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Realizing efficient topological temporal pumping in electrical circuits
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Quantized adiabatic transport can occur when a system is slowly modulated over time. In most realizations,
however, the efficiency of such transport is reduced by unwanted dissipation, back-scattering, and nonadiabatic
effects. In this paper, we realize a topological adiabatic pump in an electrical circuit network that supports
remarkably stable and long-lasting pumping of a voltage signal. We further characterize the topology of our
system by deducing the Chern number from the measured edge band structure. To achieve this, the experimental
setup makes use of active circuit elements that act as time-variable voltage-controlled inductors.
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I. INTRODUCTION

A Thouless pump [1] is an adiabatic charge pump, the
transport properties of which are characterized by its under-
lying topology. The pumping process is achieved through
the slow, periodic modulation of a potential, thereby induc-
ing the transport of particles confined to a lattice despite
the filled band and in absence of a net external field. The
rate of transport is quantified by a Chern number associated
with the energy bands of the system, which is a topological
invariant of the same type as in the integer quantum Hall
effect and Chern insulators [2]. However, for the Thouless
pump, the Chern number is defined over a 1+1D periodic
Brillouin zone constituted by one spatial dimension and time,
in contrast to two spatial dimensions for the aforementioned
effects. The topological protection ensures that the quanti-
zation of charge pumping is robust and unaffected by weak
disorder [3].

Recently, interest in the topological Thouless pump
resurged following the first experimental realizations in ultra-
cold atomic systems [4–6]. Since then, implementations in a
range of setups have emerged, including photonic waveguides
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[7–10], acoustic metamaterials [11,12], and mechani-
cal [13,14] systems as well as superconducting chips [15]
or Josephson junctions [16,17]. Similar platforms are a seed
for subsequent refinement and generalizations of the principal
Thouless pump motif, as they allow for devising experiments
that explore variations such as disordered pumping [8,13,18],
pumping in continuous [19] or many-body systems [20], non-
linear pumping [21–23], non-Abelian pumps [10,12,24], and
nonadiabatic [25] or Floquet pumping [26–29]. Realizations
however typically exhibit considerable deviations from ideal
topological pumping due to experimental constraints such
as dissipation or nonadiabaticity, so that attainable pumping
distances are limited to tens of lattice sites [4,9,12,19], though
recent progress has been made in addressing this issue [30].
Electrical circuit lattices present a different suitable platform
to overcome constraints of other metamaterial platforms, as
they can emulate topological phenomena with high fidelity
and promise to achieve topological pumping over long dis-
tances. They have recently gained relevance as a versatile
platform for various topological systems [31–40]. The avail-
ability of quality components provides a versatile toolbox for
the implementation of a wide range of models and effects.
Other assets of electrical circuits are active circuit components
such as operational amplifiers (op-amps) or analog multipli-
ers. Op-amps in particular enabled the realization of chiral
edge propagation [41], the non-Hermitian skin effect [42,43],
active topological materials [44], and other topological phe-
nomena [45–50]. Active elements also provide a gateway
towards the implementation of temporally modulated systems
in electrical circuits [51,52] and promise future realization of
various Floquet phenomena.
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FIG. 1. Implementation of the Thouless pump in a circuit. (a) Variation of the inductance over space (nodes) and time. The inductors act
as a cosine-shaped potential shifted over time to induce adiabatic pumping. (b) The circuit consists of a chain of capacitors, with each node
connected to ground by a variable inductor. The dashed box indicates the unit cell of a periodic chain. On the left, a simplified circuit diagram
of one unit cell is depicted, which blends into a photograph of a circuit board on the right, showing three circuit nodes. A detailed description
of the circuit board can be found in the Appendix B. The complete circuit is made up of eight unit cells (40 nodes). (c) Schematic of the
time-variable inductor. An analog multiplier creates a signal applied to an inductor connected to the node. The current flowing in and out of
the subcircuit thus mimics that of a time-variable inductor to ground.

In this paper, we present the experimental realization of
a topological Thouless pump in an electrical circuit. We
employ time modulated circuit elements to implement the
Aubry-André-Harper (AAH) model [53,54], which describes
a particle on a one-dimensional (1D) chain, exposed to a
periodic, time-dependent potential. For this, we devise cir-
cuit elements that function as a voltage controlled variable
inductor, based on analog multipliers. In our classical plat-
form, for small driving frequencies we are able to populate
the lowest band uniformly in momentum space, allowing us
to emulate topological bulk transport, which is typically a
quantum-mechanical feature. Hence, the setup displays tem-
poral pumping of a localized voltage signal that not only
agrees extraordinarily well with theoretical predictions but
also remains stable for a long time and over many (>102)
lattice sites. Through impedance measurements, we resolve
the band structure of the circuit and determine the topological
Chern numbers of the bands from the edge state spectrum and
the transport velocity of an adiabatically pumped signal.

II. IMPLEMENTING THE THOULESS PUMP

The driven AAH model is a 1D tight-binding model with a
space- and time-modulated onsite potential, described by the
Schrödinger equation

i
d

dt
ψn = j(ψn+1 + ψn−1) + λ cos (nϕ + τ ) ψn, (1)

where ψn is the wave function at site n, j is the hopping
amplitude, λ is the amplitude of the onsite potential, ϕ is the
phase difference between neighboring nodes due to spatial
modulation, and τ is the pumping parameter to be modu-
lated over time. The unit cell of the lattice is determined by
the wavelength of the potential 2π/ϕ. Note that if ϕ is 2π

times an irrational number, then the on-site term is quasiperi-
odic, and leads to a quasicrystal [55,56]. For our case, we
choose a rational value of ϕ = 2π

5 , corresponding to a unit cell
containing five nodes. The potential is illustrated in Fig. 1(a).
Our circuit setup is a chain of eight unit cells (40 nodes).

The hopping terms between nodes are represented in the
circuit by capacitors C0 and the on-site terms are represented
by variable inductors Ln(τ ) [see Fig. 1(b)]. We employ a re-
alization of variable inductors through analog multipliers [see
Fig. 1(c)]. The effective inductance can be controlled through
an external control voltage Vc. The resulting differential equa-
tion describing the nodal voltages Vm for input currents In at
nodes {n} is

d

dt
In(t ) = d2

dt2
C0(2δn,m − δn+1,m − δn−1,m)Vm(t )

+ (L0)−1[1 + λ cos (nϕ + τ )]δn,m Vm(t )

= d2

dt2
�nm Vm(t ) + 	nm(τ )Vm(t ). (2)

III. BAND STRUCTURES

We first investigate the properties of the circuit for fixed
values of τ in order to reveal the band topology of the system
over the parameter space of τ and lattice momentum k. The
resonance band structure, i.e., the eigenfrequencies of the
circuit, can be measured through the Green function G(ω) in
the frequency domain ω. For this, we Fourier transform and
invert Eq. (2), obtaining

Vn(ω) = Gnm(ω) Im(ω), (3)

with G(ω) =
(

iω� + 1

iω
	(τ )

)−1

. (4)
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FIG. 2. Measured eigenfrequency band structures. Shown is the
sum of impedances from each node to ground (absolute value) for
(a) periodic and (b) open boundary conditions, resolved over fre-
quency and pumping phase. Eigenfrequencies appear as peaks in the
impedance. The dark lines form eigenfrequency bands over pumping
phase τ . In (b), topological edge states emerge that cross the gaps of
the band structure. The impedance of the leftmost node to ground is
overlaid in red, identifying edge modes localized at the left boundary.

Physically, the matrix elements of the Green function Gnm(ω)
are the impedances between nodes n and m, where a diag-
onal element Gnn(ω) denotes the impedance from node n
to ground. To measure them, we record impedance sweeps
with frequencies f = ω/2π in the range of 0 to 35 kHz, for
different values of τ between 0 and 2π . Since resonances of a
circuit are poles (undamped circuit) or peaks (damped circuit)
in an eigenvalue gi(ω) of G(ω), we can detect them in the
trace of the Green function tr[G(ω)] = ∑

i gi(ω). Its value is
obtained by summing the measured impedances to ground of
all nodes.

Figure 2(a) shows the measured trace of the Green function
for periodic boundary conditions. Since the circuit consists of
eight unit cells of five nodes each, we expect to observe five
bands, each containing eight states of different momenta. The
five bands can be seen in Fig. 2(a), with the first band within
the range of 5–6 kHz, second at 8–9 kHz, third at 10–13 kHz,

fourth at 13–20 kHz, and the fifth band above 27 kHz. The
visible subbands correspond to the states of different lattice
momentum k. In an L-C circuit, ac currents at low frequency
flow predominantly through the inductive components, at high
frequencies mostly through the capacitive ones. This is re-
flected in the observed band structure: The small spread within
the low-frequency bands indicates a dominance of the on-
site potential, realized by inductors, over the hopping terms
realized by capacitors. At the same time, an oscillation of
the band as a function of τ can be seen. For high-frequency
bands, this observation is reversed, with large spread be-
tween modes of differing k but diminished oscillation in τ ,
indicating a dominance of the capacitive hopping term. A
comparison with the theoretical spectrum can be found in the
Appendix B.

We also investigate the case of open boundary conditions.
Here, dangling capacitors at the end of the chain are connected
to ground. The result of the open boundaries impedance mea-
surements is shown in Fig. 2(b). We observe the presence
of edge states crossing the band gaps. The Chern numbers
of the band can be determined by counting the edge states
attached to each band [57]. The winding number νn of the gap
between bands n and n + 1 is the number of ascending minus
descending edge modes localized at the left boundary. We ob-
tain winding numbers ν1 = 1, ν2 = 2, ν3 = −2, and ν4 = −1
by counting the left edge modes marked red in Fig. 2(b).
The Chern number of each band is then the difference of
winding numbers in the gap above and below Cn = νn − νn−1.
For the five bands we obtain {1, 1,−4, 1, 1}, which agrees
with numerical calculations. The Chern number can also be
measured from the shift in the center of mass of a pulse over
one pumping period, with the same result for the lowest band
as described below.

IV. TOPOLOGICAL PUMPING

We investigate the topological pumping of a signal pulse
in a setup with periodic boundaries. To induce pumping, the
parameter τ is modulated over time as τ (t ) = �t by applying
oscillating control voltages Vc(t ). Adiabatic evolution occurs
if the pumping frequency � is small compared to the reso-
nance frequencies of the circuit. As the adiabatic theorem is
most commonly discussed in the quantum-mechanical con-
text of the Schrödinger equation, we provide an analytical
derivation for L-C circuits in the Appendix A. We find that
the adiabatic theorem still holds but is modified by a rescaling
of voltages by the factor

√
ωn(0)/ωn(τ ) depending on the

resonance frequencies of the respective eigenmodes, which
coincides with results previously derived for elastic materi-
als [58]. The effect of temporal modulation can be understood
as parallel transport of the instantaneous eigenstates along τ

in parameter space. In order to stabilize the signal over long
times, a subcircuit compensating parasitic serial resistance
is added to the time-dependent inductor, detailed in the Ap-
pendix. The topological adiabatic pump transports the wave
function of a filled band with Chern number Cn by Cn unit
cells per pumping cycle.

In the fermionic Thouless pump, quantized pumping of
bulk states relies on the notion of a filled band. We find
that for classical systems, we can instead use a signal that is
evenly distributed over all states of the given band. For this,
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FIG. 3. Adiabatic transport in the bulk for periodic boundaries. (a) Evolution of the voltage pulse over time. The plot shows the signal
envelope extracted from measurement data using the Hilbert transform. The pumping potential shifts with a constant velocity of 2.5 nodes/ms.
The pulse is well localized in a minimum of the potential and propagates with a velocity proportional to the Chern number of the lowest band.
(b) Pulse used to excite the circuit for the bulk transport measurement. Its mean frequency is 5.25 kHz, corresponding to the lowest set of bands
in Fig. 3. (c) Relative deviation of the center of mass of the signal from the theoretical trajectory of adiabatic pumping. (d) Voltage evolution
over time for selected nodes. Some signal amplitude is observed to tunnel to the following potential minimum with each pass.

we evenly excite the states of the lowest resonance band at a
fixed frequency. An exciting current is necessarily distributed
evenly in k if fully local in the lattice. At the low frequencies
of the first band, hopping term d2

dt2 �nm of the equation of
motion Eq. (2) is suppressed, so that the on-site term 	nm(τ )
dominates. This means that the induced voltage signal will
also be strongly localized and thus approximately uniform
in k. This emulates a filled band in that the state has even
weight over momentum k, resulting in a quantized pumping
velocity [59]. A detailed evaluation of this approximation can
be found in the Appendix A. Due to the absence of the Pauli
exclusion principle, intraband transitions can occur and cause
the breakdown of this analogy. These are suppressed however
if the bandwidth is much smaller than the pumping frequency,
which is the case for the lowest band in our setup (theory value
≈5–15 Hz, too small to discern in our measurements).

We inject an ac pulse [see Fig. 3(b)] with mean frequency
f = 5.25 kHz at node 1, exciting the lowest band of the
circuit. The pulse is timed with the minimum of the poten-
tial at the injection node to maximize the overlap with the
eigenstates of the lowest band. The variable inductors of the
circuit are driven at pumping frequency � = 500 Hz, moving
the potential across the five sites of a unit cell within one
period. Accordingly, the adiabatic pumping velocity in the
nth band is Cn × 500 Hz × 5 nodes = Cn × 2.5 nodes/ms, so
it takes 16 ms/Cn to traverse all 40 nodes of the circuit.

We then measure the evolution of the voltage signal in the
circuit. Figure 3(a) shows a density plot of the signal envelope
over space (circuit nodes) and time. The signal envelope was
extracted from the measurement data using the Hilbert trans-
form as the absolute value of the analytic signal. We observe
that the signal is transported across the circuit chain, remain-
ing localized in the potential minimum as it moves along the
chain. Figure 3(d) displays the signal over time at different

nodes. We observe that the voltage of the pulse only decays
to roughly half of its amplitude after traversing the entire
chain once (i.e., 40 nodes or eight unit cells). We also observe
some broadening of the pulse, tunneling into neighboring
minima of the potential, preferentially the trailing ones. This
effect can be best explained as a deviation from the adiabatic
approximation, i.e., intra- and interband transitions induced
by the drive, since dispersive effects would cause symmet-
ric spreading with no preferred direction. Figure 3(c) shows
the relative deviation of the center of mass of the voltage
pulse from the trajectory predicted by the Chern number of
the lowest band C1 = 1 and pumping frequency � = 500 Hz.
The graph shows an excellent agreement between theory and
experiment, with a relative deviation after 70 ms of less than
2%. This time scale corresponds to the pulse being transported
across the entire chain four times. This minimal relative de-
viation and the small attenuation in space and time suggest
the potential of electric circuits to implement very efficient
topological adiabatic pumps.

V. CONCLUSION

We show the experimental implementation of a topological
adiabatic temporal pump induced by a parameter in the 1D
electric circuit. Previous implementations on different plat-
forms face considerable limitations, where deviations in the
center of mass of the pulse become significant even after a
few pumping periods for small unit cells and system sizes. We
illustrate how a quantized transport of voltage pulses in our
circuit persists for time scales that are several times the pump-
ing period, which is much longer than in previous realizations.
We also quantify the small attenuation in the center of mass
of the pulse. Moreover, the distance between circuit nodes in
the system is immaterial and not related to any physical length
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scale; hence the entire implementation can be miniaturized or
expanded significantly. The propagation velocity of the pulse
with respect to other parametric variations can likewise be ef-
ficiently controlled. Such flexibility and easy implementation
with inexpensive components highlight the potential for prac-
tical applications, where the physical length and time scales
would then be matched to the problem at hand. Furthermore,
using our approach to implementing Floquet dynamics in an
electric circuit, a large variety of time-periodic phenomena
could be studied and realized in this versatile platform, which
may be unattainable in other metamaterials.
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APPENDIX A: THEORY

1. Topology of the Aubry-André-Harper model

The AAH model is a 1D hopping chain with a cosine-
shaped, modulated on-site potential. Its Hamiltonian takes the
form

H (τ ) = 1

2

∑
i

(−t c†
i ci+1 + λ cos (τ − iϕ)c†

i ci + H.c.). (A1)

The potential is shifted by a phase ϕ between neighboring
nodes. If ϕ is a fraction of 2π , ϕ = 2π/N , then the model
forms a lattice with a periodicity of N sites. The corresponding
Bloch Hamiltonian is

h(k, τ ) =

⎛
⎜⎜⎜⎝

λ cos (τ ) −t · · · −t e−ik

−t λ cos (τ − 2π/N ) −t
...

... −t . . . −t
−t eik · · · −t λ cos [τ − 2π (N − 1)/N]

⎞
⎟⎟⎟⎠. (A2)

We consider the dynamics of an initially localized state in
the nth band under adiabatic variation of τ . In this scenario,
the AAH model acts as a Thouless pump, transporting the
state by Cn unit cells, with Cn the Chern number of the nth
band over to the two-dimensional parameter space spanned by
lattice momentum k and pumping phase τ . The AAH model is
invariant under a combined translation of one site and a shift
in the pumping phase τ by ϕ. Semiclassically, it can be argued
that states bound to the minima (or maxima) of the pumping
potential should be transported by one unit cell per pumping
period, yielding a Chern number of 1 for the corresponding
bands. This argument can be formalized by investigating the
Berry curvature over the {k, τ } parameter space. The Chern
number of the nth band is given by the integral of the Berry
curvature:

Cn = 1

2π i

∫∫
dk dτ [∂τ (ψ†

n∂kψn) − ∂k (ψ†
n∂τψn)], (A3)

with ψn(k, τ ) being the nth eigenvector of h(k, τ ). Let us
investigate the first term of the integral, ∂τψ

†
n∂kψn. Assuming

a smooth gauge can be chosen within the stripes 0 � k <

2π, (i − 1)ϕ � τ < iϕ, it can be rewritten as∫∫
dk dτ ∂τ (ψ†

n∂kψn)

=
∫

dk
(
[ψ†

n∂kψn]ϕτ=0 + [ψ†
n∂kψn]2ϕ

τ=ϕ

+ . . . + [ψ†
n∂kψn]2π

τ=2π−ϕ

)
(A4)

=
N∑

i=1

∫
dk[ψ†

n∂kψn]iϕ
τ=(i−1)ϕ. (A5)

Let the eigenvector ψn(k, τ ) at τ = 0 be ψn(k, 0) =
(a1, a2, . . . , aN )ᵀ. At τ = ϕ, the Hamiltonian is shifted
by one site compared to τ = 0. Accordingly, the
eigenvectors become ψn(k, ϕ) = (eikaN , a1, a2, . . . , aN−1)ᵀ.
Generally, the eigenvectors for τ = iϕ are ψn(k, iϕ) =
(eikaN−i+1, . . . , eikaN , a1, . . . , aN−i )ᵀ. Substituting back to
the integral, we obtain

N∑
i=1

∫
dk[ψ†

n∂kψn]iϕ
τ=(i−1)ϕ

=
N∑

i=1

∫
dk [ψ†

n(k, iϕ)∂kψn(k, iϕ)

−ψ†
n(k, (i − 1)ϕ)∂kψn(k, (i − 1)ϕ)] (A6)

=
N∑
i

∫
dk i|ai|2 (A7)

=
∫ 2π

0
dk i = 2π i. (A8)

This term contributes +1 to the Chern number of the
respective band. While this calculation does not generate a
definitive Chern number for any band, since the second term
of the Berry curvature was neglected and assumptions about
the smoothness of the gauge need to be made, it shows how
the shifting potential biases the bands of the AAH model
towards a Chern number of 1. For a finite number of bands,
the total Chern number of a system is necessarily zero, so
some bands must always violate this result to compensate, i.e.,
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there must always be some left-moving modes compensating
the right-moving ones.

Another feature that makes the AAH model well suited
for the demonstration of topological pumping is the strong
localization of low-energy modes. For sufficiently small ϕ,
these essentially correspond to bound states in the wells of the
cosine potential that are only weakly coupled to neighboring
wells. As a result, low-energy bands are relatively flat, so that
a pulse can stay localized over many pumping cycles.

2. Topological states as resonances of an L-C network

The nodal voltages of an L-C network are described by the
system of second-order differential equations

�
d2

dt2 V (t ) + 	V (t ) = d

dt
I(t ), (A9)

where V is the vector of nodal voltages and I is the vector
of all external currents flowing into the nodes. � and 	 are
the admittance matrices corresponding to the capacitive and
inductive circuit elements respectively. In the frequency do-
main, the according equation is

(−ω2� + 	)V (ω) = iωJ (ω)V (ω) = I(ω), (A10)

where J (ω) we call the circuit Laplacian. We use this picture
of the circuit Laplacian to relate the properties of the quantum-
mechanical system to the electrical one, by analogy between
J and Hamiltonian H [33]. To calculate the eigenmodes and
eigenfrequencies of a circuit, we consider the homogeneous
case I = 0 and use an exponential ansatz for the eigenmodes
V n(t ) = eiωntV n to obtain the equation(

�−1	
)
V n = ω2

nV n. (A11)

While this approach provides an efficient way to calculate the
eigenmodes of the circuit, it does not explain how dynami-
cal eigenstates of the circuit and of the quantum-mechanical
Hamiltonian relate. For this, another equivalent defining rela-
tion for eigenmodes can be used:

J (ωn)V n = 0. (A12)

This relation shows that dynamical modes emerge from the
spectrum and eigenvectors of the circuit Laplacian J (ω) are
the eigenpairs at the roots of the admittance eigenvalues jn(ω).
Consider a set of eigenvectors {V n(k, ω(k)) | k ∈ [0, 2π [ } of
the Laplacian of a lattice model. The states of the admit-
tance band at some frequency ω can be recovered by setting
ω(k) = ω, while the states of the eigenfrequency band are
obtained by setting ω(k) to the dispersion relation ωn(k). This
implies that, if no band crossing occurs in the admittance band
structure within the bandwidth of ωn(k), the admittance eigen-
modes of the Laplacian fixed frequency can be related to the
eigenfrequency band structure by a continuous deformation.
Accordingly, the band topology of the dynamical eigenstates
is equivalent to that of the corresponding admittance eigen-
states at a suitably chosen frequency ω0, which themselves
are analogous to that of the respective Hamiltonian H after
which J (ω0) was modeled.

3. Adiabatic evolution in a modulated L-C electric circuit

To rederive the adiabatic theorem for an L-C circuit, we
first reexpress the differential equation of the circuit in the
canonical form

i
d

dt

(
V̇
V

)
= i

(
0 −�−1	

1 0

)(
V̇
V

)
. (A13)

This differential equation is equivalent to a non-Hermitian
Schrödinger equation with

H = i

(
0 −�−1	

1 0

)
. (A14)

The matrix �−1	 has eigenvalues and eigenvectors ω2
n and

V n, so �−1	V n = ω2
nV n. In the context of an L-C circuit with

positive, reciprocal capacitive and inductive couplings (such
as any circuit composed of conventional passive elements),
the matrices � and 	 are real-valued, symmetric, positive
semidefinite, and diagonally dominant, so their eigenvalues
are real and positive. Since � is symmetric with positive
eigenvalues, so is �−1. The product �−1	 on the other hand is
generally not symmetric, since the two factor matrices gener-
ally do not commute. However, direct calculation shows that
it remains positive (semi)definite, so all its eigenvalues are
real and positive. This implies their square roots ±ωn are real
valued as well. The eigenvectors to (�−1	)ᵀ = 	�−1 form
the set of left eigenvectors Wn that form a dual basis with the
Vn, so that W ᵀ

n Vm = δnm.
A set of eigenvectors �nσ to H , with σ ∈ {+,−} and

eigenvalues ωnσ = σωn (where we choose +ωn to always be
the positive root of the corresponding eigenvalue of �−1	),
can be constructed from the V n as

�nσ =
(−σ iωnV n

V n

)
. (A15)

The left eigenvectors of H are given by

�nσ = 1

2σ iωn

(
W n

σ iωnW n

)
. (A16)

A quick calculation confirms that these form the dual basis to
�nσ , namely,

�†
mρ�nσ = 1

−2σ iωn
(W †

m,−ρiωmW †
m)

(−σ iωnV n

V n

)
(A17)

= 1

−2σ iωn
(−σ iωnδmn − ρiωmδmn) (A18)

= −σ iωn

−2σ iωn
(1 + ρσ )δmn (A19)

= δρσ δmn. (A20)

A general state of the circuit is described as a linear combi-
nation of the eigenstates �(t ) = ∑

nσ cnσ (t )�nσ (t ). From the
reality constraint of V and V̇ , we obtain that the coefficients
corresponding to the same n must be complex conjugates
of each other, cn− = c∗

n+. The voltages of the system are
then simply the second component of �(t ), so that V (t ) =∑

nσ cnσ (t )V n(t ). Using these conventions, we can use the
same set of coefficients cnσ to describe both the state vector
� and voltage vector V of the system. To derive the adiabatic
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theorem for slowly modulated L-C circuits, we start from the Schrödinger equation projected onto a left eigenstate and simplify
from there. We have

�†
mρ H

∑
nσ

cnσ �nσ = �†
mρ i

d

dt

∑
nσ

cnσ �nσ , (A21)

�†
mρ

∑
nσ

σωncnσ �nσ = i�†
mρ

∑
nσ

(ċnσ�nσ + cnσ �̇nσ ), (A22)

ρωmcmρ = iċmρ + i
∑
nσ

cnσ�†
mρ�̇nσ (A23)

= iċmρ + i
∑
nσ

cnσ

1

−2ρiωm
(W †

m,−ρiωmW †
m)

(−σ i(ω̇nV n + ωnV̇ n)
V̇ n

)
(A24)

= iċmρ + i
∑
nσ

cnσ

1

−2ρiωm
(−σ iω̇nδmn − σ iωnW †

mV̇ n − ρiωmW †
mV̇ n) (A25)

= iċmρ + i
∑
nσ

cnσ

1

2

[
σρ

ω̇n

ωm
δmn +

(
σρ

ωn

ωm
+ 1

)
W †

mV̇ n

]
(A26)

= iċmρ + iρ
ω̇m

ωm

cm+ − cm−
2

+ i
∑
nσ

cnσ

1

2

(
ρσ

ωn

ωm
+ 1

)
W †

mV̇ n (A27)

= iċmρ − ω̇m

ωm
Imcm+ + icmρW †

mV̇ m + i
∑

n �=mσ

cnσ

1

2

(
ρσ

ωn

ωm
+ 1

)
W †

mV̇ n (A28)

= iċmρ − ω̇m

ωm
Imcm+ + icmρW †

mV̇ m + i
∑

n �=mσ

cnσ

1

2

[
1 + ρσ + ρσ

(
ωn

ωm
− 1

)]
W †

mV̇ n (A29)

= iċmρ − ω̇m

ωm
Imcm+ + icmρW †

mV̇ m + i
∑
n �=m

cnρW †
mV̇ n −

∑
n �=m

ρImcn+

(
ωn

ωm
− 1

)
W †

mV̇ n. (A30)

We arrive at

ċmρ + (iρωm + W †
mV̇ m)cmρ = −

∑
n �=m

cnρW †
mV̇ n − i

∑
n

Imcn+

[
ω̇m

ωm
δnm + ρ

(
ωn

ωm
− 1

)
W †

mV̇ n

]
. (A31)

This can be simplified further by setting ρ = +1, removing the redundant negative frequency case that is related to the positive
frequency coefficients by complex conjugation. Suppressing the now redundant second index, the equation then reads

ċm + (iωm + W †
mV̇ m)cm = −

∑
n �=m

cnW †
mV̇ n − i

∑
n

Imcn

[
ω̇m

ωm
δnm +

(
ωn

ωm
− 1

)
W †

mV̇ n

]
. (A32)

The terms on the left-hand side correspond to the dynamical evolution of the quasistatic eigenstates and the geometric component
of the transport that results in the Berry phase, identical to the known quantum-mechanical case. On the right-hand side of the
equation, the first term is analogous to the quantum-mechanical case (and neglected in the conventional adiabatic approximation).
However, an additional term proportional to the imaginary part of the coefficients cn appears. To investigate which of these terms
can be neglected under adiabatic evolution, we substitute the coefficients cn(t ) by e−i

∫ t
ωn(t ′ )dt ′

c̃n(t ). This cancels the dynamical
term iωncn on the left-hand side of Eq. (A32) and after multiplying the equation by ei

∫ t
ωm (t ′ )dt ′

we obtain

˙̃cm + W †
mV̇ mc̃m = −

∑
n �=m

e−i
∫ t (ωn−ωm )dt ′

c̃nW †
mV̇ n − i

∑
n

Ime−i
∫ t

ωndt ′
c̃nei

∫ t
ωmdt ′

[
ω̇m

ωm
δnm +

(
ωn

ωm
− 1

)
W †

mV̇ n

]
(A33)

= −
∑
n �=m

e−i
∫ t (ωn−ωm )dt ′

c̃nW †
mV̇ n −

∑
n

e−i
∫ t (ωn−ωm )dt ′

c̃n − ei
∫ t (ωn+ωm )dt ′

c̃∗
n

2

[
ω̇m

ωm
δnm +

(
ωn

ωm
− 1

)
W †

mV̇ n

]
.

(A34)

We see that all terms with n �= m on the right side oscillate with a finite frequency. If adiabatic evolution is assumed, these terms
vanish since their contribution to c(τ ) is of order �/(ωn − ωm) . Only one of the right-hand side terms remains:

˙̃cm + W †
mV̇ mc̃m = −1

2

ω̇m

ωm
c̃m (A35)

⇐⇒ ˙̃cm = −(
W †

mV̇ m + ω−1
m ω̇m/2

)
c̃m. (A36)
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The term W †
mV̇ m is the Berry phase of a non-Hermitian system, analogous to the quantum-mechanical case of a non-Hermitian

Hamiltonian. The other term ω−1
m ω̇m/2 has no direct analog in quantum mechanics. Both these terms induce a purely geometric

evolution in parameter space along the curve C : [t0, t] → RN , parametrized by R(t ), via

˙̃cm = (∇R cm)
dR
dt

= −(
W †

m∇R V m + ω−1
m ∇R ωm/2

)dR
dt

c̃m, (A37)

∇R c̃m = −(
W †

m∇R V m + ω−1
m ∇R ωm/2

)
c̃m, (A38)

⇒ c̃m(R) = exp

[∫
C

−(
W †

m∇R V m + ω−1
m ∇R ωm/2

)
dR

]
c̃m(R0) (A39)

= exp

[∫
C

−W †
m∇R V mdR − ln

(
ωm(R)

ωm(R0)

)/
2

]
c̃m(R0) (A40)

=
√

ωm(R0)

ωm(R)
eiγm[C] c̃m(R0). (A41)

Here we see that, ultimately, the difference between adiabatic evolution in quantum mechanics and electrical L-C circuits is a

rescaling of the voltage amplitude by
√

ωm (R0 )
ωm (R) , the square root of the ratio of initial and final eigenfrequency of the respective

state.

APPENDIX B: CIRCUIT SETUP

1. Floquet element with loss compensation

The time variable inductors used in our experimental setup
are implemented using AD633 analog multipliers. The multi-
pliers have voltage inputs named X1, X2, Y 1, Y 2, and Z , and
voltage output W . The ideal output voltage is given by

W = (X1 − X2)(Y 1 − Y 2)

10 V
+ Z. (B1)

To create the effective variable inductor as shown in Fig. 4,
the voltage of the connected node is fed into X1, and control

FIG. 4. Floquet inductor including the serial resistance compen-
sation subcircuit. Not shown: Voltage divider at the output of the
operational amplifier for fine tuning.

voltage Vf is fed into Y 2. Then the voltage across inductor
L connected between the connected node and W is Vin +
Vin

Vf
10 V = (1 + Vf

10 V )Vin. The current through the inductor is
then

I =
∫

dt

(
1 + Vf

10 V

)
L−1 Vin. (B2)

The op-amp acts as an analog integrator of the input volt-
age, and its output voltage is given by − 1

iω RI CI
Vin. This signal

is fed into the Z and X2 inputs of the analog multipliers, so
that it is subtracted from the X1 input before multiplication
and added to the output after multiplication. This way, the
output W of the analog multiplier is

W =
(

Vin + 1

iω RI CI
Vin

)
f (τ ) − 1

iω RI CI
Vin (B3)

= Vin

[(
1 + 1

iω RI CI

)
f (τ ) − 1

iω RI CI

]
. (B4)

Finally, the output current flowing from the connected node
through inductor L with parasitic serial resistance RL is

I = Vin − W

iω L + RL
(B5)

= 1

iωL

(
1 + 1

iω RI CI

)
[1 − f (τ )]

1 + RL
iω L

Vin. (B6)

Now RI and CI are chosen such that 1
RICI

= RL
L and we obtain

I = 1

iωL
[1 − f (τ )]Vin. (B7)

This means that the added subcircuit can precisely compen-
sate for the serial resistance of the inductor, which we consider
to be the main cause of parasitic loss. The influence of the se-
rial resistance of the time varying inductor on the amplitude of
the fed-in pulse is shown in Fig. 5. In our setup, an additional
voltage divider consisting of two 100-k� resistors and a 5-k�

potentiometer was included to fine tune the output voltage of
the integrator subcircuit. The influence of this compensation
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FIG. 5. Influence of tuning the resistance of the potentiometer
in the compensation subcircuit [see Fig. 4 and Eq. (B6)] on the
serial resistance of the inductor of a single node. For a resistance
setting of the potentiometer of slightly above 0 � the resistance of
the inductor gets very close to 0 � as well, allowing for the injected
pulse to survive longer on its way along the circuit chain. Negative
resistance values, i.e., overcompensation, at the frequency of the
injected pulse result in a gain of the signal and therefore in saturation
of the multiplier output, which had to be avoided.

on the serial resistance of the inductor is shown in Fig. 5
for different compensations, i.e., different resistance settings
in the potentiometer, over frequency. For a resistance setting
of the potentiometer of slightly above 0 � the resistance of
the inductor gets very close to 0 � as well, allowing for the
injected pulse to survive longer on its way along the circuit
chain.

2. Emulating a filled band

Quantized transport in the topological Thouless pump re-
quires the band in which pumping is performed to be filled,
so that the nonquantized dispersive component of transport
vanishes. As mentioned in the main text, we emulate this in
our system by equally exciting all states of a band. This way,
despite the concept of a filled band being absent in classical

FIG. 6. Simulated relative excitation of the states in the lowest
band when excited resonantly by a localized voltage pulse, with
pumping phase τ tuned such that the excitation is localized in a
potential valley.

metamaterials, we can eliminate dispersive transport, and are
left with only adiabatic transport.

As explained in the main text, we approximate a uniform
excitation of all states of the lowest band in our circuit model
by injecting a local current pulse. In this section, we verify
numerically how well this method works in generating an
approximately uniform voltage response.

The response of the circuit to an external current signal can
be calculated from the circuit Laplacian as

V (k, ω) = [J (k, ω)]−1I(k, ω). (B8)

Here, use the Bloch representation, with Bloch momentum
k taking values k = 2π/8, . . . , 2π as our circuit consists of
eight unit cells. For J (k, ω), we use the circuit Laplacian as
specified in the main text, but with a parasitic serial resistance
of 82 � added to each inductor, which is the dc resistance
of the inductors used in experiment. We calculate the exci-
tation of each state in the lowest band by evaluating (B8) at
the resonance frequency of the first band for each respective
value of k. The resonances are calculated from the poles of
[J (k, ω)]−1 over ω ∈ C, where the resonance frequencies are
the real values of the positions of the poles. We take the norm
of the obtained voltage response vectors and plot the result
over k in Fig. 6. We see that the different momentum states
of the band are excited approximately evenly, with a relative
spread of less than ±0.5%.

3. Effect of disorder on the band structure

In order to gauge the effect of disorder on the resonance
band structure, we simulate impedance sweeps of the system.
For this, we start with the circuit Laplacian as described in
the previous section and add disorder to the contributions of
the individual elements making up the circuit. We use the
values as specified for the experimental setup of ±1% for
the hopping capacitors, ±5% for the inductors to ground. The
impedance sweep is calculated by sampling the trace of the
inverse of the Laplacian over different values of frequency
and pumping phase τ . Figure 7 shows a comparison of the
measured impedance sweep [Fig. 7(a)] to a sweep calculated
from theory without disorder [Fig. 7(b)] and with disorder
[Fig. 7(c)]. A visual comparison shows little deviation be-
tween all three figures in the region of the lowest three bands
(≈0–15 kHz). In the region of the upper bands, we observe a
significant distortion of the experimental bands compared to
the simulated ones. For instance, the lowest state of the fifth
band in Fig. 7(a) lies at ≈27.5 kHz whereas the same state can
be seen at ≈31.5 kHz in Figs. 7(b) and 7(c). Furthermore, we
observe that the higher bands start bending when disorder is
introduced, though the effect is enhanced in the experimental
setup [Fig. 7(a)] compared to the simulation with disorder
[Fig. 7(c)]. Overall, there is good correspondence between
the theoretical and simulated bands and we do not expect the
minor observed deviations to be relevant to our experimental
measurements of boundary states and topological pumping.

4. Measurement setup and procedure

For our experimental setup we devised printed circuit
boards. Our chosen circuit elements are surface mounted ca-
pacitors for hopping between nodes, through hole inductors to
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(a) (b) (c)

FIG. 7. Comparison of experimental impedance sweep to theory. (a) Measured impedance sweep as shown in the main text. (b) Theoretical
impedance sweep for no component disorder. (c) Simulated sweep for nominal component disorder, calculated from an instance of the
Laplacian with disorder, assuming uniform distribution of component values in the range of tolerance.

ground, through hole resistors for tuning reasons (see Fig. 8),
as well as through one analog multiplier and one operational
amplifier per node. The multiplier is used to generate a time
dependence in the behavior of the inductor, whereas the oper-
ational amplifier is part of an integrator circuit which is used
to emulate nearly vanishing serial resistance of the inductor.

FIG. 8. Single node of the Thouless pump circuit. (1) BNC con-
nector for negative supply voltage. (2) BNC connector to previous
board. (3) Hopping capacitor to previous node. (4) BNC connector
to measured node. (5) Hopping capacitor to next node. (6) Inductor
of measured node. (7) Analog multiplier providing time dependence
for the inductor. (8) BNC connector to input Floquet signal into
the multiplier. (9) BNC connector for positive supply voltage. (10)
Resistors for gain adjustment to minimize serial resistance of the
inductor. (11) Resistor and capacitor of the integrator built from
the operational amplifier. (12) Potentiometer for offset adjustment
of operational amplifier. (13) Operational amplifier used as part of an
integrator in combination with the elements of (11).

This integrator was necessary to keep the measured pulses
alive long enough to make several turns in the periodic chain.
To preserve translational symmetry the scatter of the absolute
values of the circuit elements needed to be smaller than typical
tolerances of commercially available components. To this end
all components were precharacterized by a BK Precision 894
LCR meter. The following choices of components with tol-
erances after the characterization process and selection were
made for this experimental setup. Inductor to ground: Bourns
5900-104-RC nominal values L = 100 mH ± 5% and Rdc =
82 � ± 5%. Hopping capacitor: Yageo CC0603GR-NPO-
8BN102 nominal values C = 1 nF ± 1%. Integrator capaci-
tor: Murata GJM1555-C1H470-GB01D nominal values C =
47 pF ± 2%. Resistor before integrator: Yageo MF0204 R =
100 M� ± 1%. Resistor within integrator: Yageo MF0204
R = 100 M� ± 1%. Resistors within voltage divider: Yageo
MF0207 R = 100 k� ± 0.1%. Potentiometer within voltage
divider: Bourns PV36-W502-C01B00 R = 5 k� ± 10%. The
circuit was excited at the first node with a signal which was of
the form V0 sin( f t ) exp(− t2

2σ 2 ), a product of a sinusoidal sig-
nal at f = 5.25 kHz and a Gaussian with a standard deviation
of σ = 0.175 ms−1 [see Fig. 3(b)] from an Agilent 33220A
arbitrary waveform generator coupled inductively to the in-
ductor of the first node using an inductor of the same kind as
used on the board. To reduce the cross talk of the inductors,
their respective spots within a node were rotated by 90◦ from
one node to the other. Additionally the inductors were each
lifted 3 cm above the board to reduce interaction with the
ground plane within the board. This lifting of the inductors
showed a significant sharpening of the impedance peaks on
each node increasing the measured impedance by a factor of
up to 10. The propagating wavefronts were measured with
oscilloscopes of the PicoScope 4000 Series by PICOTech,
connected to each node. The impedance measurements at each
node for the eigenfrequency band structures were performed
with an MFIA by Zurich instruments. For this measurement
the Floquet phases where chosen stationary with a difference
of 2π/5 from one node to the next. The whole 2π of the
Floquet phase was then sampled in 100 equidistant points,
leading to the figures shown in the main text.
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