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Deciphering non-Gaussianity of diffusion based on the evolution of diffusivity
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Non-Gaussian diffusion of nanoparticles in complex media disrupts Einstein’s picture of Brownian motion,
and non-Gaussianity is thought to be closely related to diffusing diffusivity generated by spatiotemporal hetero-
geneities. However, the correlation between non-Gaussianity and the dynamics of heterogeneous environments
in anomalous diffusion remains uncertain. Inspired by a recent study by Alexandre et al. [Phys. Rev. Lett. 130,
077101 (2023)], we demonstrate that non-Gaussianity can be deciphered through the spatiotemporal evolution
of heterogeneity-dependent diffusivity distribution. Using diffusion experiments in a linear temperature field
and Brownian dynamics simulations, we found that short-time non-Gaussianity can be predicted based on the
boundary ratio of the diffusivity distribution; the long-time non-Gaussianity either approaches an asymptotic
value of −2 or scales with 1/t , depending on the dominance of particle migration. The temporal variation
of non-Gaussianity is determined by an effective Péclet number, which represents a competition between the
varying rate of diffusivity and the diffusivity of diffusivity and reveals whether the tail distribution expands or
contracts. The tail is more Gaussian than exponential over long times, with exceptions significantly dependent on
the diffusivity distribution. Our findings provide a versatile framework for understanding non-Gaussian diffusion
in probability space, and shed light on establishing a diffusion spectrum in cells and characterizing nanomedicine
transport in biological microenvironment using non-Gaussian statistics.
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I. INTRODUCTION

The diffusion of microscopic particles is a key transport
mechanism in various fields, including colloidal transport,
biophysics, polymer science, and composite materials. In
simple fluids, diffusion is described well by the theory of
Brownian motion, which predicts two fundamental features
[1]: the linear variation of the mean-squared displacement
(MSD) and the Gaussian displacement probability distribu-
tion (DPD). However, in complex media with heterogeneities,
the Fickianity and Gaussianity assumptions are sometimes
invalid [2–13]. Examples of such anomalous diffusion of
nanoparticles have been reported in living cells [3–6], polymer
networks [7–10], active gels [11,12], and colloidal glasses
[13].

In contrast to Gaussian behavior, non-Gaussianity indi-
cates the presence of more complex dynamics related to
extreme events or significant outliers in critical phenom-
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ena, phase transitions, and other emergent behaviors [3–18].
Notable examples include Fickian-yet-non-Gaussian diffu-
sion (FnGD) found in actin networks and glassy materials
[14,15]. The non-Gaussianity of diffusion in such complex
media reflects structural or dynamical heterogeneity, serving
as a crucial parameter for identifying anomalous mecha-
nisms, characterizing rare events, and establishing statistical
inferences [16–18]. Several theoretical models based on dif-
fusing diffusivity (DifD) have been proposed to characterize
FnGD [16–22]. These models build a primary framework
to show the prevalence of non-Gaussianity and illustrate
the tail that is commonly assumed exponential. However,
the physical interpretation of non-Gaussianity in anoma-
lous diffusion and its indication of underlying dynamics are
unclear.

Given that the heterogeneity of a complex environment in-
duces non-Gaussianity in diffusion, a central inquiry emerges:
How can we comprehend the correlation between variations
in non-Gaussianity and the degree of heterogeneity? The dif-
fusivity distribution and its variation can be applied to map
the structural or dynamical heterogeneity of a complex en-
vironment based on the DifD model, because they contain
physical properties of the heterogeneous environment, such
as viscosity, permeability, or energy barriers. The difficulty
of quantifying the evolution of diffusivity, particularly in
biological environments [22], makes the DifD model phe-
nomenological and raises doubts regarding its validity. To
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FIG. 1. (a) Experimental setup. A constant temperature gradient was created in the central microchannel of a microfluidic chip. (b) In the
x axis (spanwise of microchannel), a particle moves toward the cold side along the temperature gradient, and its displacement is determined
by thermophoresis and diffusion: �x(t)= √

2DxtWx + uT t . In the y axis (streamwise of microchannel), the motion is diffusive with DifD:
�y(t) = √

2DytWy. (c) Experimental temperature distribution in the x axis when ∇T = 4.1 × 104 K/m. Inset: The simulation result of the
uniform temperature field (Supplemental Material [26], Sec. S1); z axis is the height direction. (d) Representative trajectories of 1000 nm
particles moving toward the cold side (left).

address this problem, among many recent efforts [23–25], an
inspiring approach that drew an analogy with Taylor disper-
sion was proposed to mathematically link non-Gaussianity
and heterogeneity [25]. Nonetheless, controversies regarding
variations in non-Gaussianity and tail distribution remain un-
resolved.

In this study, we demonstrate that the thermophoretic col-
loidal response of collective nanoparticles to a temperature
gradient can be used to model and explain non-Gaussian
behavior in a heterogeneous field. We used thermophoresis
of nanoparticles (NPs, diameters d = 500 and 1000 nm) in
a microfluidic chip (Fig. 1(a), and Supplemental Material
[26], Fig. S1(a)) [27] with a controlled temperature field to
construct DifD of underlying probability space. By consid-
ering the heterogeneous field as a spatiotemporal evolution
of diffusivity, we aimed to elucidate the correlation between
non-Gaussianity and the DifD distribution p(D) from the
NPs’ diffusion. As the NPs move along the constant tem-
perature gradient (x axis) to the cold side with a constant
thermophoretic speed uT originating from interfacial flow of
the NP surface [Fig. 1(b)], their diffusion perpendicular to the
temperature gradient (y axis) experiences DifD determined by
the temperature gradient, providing better controllability and
quantifiability than that reported in recent studies [23–25,28].
Consequently, we can predict the short-time non-Gaussianity
by the type and range of the DifD distribution, and show two
long-time destinations depending on the presence of external
field-driven migration. We found that the temporal variation of
non-Gaussianity is determined by an effective Péclet number,
which identifies the competition between the varying rate of
diffusivity and the diffusivity of diffusivity. Unlike the ma-

jority perspective assuming an exponential tail, we will show
why a Gaussian distribution is more suitable.

II. RESULTS AND DISCUSSION

A. Establishment of diffusing diffusivity using a thermophoretic
microfluidic chip

We construct a microfluidic chip, same as our previ-
ous study [27], to establish stable and uniform temperature
gradients. The microfluidic chip (Fig. 1(a), and Supplemen-
tal Material [26], Fig. S1(a)), which is made of stainless
steel, builds a constant temperature gradient in the cen-
tral microchannel (width = 200μm, depth = 50μm) through
counterflow heat exchange between hot and cold water in two
side channels (width = 2 mm, depth = 2 mm, length = 28
mm), ensuring a more uniform temperature gradient along
the transverse direction (x axis) of the microchannel. All
channels were sealed using an optical adhesive film (Mi-
croAmp). By adjusting the flow rates of cold and hot water in
both side channels via a dual-channel syringe pump (Longer
Pump LSP02-1B), we achieved stable temperature gradients
of ∇T = 4.1 × 104 and 6.6 × 104 K/m, corresponding to
temperature differences of 8.1 and 13.2 K, respectively, in
the central microchannel of the microfluidic chip [Figs. 1(a)
and 1(c); see details in Appendix A]. In our experiments,
the particles exhibit thermophoretic migration toward the cold
side, and the thermophoretic mobility DT was measured to
be approximately DT = 10.0μm2/(s K) [27]. According to
the thermophoretic velocity, uT = −DT ∇T , uT = −0.40 and
−0.66 µm/s were obtained for the two respective temperature
gradients.
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Experimental observations were conducted using an in-
verted fluorescence microscope (Olympus, IX 71) fitted with
a 40x/0.7 objective. Image acquisition was performed with an
Electron-Multiplying CCD (EMCCD) camera (Andor iXon,
897) capturing consecutive frames at 20 frames per second
(fps), corresponding to a time interval of 50 ms. The expo-
sure time was set to 5 ms, and the image field of view was
512 × 512 pixels (approximately 200 × 200μm), with each
pixel representing approximately 390 nm and providing a
spatial resolution of ∼ 80 nm. At the beginning of each ex-
periment, particles located at x ∈ [−80, 90]μm were chosen
for tracking lasting up to �t = 20 s (see details in Appendix
A). The observation plane was set at z = 15μm using a piezo
transducer (Physik Instrumente) mounted beneath the micro-
scope objective, to avoid wall-induced hydrodynamic drag, as
the relative distance 2z/d was large.

Figure 1(b) displays a schematic diagram of particle mo-
tion under the temperature gradient, and Fig. 1(d) shows
the representative trajectories of NPs under ∇T = 4.1 × 104

K/m. As the particles move parallel to the constant tempera-
ture gradient toward the cold side at a constant thermophoretic
velocity uT , their temperature and viscosity experiences vary
continuously along the x axis. Consequently, the NPs’ dis-
placement in the x axis is given by �x(t ) = √

2DxtWx +
uT t + t∂Dx/∂x ≈ √

2DxtWx + uT t , where Wx denotes an in-
dependent stochastic process with a mean of zero and standard
deviation of 1, Dx(T ) is the local diffusivity depending on
the temperature T(x), and ∂Dx/∂x can be neglected as it is
less than 1 nm/s. In the y axis, the displacement follows
�y(t ) = √

2DytWy, which is determined by the DifD Dy(t )
varying with the NPs’ thermophoretic migration along the
temperature gradient in the x axis.

Our experimental design simplifies complexity by setting a
controllable diffusing diffusivity and decoupling the diffusing
diffusivity in the x axis from the diffusion in the y axis. Thanks
to the controlled DifD, our system can effectively connect
non-Gaussianity and the DifD, and monitor their temporal
changes with ease. Our approach modeling the DifD based
on such a linear temperature field can offer valuable insight
into non-Gaussianity arising from heterogeneity with gradual
variation. Besides, our approach can also approximate the
heterogeneity with greater variation when the diffusion range
is short.

B. Non-Gaussian behavior in experiments

The MSDs of 1000 nm particles under two tempera-
ture gradients are shown in Fig. 2(a), which is calculated
by 〈�r2(t )〉 = 〈[r(t0 + t )–r(t0)]2〉. Here, r represents x or
y, and 〈· · · 〉 denotes the ensemble average. At short times,
t ≈ 0.1 s, all MSDs display a linear tendency, as Brownian
diffusion is dominant. When t > 2Dx/u2

T ∼ 2 s, the x-MSD
〈�x2(t )〉 gradually deviates from this linear due to the direc-
tional thermophoretic motion with a speed uT , manifesting a
superdiffusive behavior with a slope near 2. In contrast, the
y-MSD 〈�y2(t )〉 approximates a Fickian behavior.

We then focus on the non-Gaussian behavior of this sys-
tem. Recent studies have revealed that particle’s diffusion
might exhibit fat tails, even when the MSD appears lin-
ear [14,15]. The normalized DPDs of �y/σ at t = 0.05 s

FIG. 2. Experimental (symbols) and simulation (curves) results
of (a) MSD and (b) α for 1000 nm particles under ∇T = 6.6 × 104

and 4.1 × 104 K/m, respectively. The subscripts x and y represent the
x direction and the y direction, respectively. The inset of (b) shows
the normalized DPDs at t = 0.05 s; the tail ratio φ indicates the
non-Gaussian fat tail of DPD when �y/σ > 3. (The error bars here
are determined based on uncertainties explained in the Supplemental
Material [26], Sec. S1) (c) The diffusivity distributions p(D) for
different temperature gradients during �t = 20 s.

were compared with the standard Gaussian distribution Gs =
1√
2π

exp[−(�r/σ )2/2] [Fig. 2(b)], where σ is the standard
deviation of corresponding displacements. To quantify the
amplification of the tailed DPD compared to the standard
Gaussian distribution when �y/σ > 3, we introduce the tail
ratio φ, shown in the inset of Fig. 2(b). The maximum ratio
φ was larger than 2, indicating a non-negligible non-Gaussian
tail beyond the error bars, even though the motion in the y
direction was purely diffusive. The non-Gaussian parameter
α(t ) = (〈�r4(t )〉/〈�r2(t )〉2)–3 [25] is introduced to quanti-
tatively assess the above non-Gaussian behavior [Fig. 2(b)].
For a Gaussian DPD, α= 0, whereas positive and negative
α values signify fat-tail leptokurtic and platykurtic distribu-
tions, respectively. In general, a greater temperature gradient
(∇T = 6.6 × 104 K/m) results in a larger non-Gaussian pa-
rameter αy and a more pronounced fat tail at short times. With
the uncertainty of α being less than ±0.09 (Supplemental
Material [26], Sec. S1), the experimental data of αy suggest
a slow decay from a positive αy ≈ 0.12 when t < 0.1 s to
αy ≈ 0 when t ≈ 1 s. When t > 1 s, αy is still considered
to be zero based on the error bars, which will be further
confirmed by numerical simulations. In contrast, in the axis
along the temperature gradient, αx starts from a small positive
value, similar to αy, but decays more rapidly to a negative
value when t > 1 s. Experiments using 500 nm NPs show
similar results of MSD and DPD (Supplemental Material [26],
Fig. S4).

Apart from the DPD, we provide the experimental results
of the diffusivity distribution in Fig. 2(c). The effect of the
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FIG. 3. (a)–(d) Simulation results for 1000 nm particles when ∇T = 3 × 105 K/m. The subscripts x, y, and xd represent the x direction,
the y direction, and the diffusive part in the x direction, respectively. The diffusivity distributions were controlled by setting different ranges
of x. (a) MSDs. (b) DPDs at t = 0.05 s; inset is tail ratio φ. The solid line represents an exponential fit of Gs ∼ exp[−�y/(

√
2Dyt )]. (c) The

variations in αx and αy. Inset: same initial values αy = αx when t → 0. The symbols of αx and αy are marked based on the legend in (a). (d)
The variations in αxd and αy. Inset: Long-time scaling 1/t of normalized αy. (e) The diffusivity distributions p(D) for the three cases in (a). (f)
The diffusivity distributions p(D) for particles of different diameters. Temperature gradient: ∇T = 3 × 105 K/m, setting ranges of x position:
x ∈ [−95, 95]μm, duration �t = 15 s.

diffusivity distribution on non-Gaussianity has not yet re-
ceived sufficient attention, despite the variation of the
distribution being crucial within the theoretical framework of
diffusing diffusivity [16,17]. The sampled diffusivity distri-
butions p(D) of ∇T = 4.1 × 104 and ∇T = 6.6 × 104 K/m
are respectively plotted in Fig. 2(c). The diffusivity distri-
butions are nearly uniform as the particles were randomly
sampled in the experiments. One can easily observe that a
greater temperature gradient (∇T = 6.6 × 104 K/m) not only
results in a larger non-Gaussian parameter αy, but also in a
wider diffusivity distribution p(D). This indicates that the non-
Gaussian parameter αy and the diffusivity distribution p(D)
originate from the same underlying diffusive dynamics and
should have a quantitative correlation. This correlation will be
further analyzed based on simulation results.

C. Brownian dynamics simulations: Unraveling the impact of
spatiotemporal variation diffusivity on non-Gaussianity

To tackle the issue of limited long-time statistics in the
experiments, we used Brownian dynamics simulations to
complement the long-time evolution of non-Gaussianity (see
details in Appendix B). By assigning the same thermophoretic
speed and uniform diffusivity distribution along the x axis as
the experiments, the simulation results [depicted by dashed
and solid curves in Figs. 2(a) and 2(b)] closely match the
experimental data. The long-time tendency of αx(t ) from the
simulation collapses onto the extension of the experimental
data when t ∼ 5 s. Next, primarily based on the simulation
results, we explore the effect of the spatiotemporal variation
of DifD on non-Gaussianity. The initial distribution of Dr and

its varying rate ∂〈Dr〉/∂t ∼ (∂〈Dr〉/∂T )∇T uT are controlled
(Supplemental Material [26], Sec. S2), and the diffusivity of
diffusivity, defined as ∂〈D2

r 〉/∂t , and the varying range of Dr

are monitored.
We first test the non-Gaussianity at ∇T = 3 × 105 K/m,

with a particle diameter d = 1000 nm. After subjecting the
particles to thermophoresis with uT = −3.0μm/s for �t =
15 s, the diffusivity distributions when ensemble statistics was
conducted were regulated by approximately setting the ranges
of x positions to [−95, 95] µm, [−60, 60] µm, and [−25, 25]
µm, respectively, from the initial positions x ∈ [−50, 95]μm,
[−15, 60] µm, and [20,25] µm (Supplemental Material [26],
Sec. S2). A broader x range indicates a wider diffusivity
distribution. In addition to the typical MSDs [Fig. 3(a)) and
DPDs [Fig. 3(b)], similar to the experimental tendency, the
variations in the non-Gaussian parameters in both directions
are shown in Figs. 3(c) and 3(d). The short-time αy(t ) (solid
symbols) starts from approximate constant values of 0.37,
0.11, and 0.03, respectively, following a gradual decay at
t > 2Dy/u2

T ∼ 0.1 s. The diffusivity distributions of the three
cases are shown in Fig. 3(e). Notably, for a wider diffusivity
distribution, the value of αy(t ) is larger and the tail is broader,
which is in accordance with experimental observation in
Figs. 2(b) and 2(c). Interestingly, the non-Gaussianity shown
by dark-green symbols is similar to the experimental result
with ∇T = 6.6 × 104 K/m [Fig. 2(b)]. This can be attributed
to their analogous diffusivity ranges, approximately 0.55 −
0.74 μm2/s for the experiment with ∇T = 6.6 × 104 K/m,
and 0.54 − 0.77 μm2/s for the Brownian dynamics simula-
tion (dark-green symbols) with ∇T = 3 × 105 K/m, despite
the differences in temperature gradients ∇T . When keeping
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other conditions constant and changing particle diameters to
d = 200 and 500 nm, almost identical values of short-time
αy ≈ 0.38 and 0.37 were obtained [Fig. 3(f); more details
can be found in Appendix C, Fig. 9]. The size-independent
result is counterintuitive, as particles with different diame-
ters experience distinct diffusivity distributions as well. The
above results imply that, rather than the absolute values of
the diffusivity, non-Gaussianity may be influenced by the
relative ratio of lower and upper boundaries of the diffusivity
distribution, as will be proved theoretically later. In addition,
the value of αxd (t ) [Fig. 3(d)], based on �xd = �x − uT t , is
always almost the same as αy(t ). The value of αx(t ) [empty
symbols in Fig. 3(c)] rapidly turns negative and reaches −2 at
t ∼ 10 s, despite sharing the same beginning as αy(t ).

D. Prediction of non-Gaussianity on a short-time scale

The above results demonstrate the significant influence
of diffusivity distribution on non-Gaussianity and fat-tailed
DPD. Recalling a recent study suggesting an analogy of DifD
motion with Taylor dispersion [25], we find that the asymp-
totic features of non-Gaussianity can be accurately predicted
only if the distribution of Dr is known. The mathematical
derivation by Alexandre et al. [25] gives the fourth cumulant

as 〈�r4〉 − 3〈�r2〉2 = 12〈[∫ t
0 ds(Dr − 〈Dr〉)]

2〉. When t →
0, the non-Gaussian parameter can be approximately calcu-
lated by dividing the variance Var(Dr ) over the square of
expectation 〈Dr〉2 (see Appendix D for the full derivation):

αr (t → 0) = 3
(〈

D2
r

〉 − 〈Dr〉2
)
/〈Dr〉2 = 3Var(Dr )/〈Dr〉2.

(1)

Equation (1) establishes a correlation between αr(t → 0)
and the diffusivity distribution p(Dr ) in a probability space,
which explains the same initial values αy = αx = αxd in
Figs. 3(c) and 3(d) because they share the same diffusiv-
ity. This relation could be applied to various systems with
structural or dynamical heterogeneities by mapping the het-
erogeneity onto DifD.

Surprisingly, from Eq. (1) we find that αy(t → 0) can be
predicted solely based on the range ratio β(�t ) = Dmin/Dmax.
The dependence of αy(t → 0) on β indicates that αy(t → 0)
should be independent of particle diameter d , considering
that Dmin and Dmax are both inversely proportional to d . This
deduction provides an explanation for the size-independent
result in Fig. 3(f). In the following, we will show in detail the
relation between the short-time non-Gaussianity αy(t → 0)
and the range ratio β determined by the boundaries of the
diffusivity distribution.

We first take a uniform distribution of Dy ∈ [Dmin, Dmax] as
an example, which approximates our experimental sampling.
As the variance of this uniform distribution is Var(Dr ) =
(Dmax–Dmin)2/12 and the square of expectation 〈Dr〉2 =
(Dmax + Dmin)2/4, according to Eq. (1), the short-time non-
Gaussian parameter becomes (see Appendix D for the full
derivation)

αy(t → 0) = 3Var(Dy)

〈Dy〉2 =
(

Dmax − Dmin

Dmax + Dmin

)2

=
(

1 − β

1 + β

)2

.

(2)

FIG. 4. (a), (b) Determination of αy(t → 0) based on Dmin/Dmax

for (a) gamma distribution, and (b) uniform distribution and trun-
cated normal distribution. (c) A comparison of our prediction with
existing non-Gaussian results from the literature based on the plot
of α(t → 0) vs β = Dmin/Dmax. The light-yellow belt schematically
displays the region of our theoretical prediction, with lower boundary
from normal distribution of diffusivity [dash-dotted curve, also the
dark-green curve from (b)] and upper boundary consisting of uniform
distribution of diffusivity [dotted curve, also the blue curve from (b)]
and gamma distribution [k = 1, dashed curve, also the light-green
curve from (a)].

We then consider gamma distribution p(Dy) =
Dk−1

y exp(−Dy)/	(k) truncated at Dy ∈ [Dmin, Dmax], which
has been found to be a proper description of the diffusivity
distribution in many complex biological media [4,29–35].
By mapping it to a standard gamma distribution p(z) =
zk−1exp(−z)/	(k) truncated at z ∈ [0, N] : (Dy − Dmin)/
(Dmax − Dmin) = z/N , we obtain Var(Dy) = Var(z)(Dmax −
Dmin)2/N2 and 〈Dy〉 = 〈z〉(Dmax − Dmin)/N + Dmin. For large
N such as N = 10, Var(z) ≈ k and 〈z〉 ≈ k, αy(t → 0) of the
gamma distribution is (see Appendix D for the full derivation)

αy(t → 0) = 3k

[
1 − β

k(1 − β ) + Nβ

]2

. (3)

Additionally, the expression of αy(t → 0) for normal distri-
butions is derived as (see Appendix D for the full derivation):

αy(t0) = 3

N2

(
1 − β

1 + β

)2

. (4)

Note that by mapping to a standard normal distribution

truncated at z ∈ [−N, N], αy(t → 0) = 3
N2 ( 1−β

1+β
)
2

is valid
only when the truncated range N � 3. The expression of
αy(t → 0) when N < 3 is given in Appendix D, which pre-
dicts a larger non-Gaussianity owing to a stronger dispersion
of Dy [shown by the pink curve in Fig. 4(b) for N = 1].

We perform Brownian dynamics simulation to verify the
relation between αy(t → 0) and β = Dmin/Dmax as outlined
in Eqs. (2)–(4). In these simulations, we respectively assign
uniform, gamma, and normal distributions to Dy and maintain
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∇T and uT unchanged. The simulation results for gamma
distribution [Fig. 4(a)] with different shape parameters, k = 1,
2, and 4, are in good agreement with the prediction curve
from Eq. (5). It is interesting to see that in Fig. 4(a) the curve
of αy(t → 0) becomes smoother for larger shape parameter
k. Similar good agreements are observed in Fig. 4(b) for
uniform distribution, normal distributions truncated at N = 1,
and N = 3, respectively. Our theoretical approach can be ex-
tended to other exponential or power-law distributions, and
can be widely used to evaluate non-Gaussianity in complex
scenarios.

The theoretical analysis above indicates that, for a
given diffusivity distribution, the short-time non-Gaussianity
αy(t → 0) is determined by the ratio β = Dmin/Dmax and
diminishes with the increasing β. This finding is in good
agreement with our previous results that short-time non-
Gaussianity can be enhanced by broader diffusivity distribu-
tion. It also elucidates the counterintuitive result in Fig. 3(f),
as the values of β in the simulations using particles of different
diameters are very similar. We also draw experimental data
of αy(t → 0) [red stars in Fig. 4(b)] acquired from approxi-
mately uniform samples, which decrease with the increasing
β. The experimental data are located near the theoretical curve
of uniform distribution, with deviations falling within the
error bars.

Furthermore, we gather experimental data of the short-
time non-Gaussian parameter α(t → 0) and diffusivity ratio
β from recently published literature spanning diverse fields
and compare them with our model [Fig. 4(c)]. Most pre-
vious results have not paid attention to the correlation of
non-Gaussianity and diffusivity distribution; we can only find
a few data that provided a clue for estimating β from the
literature (Supplemental Material [26], Sec. S3). Given that
the types of the diffusivity distributions are generally inde-
terminate, we improved comparability of the gathered data
with our theoretical predictions by representing our model’s
prediction range as a light-yellow band in Fig. 4(c). The
lower boundary of this band is derived from normal distribu-
tion of diffusivity (N = 3, dash-dotted curve), and the upper
boundary consists of uniform distribution (dotted curve) and
gamma distribution (k = 1, dashed curve). Significantly, our
model predictions demonstrate substantial agreement with the
literature results, illustrating the validity of using our model
to predict non-Gaussianity and correlate diffusivity distribu-
tion with underlying non-Gaussian dynamics. For instance,
Safi Samghabadi et al. [36] [pink triangles in Fig. 4(c)]
investigated the diffusion dynamics of semiflexible M13
bacteriophage within semidilute sodium polystyrenesulfonate
solutions. The anisotropy of the bacteriophage induced varied
degrees of interaction with polymers, resulting in the emer-
gence of non-Gaussian dynamics. The study on the diffusion
behavior of individual lipids within a membrane during the
membrane actions of peptides [31,34] similarly emphasizes
that stronger interactions lead to increased heterogeneity, con-
sequently yielding higher non-Gaussian parameters [orange
square in Fig. 4(c)]. These two biological context outcomes
are observed to be located close to the upper edge of our
prediction belt in Fig. 4(c). Expanding our comparison to
other systems with diffusivity fluctuations or structural het-
erogeneity reveals the broad applicability of our model. This

is supported by studies on colloidal systems, such as the exam-
ination of particle diffusion in structurally diverse micropillar
matrices [21] [blue diamonds in Fig. 4(c)] and regions near
surfaces [25] [brown asterisk in Fig. 4(c)]. Similarly, in poly-
mer systems, our prediction aligns with the result of the
diffusion of quantum dot and quantum rod in tetra-poly (ethy-
lene glycol) (tetra-PEG) hydrogel before gelation [37] [green
circles in Fig. 4(c)]. In porous media systems, non-Gaussian
data of particle diffusion in porous polymer films [38] [purple
hexagons in Fig. 4(c)] also fall within the prediction region.

It is worth mentioning that αy(t → 0) in our simulation
only varies slightly with the duration �t , as the change of
β(�t) is tiny during the slow evolution of diffusivity distribu-
tion, which has been manifested by the short-time plateau of
αy(t ) in Figs. 3(c) and 3(d). For relatively long duration like
�t = 15 s, the data of αy(t → 0) [empty blue diamonds in
Fig. 4(b)] are close to the theoretical curve of uniform distri-
bution when the diffusivity distribution is still approximately
uniform. Nonetheless, with the increasing of �t , the deviation
will increase as well because the distribution departs from
the initial uniform distribution, which has been displayed by
the regions near the upper boundary of p(D) in Figs. 3(e)
and 3(f). Our results illustrate that non-Gaussianity in the
same system can vary significantly depending on the sampling
range of p(Dr ). In particular, ergodic sampling with a minimal
value of β can exhibit a much larger non-Gaussianity than
truncated sampling with a larger β, as illustrated in Figs. 4(a)
and 4(b).

E. Prediction of non-Gaussianity on a long-time scale

We then consider the long-time limit of non-Gaussianity
in Figs. 3(c) and 3(d). Although calculating the temporal
evolution of p(Dr ) is complicated for various heterogeneities,
previous work [25] has predicted that αr (t ) should decay with
1/t at long times. We indeed observed a 1/t decay to zero
of αy when t ∼ 100 s [inset of Fig. 3(d)] in our simulation,
when boundary confinement was absent. In realistic cases
with confinement [24,25], 1/t decay was observed later when
t ∼ 1000 s. This long-time scaling 1/t is assumed to be an
intrinsic feature owing to diffusivity dispersion, which is in-
dependent of boundary confinement.

Distinct from the positive non-Gaussianity, the most
evident feature of αx(t ) is the long-time asymptotic
value αx(t → ∞) = −2 owing to the thermophoresis.
Substituting thermophoretic term �x(t)= √

2DxtWx + uT t
into the equation of the non-Gaussian parameter αx(t ) =
(〈�x4〉 − 3〈�x2〉2)/〈�x2〉2, one obtains αx(t ) = (4〈D2

x〉/
u4

T t2 − 12〈Dx〉2 / u4
T t2 − 2)/(4〈D2

x〉/u4
T t2 + 4〈Dx〉2/u4

T t2 +
1). The long-time limit is αx(t → ∞) = −2 if 〈D2

x〉 � u4
T t2.

An intriguing inference is that the asymptotic value
αx(t → ∞) = −2 will appear for external field-driven
migration with a large speed u4

T t2 � 〈D2
x〉.

F. Temporal variation of non-Gaussianity governed
by an effective Péclet number

Unlike the experiment which reported a rapid increase
in non-Gaussianity at short times [24], our experimental
and simulation results show a constantly decreasing αy(t ).
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FIG. 5. (a) Temporal variation of Pe under different temperature

gradients. Inset:
∂〈D2

y 〉
∂t (solid symbols) and ∂〈Dy〉2

∂t (open symbols). (b)
αy(t ) and corresponding curves normalized by the maximum values
shown in inset.

Next, we discuss the tendency of αy(t ) by the derivative
∂αy (t )

∂t ∼ 1
〈Dy〉2 (

∂〈D2
y 〉

∂t − 2αy〈Dy〉 ∂〈Dy〉
∂t ), which shows a compe-

tition between
∂〈D2

y 〉
∂t and ∂〈Dy〉

∂t , referred to as the diffusivity
of diffusivity and the varying rate of diffusivity, respectively.
This competition defines an effective Péclet number Pe =
(〈Dy〉 ∂〈Dy〉

∂t )/
∂〈D2

y 〉
∂t , which helps assess whether αr (t ) will in-

crease or decrease with time. Here, 〈Dy〉, ∂〈Dy〉
∂t , and

∂〈D2
y 〉

∂t
can be seem as equivalent length, velocity, and diffusivity,
respectively, in a space of Dy, in analogy to traditional Pe
number in Taylor dispersion.

As the varying rate can be approximated as ∂〈Dy〉
∂t ∼ (∂ <

Dy > /∂T )∇T uT ∼ ∇T 2 ∼ u2
T , in Figs. 5(a) and 5(b) we ad-

just the temperature gradient ∇T to investigate its influence
on the variations of Pe and αy. Both the diffusivity of diffu-

sivity
∂〈D2

y 〉
∂t (solid symbols) and the varying rate ∂〈Dy〉2

∂t (open
symbols) are negative [inset of Fig. 5(a)], whereas the dom-

ination of the diffusivity of diffusivity, i.e., | ∂〈D2
y 〉

∂t | > | ∂〈Dy〉2

∂t |,
results in Pe < 1 and ∂αy (t )

∂t < 0. A larger ∇T , indicating an
increased in the degree of heterogeneity, leads to a larger αy(t )

and a smaller Pe number as the ratio | ∂〈Dy〉2

∂t |/| ∂〈D2
y 〉

∂t | decreases

with increasing ∇T . The competition between
∂〈D2

y 〉
∂t and ∂〈Dy〉

∂t
depicts the following two-stage variation: at short times, the

leading contribution
∂〈D2

y 〉
∂t is dominated by diffusion, resulting

in slow variations of both Pe and αy(t ) and a smaller Pe
number; at intermediate times when thermophoretic motion
is dominant over diffusion, ∂〈Dy〉

∂t ∼ uT becomes significant,
causing a fast increase of Pe number and a fast decay of αy(t ).

Interestingly, the above analysis predicts a positive ∂αy (t )
∂t

at short times if
∂〈D2

y 〉
∂t and ∂〈Dy〉2

∂t turn positive while | ∂〈D2
y 〉

∂t | >

| ∂〈Dy〉2

∂t | is maintained. As shown in Fig. 6, by changing the
NP from thermophobic to thermophilic, we obtained pos-
itive ∂αy (t )

∂t in the simulation at short time, approximately
at t ∼ 0.01 s. Nonetheless, the increase in short-time non-
Gaussianity in our simulation was much weaker than the
rapid dynamics reported by Pastore et al. [24]. We specu-
late that the difference was due to a sudden dispersion of
∂〈D2

r 〉
∂t produced by the optical-illumination speckle [24]. The

different non-Gaussian behaviors between the present system
with slow DifD and the systems with rapid dynamics, such as

FIG. 6. Simulation result shows that the short-time temporal
variation of ∂αy (t )

∂t can be changed from negative to positive by tun-
ing the particle’s thermophoresis from thermophobic (purple solid
squares, indicating particles move to the cold side and DT > 0) to
thermophilic (orange solid circles, indicating particles move to the
hot side and DT < 0); temperature gradient is ∇T = 3 × 105 K/m.

glassy materials [13], can serve to detect specific short-time
mechanisms.

G. Evolution and generic form of fat-tailed DPD

After clarifying the correlation between non-Gaussianity
and distribution p(D), we further discuss how p(D) deter-
mines fat-tailed DPD, which is the most prominent feature
of FnGD. Whether the tail of the DPD is exponential remains
controversial [8,15,25,39], although a good exponential fit is
observed in Fig. 3(b). Mathematically, the DPD Gs(�y, t ) =∫

p(Dy)p(�y|Dy)dDy following Bayes’ theorem can be

rewritten as Gs(�y, t ) = ∫ Dmax

Dmin

p[Dy (x)]√
4πDy (x)t

exp[− �y2

4Dy (x)t ]dDy.

Dy(T ) is determined by the temperature field. This integral

can be approximated as Gs(�y, t ) ≈ Cexp[− �y2

4Dy (x∗ )t ] based
on the Laplace approximation for large �y, where prefactor C
depends on p(Dy), and x∗ is the position of maximum Dy(x∗)
(see Appendix D for the full derivation). This approximation
could help clarify the controversy regarding the tail as the term
exp[− �y2

4Dy (x∗ )t ] suggests a more Gaussian tail for large �y,
which contradicts many existing results of exponential tails
[7,8,14,24,39].

As shown in the double-logarithmic plot of ln(Gs

√
2π ) vs

�y/σ in Fig. 7, the slopes of gamma and normal distributions
are approximately −2 (Gaussian) for the tail �y/σ > 3. The
function type of p(Dy) can influence the result of the integral
by the prefactor C in the Laplace approximation. For the
uniform distribution of p(Dy), the slope of the tail deviates
from −2 when �y/σ > 3 and becomes −1 near �y/σ = 6.
This is consistent with the prediction of an exponential tail
if ∂ln[p(Dy)]/∂Dy is constant, as reported by Wang et al.
[15], using the steepest descent analysis for the integral Gs ∼∫

exp (ln[p(Dy)]− �y2

4Dyt )/
√

DydDy. Although the Gaussian tail
for the gamma distribution is distinct from the prediction in
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FIG. 7. ln(Gs

√
2π ) vs �y/σ for different distributions p(Dy ) at t = 0.05 − 10 s. The slope of −2 means Gs is Gaussian, whereas −1

means Gs is exponential.

Refs. [15,16], it is in accordance with Alexandre et al. [25],
where a generic Gaussian tail was proposed. Additionally,
a slight contraction of the tail turning more Gaussian with
time is observed for uniform and gamma distributions as the
Gaussian term exp[− �y2

4Dy (x∗ )t ] becomes more significant for
large �y. The transition from a short-time exponential-like tail
to a long-time Gaussian-like tail could clarify the controversy
that similar systems may display contradictory tail shapes. As
an exception, diffusion in strongly confined media [8], where
statistical data cannot reach a sufficiently large �y, typically
manifests an exponential tail.

H. Asymmetric fat-tailed DPD in the x direction

Along the x direction parallel to the temperature gradient,
the thermophoretic motion of NPs can cause an asymmetric
fat-tailed distribution, contrasting with the symmetric behav-
ior found in the y direction. This biased distribution can
be quantified by skewness, denoted as S(�t ) = 〈[�r(�t ) −
〈�r(�t )〉]3〉/〈[�r(�t ) − 〈�r(�t )〉]2〉3/2. Nonzero skewness
indicates a departure from symmetrical fat-tail distribution.
Given the expression for �x(t)= √

2DxtWx + t ∂Dx
∂x + uT t , and

an approximated ∂〈Dx〉
∂t ∼ (∂〈Dx〉/∂x)uT , the term ∂〈Dx〉/∂x

can lead to an asymmetric fat-tailed distribution over longer
time, deviating from the symmetric behavior observed in the
y direction. As shown in Fig. 8(a), the x skewness significantly
increases over time with an increasing temperature gradient,
while the y skewness remains constant at zero. Figure 8(b)
shows the DPD under a temperature gradient ∇T = 4 × 105

FIG. 8. (a) Skewness. (b) DPDs under a temperature gradient
∇T = 4 × 105 K/m, with the inset showing the tail ratio φ.

K/m, where the fat-tailed distribution increasingly deviates
from symmetry over time.

III. CONCLUSIONS

We used the thermophoretic colloidal response of col-
lective nanoparticles to a temperature gradient to explain
non-Gaussian behavior in a heterogeneous field. We investi-
gated non-Gaussian diffusion of NPs in such thermophoretic
system with a controlled DifD, and we successfully corre-
lated non-Gaussianity with the spatiotemporal evolution of
diffusivity distribution of the nanoparticles. Short-time non-
Gaussianity was predicted based on the range ratio β =
Dmin/Dmax of diffusivity distribution p(D), which is deter-
mined by the boundaries rather than the absolute value of
p(D). We demonstrated the predictive power using uniform,
normal, and gamma distributions. The variation in non-
Gaussianity at intermediate times was determined by the
effective Pe number, which characterizes the competition be-
tween the varying rate of diffusivity and the diffusivity of
diffusivity. This explains why the tail of the DPD usually
contracts, unless it is influenced by sudden dynamics that
enhance the diffusivity of diffusivity. The long-time decay of
non-Gaussianity followed a 1/t scaling in a purely diffusive
process, whereas in the presence of particle migration, the
non-Gaussianity eventually reached −2. Furthermore, using
Laplace’s approximation of Bayes’ theorem, we depicted that
the tail was more Gaussian than exponential. We showed the
transition from a short-time exponential-like tail to a long-
time Gaussian-like tail to clarify the controversies in existing
experiments. Notably, our theoretical model has been found in
good agreement with results from the literature, illustrating a
unique way to correlate diffusivity distribution with underly-
ing non-Gaussian dynamics across different systems.

Although our approach models the DifD only based on
a linear temperature field, it can offer valuable insight into
non-Gaussianity arising from heterogeneity with gradual
variation. Our results shed light on heterogeneity mapping
in complex environments, for example, establishing the
diffusion spectrum of a cell based on non-Gaussian statistics,
and characterizing nanomedicine transport in a biological
microenvironment [30,40–44]. The idea contains mapping
heterogeneity-dependent diffusion diffusivity by non-
Gaussian parameters and detecting a microscopic mechanism
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based on the temporal variation of non-Gaussianity, echoing
the recent result of Bayesian deep learning deciphering the
physics encoded in diffusion data [45].
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APPENDIX A: EXPERIMENTAL METHODS

1. Temperature gradient characterization

The temperature profiles in the microchannel were veri-
fied by a temperature-sensitive fluorescence, Rhodamine B
(#83689, Sigma-Aldrich) [27,46]. In our experiments, when
the flow rates of hot (80 ◦C) and cold (0 ◦C) water in the two
side channels were set to Q = 5 ml/min, the measured temper-
ature difference was approximately 8.1 K (∇T = 4.1 × 104

K/m), in excellent agreement with simulation results using
COMSOL (Fig. 1(c), and Supplemental Material [26], Sec. S1).
Upon increasing the flow rates to Q = 15 ml/min, the temper-
ature difference was approximately 13.2 K (∇T = 6.6 × 104

K/m), which is the maximum stable temperature gradient that
can be stably achieved in the current experimental system.

2. Particle tracking

The fluorescent polystyrene (PS) particles with diameters
of d = 500 nm (F8812) and d = 1.0μm (F8819) were pro-
cured from Thermo Fisher Scientific Inc. The surface zeta
potentials of the PS particles were measured to be approxi-
mately −32.8 mV for 500 nm particles, and −35.1 mV for
1.0 µm particles (Malvern Panalytical, Zetasizer Nano ZS).
To facilitate particle tracking, the original particle suspensions
were diluted with DI water (Milli-Q, 18.2 M
 cm) to a con-
centration below 0.1 wt %. Particle tracking and trajectory
analysis were performed using IMAGEJ along with a custom
MATLAB algorithm. Initially, in each experiment, we selected
particles uniformly within the range of x ∈ [−80, 90]μm for
tracking. The tracking duration was set at 20 s (corresponding
to 400 frames), and up to 50 000 particle displacements could
be obtained for statistical calculation. Tracking was termi-
nated if a particle approached the side wall too closely. In
the case of ∇T = 6.6 × 104 K/m with a thermophoretic ve-
locity uT = −0.66μm/s, a particle beginning at x = −80μm
would finally move to approximately x = −93.2μm dur-
ing 20 s. Thus the particle positions were approximately
x ∈ [−95, 90]μm, was defined as Dmin ≈ 0.557 mm2/s and
Dmax ≈ 0.744 mm2/s [Fig. 2(c)], resulting in the range ratio
β = Dmin/Dmax = 0.749 [Fig. 4(b)].

APPENDIX B: BROWNIAN DYNAMICS SIMULATION

We employed the finite-difference method in Brownian dy-
namics simulations. By utilizing Itô calculus, the overdamped
Langevin equation can be expressed as

dr =
√

2Dr

∫ t

0
dW (t ′) =

√
2DrW (t ). (B1)

Here, W (t ) is a random walk with diffusion coefficient D,
known as the Wiener process, with a zero mean and standard
variation of 1. As the NPs move along this constant gradient
toward the cold side at a constant thermophoretic velocity uT ,
they experience a continuous change in both temperature T(x)
and viscosity η(x) dependent on their position. The local dif-
fusion coefficient Dy = Dx, derived from the Stokes-Einstein
equation, can be determined as Dy = Dx = kBT (x)

γ (x) = kBT (x)
3πη(x)d ,

where kB is Boltzmann’s constant. By defining the velocity v

as the change in position �r over time �t and explicitly writ-
ing �r = rn+1 − rn, the finite-difference equations is obtained
as

xn+1 = xn +
√

2Dx�tsWx,n + �t
∂Dx

∂x
+ uT �ts,

yn+1 = yn + √
2Dy�tsWy,n. (B2)

For a given step �ts = 10−4 s, these equations yield the
sequence of {xn, yn}, representing the trajectory of the particle
in the xy plane. The number of particles involved in each sim-
ulation Np = 5 × 105 − 1 × 106. The simulation employed
physical parameters identical to those used in the experiments.
We utilized a high-performance computing environment on a
supercomputer, optimizing computational efficiency and over-
all performance.

APPENDIX C: PARTICLE SIZE EFFECT

We compared the non-Gaussian diffusion behavior of NPs
with different diameters under the same conditions. The sim-
ulation results for NP diameters of 200, 500, and 1000 nm
under a temperature gradient ∇T = 3 × 105 K/m are shown
in Fig. 9. It can be observed that the y-MSD curves are all
approximately linear, although they shift upward as the NP’s
size decreases, as predicted by the Stokes-Einstein relation.
The x-MSDs are primarily influenced by the thermophoretic
motion with a speed uT at long times, leading to an overlap of
x-MSDs curves, demonstrating a superdiffusive behavior with
a slope close to 2. The temporal transition from normal diffu-
sion (slope = 1) to superdiffusion (slope = 2) is dependent on
the NP’s size, with t ∼ 2Dx/u2

T . Interestingly, the y-DPDs of
all three NPs yield consistent results, regardless of the NP’s
size. The non-Gaussian parameter αy exhibits nearly identical
values, as the diffusivity range ratios β in simulations with
particles of different diameters are very similar. In contrast,
αx values decay to negative values at different times, even-
tually reaching a plateau at approximately −2. Notably, the
x skewness exhibits significant differences among the NPs of
different diameters. As the diameter decreases, the x skewness
experiences a substantial increase, which can be attributed to
the contribution of ∂〈Dx〉/∂x to its value.
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FIG. 9. Simulation results of 200, 500, and 1000 nm NPs under
∇T = 3 × 105 K/m. (a) MSDs. (b) DPDs at t = 0.05 s, with the
inset showing the tail ratio φ. (c) Non-Gaussian parameter α. (d)
Skewness.

APPENDIX D: MATHEMATICAL DERIVATION

1. Mathematical derivation for α

Alexandre et al. [25] utilized Wick’s theorem to derive the
expression for the fourth cumulant 〈�r4〉c, which is given by

〈�r4〉c = 〈�r4〉 − 3〈�r2〉2 = 12

〈[∫ t

0
ds(Dr − 〈Dr〉)

]2
〉
.

(D1)

As t → 0, the integral in Eq. (D1) can be approximated as

〈�r4(t → 0)〉c = 12t2
(〈

D2
r

〉 − 〈Dr〉2
)
. (D2)

The detailed derivation from Eq. (D1) to Eq. (D2) has been
provided by Alexandre et al. [25]; it aligns with Eq. (D2)
in the paper by Chubynsky and Slater [16]. With αr (t ) =
〈�r4(t )〉c/〈�r2(t )〉2 = [〈�r4(t )〉/〈�r2(t )〉2]–3, as t → 0,
αr(t → 0) can be expressed as the variance of diffusivity,
Var(Dr ), divided by the square of the expectation 〈Dr〉2:

αr (t → 0) = 〈�r4(t )〉c

〈�r2(t )〉2 =12t2
(〈

D2
r

〉 − 〈Dr〉2
)

(2〈Dr〉t )2

= 3
(〈

D2
r

〉 − 〈Dr〉2
)

〈Dr〉2 =3
[
E

(
D2

r

) − E2(Dr )
]

〈Dr〉2

= 3Var(Dr )

〈Dr〉2 . (D3)

Equation (D3) provides a way to predict αr (t → 0) based
on the spatial distribution p(Dr ) of Dr . Then, we proceed to
derive αy(t → 0) for several commonly used spatial distribu-
tions p(Dy).

Uniform distribution. Suppose the distribution p(Dr ) of Dy

follows a uniform distribution, with Dy ∈ (Dmin, Dmax], β =

Dmin/Dmax. In this case, the non-Gaussian parameter can be
obtained as

3Var(Dy) = 3

[
(Dmax − Dmin)2

12

]
= (Dmax − Dmin)2

4
, (D4)

〈Dy〉 = E (Dy) = Dmax + Dmin

2
, (D5)

αy(t → 0) = 3Var(Dy)

〈Dy〉2 =
(

Dmax − Dmin

Dmax + Dmin

)2

=
(

1 − β

1 + β

)2

.

(D6)

Standard gamma distribution. As mentioned in the main
text, suppose the distribution p(Dy) of Dy follows a gamma
distribution and is truncated at Dy ∈ [Dmin, Dmax]; the detailed
derivation for the non-Gaussian parameter is as follows:

Var
(
Dy

) = Var

(
z

Dmax − Dmin

N
+ Dmin

)

= Var(z)

(
Dmax − Dmin

N

)2

= k

(
Dmax − Dmin

N

)2

, (D7)

〈Dy〉 =
〈
z

Dmax − Dmin

N
+ Dmin

〉
= 〈z〉Dmax − Dmin

N
+ Dmin

= k
Dmax − Dmin

N
+ Dmin, (D8)

αy(t → 0) = 3Var(Dy)

〈Dy〉2 = 3k

[
Dmax − Dmin

k(Dmax − Dmin) + NDmin

]2

= 3k

[
1 − β

k(1 − β ) + Nβ

]2

. (D9)

Standard normal distribution. Suppose the distribution
p(Dy) of Dy follows a normal distribution truncated at Dy ∈
[Dmin, Dmax] during statistical analysis. It can be mapped
to a standard normal distribution with a probability density
function of ϕ(z) = (1/

√
2π ) exp(−z2/2), with a truncated

range of z ∈ [−N, N]. The cumulative distribution function
is �(z) = [1 + erf (z/

√
2)]/2, where erf is the error function

given by erf = (1/
√

π )
∫ z
−z exp(−τ 2)dτ . For a symmetric

truncated range z ∈ [−N, N], it has 〈z〉 ≈ 0, and

Var(z| − N � z � N ) = σ 2

{
1 − Nϕ(N ) − (−N )ϕ(−N )

�(N ) − �(−N )

−
[

ϕ(N ) − ϕ(−N )

�(N ) − �(−N )

]2
}

. (D10)

Here, σ 2 = 1, we further obtain

Var(z| − N � z � N ) = 1 − N√
2π

2e − N2/2

�(N ) − �(−N )

= 1 − 2
√

2N√
π

× e − N2/2

erf(N/
√

2) − erf (−N/
√

2)
.

(D11)
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The mapping between Dy and z can be expressed as Dy =
z Dmax−Dmin

2N + Dmax+Dmin
2 . Therefore, the non-Gaussian parame-

ter can be obtained by substituting Eqs. (D12) and (D13) into
Eq. (D14):

Var(Dy) = Var

(
z

Dmax − Dmin

2N
+ Dmax + Dmin

2

)

= Var(z| − N � z � N )

(
Dmax − Dmin

2N

)2

, (D12)

〈Dy〉 =
〈
z

Dmax − Dmin

2N
+ Dmax + Dmin

2

〉
= 〈z〉Dmax − Dmin

2N

+ Dmax + Dmin

2
+ Dmax + Dmin

2
, (D13)

αy(t → 0) = 3Var
(
Dy

)
〈
Dy

〉2
= 3

N2

(
Dmax − Dmin

Dmax + Dmin

)2

Var(z| − N � z � N )

= 3

N2

(
1 − β

1 + β

)2

Var(z| − N � z � N ). (D14)

For large values of N, such as N � 3,
Var(z| − N � z � N ) ≈ 1, resulting in a simplified

expression for αy: αy(t → 0) = 3
N2 ( 1−β

1+β
)
2
. For small values

of N, Eq. (D14) should be used to calculate αy(t → 0).

2. Laplace’s approximation

The DPD, following Bayes’ theorem, Gs(�y, t ) =
∫ p(Dy)p(�y|Dy)dDy, can be written as

Gs(�y, t ) =
∫ Dmax

Dmin

p[Dy(x)]√
4πDy(x)t

exp

[
− �y2

4Dy(x)t

]
dDy.

(D15)

To handle the integral, we use the Laplace approxima-
tion method. This method simplifies the integral expression
by approximating the function near its mode peak. We de-
fine f (Dy) = p[Dy (x)]√

4πDy (x)t
and g(Dy) = 1

4Dy (x)t , and transform

Eq. (D15) into

Gs(�y, t ) =
∫ Dmax

Dmin

f (Dy)exp[−�y2g(Dy)]dDy, (D16)

assuming Dy(x∗) represents the maximum value of Dy(x) at
position x∗, where g(Dy) reaches its minimum. This position
signifies the most likely location within the probability distri-
bution. Then expanding the Taylor series for f (Dy) and g(Dy)
around Dy(x∗) (which will be denoted as D∗

y for convenience),
we obtain

Gs(�y, t ) ≈
∫ Dmax

Dmin

[ f (D∗
y ) + f ′(D∗

y )(Dy − D∗
y )]

× exp

(
−�y2

[
g(D∗

y ) + g′(D∗
y )(Dy − D∗

y )

+1

2
g′′(D∗

y )(Dy − D∗
y )2

])
dDy. (D17)

Since g′(D∗
y ) = 0, and keeping the leading term, we obtain

Gs(�y, t ) ≈ f (D∗
y ) exp[−�y2g(D∗

y )]
∫ Dmax

Dmin

× exp

[
1

2
g′′(D∗

y )(Dy − D∗
y )2

]
dDy

=C exp

[
− �y2

4D∗
y (x)t

]
. (D18)

Note that the Laplace approximation assumes that the PDF
is unimodal and symmetrical around the mode peak, which
might become invalid for complex multimode distributions.
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