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Variational quantum eigensolver with embedded entanglement using a tensor-network ansatz
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In this paper, we introduce a tensor network (TN) scheme into the entanglement augmentation process of the
synergistic optimization framework by Rudolph et al. [arXiv:2208.13673] to build its process systematically
for inhomogeneous systems. Our synergistic approach first embeds the variational optimal solution of the
TN state with the entropic area law, which can be perfectly optimized in conventional (classical) computers,
in a quantum variational circuit ansatz inspired by the TN state with the entropic volume law. Next, the
framework performs a variational quantum eigensolver (VQE) process with embedded states as the initial state.
We applied the synergistic to the ground-state analysis of the all-to-all coupled random transverse-field Ising,
XYZ, Heisenberg model, employing the binary multiscale entanglement renormalization ansatz (MERA) state
and branching MERA states as TN states with entropic area law and volume law, respectively. We then show
that the synergistic accelerates VQE calculations in the three models without an initial parameter guess of the
branching-MERA-inspired ansatz and can avoid a local solution trapped by a standard VQE with the ansatz
in the Ising model. The improvement of optimizers for MERA in all-to-all coupled inhomogeneous systems,
enhancement, and potential synergistic applications are also discussed.
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I. INTRODUCTION

The ground state of quantum many-body systems is essen-
tial to understand quantum phenomena in many-body physics.
However, solving quantum many-body problems is generally
difficult with conventional (classical) computers because they
require the treatment of Hilbert spaces that grow exponentially
with an increasing system size of N .

Using quantum computers has been attracting attention
to address the problems’ limitations. Actually, quantum al-
gorithms such as the quantum phase estimation [1], the
qubitization [2], and the quantum singular value transforma-
tion [3] with quantum acceleration unable us to access the
ground state for large quantum many-body systems that are
intractable for classical computers.

However, current quantum computers are noisy
intermediate-scale quantum (NISQ) devices [4] that suffer
from errors and are limited in size. Quantum algorithms that
can be executed using shallow quantum circuits are required
to make them more practical. In this context, one of the
NISQ-aware methods developed is the variational quantum
algorithm (VQA) [5]. This method involves constructing
variational models through parameterized quantum circuits
(also called ansatz) on a quantum computer and optimizing the
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cost function using classical computers. VQAs, specifically,
the variational quantum eigensolver (VQE), have been
applied to search for the ground state of quantum systems [6].

To obtain meaningful results using VQAs on NISQ, the
ansatz utilized to represent the target state with the required
precision should have few internal parameters and be as shal-
low as possible concerning the circuit depth. This condition
is crucial for mitigating the noise effects inherent to NISQ de-
vices and preventing the occurrence of the barren plateau (BP)
problem [7], which is associated with an overly excessive vari-
ational space. Although the BP problem can be circumvented
by starting the calculation from appropriate initial parameters
[8], it is generally nontrivial to set such parameters. Therefore,
a systematic procedure for setting up a high-quality ansatz is
desired.

As a strategy to satisfy this requirement, the procedures
of putting more classical computer resources into a series of
processes of VQE are currently attracting attention [9,10]. The
VQE with a synergistic framework [10] is a quantum-classical
hybrid algorithm that has received much attention to avoid BP
problems and works efficiently with less use of NISQ. The
synergistic framework has two key concepts: sophisticated
variational methods on classical computers ideally provide the
initial state for the VQE, and quantum gates added during
the VQE calculation and the quantum circuit in which the
classically optimized solution is efficiently embedded have
different topologies. The second concept is referred to as the
entanglement augmentation process.

The use of the tensor network (TN) method [11–14] for
the first concept of the synergy framework is a natural idea
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because the TN method for quantum states represents the
wave function as a contraction of many tensors with small
degrees of freedom (TN representation) and is a way to realize
the variational method of large quantum many-body systems
on a classical computer; there is an ongoing effort to convert
TN states into quantum circuit representations today [15–17].

Actually, in Ref. [10], the authors used the matrix prod-
uct state (MPS) [18–20], which has a one-dimensional (1D)
topology, as a variational method on classical computers, and
employed all-to-all topologies of fully parameterized SU(4)
gates for the augmentation process. However, as mentioned
in Ref. [10], constructing an all-to-all topology is a nontrivial
task and is likely not scalable on NISQ devices. Therefore, to
achieve a synergistic framework irrespective of the task that
can be implemented on near-to-mid-term quantum computers,
it is necessary to propose a systematic entanglement augmen-
tation process that can qualitatively and dramatically change
the entanglement structure of the ansatz by only adding very
sparsely coupled quantum gates.

In this paper, we introduce the concept of a TN structure
into this entanglement augmentation process and propose a
procedure to efficiently and systematically augment the entan-
glement representation capability of a quantum circuit ansatz.
Specifically, we focus on embedding a TN state with the
entropic area law [21] after variational calculation on a clas-
sical computer in a portion of the entanglement-augmented
quantum circuit ansatz, which is equivalent to a TN state
with the entropic volume law. This entangled embedding
VQE (EEVQE) approach can accelerate the calculations of
VQE with a TN-inspired ansatz with an entropic-volume law.
Discussions of embedding focused on TN with the entropic
volume law and its connection to VQE, which is an attempt
not seen in pioneering works [17,22,23] related to our pa-
per. Investigations of the TN state with the entropic volume
law are essential for analyzing quantum states in complex
problems, such as quantum chemical systems, long-range
interacting systems, random spin systems, and nonlinear prob-
lems [24] which involve nonuniform interactions among all
qubits, and simulations of real-time evolution for quantum
systems because the quantum states may not satisfy the
entropic area law in these systems. For specific numerical
verification of EEVQE, we employ a 1D binary multiscale
entanglement renormalization ansatz (MERA) [25,26] for
variational methods on a classical computer and use branch-
ing MERA networks [27,28] as the quantum circuit ansatz
after entanglement augmentation. The target Hamiltonians are
all-to-all coupled random transverse-field Ising, XYZ, and
Heisenberg models whose ground states can violate the en-
tropic area law. As we expect, through the EEVQE process,
we confirm for three models that TN states after the vari-
ational optimization on classical computers can be further
improved in terms of variational energy while benefiting from
the initialization-problem-free and accelerating VQE calcula-
tions. Furthermore, we also confirm that EEVQE can avoid
traps in locally optimal solutions (or broadly BP) in the ran-
dom transverse-field Ising model.

As part of our efforts to advance the synergistic frame-
work, we compared optimizers to update MERA for all-to-all
coupled random systems. This mainly includes the Evenbly-
Vidal method [26], the standard in MERA optimization, its

improvements developed in this paper (refer to Sec. III B),
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,
which is the standard in parameterized quantum circuit ansatz
optimization. Our comparison results showed that the BFGS
method was the most effective in reducing the variational
energy for all the studied models. This result indicates the
importance of introducing the knowledge of optimizers used
in VQE to accelerate the computation of variational meth-
ods with TN on the classical computer in the application
of the synergistic framework to investigate low-energy states
of quantum chemical calculations, which is the most desired
application of VQE for all-coupled inhomogeneous systems.

The remainder of this paper is organized as follows: In
Sec. II, we review the basics of the components of EEVQE,
namely, the TN structures of MERA and branching MERA,
Evenbly-Vidal sequential optimization method, VQE, and the
synergistic framework. In Sec. III, we describe our proposi-
tions, i.e., the procedure of embedding MERA states into a
quantum circuit ansatz inspired by branching MERA states
and the procedure of a modified Evenbly-Vidal method. In
Sec. IV, after investigating the performance of optimizers for
MERA states in a specific set of all-to-all coupled models,
we present the results of a performance study of EEVQE for
the models. Finally, in Sec. V, we summarize the paper and
discuss future studies on EEVQE.

II. REVIEWS FOR COMPONENTS OF EEVQE

In this section, we review the fundamentals of the com-
ponents of EEVQE: the TN structures of 1D binary MERA
and branching MERA, optimization methods for MERA, the
calculation procedure of VQE, and the synergistic framework.
One familiar with these components may skip to the next
section, which discusses how to embed the optimized MERA
state in branching-MERA-inspired quantum circuits, and the
scrutiny of optimization methods for MERA in the all-to-all
coupled model.

A. TN structures of 1D binary MERA and branching MERA

Here, let us consider the 1D binary MERA, whose
schematic diagram is depicted in Fig. 1(a). The binary MERA
network for finite-size systems consists of fourth-, third-, and
second-order tensors, called disentanglers u, isometries w,
and top tensors t (see Fig. 1). In the following, to simplify the
discussion, the degrees of freedom (bond dimension) of each
leg of all tensors are assumed to be the same positive integer χ

(see the original paper in MERA [26] to extend the discussion
to the case where the bond dimension is tensor dependent).
Each u, w, and t on the network always satisfies the following
orthonormality or isometric conditions:∑

cd

(
uab

cd

)∗
ua′b′

cd = δaa′δbb′ , (2.1)

∑
ab

(
uab

cd

)∗
uab

c′d ′ = δcc′δdd ′ , (2.2)

∑
ab

(
wc

ab

)∗
wc′

ab = δcc′, (2.3)

∑
ab

(tab)∗tab = 1, (2.4)
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FIG. 1. Schematic diagrams of (a) the binary MERA for the 16-
site system and (b) isometric conditions of disentangler, isometry,
and top tensors.

where δαα′ with α ∈ {a, b, c, d} is the Kronecker delta. These
conditions are shown schematically in Fig. 1(b). Owing to
these conditions, the quantum state |�〉 represented by MERA
is always normalized, that is, 〈�|�〉 = 1. This paper consid-
ers a position-dependent TN, where each tensor has different
tensor elements depending on its placement in the network.

To achieve a more expansive variational space, the 1D
branching binary MERA in Fig. 2 introduces a branching
structure into isometry while keeping layer structures of the
MERA. In the case of the branching binary MERA, the
orthonormality of the isometry in which the bifurcation is
introduced is identical to that of the disentangler u. Since
the branching structure can be arbitrarily introduced in each
isometry layer in the binary MERA as shown in Fig. 2, vari-
ations of 2n−1-pattern branching structures are possible in a
2n-site system. This paper focuses only on a full-branching
MERA, which introduces branching in all isometry layers, for
example, branch 2 in Fig. 2 because only the full-branching
MERA satisfies the entropic volume law [24]. Of course,
the more branching we adopt, the larger Hilbert space the
branching MERA can search, so we may consider branching
patterns depending on the target system.

B. Optimization scheme for MERA

This subsection presents the Evenbly-Vidal algorithm,
which is used as the standard optimization of MERA. Given
the Hamiltonian H of the targeted system, the variational
energy E can be evaluated as 〈�|H|�〉, where |�〉 is the vari-
ational state in terms of the binary MERA. We now consider
that the Hamiltonian consists of the sum of the two-body inter-
actions hi j between ith and jth sites, namely, H = ∑

i< j hi j .

(a) branch 0

(b) branch 1

(c) branch 2

FIG. 2. Pattern diagram of the binary MERA to the branching
MERA in an eight-site system. Since branches can be added at each
layer, we name the diagrams branch0, branch1, branch2,. . . for each
number of branches.

In this case, the expectation value of each interaction ei j =
〈�|hi j |�〉 can be summed to obtain the variational energy E .
For practical calculations, we should perform the minimum
contraction, which depends on the (i, j) pairs by utilizing the
isometric condition of u,w, t , or causal cone as shown in
Fig. 3, and the typical computational cost of evaluating ei j

is known to be O(χ9 log N ) if the system size is sufficiently
large [26]. For example, given a MERA, suppose we want to
optimize an isometry w while keeping the rest of the tensors
fixed. The energy E depends quadratically on w and w†,
namely,

E (w) =
∑

abca′b′c′

∑
〈i< j〉

(wc
ab)∗[Ei j]

abc
a′b′c′w

c′
a′b′ + C, (2.5)

where 〈i < j〉 refers to the set of site pairs specifying the two-
body pair interaction hi j that contributes to the optimization
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FIG. 3. Schematic diagram of ei j with (i, j) = 4, 5, and the light-
shaded region shows the causal cone structures. Diagrams outside the
causal cone are trivially simplified to the identity operator by using
isometric conditions.

of w, and Ei j is the environment tensor obtained by hollowing
out the diagrams corresponding to w and w† from the causal
cone necessary to evaluate ei j [26], and C = ∑

〈i< j〉 ei j with∑
i< j = ∑

〈i< j〉 +∑
〈i< j〉 is a constant term with respect to the

update of w. However, no known algorithm exists to solve a
quadratic problem while maintaining isometric constraints.

Evenbly and Vidal developed a method for optimizing a
single tensor of MERA based on a linearizing approximation

[26]. In this approach, we temporally regard w and w† as
independent tensors and optimize w while keeping w† fixed,
namely,

Ẽ (w) ≡
∑
abc

[ϒw]c
abw

c
ab, (2.6)

[ϒw]c′
a′b′ ≡

∑
abc

∑
〈i< j〉

(
wc

ab

)∗
[Ei j]

abc
a′b′c′ , (2.7)

where the tensor ϒw is called the environment tensor of the w,
for example, as shown in Fig 4.

To achieve a unique global minimization of Ẽ (w), a singu-
lar value decomposition (SVD)

[ϒw]c
ab

SVD=
∑

c′
Vcc′Sc′W ∗

c′ab (2.8)

is applied to the environment tensor. The tensor wnew that
minimizes Ẽ (wnew) is always given by

[wnew]c
ab = −

∑
c′

V ∗
cc′Wc′ab, (2.9)

and schematic diagrams for Eqs. (2.8) and (2.9) are shown in
Fig. 5. For this update to always work well, the Hamiltonian
should be redefined as Hγ = H − γ I , where γ is sufficiently
large so Hγ is negative definite. However, the optimization
step size is scaled by γ −1 [29], so we should choose γ as
small as possible practically. In the Evenbly-Vidal method
in nonuniform MERA, this linearized update is performed
sequentially for each tensor that constructs the MERA.

Similarly, we can obtain ei j and optimize TN with the
branching binary MERA; the typical numerical cost of eval-
uating ei j is reported to be O(χ12N ) if the system size is
sufficiently large [27]. Compared with the computational cost

FIG. 4. Diagram of the environment tensor ϒw for tensor w. This is the summation of the tensor contraction, except w from ei j , and (i, j)
is involved with w in a causal cone.
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FIG. 5. Schematic diagram of the update of w with Evenbly-
Vidal algorithm equivalent to Eqs. (2.8) and (2.9). The red tensor
indicates the diagonal matrix with the singular value Sc in Eq. (2.8).

of MERA and branching MERA, the latter is exceedingly
high, especially in higher-dimensional systems [28]. This has
been the primary factor preventing us from analyzing the
performance of branching MERA using classical computers.
However, in the case of quantum computers, there is no sig-
nificant difference in the computational cost with respect to
the number of gates. Specifically, the numbers of gates in
the MERA and branching MERA are O(N ) and O(N log N ),
respectively.

C. Variational quantum eigensolver

The VQE [6] is a quantum-classical hybrid variational
method for finding the ground-state energy of a target Hamil-
tonian H on an N-qubit system. In the VQE, the variational
wave function for the system is expressed as a product of
parameterized quantum unitary gates

|�(θ)〉 =
K∏

k=1

ûk (θk ) |0〉⊗N , (2.10)

where θ = (θ1, θ2, · · · , θK ) and ûk (θk ) means the kth
quantum gate acting on single or multiple qubits spec-
ified by the user and has variational parameters θk =
(θk,1, θk,2, · · · , θk,	k ); 	k is the number of internal degrees of
freedom for ûk . In this paper, each ûk is an SU(4) gate, where
θk becomes a 15-dimensional real vector, acting on the ikth
and jkth qubits with 1 � ik < jk � N . The variational wave
function |�〉 is always normalized due to the unitarity of the
gates.

A goal of VQE is to minimize the variational energy

E = min
θ

E (θ), (2.11)

where E (θ) = 〈�(θ)|H|�(θ)〉,
with respect to θ. Since numerically exact values of the partial
derivatives{

∂θk,l E (θ) = E
(
θ + π

2 ek,l
) − E

(
θ − π

2 ek,l
)

2

}1�k�K

1�l�	k

, (2.12)

with the orthonormal unit vector ek,l for shifting only the
parameter θk,l are easily obtained by the parameter shift
rule [30], we can employ various gradient-based algorithms

as optimizers of the VQE. In practical NISQ applications,
systematic perturbations linked with gate operations and
statistical errors arising from the limited number of mea-
surements influence energy evaluation. However, we could
take positive views that numerous methodologies for error
mitigation have been developed to obtain the derivatives given
by Eq. (2.12). In VQE, the calculation of expectation values
{E (θ), E (θ ± π

2 ek,l )} is performed on a quantum computer
because the calculation is a bottleneck in simulations using
classical computers. Subsequently, the classical computer up-
dates the parameters using the gradient ∇E (θ). Of course,
based on the parameter shift rules, we may choose an opti-
mizer that does not use the gradient or the Hessian. Finally,
VQE achieves a ground-state search by iterative calculations
between the procedures of classical and quantum computers.

The hyperparameters of the VQE are the initial values of
the variational parameters, including the design of the quan-
tum gate set, choice of the optimizer, and hyperparameters
of the optimizer (see Ref. [31] for more information). These
hyperparameters should be properly controlled according to
the quantum computer’s ability to perform high-precision cal-
culations in VQE. In particular, when using NISQ devices, it
is essential to attempt to decrease the total number of quantum
gates within an acceptable range of numerical accuracy to
reduce the effect of noise.

D. The synergistic framework

The problem with VQAs in NISQ devices is that statistical
and systematic errors are associated with the measurement
and noise, respectively. A naive approach to solving this
problem is to reduce the dependence on NISQ devices in exist-
ing quantum-classical hybrid algorithms. For example, Okada
et al. proposed an efficient protocol for the topological phase
analysis of transverse field clusters and toric code models
on quantum circuits [9]. In this protocol, all optimization of
the quantum circuit, including the calculation of expectation
values, is performed on a classical computer using causal cone
structures, as discussed in Fig. 3 for each local observable. In
addition, the expectation value evaluation of nonlocal observ-
ables, which are difficult to handle on a classical computer, is
performed using the classically optimized quantum circuit.

However, this protocol has constraints on the target system
and ansatz. For example, the measured observables used in
the optimization are local, and the ansatz comprises local
gates with constant depth. To avoid this difficulty, first, the
synergistic framework described in Ref. [10] employs the
MPS after the variational calculation with TN methods on the
classical computer and performs quantum circuit encoding of
the MPS by sequential two-qubit-gate decomposition with 1D
topology [32,33] as the initial ansatz of the VQE. Second, the
framework augments the quantum circuit encoded from the
MPS with an additional parameterized quantum circuit. In this
step, the internal parameters of the additional quantum circuit
are set to zero, so they correspond to the identity operators.
Finally, the framework performs VQE with the augmented
circuit as the initial ansatz. The crucial properties of the frame-
work can be summarized in the following two points: the VQE
is trapped in the BP when all parameters of the augmented
ansatz are given randomly but can avoid the BP by using the
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encoded quantum circuit; the all-to-all gate topology, which
is different from the topology of the MPS, of the quantum
circuit added after the quantum circuit encoding effectively
contributes to better VQE performance. These importance
values are also reported in Refs. [16,23].

It is worth noting that in Ref. [10] of the synergistic frame-
work, the SU(4) gate product is created through a sequential
process during the quantum-circuit encoding of the MPS. This
process makes it difficult to fully utilize classical computing
power as a divide-and-conquer approach cannot be naively
introduced. Additionally, although all-to-all topology gates
are most commonly used for entanglement augmentation, it is
not a systematic procedure. To achieve a quantum advantage
in nonuniform systems, such as quantum chemical systems,
by the synergistic framework, TN states can be easily con-
verted to quantum circuits. The entanglement structure of the
variational quantum state must be changed by adding a few
gates during the entanglement augmentation process.

III. ENTANGLED EMBEDDING VQE

To this end, we propose an EEVQE protocol, using binary
MERA for classical variational optimization and branching
MERA augmented from binary MERA on a quantum circuit.
The protocol can be summarized in four steps:

(1) Perform the variational optimization of the MERA
state with the entropic area law on the classical computer for
the target Hamiltonian.

(2) Obtain the quantum circuit representation of the op-
timized MERA state using the technique of quantum circuit
encoding.

(3) Embed the encoded circuit to an entanglement-
augmented quantum circuit inspired by the branching MERA
state with entropic volume law.

(4) Perform VQE with the initial state given by the aug-
mented circuit.

The following subsection will explain how to incorporate
MERA states into a quantum circuit ansatz with the same de-
grees of freedom as the branching MERA state. Additionally,
we will introduce a modified version of the Evenbly-Vidal
technique for updating MERA during classical variational op-
timization. It will be used to compare optimizers for updating
MERA in all-to-all coupled random systems, as discussed in
Sec. IV B.

A. Quantum circuit representation of MERA and
embedding process

The disentangler u, isometry w, and top tensor t with the
bond dimension χ = 2n of MERA equivalent to the SU(22n)
rotation operator (2n-qubit gate) have different conditions of
input qubit |0〉⊗n states, as shown in Fig. 6(a). We should
take a large n in the case of complex problems and want
more accuracy; for example, in Ref. [26] they used up to
n = 4 roughly to benchmark for the translational symmetry
1D critical system, but the larger n we take, the higher the
computational cost for all EEVQE processes. The quantum
circuit representations of the binary MERA and branching
MERA according to the above rule are depicted in Fig. 6(b).
One of the processes of embedding the isometry and top

FIG. 6. Schematic diagrams of (a) quantum circuit representa-
tions of disentangler, isometry, and top tensors, and (b) quantum
circuit representation of the branching MERA for N = 8n with χ =
2n consisting of 20 SU(22n) 2n-qubit gates, where blue diagrams
indicate the degree of freedom of (nonbranching) MERA.

tensors elements, which form the MERA state after variational
optimization on a classical computer, into a unitary matrix of
SU(22n) involves using the modified Gram-Schmidt method
(see Appendix A).

In the case of n = 1, by use of Cartan decomposition, any
SU(4) operator ûi j for ith and jth qubits can be decomposed
into a kind of time evolution operator Di j with XYZ-type
interaction and SU(2) rotation operators Ri for one qubit [34],
which means ui j = RiR jDi jR′

iR′
j , where

Di j = e−ik·�i j , Ri = e−iψσ z
i /2e−iθσ

y
i /2e−iφσ z

i /2, (3.1)

with k = (kx, ky, kz ), �i j = (σ x
i σ x

j , σ
y
i σ

y
j , σ

z
i σ z

j ); σ i =
(σ x

i , σ
y
i , σ z

i ) are the Pauli operators for ith qubit.
To execute 2n-qubit gates equivalent to the unitary matrix

on a quantum computer, decomposing the 2n-qubit gates into
a product of two-qubit SU(4) gates is essential because, once
we have the product, we can break down each SU(4) gate
into CNOT gates and single-qubit rotational gates [35], which
are commonly used in NISQ today. Computer-assisted search
and numerical optimization for the circuit decomposition have
been widely studied [36–47]. We can encode the MERA state
in a quantum circuit by using decomposition techniques on
each SU(22n) gate individually and simultaneously in classical
parallel computing.

To explain the embedding process in detail, we refer to
Fig. 6(b), where the MERA state is embedded through quan-
tum gates within the blue gate. The branching MERA is
represented by a quantum circuit with an additional orange
quantum gate alongside the blue gate. The embedding process
is accomplished by setting the internal parameters such that all
orange circuits function as identity operators. In the case of
the VQE calculation, with the circuit as the initial condition,
getting stuck in a local solution, we introduce weak noise to
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the orange (and blue) quantum gates to avoid such a situation
[10,16].

Studying the effectiveness of branching MERA through a
quantum computer is beneficial, as it entails lower computa-
tional costs than MERA simulations on a classical computer.
MERA requires an order of SU(22n) gates of O(N ) while
branching MERA requires O(N log N ). These costs refer to
the computational requirements for producing a quantum
state in a quantum computer by operating quantum gates
on individual qubits. However, suppose that the computer
can compute mutually commutative quantum gates that are
spatially separated. Both computational costs can be reduced
to O(log N ), which corresponds to the number of layers of
the isometry and the disentangler. Consequently, the relative
computational cost of branching MERA is similar to that of
MERA.

B. Improved procedures for sequential tensor
optimization in MERA

Since this paper mainly focuses on applications to all-to-
all coupled random systems, the classical computational part
of the optimization of the inhomogeneous MERA becomes
important and nontrivial. We modify the optimization method
(Evenbly-Vidal method) employed in the original paper [26]
to handle this situation. This procedure updates the tensor to
be optimized using the singular vector obtained by SVD of
the environment tensor constructed by all tensor contractions
except the tensor to be optimized. However, we must perform
a considerable number of sweep optimizations and may be
trapped in a local minimum with this method, even for MERA
networks with sufficient bond dimensions χ to represent the
ground state of the target system, reflecting the effect of lin-
earizing the tensor optimization. Therefore, it is unfavorable
for EEVQE.

An approach to reduce the number would be to perform
diagonalization of the effective Hamiltonian without lineariz-
ing the cost function with respect to only the top tensor of
the MERA network. The effective Hamiltonian is defined
as follows: Suppose that a quantum circuit C providing the
MERA state |�〉 = C |0〉⊗N is shown in Fig. 6(b) with n =
1, and we consider updating the top tensor u13 labeled No.
13. Then, we introduce C′ = Cu†

13 and � ′
mn = 〈m, n| u13 |0〉⊗2

with m, n ∈ {0, 1} and rewrite |�〉 and the expectation value
E = 〈�|H |�〉 as follows:

|�〉 =
∑
m,n

� ′
mnC

′ |0〉⊗N−2 |m, n〉 , (3.2)

E =
∑

m,n,m′,n′
� ′∗

mnH′
mn,m′n′�

′
m′n′ , (3.3)

where

H′
mn,m′n′ = 〈m, n| 〈0|⊗N−2 C′†HC′ |0〉⊗N−2 |m′, n′〉 (3.4)

is the effective Hamiltonian referred to when updating the
internal degrees of freedom of u13.

Here, we assume that the total Hamiltonian H = ∑
i< j hi j

is given by the sum of the two-body Hamiltonian hi j between
ith and jth sites. Then, we can evaluate the effective Hamilto-
nian H′ required to optimize circuit 13 as the sum of the local

FIG. 7. Diagrammatic representation of an effective local two-
body Hamiltonian h′(i j)

mn,m′n′ for MERA as in Fig. 6(b) with (i, j) =
(3, 6) and χ = 2. Quantum circuits labeled with numbers 2 and 4
are omitted because they do not contribute to the effective local
Hamiltonian.

two-body effective Hamiltonian

(h′
i j )mn,m′n′ = 〈m, n| 〈0|⊗N−2 C′†hi jC

′ |0〉⊗N−2 |m′, n′〉 , (3.5)

and its diagrammatic representation is shown in Fig. 7. Af-
ter the contractions, we perform the diagonalization of the
effective Hamiltonian H′ and the eigenvectors {�′

mn} corre-
sponding to the ground states of H′ are computed. Finally, the
update of circuit 13 is completed by embedding

(u13)0,0
mn := �′

mn (3.6)

and performing the unitarization as noted in Sec. III A.
It should be mentioned here that such embedding of

eigenvectors obtained by the diagonalization of the effective
Hamiltonian into the tensor to be optimized is difficult to per-
form for tensors other than the top tensor because the MERA
network, unlike the tree tensor network (TTN) [48–50], con-
tains a loop structure. On the other hand, diagonalization
applies to optimizing parameterized quantum gates that act
only on the zero kets of the initial state, regardless of the
details of the variational quantum circuit ansatz.

IV. NUMERICAL SIMULATIONS

A. Hamiltonians and numerical setup

To investigate the properties of our procedure, we consider
the following all-to-all coupled random transverse field Ising
model:

HIsing =
∑
i< j

Ji jσ
z
i σ z

j +
∑

i

hiσ
x
i , (4.1)

XYZ model

HXYZ =
∑
i< j

Ji j · �i j, (4.2)
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and Heisenberg model in a random field

HHeisenberg =
∑
i< j

Ji j1 · �i j +
∑

i

hi · σ i, (4.3)

with 1 = (1, 1, 1), where the coupling constants Ji j , Ji j =
(Jx

i j, Jy
i j, Jz

i j ) and the magnetic fields hi and hi = (hx
i , hy

i , hz
i )

are given by uniform random numbers in the range [−1,1). In
the actual calculation, the Hamiltonians are preprocessed to
be negative definite by shifting the constant terms γi j , which
are defined as γi j = max[ fi j, 0], with fi j as the maximum
eigenvalue of hi j , as discussed in Sec. II B.

The quantity evaluated hereafter is the relative error from
the exact ground-state energy Eexact,

� = (E − Eexact )/Eexact, (4.4)

and its random-averaged values �̄, where we prepare 102

realizations for the random coupling constants and magnetic
fields. Then, the initial parameters of the MERA state for each
realization are common random values.

For the variational update of the MERA state on the classi-
cal computer, we adopt the modified Evenbly-Vedal method
as discussed in Sec. III B to benefit from the TN method
on the classical computer (see Sec. IV B). The sequential
update schedule for the tensors was set from the bottom to
the top layer, as shown in Fig. 1(a), adopting a left-to-right
order within each layer, and the number of iterations for the
sequential update is up to 103. In this paper, we use the Julia
version of the ITensor library [51] for TN calculations and
only consider χ = 2 to focus on the exact circuit encoding of
the MERA state.

Then, we use the quantum-simulation software Cirq [52]
for the quantum circuit encoding of the SU(4) unitary matrix
using Cartan’s decomposition. Note that in this paper, the χ =
2 tensors are analytically encoded exactly into two-qubit gates
so we can parallelize the procedure regardless of the target
structure. The VQE procedure employs the BFGS method,
which is a quasi-Newtonian method. The hyperparameter is
only the number of BFGS iterations in this step, and the
number is taken up to 104 in our study.

In this paper, we focus on how well the VQE calculation
of branching MERA with the optimized MERA as the initial
wave function is performed when the effect of noise is not
considered, so we utilize a quantum circuit simulator Qulacs
[53] and the numerical analysis software library SciPy [54]
for the VQE calculations.

B. Benchmarks of MERA optimization procedure

Since classical optimization of inhomogeneous MERA
is important, as mentioned before, we first compare which
optimization method performs better in three optimization
methods: Evenbly-Vidal, modified Evenbly-Vidal, and BFGS
in the random Ising and XYZ models with all-to-all couplings.
The results are shown in Fig. 8, where the colored lines and the
light-shaded region represent �̄ and its variance, respectively.

The results of our paper demonstrate that the modified
Evenbly-Vidal method exhibits a marginally superior conver-
gence speed compared to the original method in both models.
In addition, our findings indicate that the modified method
enhances the convergence error in the transverse Ising model.

(a) Transverse-field Ising

(b) XYZ

FIG. 8. Iteration dependence of �̄ for all-to-all coupled random
(a) Ising and (b) XYZ systems with (χ, N ) = (2, 16).

Moreover, we compared the modified Evenbly-Vidal method
and the BFGS for the variational optimization of the MERA
state. The results show that BFGS is more effective in re-
ducing the variational energy during the initial optimization
phase than the modified Evenbly-Vidal method for all models
analyzed. This agrees with the expectation that the sequential
optimization based on the TN method may be relatively easy
to trap in local minima.

Also, we briefly confirm that the performance of the mod-
ified Evenbly-Vidal method improves as the weight of the
degree of freedom of the top tensors in TN states increases
in Appendix B.

C. EEVQE calculations

In this subsection, we conduct benchmark EEVQE calcula-
tions by augmenting gates to form the branching MERA and
executing the VQE for the ground-state search of Hamilto-
nians in Eqs. (4.1)–(4.3). The left panels of Fig. 9 show the
iteration dependence of �̄ obtained by the proposed procedure
for each Hamiltonian. The vertical black line at 103 iterations
represents the switching from the variational optimization of
the MERA state to the VQE calculation with the branching-
MERA ansatz.
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(a) Transverse-field Ising

(b) XYZ

(c) Heisenberg

Entire process of  EEVQE Comparing VQE process

FIG. 9. Iteration dependence of the random-averaged relative error �̄ in the all-to-all coupled random (a) transverse-field Ising, (b) XYZ,
and (c) Heisenberg models (left panels), and comparison of �̄ in the VQE calculation using initial states with embedded MERA states after
TN optimizations and random branching MERA states (right panels).
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(a) Transverse-field Ising

(b) XYZ

FIG. 10. Iteration dependence of �̄ for all-to-all coupled random (a) Ising and (b) XYZ systems with (χ, N ) = (2, 16). The blue and
orange lines represent the case of the Evenbly-Vidal method and its modification, as introduced in Sec. III B, respectively. The branching
pattern was named according to the procedure shown in Fig. 2.

In all three models, the optimization of the MERA
state is almost completed up to 103 iterations; in fact, we
confirm that this claim is valid by increasing the num-
ber of iterations up to 5 × 103. After the quantum circuit
encoding of the MERA state, we perform the VQE calcu-
lation, and the log10 �̄ decreases by 0.15, 0.23, and 0.28

in the all-to-all coupled random Ising model, XYZ model,
and Heisenberg model, reflecting the entanglement aug-
mentations. In particular, since the XYZ and Heisenberg
models have more quantum fluctuations, the intensity of off-
diagonal components may be comparable with its diagonal
components, and the accuracy improvements by the entan-
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(b) Transverse-field Ising

(c) XYZ

(a) The bond dimension in 8 site binary MERA

Conventional method Proposed method

FIG. 11. The legend χ = [◦, ◦, ◦] in panels (b) and (c) means χ = [χ0, χ1, χ2] as shown in panel (a). χ0 is fixed as 2 in the case of the spin
system. The results displayed in the left and right panels correspond to the conventional method and our proposed method, respectively.

glement augmentation are more significant than for the Ising
model.

The right panel of Fig. 9 focuses on the VQE calculation
and compares the behaviors of �̄ with two initial conditions:
optimized MERA states and random branching MERA states.
In the case of the all-to-all coupled random transverse-field

Ising model, there is a moderately high initial-state depen-
dence on the converged �̄, and the VQE with a random
branching MERA as the initial state is trapped by local min-
ima. It is a specific example where the EEVQE results show an
advantage over the standard VQE. On the other hand, in the
case of the all-to-all coupled random XYZ and Heisenberg
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models, there is no significant difference in the converged
�̄ for both initial conditions. However, up to approximately
102 iterations of VQE, EEVQE can reduce �̄ compared to
VQE, where the random branching MERA states are the
initial states. This result suggests that the short-time VQE
computation using the NISQ device is superior in our pro-
cedure, which is consistent with the current trend in quantum
algorithm development.

V. CONCLUSION AND DISCUSSION

We have developed an entangled embedded VQE
(EEVQE) method that uses a branching binary MERA with
a 1D entropic volume law as the ansatz for VQE calculations.
In the EEVQE method, the binary MERA is optimized using
a modified Evenbly-Vidal method on a classical computer
and serves as the initial state for VQE. Unlike the original
synergistic frameworks [10] that use the TN structure only
for the initial state, EEVQE incorporates an entanglement
augmentation topology based on the TN structure during gate
addition. We investigated the performance of our method on
the all-to-all coupled random transverse field Ising, XYZ, and
Heisenberg models, and evaluated the random average �̄ of
the relative error between the variational energy and the exact
ground-state energy under computational conditions (χ, N ) =
(2, 16) to obtain the exact quantum circuit representation of
the branching MERA embedded with the optimized MERA
and the exact ground state of each model.

In the numerical simulation, we first examined the bench-
mark of the MERA optimization procedure on the classical
computer using three methods: the Evenbly-Vidal algorithm,
its modification, and the BFGS method as a fundamental
knowledge of MERA for nonuniform systems. The results
show that the BFGS method is superior to the other meth-
ods for all the models studied. This trend is considered a
phenomenon specific to nonuniform systems since similar
analysis in uniform systems [16] shows that sequential lo-
cal updating by the Evenbly-Vidal method is superior to
the gradient-based methods. This property becomes crucial
when using the synergistic framework to study the ground
states of quantum chemical calculations, which is one of
the goals of VQE for all-to-all coupled inhomogeneous
systems.

Second, we verified that the EEVQE method reduces
log10 �̄ by 0.15, 0.23, and 0.28 in the all-to-all coupled
random Ising, XYZ, and Heisenberg models, reflecting the
entanglement augmentations while being free from the ini-
tialization problem of VQE calculations. Furthermore, we
confirm that EEVQE can prevent becoming stuck in a local
minimum in the all-to-all coupled random Ising model. At the
same time, the VQE with a randomly initialized branching-
MERA ansatz may become trapped in the minimum. Also,
a comparison of VQE with random initialized branching
MERA and branching MERA with an embedded optimized
binary MERA as the initial state shows that the latter is supe-
rior to the former up to about 102 iterations of the update in
VQE. In Appendix C, we also experimented with the EEVQE
for the state that yields the entropic volume law to reinforce
the validity of the previous results. These properties meet the
requirements of the quantum variational algorithm using the

NISQ device, which is to improve the accuracy of the best
solution on a classical computer by a small amount of use of
a quantum computer.

In the present paper, since we applied 1D branching MERA
to a nonuniform system with all-to-all coupled interactions,
obtaining a highly accurate �̄ was not easy with χ = 2, even
for the TN that satisfies the entropic volume law. It is not
because of the BP but because 1D MERA and branching
MERA with χ = 2 cannot represent the target ground state.
Even branching MERA has a log-scale depth of the circuit, so
it is considered not to be trapped in the BP. Therefore, there
remains to consider a scheme that can handle a χ > 2 to find
out the limits. In this case, it is possible to apply automatic
quantum circuit encoding [43] or other circuit decomposition
techniques [36–47] for each disentangler, isometry, and top
tensor of the TN to perform divide-and-conquer quantum
circuit encoding for the entire TN.

As future research, we can perform structural optimization
of TN for each random interaction. In this case, �̄ with higher
accuracy is expected to be easily obtained even for TN with
the current minimum degree of freedom, χ = 2. Furthermore,
we aim to integrate this approach into quantum circuits con-
structed using the aforementioned encoding methodologies to
enhance the precision of it. We anticipate that these schemes
can be applied to sets of quantum gates representing each iso-
metric tensor individually rather than to entire circuits. There
have been reports on the structure optimization for TTNs that
do not include loop structures in the TN [55–57]. However,
they cannot be extended directly to MERA, including loop
structures, and further research is needed.

In addition, a deep MERA (DMERA) [58] has been re-
ported as an algorithm that mixes the roles of the disentangler
and isometry in MERA and improves the performance of
MERA through quantum circuit representation. We can also
introduce the branching degree of freedom in the DMERA.
By examining the TN microscopically in terms of the product
of two-qubit gates, it is more necessary to design a TN and
quantum circuit structure that matches the geometrical aspect
of the entanglement contained in the target state.

Other methods not treated in this paper as optimizers for
updating MERA include the learning rate [32], automatic dif-
ferentiation [59], and Riemannian optimization [29]. It would
also be interesting to verify whether these methods perform
better than the BFGS method in the all-to-all coupled nonuni-
form models as one of the future issues to be addressed.

Finally, we are considering the development of quantum
computers and their applications [60,61], and the verification
of EEVQE on actual NiSQ devices should be addressed in
future studies.

FIG. 12. Representation of the rainbow state showing (−l, l ) va-
lence bonds above the central link. The nearest-neighbor interactions
are given in terms of α = exp(−h).
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(a) 

(b) 

(c) 

FIG. 13. The result of the EEVQE solution for the inhomogeneous Heisenberg model as (C1) with N = 16.
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APPENDIX A: UNITARIZATION OF ISOMETRY BY
MODIFIED GRAM-SCHMIDT METHOD

We consider the isometry w = {wc
ab}1�c�χ ′

1�a,b�χ
, where χ ′

satisfies 1 � χ ′ � χ2, with a given bond dimension χ of a
positive integer under the isometric condition in Eq. (2.3).
For unitarization of the isometry w, we introduce a four-rank
tensor u = {ucd

ab}1�c�χ ′,1�d�χ2/χ ′
1�a,b�χ

and embed w and a random

tensor r = {rcm
ab }1�c�χ ′,2�m�χ2/χ ′

1�a,b�χ
into u as

ucd
ab =

{
wc

ab (d = 1)

rcd
ab (2 � d � χ2/χ ′)

. (A1)

Then, we perform the modified Gram-Schmidt procedure in
Algorithm 1 and obtain the isometric tensor u that satisfies the
isometric conditions in Eq. (2.1) and Eq. (2.2).

ALGORITHM 1. The modified Gram-Schmidt procedures.

1: for c = 1 : χ ′, d = 2 : χ 2/χ ′ do
2: for n = 1 : c + χ ′(d − 1) − 1 do
3: find c′ and d ′ that satisfy n = c′ + χ ′(d ′ − 1)
4: ucd

:,: := ucd
:,: − (

∑
a,b uc′d ′∗

ab ucd
ab )uc′d ′

:,:

5: (Note that ucd
:,: = {ucd

ab}1�a,b�χ .)
6: end for
7: ucd

:,: := ucd
:,: /||ucd

:,: ||2
8: end for

APPENDIX B: NETWORK AND THE BOND DIMENSION
DEPENDENCE OF THE PERFORMANCE OF MODIFIED

EVENBLY-VIDAL METHOD

In Fig. 10, we compared the performance of the original
Evenbly-Vidal method and the modified one for inhomo-
geneous MERAs with all branching patterns, as shown in
Fig. 2. Our results indicate that, in all model and branching
pattern combinations, the modified method outperforms the
original Evenbly-Vidal method during the initial optimization

iterations up to 102. Additionally, this improvement is more
significant in both models as the number of top tensors in-
creases due to bifurcations.

Also in Fig. 11, we conducted a comparison of the bond-
dimension dependencies between the two methods in the
eight-site system. The results show that, by increasing the
bond dimension, the modified method is superior to the orig-
inal method. Particularly, in bond dimensions χ = [2, 4, 16],
which is the max bond dimension in the eight-sight system,
means it covers the whole Hilbert space, and using the mod-
ified method we can get the exact solution at one time, but
with the original method the convergence speeds are almost
the same as in χ = [2, 4, 8]. This result suggests that the
modified method is more effective in the case of large bond
dimensions.

APPENDIX C: RESULT OF EEVQE FOR THE
RAINBOW STATE

In this section, we apply EEVQE to a 1D inhomogeneous
Heisenberg chain whose Hamiltonian is defined as

Ĥ = σ− 1
2
· σ 1

2
+

(N−3)/2∑
l= 1

2

e−2hl [σ l · σ l+1 + σ−l · σ−(l+1)],

(C1)
where h � 0 denotes an inhomogeneity parameter. For h = 0,
the system is nothing but the uniform Heisenberg chain with
open boundary conditions. In the strong inhomogeneity limit
h 
 1, the ground state of Ĥ becomes the rainbow state
[62–64], which is a valence bond solid composed of singlet
bonds connecting opposite sites of the chain, as shown in
Fig. 12. The rainbow state has an entropic volume law with
respect to dividing the system into two parts, left and right,
in one dimension. In this system, we can expect that the
improvement in the numerical accuracy of the entanglement
augmentation by EEVQE becomes significant with respect
to h.

The results of EEVQE for h = 0.0, 2.0, 3.5 are shown in
the left panels of Fig. 13. As we expected, the difference
between log10 �̄ for the MERA with 103 iterations and that for
the branching MERA with 104 iterations increases monotoni-
cally with respect to h, and log10 �̄ for the branching MERA
with 104 iterations decreasing monotonically with respect to
h. As in the random XYZ and Heisenberg model case in
Sec. IV, we confirm that the EEVQE solution outperformed
the random initial VQE solution up to approximately 102

iterations in the right panels of Fig. 13.
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