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Memory-induced excitability in optical cavities
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Neurons and other excitable systems can release energy suddenly given a small stimulus. Excitability has
recently drawn increasing interest in optics, as it is key to realize all-optical artificial neurons enabling speed-
of-light information processing. However, the realization of all-optical excitable units and networks remains
challenging. Here we demonstrate how laser-driven optical cavities with memory in their nonlinear response
can sustain excitability beyond the constraints of memoryless systems. First we demonstrate different classes
of excitability and spiking, and their control in a single cavity with memory. This single-cavity excitability is
limited to a narrow range of memory times commensurate with the linear dissipation time. To overcome this
limitation, we explore coupled cavities with memory. We demonstrate that this system can exhibit excitability
for arbitrarily long memory times, even when the intercavity coupling rate is smaller than the dissipation rate.
Our coupled-cavity system also sustains spike trains—a hallmark of neurons—that spontaneously break mirror
symmetry. Our predictions can be readily tested in thermo-optical cavities, where thermal dynamics effectively
give memory to the nonlinear optical response. The huge separation between thermal and optical timescales in
such cavities is promising for the realization of artificial neurons that can self-organize to the edge of a phase
transition, like many biological systems do.

DOI: 10.1103/PhysRevResearch.6.023008

I. INTRODUCTION

The human brain can process information with an energy
efficiency that far exceeds that of digital computers. This
recognition is motivating the development of brain-inspired
hardware to overcome major bottlenecks in computing [1–7].
Key to the success of this development is the realization of
artificial neurons (ANs) which, like neurons in the brain, can
fire information-rich energy spikes in response to small stim-
uli. This essential ability of neurons or ANs to release energy
suddenly, in the form of spikes, is known as excitability [8].

ANs have been proposed and demonstrated on a variety of
platforms [9–25]. Most state-of-the-art ANs process electri-
cal or optical signals, and they can be made of ferroelectric
[26–29], phase change [30–32], two-dimensional [33,34], or
organic [35,36] materials, to name a few examples. A nonlin-
ear response is key to excitability, and hence to the realization
of ANs. Many efforts have therefore concentrated on the elec-
trical domain, where strong nonlinearities enable low-power
excitability. However, recent progress in the development of
highly nonlinear photonic systems [37–41] is making these
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systems increasingly attractive for the realization of low-
power ANs. Photonic systems offer excitability at unrivalled
speed, but this is not enough to mimic the brain. The brain
also embraces slow dynamics to realize its remarkable infor-
mation processing capability. More precisely, the coupling of
slow and fast dynamical variables grants the brain an ability
to self-organize to the edge of a phase transition [42–48],
where information processing is thought to be optimal and
robust to parameter changes [45,49–53]. Hence, embracing
the coupling of slow and fast variables is also important for
the realization of ANs and brain-inspired computation.

In this manuscript we demonstrate the emergence of
excitability, and its characteristics, in laser-driven optical cav-
ities with memory in their nonlinear response. Like neurons
and other biological systems, our cavities rely on the cou-
pling of slow and fast variables to realize excitability across
a wide range of timescales. Moreover, our cavities can emit
a sequence of intensity spikes akin to “spike trains.” In the
brain, such spike trains encode information [20,54–58] in both
the amplitude and separation of the spikes. While our work is
purely theoretical and numerical, the system and parameter
range we study can be readily realized using state-of-the-art
thermo-optical cavities [10,13,59–62].

This manuscript is organized as follows. In Sec. II we intro-
duce the model for a single laser-driven cavity with memory
in its nonlinear response. We demonstrate different classes
of excitability and spiking in such a cavity, their connection
to limit cycles, and the limited parameter range over which
excitability can be achieved. In Sec. III we demonstrate how
to overcome the limitations of single cavities using coupled
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FIG. 1. (a) Intensity n = |α|2 vs detuning � referenced to the
dissipation rate � for a laser amplitude F = 0.1

√
�. Inset: Illustra-

tion of an oil-filled cavity described by Eq. (1). (b) n vs �/� for
F = 15

√
�. Solid (dashed) curves correspond to stable (unstable)

solutions. The two saddle-node bifurcations (SNi) are indicated by
green dots. Green shaded area indicates the region of bistability.
(c) Bifurcations in the (�, F ) plane. Solid curves correspond to Hopf
bifurcations (HB, red), period doubling bifurcations (PD, orange),
homoclinic bifurcations (Hom, black), and saddle-node bifurcations
(SN, green). The open circle indicates a cusp (CP). Dashed gray
lines indicate the laser amplitudes studied in Figs. 1(a) and 1(b),
and Fig. 2(a). Model parameters: � = 1, κL = �/2, U = �/100,
τ = �−1, D = 0.

cavities. We explore how the coupling strength between the
cavities, the memory time, and the laser noise impact the
excitability of the coupled cavities. We show the existence of
excitability for arbitrarily long memory times and the emer-
gence of spike trains that spontaneously break the mirror
symmetry of the coupled-cavity system. Finally, in Sec. IV
we provide conclusions and perspectives of our work.

II. SINGLE-CAVITY EXCITABILITY

A. The model

Consider a coherently driven single-mode resonator with
memory in its nonlinear response. For concreteness, we will
refer to a laser-driven plano-concave Fabry-Perot cavity filled
with oil, as illustrated in the inset of Fig. 1(a) and experi-
mentally studied in Refs. [61,62]. However, the system we
envisage can also be realized using ring resonators [63–65],
whispering-gallery-mode resonators [66], photonic crystal
cavities [67–70], and plasmonic particles [71], for example.
All these resonators sustain a thermo-optical nonlinearity that
makes the optical response noninstantaneous and leads to
memory effects.

The cavity has resonance frequency ω0, intrinsic loss rate
γ , and nonlinearity of strength U . The input-output rates
through the “left” and “right” mirror are κL and κR. A laser
with frequency ω and amplitude F drives the cavity from
the left. In a frame rotating at ω, the intracavity light field
α follows

iα̇(t ) =
[
−� − i

�

2
+ U

∫ t

0
ds K (t − s)|α(s)|2

]
α(t )

+ i
√

κLF + D√
2

[ξ (t ) + iζ (t )]. (1)

� = ω − ω0 is the laser-cavity detuning, and � = γ +
κL + κR is the total loss rate. The term with the integral
represents the noninstantaneous nonlinearity. For a thermo-
optical nonlinearity as in our system, the memory kernel is
K (t ) = exp(−t/τ )/τ . The thermal relaxation time or memory
time τ roughly determines how long the past exerts an influ-
ence on the system. The stochastic term D[ξ (t ) + iζ (t )]/

√
2

accounts for Gaussian white noise with variance D2 in the
laser amplitude and phase. The noise components ξ (t ), ζ (t )
each have zero mean [i.e., 〈ξ (t )〉 = 〈ζ (t )〉 = 0] and are δ-
correlated in time with unit variance [i.e., 〈ξ (t )ξ (t + t ′)〉 =
〈ζ (t )ζ (t + t ′)〉 = δ(t ′)]. Moreover, ξ (t ) and ζ (t ) are mutually
uncorrelated [i.e., 〈ξ (t )ζ (t + t ′)〉 = 0].

Since the kernel K (t ) is integrable, we can rewrite the
integrodifferential Eq. (1) as a set of ordinary differential
equations, which are convenient for numerical integration
and continuation. Writing α = u + iv and w = U

∫ t
0 ds K (t −

s)|α(s)|2, we obtain the following equations for real valued
variables:

u̇(t ) = −�

2
u(t ) + [w(t ) − �]v(t ) + √

κLF + D√
2
ξ,

v̇(t ) = −�

2
v(t ) − [w(t ) − �]u(t ) + D√

2
ζ ,

ẇ(t ) = {U [u2(t ) + v2(t )] − w(t )}/τ. (2)

In the following we present solutions to this set of
equations. For analyzing fixed points and their bifurcations
under parameter continuations, we solve the deterministic
equations using the software package AUTO-07P [72]. For
analyzing dynamics, we numerically integrate the stochastic
equations using a homemade solver in PYTHON.

B. Fixed points and bifurcations

First we consider the fixed points of Eq. (2) for various
driving conditions and without noise (D = 0). Equation (2)
has the form ẋ = f (x), with x = (u, v,w)ᵀ. The fixed points
satisfy f (x) = 0, and their stability is determined by the
eigenvalues of the Jacobian of f . We distinguish three types
of fixed points. (1) Node: All eigenvalues are real and of the
same sign. A node is stable (unstable) when all eigenvalues
are negative (positive). (2) Focus: There is at least one pair
of complex conjugate eigenvalues. A focus is stable when
the real part of all eigenvalues is negative, and it is unstable
otherwise. (3) Saddle: There is at least one real positive and
one real negative eigenvalue. A saddle is always unstable.

Figure 1(a) shows the intensity n = |α|2 = u2 + v2, or in-
tracavity photon number, versus detuning for F = 0.1

√
�.

For this small driving amplitude, n is small, the nonlinear-
ity is negligible, and the spectral line shape resembles the
Lorentzian of a linear cavity. In contrast, for a large driving
amplitude F = 15

√
�, the line shape is tilted as Fig. 1(b)

shows. This results in a detuning range with three fixed points,
of which two are stable: optical bistability. The bistable region
is enclosed by two saddle-node bifurcations (SN), at which a
stable point collides with a saddle and disappears [73]. The SN
bifurcations are also shown in Fig. 1(c), now as a function of
F and �. They are the two green curves that meet tangentially
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at a cusp (CP). The region enclosed by the SN bifurcations is
the bistability region.

The locations of the cusp and the saddle nodes, as well
as the optical bistability, are the same for our thermo-optical
cavity and a Kerr nonlinear cavity where the nonlinearity
is instantaneous. Indeed, at equilibrium, ẇ = 0 leading to
w = Un, as for an instantaneous nonlinearity. However, the
noninstantaneous nonlinearity leads to other types of dynam-
ical state bifurcations absent in the instantaneous case. These
bifurcations are due to the coupling of light to another degree
of freedom, namely, w, which gives memory to the optical
response and can result in instabilities. In particular, Fig. 1(c)
indicates Hopf (red curve), period-doubling (yellow curve),
and homoclinic (black curve) bifurcations, from which more
complex dynamics emerge.

C. Limit cycles and excitability

Figure 2(a) shows the intensity as a function of detuning for
a large driving amplitude, F = 22

√
�, indicated in Fig. 1(c).

The points labeled HB1,2 are Hopf bifurcations, where a focus
changes stability via a pair of purely imaginary eigenvalues
[73]. Crossing a Hopf bifurcation leads to a limit cycle—an
isolated closed orbit in phase space. If the limit cycle is sta-
ble, self-sustained oscillations emerge. Figure 2(a) shows the
maximum values of n of these self-sustained oscillations as
solid red curves. Figure 2(a) also shows that as the detuning
increases from HB1 to the open circle labeled Hom1, the
limit cycle amplitude grows. The point (Hom1) is known as
a homoclinic bifurcation [73]. Approaching Hom1, the period
of the limit cycle diverges as Fig. 2(b) shows; the system
spends more and more time near the saddle.

To illustrate how the limit cycle is transformed across the
homoclinic bifurcation, Figs. 2(c)–2(e) show the phase por-
trait of the system at the detunings indicated by the dashed
gray lines in Figs. 2(a) and 2(b). All three panels display
three fixed points: one stable focus (blue dot), a saddle (gray
dot), and an unstable focus (red dot). For a detuning far from
the homoclinic bifurcation, Fig. 2(c) shows that trajectories
starting near the unstable focus spiral outwards and converge
to the limit cycle displayed in red. The system then remains
on the limit cycle and self-oscillates indefinitely. Next, for a
detuning exactly at the homoclinic bifurcation, a homoclinic
orbit is formed: an orbit from the saddle to itself in an infi-
nite time. This situation is depicted in Fig. 2(d), where we
observe that the limit cycle has collided with the saddle to
form a homoclinic orbit (red curve). The collision destroys
the limit cycle. Thus there are no self-sustained oscillations
between Hom1 and Hom2, even if the unstable focus re-
mains. Figure 2(e) shows that, indeed, no limit cycle exists for
�/� = 5.5. Trajectories starting near the unstable focus spiral
outwards until reaching the saddle and then spiral towards the
stable focus. For greater detunings than the ones considered
in Figs. 2(c)–2(e), the point Hom2 is reached. This leads to a
new limit cycle from another homoclinic bifurcation.

The above results demonstrate that, unlike for a single-
mode cavity with instantaneous nonlinearity [74–82], a
single-mode cavity with noninstantaneous nonlinearity can
exhibit self-sustained intensity oscillations due to the exis-
tence of stable limit cycles. Such limit cycles are precursors

FIG. 2. (a) Intensity n as a function of �/� for F = 22
√

�. Solid
(dashed) black curves correspond to stable (unstable) fixed points.
Green and red dots indicate saddle-node (SNi) and Hopf (HBi)
bifurcations, respectively. Red solid curves show the maximum n
of limit cycle oscillations. Open black circle indicates homoclinic
bifurcations (Homi). Purple arrows indicate transition directions with
associated classes shown in Fig. 3. (b) Period of the limit cycle
oscillations, Tl, as function of �/�. (c), (d), (e) Phase portraits at
the detunings indicated by the dashed gray lines in (b). Dots indicate
fixed points, with blue, red, and gray corresponding to stable focus,
unstable focus, and saddle, respectively. Black curves show orbits
with arrows indicating the direction. Red curves show stable limit
cycles. Model parameters are as in Fig. 1, with � = 3�, � = 5.3�,
and � = 5.5� in (c), (d), and (e), respectively.

for excitability—the hallmark of neurons. When a large-
amplitude limit cycle is sufficiently close to an unstable focus,
the system can transition between the stable focus (stationary
state) and the unstable focus associated with the stable limit
cycle; this transition results in a spike. It is precisely this
ability of the system to release energy suddenly, in the form of
spikes, which lies at the heart of excitability. The excitability
of the system can be controlled via the parameter which makes
the system transition from the resting to the spiking state, such
as the detuning in this case.

Different classes of excitability and spiking can be distin-
guished. The classification is based on the evolution of the
limit cycle period Tl (spiking state) versus the free parameter
[8] [detuning in Fig. 2(a)]. Class I: the transition between
the resting state and the spiking state is accompanied by
a continuous evolution of the oscillation frequency (1/Tl).
The oscillation period diverges at the transition. Class II: the
frequency is discontinuous at the transition and is relatively
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FIG. 3. n (solid red curve, left vertical axis) and detuning �/�

(dashed black line, right vertical axis) vs time �t . (a) Shaded areas
correspond to the close-up views (b) and (c) of the transition from
resting to spiking states, or vice versa, located by dashed-dotted
vertical purple lines. (b) Zoom in on the resting state bifurcation
corresponding to class-II excitability in Fig. 2(a). (c) Zoom in on the
spiking state bifurcation associated with class-I spiking in Fig. 2(a).
Model parameter values are as in Fig. 2(a). The detuning varies
between � = 5.5� and � = 2.2�.

insensitive to changes in the free parameter. The frequency
evolution from the resting state to the spiking state defines
the class of excitability, whereas the reverse transition (from
spiking to resting) corresponds to the class of spiking. Next,
we illustrate how both class-II excitability and class-I spiking
can be realized in our thermo-optical cavity.

Figure 3(a) shows the intensity n(t ) when the detuning �

is ramped at fixed driving amplitude F = 22
√

�, as in Fig. 2.
For � = 5.5�, the system is in a resting state (stable focus)
corresponding to the low-n branch of Fig. 2(a). For smaller
�, this state undergoes a saddle-node bifurcation [SN1 in
Fig. 2(a)] when it collides with the saddle. After this bifurca-
tion, the system is forced to enter the spiking state associated
with the unstable focus. Thus, the system transitions from
a zero-frequency resting state to a near-constant-frequency
spiking state, as displayed in Fig. 3(b); this corresponds to
class-II excitability [8]. The corresponding transition is repre-
sented by the upward-pointing arrow in Fig. 2(a).

Once the system is in the oscillatory state, the unstable
focus undergoes a homoclinic bifurcation when the detuning
is increased. Homoclinic bifurcations are associated with di-
vergence of the oscillation period [see Fig. 2(b)]. Thus, during
the transition from the spiking to the resting state in Fig. 3(c),
the oscillation period increases just before the transition. The
corresponding transition is represented by the downward-
pointing arrow in Fig. 2(a), and it is associated with class-I
spiking [8]. Therefore, the spiking state can be turned on
and off via the saddle-node and the homoclinic bifurcation,
respectively. The existence of such a spiking state, and the

FIG. 4. Hopf bifurcation curves for a single cavity in the (�, F )
plane for variable memory time τ . Model parameters are as in
Fig. 1(c).

ability to control it (via the detuning in our case), is crucial
to the realization of an AN. Like biological neurons, ANs
can encode information in both the amplitude of the spikes
and interspike time intervals. Thus, cavities with memory in
the nonlinear response can in principle be used as building
blocks of more complex systems (artificial neural networks)
performing neuromorphic computation. However, the single-
cavity system presents important limitations discussed next.

D. Limitations due to the memory time

We have so far considered a single value of the memory
time: τ = �−1. In Fig. 4 we illustrate the effect of increasing
τ on the Hopf bifurcations. The bifurcations shift to larger
�/� as τ increases. This poses a major obstacle for observing,
and harnessing, excitable dynamics in a single-mode cavity.
The single-mode description we have made is only valid
when the mode under study is well isolated, spectrally and
spatially, from all other modes in the cavity. This condition
can only be satisfied within a limited frequency range, which
is typically less than a few tens of resonance linewidths.
Consequently, memory times larger than �τ � 30 would re-
quire an unfeasible separation of cavity modes to remain in
the single-mode limit. Therefore, the possibility to realize
limit cycles and excitable dynamics in a single-mode cavity
with noninstantaneous nonlinearity seems to be limited to
relatively small values of τ . Consequently, systems with typ-
ical thermo-optical nonlinearity with τ ∼ 106�−1 [61,62,83]
would be unsuitable for verifying our predictions. A solution
to this problem is presented in the next section.

While memory-induced excitability in single-mode cav-
ities may be very challenging, other systems with shorter
memory times could be considered. For instance, in exciton-
polariton systems it is well known that an exciton reservoir
can be created even under coherent driving [39,84–88].
Alternatively, dark excitons can be nonresonantly injected
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simultaneously with coherent driving of polaritons [89]. It
turns out that, in both cases, excitons act in a way that is
mathematically equivalent to a thermo-optical nonlinearity.
They effectively grant memory to the polariton response,
albeit on much shorter timescales. The resulting set of equa-
tions for the system of polaritons coupled to excitons are
indeed very similar to Eq. (2), with the decay time of exci-
tons acting as a memory time. Based on parameters found
in the literature [87], we expect such a system to present a
memory time �τ � 10. Consequently, polariton-exciton inter-
actions may lead to Hopf and homoclinic bifurcations on short
timescales of tens to hundreds of picoseconds. To the best of
our knowledge, the effects of these bifurcations have not been
observed in polariton systems. We expect this prediction to
stimulate efforts in that direction. Note that polariton systems
have, in addition to a noninstantaneous nonlinearity due to
polariton-exciton interactions, an instantaneous nonlinearity
due to polariton-polariton interactions. Moreover, the relative
strength of polariton-exciton and polariton-polariton interac-
tions may be controlled via the configuration details, such as
the exciton fraction, which depends on the frequency detun-
ing between the laser and the exciton resonance. All these
ingredients make up for a much richer system than the one we
have considered. It is a system that deserves a more detailed
analysis of its bifurcations and nonlinear behavior, which is
beyond the scope of this manuscript.

III. EXCITABILITY OF COUPLED CAVITIES

A. The model

We propose to overcome the aforementioned limitations
of a single cavity by using two identical cavities linearly
coupled with strength J . Coupled-cavity systems can be real-
ized in various platforms, such as photonic crystals [90,91],
whispering-gallery-mode resonators [92], etched semicon-
ductors [93,94], and open-access Fabry-Pérot microcavities
with one mirror structured via focused-ion-beam milling [95]
or laser writing [96,97]. Important for our approach is that
each cavity can be addressed independently and that fluctua-
tions in the driving fields are mutually uncorrelated. Fulfilling
this requirement is easy with the systems cited above but
hard with systems of stacked cavities [98], which are typically
driven by the same laser beam.

A key ingredient of the coupled-cavity system we pro-
pose is memory in its nonlinear response. Memory effects
can be achieved, for example, by inserting oil in open-access
Fabry-Pérot microcavities, as it was done for single cavities in
Refs. [61,62]. The considered coupled system is described by
the set of equations for real valued variables:

u̇ j = −�

2
u j − (� − w j )v j − Jv3− j + √

κLFj + D√
2
ξ j,

v̇ j = −�

2
v j + (� − w j )u j + Ju3− j + D√

2
ζ j,

ẇ j = U
(
u2

j + v2
j

) − w j

τ
, (3)

with j ∈ 1, 2. The two cavities are deterministically driven
with equal amplitude and phase, but the stochastic terms are

independent, i.e.,

〈ξ j (t )ζk (t + t ′)〉 = 0 j, k ∈ {1, 2},
〈ξ j (t )ξk (t + t ′)〉 = δ(t ′)δ jk j, k ∈ {1, 2}. (4)

We focus on dispersive coupling J ∈ R+, which is typical
of experimental systems [90,91,93,94,97,99]. For J > � the
spectrum comprises a symmetric (α1 = α2) and antisymmet-
ric (α1 = −α2) superposition of the bare cavity modes, split
by 2J .

Even without memory (τ → 0), coupled cavities can sus-
tain complex dynamics which have drawn great interest in
recent years [93,99–110]. Hopf and homoclinic bifurcations
and chaos [101,102,105,106], as well as excitability [108],
have been numerically shown in the strong-coupling regime
(J > �). In all those systems, limit cycles have a relatively
short period Tl ∝ J−1 ∼ ps limited by the high coupling rates
of optical cavities. The subpicosecond time resolution needed
to observe such oscillations has made their direct experimental
observation and utilization impossible so far.

In the following we show that coupled cavities with nonin-
stantaneous nonlinearity can overcome the limitations of both
the single-cavity system with noninstantaneous nonlinearity,
as well as those of coupled-cavity systems with instantaneous
nonlinearity. In particular, we will show that limit cycles and
excitability can be realized in systems with memory times τ

much larger than the dissipation time �−1.

B. Fixed points and bifurcations

Coupled cavities support fixed points absent in the single
cavity. In Fig. 5(a) we plot the intensity in cavity 1 (n1) versus
�/�. We obtained this plot by solving Eq. (3) with constant
driving amplitude (F = 15.7

√
�). Solutions are color coded

as in the previous section. The black curves correspond to the
symmetric solutions and behave similarly to the single cavity
[see Fig. 1(b)] due to the symmetric driving. Between saddle-
node bifurcations labeled SN1,2, the coupled system exhibits
three symmetric states, two of them being stable and one
unstable. Asymmetric solutions [blue branches in Fig. 5(a)]
are connected to the symmetric one via pitchfork bifurcations
(PB1,2), indicated by the blue dots in Fig. 5(a). The location
of these bifurcations can be computed analytically (see Ap-
pendix C).

To illustrate the complex behavior appearing in the multi-
stability region, Fig. 5(b) shows the fixed points in the (n1, n2)
space for � = 1.5�, color coded as indicated in the caption.
Due to the mirror symmetry, the intensities in both cavities can
be expected to be equal and therefore lie along the symmetry
axis indicated by the dashed black line. This mirror symmetry
can spontaneously break [91,111] and asymmetric solutions
n1 �= n2 emerge. Interestingly, limit cycles appear in asym-
metric solutions as they undergo Hopf bifurcations (HB1,2)
represented by red dots. A stable limit cycle with a maximum
intensity displayed via a short red line emerges from each
of these bifurcations. Limit cycles disappear via homoclinic
bifurcations (Hom1,2) located with open circles. A zoom in on
HB1 and Hom1 bifurcations [Fig. 5(a) main panel] is shown
as an inset in Fig. 5(a).

Remarkably, all bifurcations in Fig. 5(a) correspond to a
small coupling J = 0.5� and large memory time τ = 100/�.

023008-5



B. BRAECKEVELDT et al. PHYSICAL REVIEW RESEARCH 6, 023008 (2024)

FIG. 5. (a) Bifurcation diagram of n1 along the detuning � for
coupled and symmetrically driven cavities. Solid (dashed) curves
represent stable (unstable) fixed points with symmetric and asym-
metric solutions in black and blue, respectively. Saddle-node (SN,
green), Hopf (HB, red), homoclinic (Hom, black), and pitchfork (PB,
blue) bifurcations are located with green, red, empty, and blue dots,
respectively. Inset: Close-up view of Hopf (HB1) and homoclinic
(Hom1) bifurcations in the main panel. The red solid curve represents
the maximum intensity of the stable limit cycle. (b) Fixed points for
a detuning � = 1.5� color coded as in Fig. 2. The dashed black
line shows the axis of symmetry n1 = n2. Model parameters: � = 1,
U = �/100, κL = �/2, D = 0, J = 0.5�, F = 15.7

√
�, τ = 100�−1.

This already shows that the limitations previously discussed
are gone. Coupled cavities with noninstantaneous nonlinearity
can sustain limit cycles for very long memory times, even
when the coupling is weaker than the dissipation.

Figure 5(a) shows that Hopf bifurcations occur in the
asymmetric branches, absent in the single-cavity system. To
relate these results to single-cavity physics, let us assume exci-
tation of the symmetric mode by setting α1 = α2 in Eq. (3). By
considering steady states without noise (D = 0), one obtains

0 =
[

i(� + J − U |α j |2) − �

2

]
α j + √

κLF, (5)

with j ∈ 1, 2. The above equation is equivalent to that de-
scribing a single cavity, but with the detuning shifted by
the coupling J . Taking the square modulus leads to a cubic
equation in n j = |α j |2, which gives three possible symmetric
solutions (see Appendix A). However, these symmetric solu-
tions are not the only ones. Even under symmetric driving,
asymmetric solutions emerge due to spontaneous symmetry

breaking. One can show (see Appendix B) that the steady
states generally satisfy

(n1 − n2)

[
U 2

(
n2

1 + n2
2 + n1n2

) − 2U (� − J )(n1 + n2)

+ �2

4
+ (� − J )2

]
= 0. (6)

Equation (6) is the product of two terms, and it is therefore
satisfied if at least one of them is zero. The first leads to sym-
metric solutions because it is zero for n1 = n2. Consequently,
there is always at least one symmetric solution. The second
term (in the square brackets) can cancel even for asymmetric
solutions n1 �= n2. These asymmetric solutions exist under the
following conditions (see Appendix B):

� � J +
√

3

2
�, (7a)

n j � 2(� − J ) +
√

4(� − J )2 − 3�2

3U
, (7b)

n j � 2(� − J ) −
√

4(� − J )2 − 3�2

3U
. (7c)

Due to the mirror symmetry of the system, asymmetric
solutions always appear in pairs, with n1 and n2 symmetric
around the axis n1 = n2 [Fig. 5(b)]. There can be 2, 4, 6, or
8 asymmetric solutions. Figure 5(a) and its inset show that,
unlike the branches associated with the symmetric solutions,
the asymmetric branches support Hopf and homoclinic bifur-
cations. Stable limit cycles exist in between these bifurcations
and are therefore present for a small detuning range.

C. Limit cycles and excitability

The coupled-cavity system also displays class-I spiking
and class-II excitability, as the system can transition from
a symmetric stable focus to an asymmetric unstable focus
associated with a stable limit cycle. To induce the symmetry
breaking we need an initial slight asymmetry in the driving
fields. We therefore define the driving amplitude imbalance
between the two cavities ρ = (F1 − F2)/(F1 + F2), and we
vary this parameter to reveal excitable dynamics.

Figure 6(a) shows the time evolution of n1 and n2 when the
driving imbalance ρ is ramped. We observe two transitions in
the shaded areas of Fig. 6(a). The first transition, displayed in
Fig. 6(b), shows the jump from a symmetric resting state to an
asymmetric stable limit cycle (spiking state). The oscillation
period goes from zero to a near-constant value and is there-
fore discontinuous and characteristic of class-II excitability. In
contrast, the other transition presented in Fig. 6(c) shows that
the intensities switch from an asymmetric stable limit cycle
to a symmetric rest state. The transition is associated with a
continuous increase of the oscillation period associated with
class-I spiking. Again, the coupled system presents spiking
dynamics that can be switched on or off. In contrast to the
single cavity, the oscillatory state of the coupled cavities is
triggered by varying the driving imbalance instead of the
detuning.
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FIG. 6. n1 (red curve, left vertical axis), n2 (blue curve, left ver-
tical axis), and power imbalance ρ = (F1 − F2)/(F1 + F2) (dashed
black line, right vertical axis) versus time �t . (a) Shaded areas
correspond to the close-up views in (b), (c). (b) Zoom in on the
transition from resting to the spiking state associated with class-II
excitability. (c) Zoom in on the transition from spiking to the rest-
ing state corresponding to class-I spiking. The average power F =
[F1(t ) + F2(t )]/2 is constant and equals F = 15.7

√
�. The detuning

is �/� = 1.5. Other model parameters are as in Fig. 5(a). The power
imbalance ρ varies between 0 and 5×10−3.

D. Persistence and accessibility of excitability

In Fig. 7 we investigate the role of the coupling on the
existence of limit cycles in our coupled-cavity system. We
fix all parameters, except J , to the values used in Fig. 5.
The region where limit cycles exist is located between the
solid and dash-dotted curves of the same color, delimiting
Hopf and homoclinic bifurcations, respectively. Open circles
indicate Bogdanov-Takens bifurcations, where saddle-node,
homoclinic, and Hopf bifurcations intersect. For a weak cou-
pling (J = 0.5�), oscillations occur in a narrow detuning
range as we have seen in Fig. 5. Interestingly, these limit
cycles persist for much smaller detuning values than in the
single-cavity system, even though the memory time is rela-
tively large. Previously, in Fig. 4 we showed that �τ = 100
would require � > 50� to observe limit cycles in a single
cavity. For such extremely large detunings, no experiment is
likely to be well described by a single-mode model. In con-
trast, for coupled cavities and �τ = 100, limit cycles appear
around � � 1.6�, which is experimentally feasible.

As J increases, Hopf and homoclinic bifurcations shift
to higher driving amplitudes and detuning. This can be ex-
pected by noting that Hopf bifurcations appear in asymmetric
branches. We noted that these solutions appear for detunings
satisfying Eq. (7a), leading to larger � for an increasing cou-
pling J . Moreover, the intensities n1,2 also increase according
to Eqs. (7b) and (7c), which means large driving amplitudes
F/

√
� are needed. Nonetheless, even for the larger coupling

J = 2.5�, the driving amplitude and detuning for limit cycles

FIG. 7. Hopf (solid curves) and homoclinic (dash-dotted curves)
bifurcations in the (�, F ) space for various intercavity coupling
strengths J . White dots indicate Bogdanov-Takens (BT) bifurcations.
Model parameters are as in Fig. 5.

can still be achieved experimentally. For energy-efficient ex-
citability, weak couplings J are better as they enable spiking
activity with lower laser powers.

E. Excitability for arbitrarily long memory times

Figure 8 illustrates how the Hopf bifurcation in the asym-
metric branch depends on the memory time τ . We use the
same parameters as in Fig. 7, except that the coupling is now
fixed at J = 0.5� and τ varies. To avoid an overcrowded fig-
ure, we display Hopf and not homoclinic bifurcations. Open
circles indicate Bogdanov-Takens bifurcations. For memory
times �τ > 25, the location of the Hopf bifurcation is not
significantly influenced by τ as shown in Fig. 8(a). The ho-
moclinic bifurcation behaves similarly as the Hopf bifurcation
with the increase of the memory time. In Fig. 8(b) we provide
a close-up view of the same curves, where we see that they
all merge for �τ > 150. Thanks to this limiting behavior for

FIG. 8. (a) Hopf bifurcation on the asymmetric branches in the
(�, F ) space for various memory times τ when the coupling is J =
0.5�. (b) Close-up view on the limit behavior when �τ � 1. Model
parameters are as in Fig. 5.
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FIG. 9. (a) Limit cycle period Tl vs memory time τ , calculated
via numerical continuation. Dotted lines indicate the memory times
considered in (b)–(d). (b)–(d) n1 (red) and n2 (blue) vs time in a
limit cycle regime for different memory times τ . (b) τ = 30�−1.
(c) τ = 250�−1. (d) τ = 1000�−1. F1 = 15.72

√
�, F2 = 15.68

√
�.

Other model parameters are as in Fig. 6.

�τ � 1, effects of the Hopf bifurcation could be observed
even in systems with extremely large memory times, such as
the oil-filled cavities in Refs. [61,62].

When memory and dissipation times are commensurate
(τ ∼ �−1), the Hopf bifurcation curve has a different shape.
As for a single cavity, the interplay of dissipation and memory
effects leads to more complex dynamics, and many fixed
points become unstable foci.

Next we demonstrate that increasing τ leads to propor-
tionally longer limit cycles, thus enabling “slow firing.” Via
a modification of the memory time, the firing period can be
tailored. The behavior we discuss is similar to spike frequency
adaptation, also known as spike accommodation, observed in
neurons [112]. Spike frequency adaptation is associated with
a decrease in the frequency of spiking during an extended
period of excitation. This frequency decrease is related to
a slow recovery of the calcium-activated potassium channel
responsible for the action potential [113].

Figure 9 illustrates how the period of the limit cycle
depends on the memory time τ . Figure 9(a) shows an approx-
imately linear relation between the limit cycle period Tl and τ .
We note that this log-log scale curve is a continuation calcu-
lation (using AUTO-07P) along the memory time of the fixed
point associated with the stable limit cycle. Figures 9(b), 9(c),
and 9(d) correspond to �τ = 30, 250, and 1000, respectively.
Red and blue curves represent intensities in cavities 1 and 2,
respectively. To set the system in the observed asymmetric
self-oscillating states, we initialized our simulations close to
the unstable focus associated with the stable limit cycle.

The results in Fig. 9 evidence that, unlike in previous sys-
tems (single cavity with noninstantaneous nonlinearity, and
coupled cavities with instantaneous nonlinearity), limit cycles
with periods unconstrained by J can emerge. These limit
cycles can be realized for small couplings and small driving
powers, as in Figs. 6 and 9, and for arbitrarily long memory
times. Since both Hopf and homoclinic bifurcations shift to

FIG. 10. (a) Intensity difference n1 − n2 vs time, for a standard
deviation of the laser noise D = 0.55

√
�. Each spike represents an

instance of spontaneous mirror symmetry breaking, whereby the
intensity in one of the cavities substantially exceeds that in the
other. (b) Zoom in on the first bursting event of (a) with n1 in red
and n2 in blue. (c) Probability density function P(w1, w2) computed
from numerical time traces. Small white arrows indicate the rotation
direction of each stable limit cycle. Dots represent fixed points color
coded as in Fig. 2. The dashed green line shows the axis of symmetry
(w1 = w2). Model parameters are as in Fig. 6, with F = 15.7

√
� and

ρ = 0.

larger driving powers as the intercavity coupling increases
(see Fig. 7), the laser power needed for excitability increases
with the coupling strength. Consequently, weakly coupled
cavities with long memory times are promising for the re-
alization of low-power excitability. Moreover, the possibility
to have coupled slow and fast variables (separated by many
orders of magnitude in time) opens the possibility of self
organization to the edge of a phase transition, as thought to
occur in the brain [46,47].

F. Noise-induced spike trains

So far we have only considered the behavior of our system
in the absence of noise. In this section we investigate how
noise, in the laser amplitude and phase, results in asymmetric
spike trains even when the deterministic driving is symmetric.
Figure 10(a) shows the intensity imbalance in the two cav-
ities, n1 − n2, versus time. The driving is symmetric on the
two cavities, with amplitude F = 15.7

√
�. The detuning is

� = 1.5�, as in Fig. 6. Even though the standard deviation of
the noise is the same for both cavities (D = 0.55

√
�), small

asymmetries can be generated because the noise sources are
independent. For this reason we mentioned at the beginning of
this section that addressing each cavity with a different field
and noise is important. Otherwise, spontaneous symmetry
breaking cannot emerge. In the calculation we set �τ = 100
to avoid unnecessarily long computation times associated with
long memory times. However, in view of the already large
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separation of timescales between �−1 and τ , qualitatively
similar dynamics is expected for slower systems.

In Fig. 10(a) the system starts in a symmetric rest state,
corresponding to the state at t> 8×105�−1 in Fig. 6. Then
it suddenly and briefly transitions to symmetry-broken states
associated with spiking as in Fig. 6(b). Figure 10(b) shows a
close-up view of the interval containing the first three spikes
in this particular trajectory, with n1 and n2 now plotted sepa-
rately. Initially, the two intensities fluctuate around the same
value, indicating symmetric behavior. Then the symmetry is
broken during the spikes due to the random imbalance in the
driving.

Symmetry breaking can also be observed in the (w1,w2)
space by looking at the probability density function (PDF)
P(w1,w2) as in Fig. 10(c). The PDF is computed from eight
trajectories of duration 5×105/�, each associated with 2×106

time steps. The probability is largest close to the symmetric
stable focus indicated by the blue dot. The probability de-
creases approaching the two saddles (gray dots) close to the
stable focus. When the system reaches a saddle, it undergoes
a saddle-node bifurcation and initiates one of two limit cycles.
The symmetry-broken states are associated with these limit
cycles. The random fluctuations can then force the system to
return to the stable focus. The transition from the symmetry-
broken spiking states to the symmetric rest state can also
be induced by a homoclinic bifurcation when the limit cycle
swells and forms a homoclinic orbit.

In Fig. 10(c) we indicate the directions of the orbits around
the two unstable foci with white arrows. There are two possi-
ble orbits because there are two symmetry-broken states (red
dots) associated with spiking activity. Each of these states
corresponds to a different sign of the power imbalance ρ.
A positive ρ leads to n1 larger than n2, while the situation
is reversed when ρ is negative. Here, the noise terms acting
on each cavity are uncorrelated, leading to small imbalances
on the total driving amplitudes. In other words, the combined
noise terms effectively act as a fluctuating ρ. Thus, the imbal-
ance ρ fluctuates between positive and negative values with
equal probability, leading to spontaneous switching between
both asymmetric spiking states. This enables the system to
switch from one limit cycle to another, spontaneously. While
spontaneous symmetry-breaking effects have been observed
for localized modes [90,91,99,114–118], to the best of our
knowledge they have never been observed for limit cycles as
predicted in Fig. 10.

IV. CONCLUSIONS AND PERSPECTIVES

Cavities with memory in their nonlinear response, due, for
example, to thermo-optical nonlinearities or excitonic effects,
support self-sustained intensity oscillations under constant
driving. These limit cycles play a crucial role in excitability,
which is fundamental to the spiking behavior of neurons.
We have observed that when memory and dissipation times
are commensurate, a single-mode cavity can become ex-
citable. The cavity exhibits Hopf and homoclinic bifurcations,
corresponding to class-II excitability and class-I spiking, re-
spectively. These effects can in principle also arise for longer
memory times, but their experimental realization poses major
technical challenges.

To expand the range of memory times over which spik-
ing behavior can be practically realized, we proposed to
couple two of the aforementioned cavities. We showed that
this coupled system supports limit cycles, and consequently
excitability, for arbitrarily long memory times. These limit
cycles are furthermore associated with spontaneous breaking
of mirror symmetry, and they enable spike trains akin to those
observed in neurons to emerge. While coupled-cavity systems
with instantaneous nonlinearity can also support limit cycles
and excitability, our system with noninstantaneous nonlinear-
ity enables these features to emerge for smaller intercavity
coupling strengths and input powers. This smaller power re-
quirement is promising for the realization of energy-efficient
neuromorphic computing, assuming artificial neural networks
can be made out of our cavities.

While we did not explicitly show it, our system can in prin-
ciple be used as an artificial neuron. Indeed, excitability is the
essential nonlinear dynamical property of neurons [8]. Infor-
mation can be encoded in the amplitude of the spikes and their
intervals. However, further research is needed to establish how
optical cavities could be used as artificial neurons. We foresee
technical challenges in the system realization, driving scheme,
and in the protocols for encoding and decoding information.

Finally, we highlight that our discovery of excitability for
arbitrarily long memory times is promising for technological
realizations of a key feature of the brain: spiking behavior
involving coupled slow and fast variables. Such slow-fast sys-
tems are among the most studied in the context of excitability
(see, for example, [119]). The large separation of timescales
is thought to underlie many of the remarkable computational
properties of the brain [46,47]. Thus, our work opens the door
to the development of all-optical artificial neural networks
embracing slow-fast dynamics like those characterizing the
brain. Assessing the cascadability [13,120] of our coupled-
cavity system will be a crucial step towards the goal of using
this system for computation.
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APPENDIX A: SYMMETRIC FIXED POINTS

Here we show that the symmetrically driven cavities sup-
port symmetric fixed points similar to that of the single cavity.
Neglecting noise, fixed points of the single cavity satisfy

0 =
[

i(� − U |α|2) − �

2

]
α + √

κLF, (A1)
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which is clearly similar to Eq. (5), giving symmetric fixed
points for the coupled system. The only difference is that, for
coupled cavities, the detuning � is shifted by the coupling J .

By taking the modulus squared of both side of Eq. (5), one
sees that fixed points are roots of a third-order polynomial in
n = |α|2,

P (n) ≡U 2n3 − 2(� + J )Un2

−
[

(� + J )2 �2

4
+

]
n − κL|F |2. (A2)

As n ∈ R, P has either one or three roots (in between saddle-
node bifurcations).

APPENDIX B: RANGE OF PARAMETERS
FOR ASYMMETRIC SOLUTIONS

Here we give the constraints for observing asymmetric
solutions under symmetric driving. All fixed points of the
coupled system satisfy[

i(� − J − U |α1|2) − �

2

]
α1

=
[

i(� − J − U |α2|2) − �

2

]
α2. (B1)

Taking the modulus squared of both sides leads to Eq. (6).
Here the equation involves the frequency � − J because we
are interested in asymmetric modes. Asymmetric fixed points
can not cancel the first parenthesis of Eq. (6) because n1 �= n2

by definition of the asymmetry. Therefore the only possibility
for asymmetric fixed points is that the second parenthesis [the
one multiplied by (n1 − n2)] in Eq. (6) cancels. The before-
mentioned condition means that

U 2(n2
1 + n2

2 + n1n2) − 2U (� − J )(n1 + n2)

+ �2

4
+ (� − J )2 = 0, (B2)

which can be seen as a second-order polynomial in n2 with
roots

n2 = −Un1 + 2(� − J )

2U

±
√

−3U 2n2
1 + 4Un1(� − J ) − �2

2U
. (B3)

As n2 ∈ R+, the square-root argument must be positive. This
argument is a second-order polynomial in n1 and is positive if
n1 lies between its roots:

n1 = 2(� − J ) ±
√

4(� − J )2 − 3�2

3U
. (B4)

These values are reals and positives as long as
� � J + √

3�/2, which is the condition equation (7a).
Thus n2 in Eq. (B3) is real as long as n1 is in between the
roots Eq. (B4). Because n1 and n2 can be swapped in Eq. (B2),
it leads to conditions equations (7b) and (7c).

APPENDIX C: PITCHFORK BIFURCATIONS

Pitchfork bifurcations are located at the intersections of
symmetric and asymmetric solutions. Therefore fixed points
associated with these bifurcations are roots of Eq. (B2) but
also satisfy n1 = n2 = n. These two observations lead to

3U 2n2 − 4U (� − J )n + �2

4
+ (� − J )2 = 0. (C1)

At the pitchfork bifurcations the intensity is

n± = 2(� − J ) ±
√

(� − J )2 − 3�2/4

3U
. (C2)

The input power corresponding to these intensities can be
computed easily by injecting n± in the modulus square of
Eq. (5).
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