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Modeling collective behaviors from optic flow and retinal cues
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Animal collective behavior is often modeled with self-propelled particles, assuming each individual has
“omniscient” knowledge of its neighbors. Yet, neighbors may be hidden from view and we do not know the effect
of this information loss. To address this question, we propose a visual model of collective behavior where each
particle moves according to bioplausible visual cues, in particular the optic flow. This visual model successfully
reproduces three classical collective behaviors: swarming, schooling, and milling. This model offers a potential

solution for controlling artificial swarms visually.
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I. INTRODUCTION

Collective animal behavior is a widespread phenomenon in
nature, ranging from the mesmerizing movements of starling
murmurations to the coordinated motion of cattle herds [1-4].
These collective behaviors are commonly modeled with self-
propelled particles: individuals with an intrinsic speed orient
themselves based on a set of rules, alignment, attraction, and
avoidance [5-8]. These “3A” rules have been successful in
reproducing different collective behaviors, such as swarming
(no orientational order), schooling (high orientational order),
and milling (the group coordinately swirls in a circular pat-
tern) [9-12]. Furthermore, numerous studies used these rules
to replicate some of these phases on artificial robotic swarms
[13-15].

In self-propelled particle (SPP) models, the rules of attrac-
tion, alignment, and avoidance are typically applied with the
simplifying assumption that each individual possess idealized
senses, is “omniscient” and gauges perfectly the position,
distance, orientation, and velocity of its neighbors [16,17].
However, this assumption may not hold in practice, especially
when some neighboring individuals are hidden from view
[18-22].

The causal link between visual cues and collective behavior
has been shown through several vision-based biological mod-
els [23-26]. As aresult, different ways of incorporating vision
in SPP models have been suggested. The most widespread
approach consists of using vision to filter information [27,28].
One of these models suggested that flocks of starlings adjust
their density to reach a state of “marginal opacity” [29]. How-
ever, this density adjustment does not seem to be widespread,
as certain animals such as fish can form opaque schools [7,30].

In a recent study, Bastien and Romanczuk proposed a
model of collective behavior based purely on vision capable
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of reproducing most of the collective behaviors [31]. Their
model simulates each individual’s response to a projection of
the visual field, rather than relying on omniscient informa-
tion. However, the portrayed milling phase is uncoordinated,
meaning that the particles turn in both directions in the same
swirl. And, while they claim to use the simplest possible
equations of movement that satisfy fundamental symmetries,
their model involves six parameters that are hard to relate
to the classical 3A rules. In addition, four terms of their
model involve spatial and temporal derivatives that would use
important computing resources. Instead, we propose to use
bioplausible visual cues that can be measured directly by a
visual sensor, i.e., the optic flow and the retinal position.

Optic flow refers to the apparent angular velocity of ob-
jects in the visual field due to the relative motion between
the observer and its surroundings. Numerous animal species
perceive and use optic flow for a variety of tasks. Insects use it
to navigate in crowded settings [32], evade ground obstacles,
and control their landing [33]. Fish use it for navigation [34],
and birds use it during takeoff [35]. Optic flow is ubiquitous
in nature. It involves specialized neurons, well identified in
invertebrates, which have inspired bioinspired sensors dedi-
cated to optic flow [36-39]. These visual sensors can provide
panoramic optic flow sensing [37,38] and allows for direct
measurement and on-board panoramic use of this visual cue
[40,41].

In this article, we propose a nonstereoscopic vision-based
model of collective behavior, inspired by animal vision. This
model is intended to be implementable on autonomous robots
equipped with visual sensors, i.e., the robots do not need
to communicate with a central command or/and to know
their neighbors’ relative coordinates, their relative positions
between each other or to be georeferenced. Our model aims at
bridging the gap between traditional SPP models that rely on
omniscient information and biomimetic visual approaches.

II. MODEL

We consider a system of N self-propelled particles in two
dimensions. Each particle is a circular object with radius a,
moving with a constant speed U. The position of the ith
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FIG. 1. Notations used and principle of the visual cues. (a) The
particle i is located in x; and 6; is its heading. 6;; is the retinal position
of particle j for the ith particle. (b) The angle ¢ is the line of sight
with respect to the particle’s heading. The vector V;; = U(e; — e;) is
the relative velocity of particle j perceived by i. It can be decomposed
into radial and azimuthal components, Vj, and V4. (c) Point of view
of the particle i, the arrows represent the optic flow generated by the
relative angular velocity of each particle. (d) The visual field V;(¢)
is a binary representation of (c). It is formed of a set of “shades.”
(e) The function R;(¢) represents the estimated distance associated
to shades, assuming they are associated with a single individual of
radius a. (f) Optic flow O;(¢) associated with the apparent angular
velocity of the shade edges. (g) Optic flow divergence D;(¢).
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particle is noted x; and its direction e; = [co0s 6;, sin 6;], with
6; its heading [Fig. 1(a)].

We model the interactions between particles using changes
in their angular velocity associated with attraction, alignment,
and noise. Specifically, the equations of motion can be written
as follows:

x;=Ue;, (la)
0; = ko wo + ky @) + ky 1, (1b)

where dots denote temporal derivatives and 7(¢) is a standard
Wiener process representing rotational noise. The functions
we and w are O(1) functions representing attraction and
alignment. The parameters kg, k), k, control the strength of
attraction, alignment, and noise. For simplicity, we did not
include an avoidance rule, as it is not a required rule to
reproduce collective behaviors [2,12,42].

We begin by introducing an omniscient model that will
serve as a reference. This model is inspired by a data-driven

(a)  Swarming (b) Schooling (c¢) Milling

FIG. 2. Illustration of the phases observed for N = 50 individu-
als. The scale bar measures 30« in total (10a for each section). The
parameters € = 1 and k, = 0.01 are fixed. We observe three phases
when varying the other two parameters: (a) swarming (kg = 0.1,
ky = 0); (b) schooling (k5 = 0.06, k; = 0.2); and (c) milling (ko =
0.1, k” = 004)

fish model [43,44], with the difference being that each particle
interacts with all the others. The attraction and alignment
terms are given by

N
2l — <Z llx; — ;]| sin (9,~<,~)b5(9ij)>’ (2a)

j=1

N
omni. __ € Xej -
w) = < E ||xj——x,-||2b€(9”)'>’ (2b)

j=1

where b.(¢) = 1 + € cos ¢ models the blind angle (see also
Fig. S1 [45]). When € = 0, b, is isotropic; when € = 1, the
particle cannot see behind itself [45]. The brackets denote a
normalization defined as

<Z FG)sin 9,-> =" f(j)sing; / SOl G
J J J

To model visual perception, we assume that each particle
senses a visual field V;(¢), where ¢ represents the angle be-
tween the particle’s heading and the line of sight [Fig. 1(c)].
The function output is binary, indicating the presence or ab-
sence of a shade in the visual field [Figs. 1(b)-1(d)].

Using the information from the visual field V;(¢), we can
derive the function R;(¢) = a/sin(A¢/2), where A¢ rep-
resents the angle of view angle of shades [Fig. 1(e)]. With
this definition, when a shade is associated with a single parti-
cle, Ri(¢) represents its distance from the viewer. Temporal
changes in the features of the visual field can be used to calcu-
late the optic flow O;(¢). A simplified optic flow is estimated
by assuming that each shade has a pattern that moves and
deforms with it. It results that O;(¢) is a linearly interpolated
function of the angular velocity between two features of the
shade, its rising and falling edges [Fig. 1(f)]. This method to
compute the optic flow computation corresponds to a cross
correlation of visual field features [46], which are known to
occur in animal eyes [47,48]. Similarly, we can compute the
optic flow divergence D;(¢) by derivating the optic flow O;(¢)
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FIG. 3. Phase diagrams for N = 50 individuals and noise strength k, = 0.01. These phase diagrams compare the visual model (a), (b) and
the omniscient model (c), (d) for € = 0 (a), (c) and € = 1 (b), (d). The colors represent different values of P and M as shown in (e). The
contours show the values of opacity O (white solid), the line M = 0.5 (white dotted), and P = 0.5 (white dashed).

[Fig. 1(f)]. Due to the piece-wise linear nature of O;(¢), D;(¢)
is a piece-wise constant function.

The optic functions V, R, O, and D are inspired by an-
imal vision. These functions can easily be computed by a
man-made vision system. We will now use these functions for
the attraction and alignment terms of a vision model. In this
visual model, the attraction and alignment terms are given by

O = < R($)be () sin¢d¢>, (42)
visu. __ § € x Vij
o= </ U&(¢)b€(¢)d¢'>’ )

where the brackets denote the normalization given by Eq. (3)
with the sum replaced by the integral. The attraction and
alignment terms of the visual model are constructed to be
similar to those of the omniscient model given in Egs. (2a)
and (2b). The difference in the exponent of R comes from the
additional A¢ ~ 1/R arising from the integration.

In the alignment term, a)h’isu', the cross product e; x
e; is evaluated from the visual information. This is done
by using the optic flow O;(¢) and its divergence D;(¢),
which are related to the velocity of particle j with respect
to particle i [Fig. 1(b)]. Specifically, the radial compo-
nent is given by Vi, = —R;(¢) D;(¢), and the azimuthal
component by V4 = Ri(¢p) O;(¢). We can use these com-
ponents to calculate the vector V;; in polar coordinates
(r,¢)as V;; = (=D;, O))R;/U, while e; can be expressed as
(cos ¢, —sin ¢). It results that

e xVij  —Di(¢)sing + Oi(¢)cos
URi(¢) U ‘

The alignment term is thus the sum of two terms: one
proportional to the derotated optic flow O and sensitive to the
azimuthal velocity of neighbors, and one proportional to the
optic flow divergence D and sensitive to the radial velocity.
When computing e; x V;; with Eq. (5), we remove the particle
rotation with angular velocity §; from the optic flow O;(¢).

®

III. NUMERICAL SIMULATIONS

The equations of motion presented in Eq. (1), along with
the attraction and alignment terms derived in Eqs. (4a) and
(4b), provide a model of collective behavior based on realistic
visual cues. To make the problem dimensionless, we chose

a=1 and U = 1. With this approach, four dimensionless
parameters remain, the strengths of noise attraction and align-
ment, k,, ko, k, and the blind angle parameter .

To explore the effect of these parameters on collective
behaviors, we performed numerical simulations with N = 50
particles. Initially, the particles are randomly placed in a
square of side aN with random headings [45,49]. The dy-
namical system described by Egs. (1a) and (1b) is solved
numerically using a discrete implementation of Eqgs. (4a) and
(4b) (see also Figs. S2-S3 [45]). We examined the effect of the
time step 8¢ by conducting simulations with §z = 0.001, 0.01,
and 0.1 (Figs. S17-S22 and Videos S1-S6 [45]). However, no
significant differences were observed on the collective behav-
ior, and a time step of §t = 0.1 was selected for the remaining
simulations to ensure computational efficiency.

We first set k, = 0.01 and € = 1 (maximum blind angle)
and explore the effects of the two remaining parameters kg
and k in the visual model. Our simulations show three distinct
dynamical phases (Fig. 2 for the visual model, Fig. S10 for the
omniscient model, and Figs. S23-S28 snapshots for the evo-
lution of the stable phases seen on Videos S7-S9 and S10-S12,
[45]). If the alignment is zero, a disordered swarming phase is
observed, where individuals form a group without a preferred
direction [Fig. 2(a)]. When the alignment strength increases,
particles begin to align in the same direction, resulting in the
schooling phase [Fig. 2(b)]. If the ratio between the alignment
and the attraction strengths is around 0.4, the group exhibits
a milling phase [Fig. 2(c)], creating a vortex. These three
phases (swarming, schooling, and milling) have regularly
been observed in (omniscient) self-propelled-particle models
[43,44,50-52].

To quantitatively distinguish between the different dy-
namical phases, we introduce three global order metrics:
polarization P, milling M, and opacity O [43,44]. These met-
rics are defined as follows:

P = |eill, (6a)
M = |ly; xeil., (6b)

1 T
0=_—[ Vig)o, (6¢)

27 J

where the overbar represents an average over all individuals
and the unit vector y; = (x; — X;)/||x; — X;|| points toward

023016-3



CASTRO, RUFFIER, AND ELOY

PHYSICAL REVIEW RESEARCH 6, 023016 (2024)

e

10000, 15000
(d)(e) ()

l‘*"“M"W'W'

0 . 5000

Milling M

Polarization P

) g %
() \§& \,
{@ / m

e
FIG. 4. Example of the bistability observed in the visual
model (parameter values: € = 1, kg = 0.1, ky = 0.2, and k,, = 0.01).
(a) Time series of the three metrics P, M, and O. (b) Trajectories of
the collective behavior in the (M, P) plane. Illustration of the phases:
(c) schooling-milling transition; (d) milling; (e) milling-schooling
transition; and (f) schooling.

particle i from the center of mass. All three metrics range
in the interval [0, 1]. The polarization P measures the align-
ment: P = 0 corresponds to particles pointing in all directions,
P =1 corresponds to a perfectly aligned school. The milling
M represents the normalized angular momentum: straight-line
formation gives M = 0 and perfect milling gives M = 1. The
opacity O measures the “occupancy” of the visual fields:
O = 0 when there is no object in the visual field, and O =1
when the entire visual field is obscured.

We now compare the visual and omniscient models by
setting the value of the noise to k,;, = 0.01 and exploring the
parameter space (kg, k) € [0, 0.2] x [0, 0.2] for two values
of the blind angle parameter (¢ = 0 or 1). For each parameter
set, we ran ten simulations over long durations (At = 5000).
The mean values of P, M, and O were determined by averag-
ing over the last 1000 time units to ensure that the transient has
no influence. The outcomes of these simulations are synthe-
sized in phase diagrams (Fig. 3, and expanded on each metric
independently on Figs. S4, S6-S9, S11, S13-S16 [45]).

Somewhat arbitrarily, we chose to identify the collective
phases from the values of the polarization P and the milling
M parameters: schooling when P > 0.5 and M < 0.5; milling
when P < 0.5 and M > 0.5; swarming when P < 0.5 and
M < 0.5; and bistable when P > 0.5 and M > 0.5 (we will
come back to this particular phase below).

IV. DISCUSSION

Our vision model qualitatively reproduces the phases ob-
served in the omniscient model (Fig. 3). Specifically, we
observe the three phases in the vision model: schooling when
ko < 0.5kj; swarming when & < 0.3k; and milling or bista-
bility otherwise. When the blind angle parameter increases, it
tends to stabilize the milling phase both in the visual model
and the omniscient model, as observed in the literature [43].

The difference between the two models increases at high
values of the alignment and attraction strengths when the
opacity O is maximum. In the visual model, the opacity does
not exceed 0.7, regardless of the values of € and k,. In the
omniscient model, however, the opacity exceeds 0.8 and even
reaches one [Figs. 3(c) and 3(d)]. This is because the radius
a does not play any role in the omniscient model and the
characteristic length is set by k%. In both models, as expected,
larger noise strength causes a decrease in average opacity
(Figs. S4 and S11) [45].

Now, let us examine the bistable phase. Figure 4 and S29
show this phase in the visual model fore = 1, kg = 0.1, k) =
0.2, and k, =0.01. After a transient, the group forms a
milling phase until ¢+ & 6000, but eventually it transitions to
a schooling phase for 6000 < ¢ < 7500 before returning to a
schooling phase again, and so on. These transitions show that
the system exhibits a noise-induced intermittency between
two stable states: milling and schooling. The schooling phase
far from the transition resembles a front of parallel individuals
[Fig. 4()]. Just before the transition to milling, some individ-
uals move ahead [Fig. 4(c)]. Reciprocally, the milling phase
just before the transition to schooling opens up, generating a
C shape [Fig. 4(e)]. These transitions are fairly stereotyped
as they tend to follow the same path in the (M, P) plane
[Fig. 4(b)]. The existence of these intermittent transitions
mediated by noise is likely due to a second-order transition be-
tween the milling and schooling phases as seen on the metric
distribution along the boundaries of both phases [Figs. S6-S9
and S13-S16]. This multistability has been present on similar
3A models [43].

We changed the group size from N =5 to 300 (Figs. S5
and S12 [45]). Although the group size does not seem to
impact qualitatively the phase diagram, small groups tend to
favor schooling, whereas large groups tend to favor swarming.

V. CONCLUSIONS

In conclusion, we proposed a model based on biologically
plausible visual cues. This model successfully reproduces
the three classical phases of animal collective behavior:
swarming, schooling, and milling. These findings show that
visual cues provide enough information to enable collective
behavior.

Furthermore, our findings imply potential practical uses
for synchronizing groups of artificial drones, which may be
governed by analogous visual stimuli. In future studies, we
aim to investigate these opportunities more thoroughly and
enhance our model for a more accurate depiction of animal
collective behavior in a three-dimensional space.
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