ2 +
γ�2

C/(�2
LO + γ 2) and σ 2 = kbT/mR. Moreover, we have in-

troduced �′ = ∂z�(z) |z→ζ/(
√

2σ ). Likewise, we can evaluate
the variance for an ensemble of atoms

〈VarX̂ 〉 = 〈X̂ 2〉 = 4tmN

γb + ωpσ

c � + �2
Cγ

�2
LO+γ 2

, (D41)
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where we have approximated the Rabi coupling between the
Rydberg states by the local oscillator � → �LO. Putting ev-
erything together, the SNR reads

SNR ≡ δ〈X̂ 〉
〈VarX̂ 〉 1

2

=
√

N�a

√
Tctm =

√
N�aτ, (D42)

where we have defined the effective measurement time τ =√
Tc tm in terms of the effective coherence time in Eq. (21).

Finally, we recall that we have considered � as quasistatic
throughout the derivations. Taking the time dependence
�(t ) = �LO + �aei(ωa−ωLO )t into account, we find that the
measurement signal will slowly oscillate with frequency ωa −
ωLO and amplitude in Eq. (D40). Thus, the SNR will remain
unchanged in the case of heterodyning.
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