
PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

Holographic-(V)AE: An end-to-end SO(3)-equivariant (variational) autoencoder in Fourier space

Gian Marco Visani 1,*

Paul G. Allen School of Computer Science and Engineering, University of Washington, 85 E Stevens Way NE, Seattle, Washington 98195, USA

Michael N. Pun
Department of Physics, University of Washington, 3910 15th Avenue Northeast, Seattle, Washington 98195, USA

Arman Angaji
Institute for Biological Physics, University of Cologne, Zülpicher Str. 77, 50937 Cologne, Germany

Armita Nourmohammad †

Department of Physics, University of Washington, 3910 15th Avenue Northeast, Seattle, Washington 98195, USA;
Paul G. Allen School of Computer Science and Engineering, University of Washington, 85 E Stevens Way NE, Seattle, Washington 98195, USA;

Department of Applied Mathematics, University of Washington, 4182 W Stevens Way NE, Seattle, Washington 98105, USA;
and Fred Hutchinson Cancer Center, 1241 Eastlake Ave E, Seattle, Washington 98102, USA

(Received 11 June 2023; accepted 22 February 2024; published 1 April 2024)

Group-equivariant neural networks have emerged as an efficient approach to model complex data, using
generalized convolutions that respect the relevant symmetries of a system. These techniques have made advances
in both the supervised learning tasks for classification and regression, and the unsupervised tasks to generate new
data. However, little work has been done in leveraging the symmetry-aware expressive representations that could
be extracted from these approaches. Here, we present holographic-(variational) autoencoder [H-(V)AE], a fully
end-to-end SO(3)-equivariant (variational) autoencoder in Fourier space, suitable for unsupervised learning and
generation of data distributed around a specified origin in 3D. H-(V)AE is trained to reconstruct the spherical
Fourier encoding of data, learning in the process a low-dimensional representation of the data (i.e., a latent
space) with a maximally informative rotationally invariant embedding alongside an equivariant frame describing
the orientation of the data. We extensively test the performance of H-(V)AE on diverse datasets. We show
that the learned latent space efficiently encodes the categorical features of spherical images. Moreover, the
low-dimensional representations learned by H-VAE can be used for downstream data-scarce tasks. Specifically,
we show that H-(V)AE’s latent space can be used to extract compact embeddings for protein structure microenvi-
ronments, and when paired with a random forest regressor, it enables state-of-the-art predictions of protein-ligand
binding affinity.

DOI: 10.1103/PhysRevResearch.6.023006

I. INTRODUCTION

In supervised learning, e.g., for classification tasks, the
success of state-of-the-art algorithms is often attributed to
respecting known inductive biases of the function they are
trying to approximate. One such bias is the invariance of the
function to certain transformations of the input. For exam-
ple, image classification should be translationally invariant,
in that the output should not depend on the position of the
object in the image. To achieve such invariance, conventional

*Correspondence address: gvisan01@cs.washington.edu
†Correspondence address: armita@uw.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

techniques use data augmentation to train an algorithm on
many transformed forms of the data. However, this solution
is only approximate and increases training time significantly,
up to prohibitive scales for high-dimensional and continuous
transformations (∼500 augmentations are required to learn
3D rotation-invariant patterns [1]). Alternatively, one could
use invariant features of the data (e.g., pairwise distance
between different features) as input to train any machine
learning algorithm [2]. However, the choice of these invari-
ants is arbitrary and the resulting network could lack in
expressiveness.

Recent advances have brought concepts from group theory
to develop symmetry-aware neural network architectures that
are equivariant under actions of different symmetry groups
[3–12]. Equivariance with respect to a symmetry group is the
property that, if the input is transformed via a group action,
then the output is transformed according to a linear operation
determined by the symmetry group itself; it is easy to see
that invariance is a special case of equivariance, where the

2643-1564/2024/6(2)/023006(21) 023006-1 Published by the American Physical Society

https://orcid.org/0000-0003-0888-0922
https://orcid.org/0000-0002-0996-6798
https://orcid.org/0000-0001-7074-9429
https://orcid.org/0000-0002-6245-3553
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.023006&domain=pdf&date_stamp=2024-04-01
https://doi.org/10.1103/PhysRevResearch.6.023006
https://creativecommons.org/licenses/by/4.0/

VISANI, PUN, ANGAJI, AND NOURMOHAMMAD PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

linear operation is simply the identity. These group equiv-
ariant networks can systematically treat and interpret various
transformation in data, and learn models that are agnostic to
the specified transformations. For example, models equivari-
ant to euclidean transformations have recently advanced the
state-of-the-art on many supervised tasks for classification
and regression [3–12]. These models are more flexible and
data efficient compared to their purely invariant counterparts
[1,13].

Extending such group-invariant and equivariant paradigms
to unsupervised learning (i.e., for modeling the data distribu-
tion) could map out compact representations of data that are
agnostic to a specified symmetry transformation. In machine
learning, autoencoders (AE’s) and their probabilistic version,
variational autoencoders (VAE’s), are among the artificial
neural networks that are commonly used for unsupervised
learning, in that they provide an efficient representation of
unlabeled data [14]. However, little work has been done to im-
plement group equivariance in autoencoder architectures [15].
Recently, generative models based on normalizing flows [11]
and diffusion models [16–18] that are equivariant to subsets
of euclidean transformations have been applied to the task of
molecule and protein generation in 3D. Although powerful in
generative tasks, these classes of models do not learn com-
pact representations of the data, as autoencoders do. The key
benefit of autoencoder generative models is that their learned
compact representations can be used for downstream tasks
in semisupervised learning algorithms (as we show in this
paper), and can help identify relevant and semantically mean-
ingful features and patterns from high-dimensional complex
data, projected down into lower-dimensional representations
[19].

Here, we focus on developing neural network
architectures—and in particular (variational) autoencoders—
for unsupervised learning that are equivariant to rotations
around a specified origin in 3D, denoted by the group
SO(3). To define rotationally equivariant transformations,
it is convenient to project data to spherical Fourier
space [6]. Accordingly, we encode the data in spherical
Fourier space by constructing holograms of the data that
are conveniently structured for equivariant operations.
These data holograms are inputs to our SO(3)-equivariant
(variational) autoencoder in spherical Fourier space, with
a fully equivariant encoder-decoder architecture trained to
reconstruct the Fourier coefficients of the input; we term this
approach holographic-(V)AE [or H-(V)AE]. Our network
learns an SO(3)-equivariant latent space. Notably, the latent
space of H-(V)AE disentangles the invariant and equivariant
features of data, which describe its semantics and orientation,
respectively. This algorithmic property is similar to that of the
recent approaches in unsupervised learning of disentangled
representations, shown to be powerful for image generation
and style mixing at different scales [20,21].

We extensively test the performance and properties of H-
(V)AE on two domains. First, we focus on spherical images,
demonstrating high accuracy in unsupervised classification
and clustering tasks. Second, we focus on structural biol-
ogy, and demonstrate that H-(V)AE can be effectively used
to construct compact, informative, and symmetry-aware rep-
resentations of protein structures, which can be used for

downstream tasks. Specifically, we leverage H-(V)AE trained
on a large corpus of protein structure microenvironments
to construct local representations of protein-ligand binding
pockets that are both rotationally and translationally equiv-
ariant [i.e., SE(3) equivariant]. When combined with a simple
random forest regressor, we achieve state-of-the-art accuracy
on the task of predicting the binding affinity between a protein
and a ligand in complex. Our code and pretrained models are
available on GitHub [22].

II. MODEL

Representation and transformation of 3D data
in spherical bases

We are interested in modeling 3D data (i.e., functions in
R3), for which the global orientation of the data should not
impact the inferred model [23]. We consider functions dis-
tributed around a specified origin, which we express by the
resulting spherical coordinates (r, θ, φ) around the origin; θ

and φ are the azimuthal and the polar angles and r defines
the distance to the reference point in the spherical coordinate
system. In this case, the set of rotations about the origin define
the 3D rotation group SO(3), and we will consider models that
are rotationally equivariant under SO(3).

To define rotationally equivariant transformations, it is con-
venient to project data to spherical Fourier space. We use
spherical harmonics to encode the angular information of the
data. Spherical harmonics are a class of functions that form a
complete and orthonormal basis for functions f (θ, φ) defined
on a unit sphere (r = 1). In their complex form, spherical
harmonics are defined as

Y�m(θ, φ) =
√

2n + 1

4π

(n − m)!

(n + m)!
eimφPm

� (cos θ), (1)

where � is a non-negative integer (0 � �) and m is an integer
within the interval −� � m � �. Pm

� (cos θ) is the Legendre
polynomial of degree � and order m, which, together with the
complex exponential eimφ , define sinusoidal functions over the
angles θ and φ. In quantum mechanics, spherical harmonics
are used to represent the orbital angular momenta, e.g., for an
electron in a hydrogen atom. In this context, the degree � re-
lates to the eigenvalue of the square of the angular momentum,
and the order m is the eigenvalue of the angular momentum
about the azimuthal axis.

To encode a general function ρ(r, θ, φ) with both ra-
dial and angular components, we use the Zernike Fourier
transform,

Ẑn
�m =

∫
ρ(r, θ, φ)Y�m(θ, φ)Rn

� (r) dV, (2)

where Y�m(θ, φ) is the spherical harmonics of degree � and
order m, and Rn

� (r) is the radial Zernike polynomial in 3D
(Eq. (A7)) with radial frequency n � 0 and degree �. Rn

� (r)
is nonzero only for even values of n − � � 0. Zernike polyno-
mials form a complete orthonormal basis in 3D, and therefore,
can be used to expand and retrieve 3D shapes, if large enough
� and n values are used; approximations that restrict the series
to finite n and � are often sufficient for shape retrieval, and
hence, desirable algorithmically. Thus, in practice, we cap the

023006-2

HOLOGRAPHIC-(V)AE: AN END-TO-END … PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

(a)

(c)

(b)

FIG. 1. Schematic of the network architecture. (a) Schematic of a steerable tensor with �max = 1 and 4 channels per feature degree. We
choose a pyramidal representation that naturally follows the expansion in size of features of higher degree. (b) Schematic of a Clebsch-Gordan
block (CG bl.), with batch norm (BN), efficient tensor product (ETP), and signal norm (SN), and linear (Lin) operations. (c) Schematic of the
H-AE architecture. We color code features of different degrees in the input and in the latent space for clarity. The H-VAE schematic differs
only in the latent space, where two sets of invariants are learned (means and standard deviations of an isotropic Gaussian distribution).

resolution of the ZFT to a maximum degree L and a maximum
radial frequency N .

A class of functions that we consider in this paper are
3D point clouds, e.g., the atomic composition of a protein in
space. We represent point clouds ρ(r) ≡ ρ(r, θ, φ) by the sum
of Dirac-δ functions centered at each point,

ρ(r) =
∑

i∈points

δ(ρ(ri) − ρ(r)), (3)

where δ(x) = 1 for x = 0 and it is zero, otherwise. The result-
ing ZFT of a point cloud follows a closed form, and notably,
it does not require a discretization of 3D space for numerical
computation,

Ẑn
�m =

∑
i∈points

R�
n(ri)Y�m(θi, ϕi). (4)

We can reconstruct the data using the inverse ZFT and define
approximations by truncating the angular and radial frequen-
cies at L and N (see Sec. A 1).

Conveniently, the angular representation of the data by
spherical harmonics in a ZFT transform forms an equivariant
basis under rotation in 3D, implying that if the input (i.e.,
atomic coordinates of a protein) is rotated, then the output
is transformed according to a linear operation determined by
the rotation. The linear operator that describes how spherical
harmonics transform under rotations are called the Wigner
D-matrices. Notably, Wigner D-matrices are the irreducible
representations (irreps) of SO(3). Therefore, the SO(3) group
acts on spherical Fourier space via a direct sum of irreps.
Specifically, the ZFT encodes a data point into a tensor com-

posed of a direct sum of features, each associated with a
degree � indicating the irrep that it transforms with under
the action of SO(3). We refer to these tensors as SO(3)-
steerable tensors and to the vector spaces they occupy as
SO(3)-steerable vector spaces, or simply steerable for short
since we only deal with the SO(3) group in this paper.

We note that a tensor may contain multiple features of
the same degree �, which we generically refer to as distinct
channels c. For example, for 3D atomic point clouds, these
features include the identity and chemical properties of the
constituent atoms. Throughout the paper, we refer to generic
steerable tensors as h and index them by � (degree of Y�m),
m (order of Y�m) and c (channel type). We adopt the “hat”
notation for individual entries (e.g., ĥ�m) to remind ourselves
of the analogy with Fourier coefficients; see Fig. 1(a) for a
graphical illustration of a tensor.

One key feature of neural networks is applying nonlin-
ear activations, which enable a network to approximately
model complex and nonlinear phenomena. Commonly used
nonlinearities include reLU, tanh, and softmax functions.
However, these conventional nonlinearities can break ro-
tational equivariance in the Fourier space. To construct
expressive rotationally equivariant neural networks we can
use the Clebsch-Gordan (CG) tensor product ⊗cg, which is
the natural nonlinear (more specifically, bilinear in the case of
using two sets of Fourier coefficients) operation in the space
of spherical harmonics [24].

The CG tensor product combines two features of degrees �1

and �2 to produce another feature of degree |�2 − �1| � �3 �
|�1 + �2|. Let h� ∈ R2�+1 be a generic degree � tensor, with
individual components ĥ�m for −� � m � �. The CG tensor

023006-3

VISANI, PUN, ANGAJI, AND NOURMOHAMMAD PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

product is given by

ĥ�3m3 = (
h�1 ⊗cg h�2

)
�3m3

=
�1∑

m1=−�1

�2∑
m2=−�2

C(�3m3)
(�1m1)(�2m2)ĥ�1m1 ĥ�2m2 , (5)

where C(�3m3)
(�1m1)(�2m2) are the Clebsch-Gordan coefficients, and

can be precomputed for all degrees of spherical tensors [24].
Similar to spherical harmonics, Clebsch-Gordan tensor prod-
ucts also appear in quantum mechanics, and they are used
to express couplings between angular momenta. In following
with recent study on group-equivariant machine learning [6],
we will use Clebsch-Gordan products to express nonlinearities
in 3D rotationally equivariant neural networks for protein
structures.

III. HOLOGRAPHIC-(V)AE (H-(V)AE)

Network architecture and training. H-(V)AE consists of
an encoder that, through learned linear projections and pre-
set nonlinear operations, project the data onto a compressed
rotationally equivariant latent space. A trained decoder that
is similarly constructed then takes this latent projection and
reconstructs the input data. The combination of leaned linear
and preset nonlinear operations form equivariant Clebsch-
Gordan blocks (CG bl.) both for the encoder and the decoder;
see Fig. 1 and below for details on the structure of a Clebsch-
Gordan block.

Using the Clebsch-Gordan blocks, we construct a fully ro-
tationally equivariant architecture for unsupervised learning.
Specifically, the encoder—denoted by the function Eφ—takes
as input a steerable tensor with maximum degree �max = L
and, via a stack of Clebsch-Gordan blocks, iteratively and
equivariantly transfers information from higher degrees to
lower ones, down to the final encoder layer with �max =
1, resulting in the invariant (� = 0) and the frame-defining
equivariant (� = 1) embeddings. The frame is constructed by
learning two vectors from the � = 1 embedding in the final
layer of the encoder and using Gram-Schmidt to find the
corresponding orthonormal basis [25]. The third orthonormal
basis vector is then calculated as the cross product of the first
two.

The decoder—denoted by the function Dθ—learns to re-
construct the input from the invariant (� = 0) embedding
of the encoder’s final layer z and the frame g, iteratively
increasing the maximum degree �max of the intermediate rep-
resentations by leveraging the CG tensor product within the
Clebsch-Gordan blocks [Fig. 1(c)]. We refer the reader to
Sec. A 2 e for further details on the design choices of the
network.

To add stochasticity and make the model variational (i.e.,
constructing H-VAE as opposed to H-AE), we parametrize the
invariant part of the latent space by an isotropic Gaussian, i.e.,
we learn the parameters of the Gaussian posterior distribution
qφ (z|x), which is trained to match a prior p(z). Thus, a trained
H-VAE can be used to generate samples x′ from the data
distribution by first sampling from the latent space according
to z ∼ p(z), and then feeding z into the decoder alongside a
frame g of choice, x′ = Dθ (z, g).

We train H-(V)AE to minimize the reconstruction loss Lrec

between the input and the reconstructed tensors. Note that
for each input tensor x the reconnected tensor x′ is generated
by first using the encoder to map the input onto an invariant
embedding z and a frame g [i.e., (z, g) = Eφ (x)] and then
using the decoder to reconstruct [i.e., x′ = Dθ (z, g)]; both the
encoder and the decoder are trained by minimizing the recon-
struction loss Lrec. For H-VAE only, we we further minimize
the Kullback-Leibler divergence DKL of the posterior invariant
latent space distribution qφ (z|x) from the selected prior p(z)
[isotropic normal in this paper, p(z) = N (0, I)] [14], resulting
in the complete loss function L(x, x′),

L(x, x′) = αLrec(x, x′) + βDKL(qφ (z|x)||p(z)). (6)

For H-VAE, the encoder Eφ is a differentiable reparam-
eterization of the posterior distribution qφ (z|x). Specifically,
Eφ additionally takes noise ε ∼ N (0, I) as input, so that the
invariant latent embedding z outputted from Eφ (x, ε) is re-
garded as a sample from qφ (z|x). This “reparameterization”
trick allows for error propagation through the Gaussian latent
variables, and is essential for VAE training [14].

We use mean square error (MSE) for Lrec, which as
we show in Sec. A 2 h, respects the necessary property of
SO(3)-pairwise invariance, ensuring that the model remains
rotationally equivariant. Hyperparameters α and β control the
trade-off between reconstruction accuracy and latent space
regularization [26]; see Sec. A 2 f for details on tuning of these
rates during training.

As a result of this training, H-(V)AE learns a disentangled
latent space consisting of a maximally informative invari-
ant (� = 0) component z of arbitrary size, as well as three
orthonormal vectors (� = 1), which represent the global 3D
orientation of the object and reflect the coordinate frame of
the input tensor. Crucially, the disentangled nature of the latent
space is respected at all stages of training, and is guaranteed
by the model’s rotational equivariance. We empirically ver-
ify the equivariance of our model up to numerical errors in
Table S1 within the Supplemental Material (SM) [28].

Invariant conditioning. Optionally, H-VAE can be made to
model data distributions conditioned on some variable c. A
conditional H-VAE (H-CVAE) can be used to sample data
from a conditional distribution x ∼ p(x|c) (e.g., sampling
handwritten digits conditioned on the digit identity) [29].
Furthermore, conditioning makes it so that the latent represen-
tation learned by H-CVAE is devoid of information pertaining
to the conditioning variable (e.g., a latent representation of
handwritten digits from a model conditioned on the digit iden-
tity would not contain information about the digit identity). In
practice, conditioning is applied by simply adding c as input
to both the encoder and the decoder. In our experiments, we
only condition on the invariant variables by adding them as
� = 0 features.

Architecture of a Clebsch-Gordan block. Each Clebsch-
Gordan block (CG bl.) consists of a trained linear layer
[linearity (Lin)], an efficient tensor product (ETP) to inject
nonlinearity in the network, and normalization steps by [batch
norm (BN)] and [signal norm (SN)] to respectively speed-up
convergence and stabilize training.

Linearity (Lin). A linear layer acts on steerable tensors by
learning degree-specific linear operations. Linear layers are

023006-4

HOLOGRAPHIC-(V)AE: AN END-TO-END … PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

trained in that we learn weight matrices specific to each degree
�, and use them to map across degree-� feature spaces by
learning linear combinations of degree-� features in the input
tensor. Specifically, let us consider a vector h�, containing
features of the same degree �. We train the network to learn
the weight matrix W� to map h� to h′

� between the network’s
layers, i.e., h′

� = W�h� (see Sec. A 2 a for details).
Nonlinearity with efficient tensor product (ETP). One key

feature of neural networks is applying nonlinear activations,
which enable a network to approximately model complex
and nonlinear phenomena. As noted above, we use the
Clebsch-Gordan tensor product to inject rotationally equiv-
ariant nonlinearities in the network. Specifically, within a
Clebsch-Gordan block the output of a linear layer is acted
upon by bilinear CG tensor product, as was originally pre-
scribed by in Ref. [6] for SO(3)-equivariant convolutional
neural networks. This bilinear operation enables information
flow between features of different degrees, which is neces-
sary for constructing expressive models, and for transferring
higher-� information to � = 0 in H-(V)AE’s invariant encoder,
and back in the decoder.

To significantly reduce the computational and memory
costs of the tensor products, we perform efficient tensor
products (ETPs) by leveraging some of the modifications pro-
posed in Ref. [30]. Specifically, we compute tensor products
channel-wise, i.e., only between features belonging to the
same channel, and we limit the connections between fea-
tures of different degrees. We found these modifications to
be necessary to efficiently work with data encoded in large
number of channels C and with large maximum degree L;
see Sec. A 2 b for details, and Table S2 within the SM [28]
for an ablation study showing the improvement in parameter
efficiency provided by the ETP.

Batch and signal norm. We normalize intermediate tensor
representations degree-wise and channel-wise by the batch-
averaged norms of the features, as initially proposed in
Ref. [6]; see Fig. 1(b), Sec. A 2 c, and Fig. S1 within the
SM [28] for details. We found using batch norm alone often
caused activations to explode in the decoder during evaluation.
Thus, we introduce signal norm, whereby we divide each
steerable tensor by the square root of its total norm, defined
as the sum of the norms of each of the tensor’s features, and
apply a degree-specific affine transformation for added flex-
ibility; see Sec. A 2 d for mathematical details. Signal norm
can be seen as a form of the classic layer normalization that
respects SO(3) equivariance [31].

IV. RESULTS

A. Rotated MNIST on the sphere

We extensively test the performance of H-(V)AE on the
MNIST-on-the-sphere dataset [32]. Following Ref. [4], we
project the MNIST dataset, which includes images of hand-
written numbers, onto the lower hemisphere of a discrete unit
sphere. We consider two variants of training/test set splits,
NR/R and R/R, differing in whether the training/test images
have been randomly rotated (R) or not (NR). For each dataset,
we map the images to steerable tensors via the Zernike Fourier
transform (ZFT) in Eq. (2) and train models with different

different sizes of latent spaces (z = 16 and z = 120) and
model types (AE and VAE). In all cases the model architecture
follows from Fig. 1(c); see Sec. A 5 b for details.

For variational models, we tune the regularization strength
β to maximize the expected quality of the generated samples.
We define samples to be of high quality if (i) they can be
correctly classified by a classifier trained on real data, and
(ii) they are diverse enough, indicating that the model is not
overfitting; we found that there is a trade-off between classi-
fication accuracy and the variability in the generated samples
(Fig. S4 within the SM [28]). We leverage H-CVAE models
conditioned with digit identity to generate digit-specific im-
ages associated with each value of β. See Sec. A 5 b for more
details. Using our procedure we select values of β = 0.6 and
β = 2.0 for H-VAE models with latent space sizes of z = 16
and z = 120, respectively.

We use the metric cosine loss to measure a model’s re-
construction ability. Cosine loss is a normalized dot product
generalized to operate on pairs of steerable tensors (akin to
cosine similarity), and modified to be interpreted as a loss.
Importantly, unlike MSE, cosine loss is dimensionless, and
therefore, comparable across different datasets and encodings
of data in tensors of different sizes (network hyperparame-
ters), though it is agnostic to magnitudes and thus unfit for
training; see Sec. A 2 j for details.

All trained models achieve very low reconstruction cosine
loss (Table I) with no significant difference between training
modes, indicating that the models successfully leverage SO(3)
equivariance to generalize to unseen orientations. Predictably,
AE models have lower reconstruction loss than VAE models
[since they do not need to find a trade-off between reconstruc-
tion error and KL divergence, Eq. (6)], and so do models with
a larger latent space. Nonetheless, H-VAE achieves reliable
reconstructions, as shown in Fig. 2(a) and Table I.

Interpretability of the latent space is also an important
feature of a model. In Fig. 3 we provide empirical evidence
of the disentanglement of the latent space into a rotation-
invariant component and a rotation matrix. All eight models
produce an invariant latent space that naturally clusters by
digit identity, shown qualitatively for four of the models in
Figs. 2(b) and Fig. S2 within the SM [28]. Any two sets
of digits whose clusters are neighboring in the latent space
[Fig. 2(b)] are digits that can be more easily confused with
each other. The possibility of confusion is further exacerbated
when considering that the latent embeddings used to describe
the digits are rotationally invariant. Indeed, a handwritten 6
and a handwritten 9 are likely to look very similar to each
other up to an arbitrary rotation of each. 4′s and 9′s too can
be easily confused depending on how they are written. 0′s, on
the other hand, are very different from any of the other digits,
and so are 1′s, no matter how they are rotated. A qualitatively
consistent pattern for separation of digit clusters is observed
in the latent space of the Rot-Inv AE [33].

We measure the extent to which the invariant latent space
forms clusters based on digit identity by applying K-means
clustering (with 10 centroids) to the embeddings; Table I
shows the standard metrics of purity [34] and V-measure [35]
for these clusters. All trained models achieve much better
clustering metrics compared to Rot-Inv AE [33], with the VAE
models consistently outperforming the AE models. Crucially,

023006-5

VISANI, PUN, ANGAJI, AND NOURMOHAMMAD PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

TABLE I. Performance metrics on MNIST-on-the-sphere and Shrec17. Reconstruction Cosine loss, clustering metrics (purity and V-
measure), classification accuracy in the latent space using a linear classifier, and retrieval metrics (Shrec17 only) are shown. For MNIST,
we follow Ref. [4] to create the MNIST-on-the-sphere dataset by projecting data from the planar MNIST on a discrete unit sphere, using
the Driscoll-Healey method with a bandwidth (bw) of 30. We then map the images to steerable tensors via the Zernike Fourier transform
(ZFT) with L = 10, and a constant radial function Rn

� = 1, resulting in tensors with 121 coefficients. We train eight models with different
sizes of latent spaces z (16 vs 120) and model types (AE vs VAE). For Shrec17, we follow Ref. [4] and project surface information from each
model onto an enclosing Driscoll-Healey spherical grid with a bandwidth of 90 via a ray-casting scheme, generating spherical images with 6
channels. We then apply the ZFT with L = 14 and a constant radial function Rn

� = 1 to each channel individually, resulting in a tensor with
1350 coefficients. We only report scores presented in the corresponding papers, and only the best-performing supervised method from the
literature; see Fig. S14 within the SM [28] for visualization of the latent embeddings for the Shrec17 dataset.

Dataset Type Method z bw Cosine Purity V-meas. Class. Acc. P@N R@N F1@N mAP NDCG

Supervised [30] NR/R 30 0.993
[33] NR/R 120 30 0.40 0.35 0.894

H-AE NR/R (Ours) 120 30 0.017 0.59 0.51 0.920
H-AE R/R (Ours) 120 30 0.015 0.65 0.52 0.916

H-AE NR/R (Ours) 16 30 0.031 0.66 0.55 0.850
MNIST Unsupervised

H-AE R/R (Ours) 16 30 0.030 0.61 0.52 0.844
H-VAE NR/R (Ours) 120 30 0.039 0.73 0.61 0.923
H-VAE R/R (Ours) 120 30 0.041 0.70 0.60 0.923

H-VAE NR/R (Ours) 16 30 0.068 0.73 0.60 0.878
H-VAE R/R (Ours) 16 30 0.067 0.69 0.57 0.855

[7] 128 0.717 0.737 0.685
Supervised

[30] 128 0.719 0.710 0.708 0.679 0.758
Shrec17

[33] 120 30 0.41 0.34 0.578 0.351 0.361 0.335 0.215 0.345
Unsupervised H-AE (Ours) 40 90 0.130 0.50 0.41 0.654 0.548 0.569 0.545 0.500 0.597

H-VAE (Ours) 40 90 0.151 0.52 0.42 0.631 0.512 0.537 0.512 0.463 0.568

the built-in SO(3) equivariance enables models trained on the
nonrotated images to seamlessly generalize to images that
have been randomly rotated, as seen by the equivalent per-
formance between models trained and evaluated on the NR/R
and R/R splits in Table I.

We also train a linear classifier (LC) to predict digit identity
from invariant latent space descriptors, achieving a better ac-
curacy compared to Rot-Inv AE with the same latent space
size. We further observe marginal improvements of VAE
over AE models in terms of classification accuracy. Using

FIG. 2. H-VAE on MNIST-on-the-sphere. Evaluation on rotated digits for an H-VAE trained on nonrotated digits with z = 16. (a) Original
and reconstructed images in the canonical frame after inverse transform from Fourier space. The images are projected onto a plane. Distortions
at the edges and flipping are side-effects of the projection. (b) Visualization of the latent space via 2D UMAP [27]. Data points are colored
by digit identity. (c) Cherry-picked images generated by feeding the decoder invariant embeddings sampled from the prior distribution and
the canonical frame. (d) Example image trajectory by linearly interpolating through the learned invariant latent space. Interpolated invariant
embeddings are fed to the decoder alongside the canonical frame. MNIST-on-the-sphere dataset is created by projecting data from the planar
MNIST on a discrete unit sphere, using the Driscoll-Healey (DH) method with a bandwidth (bw) of 30 [4].

023006-6

HOLOGRAPHIC-(V)AE: AN END-TO-END … PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

FIG. 3. Visual proof of the disentanglement in the latent space of MNIST-on-the-sphere. For each row, the invariant embedding z is held
fixed, and a different frame (i.e., the rotation matrix) is used. Frames are sampled randomly and differ across rows, with the exception of
the first column, which is always the identity frame. Then, z and the frame are fed to the decoder and the Inverse Fourier Transform is used
to generate the reconstructed spherical image, which is projected onto a plane for the ease of visualization. Modulo the distortions given by
projecting the image onto a plane, it is clear that the invariant embedding contains all semantic information, and the frame solely determines
the orientation of the image.

a K-nearest neighbor (KNN) classifier instead of LC further
improves performance on the z = 16 models (Table S3 within
the SM [28]).

As H-VAE is a generative model, we generate random
spherical images by sampling invariant latent embeddings
from the prior distribution, and observing diversity in digit
type and style [Fig. 2(c) and Figs. S7 and S8 within the SM
[28]). We further assess the quality of the invariant latent
space by generating images via linear interpolation of the
invariant embeddings associated with two test images. The
interpolated images present spatially consistent transitions
[Fig. 2(d) and Fig. S13 within the SM [28]), which is a sign
of a semantically well-structured latent space.

To understand the meaning of the learned frames, we ask
ourselves what the output of the decoder looks like if the
frame is held constant; for simplicity, we set it equal to the
3 × 3 identity matrix. We find that the reconstructed elements
tend to be aligned with each other and hypothesize that the
model is implicitly learning to maximize the overlap between
training elements, providing empirical evidence in Fig. 4.
We call this frame the “canonical” frame. We note that it is
possible to rotate original elements to the canonical frame
thanks to the equivalence between the frame we learn and the
rotation matrix within our implementation; in fact in our ex-
periments, when visualizing reconstructed or sampled MNIST
images, we first rotate them to the canonical frame for ease of
visualization.

B. Shrec17

The Shrec17 dataset consists of 51k colorless 3D mod-
els belonging to 55 object classes, with a 70/10/20
train/valid/test split [38]. We use the variant of the dataset in
which each object is randomly rotated. Converting 3D shapes
into spherical images preserves topological surface informa-
tion, while significantly simplifying the representation. We
follow Ref. [4] and project surface information for each image
onto an enclosing spherical grid via a ray-casting scheme and
apply ZFT [Eq. (2)] on these transformed images.

We train an AE and a VAE model on ZFT transformed
data (Sec. A 5 c); Fig. S5 within the SM [28] shows the
resulting latent embeddings for both H-AE and H-VAE on
this dataset. Similarly to the MNIST dataset, we compute
cosine loss, clustering metrics, and classification accuracy
via a linear classifier. We also compute the standard Shrec17
object retrieval metrics via the latent space linear classifier’s
predictions (see [38] for a description of the retrieval metrics).
H-AE achieves the best classification and retrieval results
for autoencoder-based models, and is competitive with su-
pervised models despite the lower grid bandwidth and the
small latent space (Table I). Using KNN classification instead
of a linear classifier further improves performance (Table S4
within the SM [28]). H-VAE achieves slightly worse classifi-
cation results but better clustering metrics compared to H-AE.
While reconstruction loss is low, there is still significant mar-
gin of improvement.

023006-7

VISANI, PUN, ANGAJI, AND NOURMOHAMMAD PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

AE - NR/R AE - R/R VAE - NR/R VAE - R/R

Trained with

all digits

Trained with

1s and 7s only

FIG. 4. H-(V)AE implicitly learns to maximally overlap training images on MNIST-on-the-sphere. For each of the four models with
z = 16, we train a version using only images containing 1s and 7s. For each of the resulting eight models, we visualize the sum of training
images of digits 1 and 7, when rotated to the canonical frame. We compute the sums of images with the same digit, and overlay them with
different colors for ease of visualization. We test the hypothesis as whether H-(V)AE learns frames that align the training images such that
they maximally overlap; we do so in two ways. First, if the hypothesis were true, all canonical images of the same digit should maximally or
near-maximally overlap—since they have very similar shape—and thus, their overlays would look like a “smooth” version of that digit. Indeed,
we find this statement to be true for all models irrespective of their training strategy. Second, we consider the alignment of images of different
digits. We take 1s and 7s as examples given their similarity in shape. If the hypothesis were true, models trained with only 1s and 7s should
align canonical 1s along the long side of canonical 7s; indeed we find this to be the case for the variational models, for which the embeddings
are believed to be more semantically meaningful and are more robust to noise. The same alignment between 1s and 7s, however, does not
necessarily hold for models trained with all digits. This is because maximizing overlap across a set of diverse shapes does not necessarily
maximize the overlap within any independent pair of such shapes. Indeed, we find that canonical 1s and canonical 7s do not overlap optimally
with each other for models trained with all digits. We note that these tests do not provide a formal proof, but rather empirical evidence of the
characteristics of frames learned by H-(V)AE on the MNIST-on-the-sphere task.

C. Structural embeddings of amino acid neighborhoods
to predict function

Here, we provide a strong use case for H-(V)AE in struc-
tural biology. Specifically, we learn expressive embeddings
for amino acids neighborhoods within protein structures that
can be used to learn protein function.

Embeddings of amino acid conformations. As a first, prope-
deutic step, we train H-(V)AE to reconstruct the 3D structure
of individual amino acids, represented as atomic point clouds,
extracted from protein structures in the Protein Data Bank
(PDB) [39]. Residues of the same type have different con-
formations and naturally have noisy coordinates, making this
problem a natural benchmark for our rotationally equivariant
method.

We represent an amino acid by atom-type-specific clouds
(C, O, N and S; we exclude H) centered at the residue’s
Cα and compute the ZFT [Eq. (2)] with L = 4 and N = 20
within a radius of 10 Å from the residue’s Cα, and concatenate
features of the same degree �, resulting in a tensor with 940
coefficients. We train several H-AE and H-VAE with different
architectures, but all with the latent space sizes z = 2; see
Sec. A 5 d for details.

We consistently find that the latent space clusters by amino
acid conformations [Fig. 5(a)], with sharper cluster separa-
tions as more training data is added (Figs. S15 and S16 within
the SM [28]). We find that test reconstruction loss decreases
with more training data but the reconstruction is accurate even

TABLE II. Results on the Ligand Binding Affinity task. Pre-
diction accuracies using H-AE embeddings with linear regression
(L.R.), and random forest (R.F.) regression are benchmarked against
other methods. We choose the H-AE model with best RMSD on
validation split, which is the model with L = 6 and z = 128 for
both linear regression and random forest. For each set of predictions,
we use an ensemble of ten regressors as we noted a small but
consistent improvement in performance. Best scores are in bold and
second-best scores are underlined. H-AE+R.F. delivers state-of-the-
art predictions. Methods are ordered by date of release; see Table IV
for a more extended comparison.

Ligand Binding Affinity
30% Similarity

Model RMSD ↓ Pearson’s r ↑ Spearman’s r ↑
DeepDTA 1.565 0.573 0.574
3DCNN 1.414 ± 0.021 0.550 0.553
GNN 1.570 ± 0.025 0.545 0.533
MaSIF 1.484 ± 0.018 0.467 ± 0.020 0.455 ± 0.014
EGNN 1.492 ± 0.012 0.489 ± 0.017 0.472 ± 0.008
GBPNet 1.405 ± 0.009 0.561 0.557
EGNN + PLM 1.403 ± 0.013 0.565 ± 0.016 0.544 ± 0.005
ProtMD 1.367 ± 0.014 0.601 ± 0.036 0.587 ± 0.042
H-AE + L.R. 1.397 ± 0.019 0.560 ± 0.017 0.568 ± 0.018
H-AE + R.F. 1.332 ± 0.012 0.612 ± 0.009 0.619 ± 0.009

023006-8

HOLOGRAPHIC-(V)AE: AN END-TO-END … PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

FIG. 5. Structural embeddings to predict protein-ligand binding affinities with H-(V)AE. (a) H-VAE was trained to reconstruct the Fourier
representation of 3D atomic point clouds representing amino acids (colors). The invariant latent space clusters by amino acid conformations.
The highlighted clusters for PHE and TYR contain residue pairs with similar conformations; TYR and PHE differ by one oxygen at the end
of their benzene rings. We compare conformations by plotting each residue in the standard backbone frame (right); x and y axes are set by
the orthonormalized Cα-N and Cα-C vectors, and z axis is their cross product. For this plot, 1000 amino acids were used as training data,
with network parameters: β = 0.025 and z = 2. (b) (Left) An example protein neighborhood (point cloud of atoms) of 10 Å around a central
residue, used to train the H-AE models, is shown. (Right) 2D UMAP visualization of the 128-dimensional invariant latent space learned by
H-AE trained on the protein structure neighborhoods with L = 6 can separate neighborhoods by the secondary structure of their focal amino
acid (colors). A linear classifier trained on 300 000 latent embeddings predicts secondary structure of the focal amino acid with 90% accuracy;
see Figs. S18 and S19 within the SM [28] for a more detailed analysis of this latent space. Each point represents a neighborhood; see Sec. A 5 e
for details on the network architecture and training procedure. (c) We use H-AE to extract the residue-level SO(3)-invariant embeddings in the
binding pocket of a protein-ligand structure complex (data from PDBbind [36]). We then sum over these embeddings to form an SE(3)-invariant
pocket embedding that is used as an input to a standard machine learning model to predict the binding affinity between the protein and the
ligand. (d) The predictions on the protein-ligand binding affinities from (c) is shown against the true values for the training (left) and the
test (right) sets. We use the data split provided by ATOM3D [37], which devises training and test sets respectively containing 3507, and 490
protein-ligand complexes, with maximum 30% sequence similarly between training and test proteins; see Table II for a comparison against
state-of-the-art methods.

with little training data (from 0.153 cosine loss with 400 train-
ing residues to 0.034 with 20 000); see Table S5 within the SM
[28]. A similar trend is observed for KNN-based classification
accuracy of residues (from 0.842 with 400 training residues to
0.972 with 20 000); (Table S5 within the SM [28]). Notably,
an untrained model, while achieving random reconstruction
loss, still produces an informative invariant latent space (0.629
residue type accuracy), suggesting that the forced SO(3) in-
variance grants a “warm start” to the encoder. We do not
find significant improvements in latent space classification
by training with a variational objective, and present ablation
results in Table S6 within the SM [28].

Embeddings of amino acid structure neighborhoods. The
structural neighborhood surrounding an amino acid provides
a context for its function (e.g., whether it takes part in in-
teraction with other proteins at a protein-protein interface or
not). Indeed, our previous study has shown that supervised

learning algorithms can accurately classify focal amino acids
based on the composition of their surrounding neighborhoods
[40]. Here, we train H-(V)AE to reconstruct residue-specific
protein neighborhoods—which we define as the point clouds
of atoms within 10 Å of a residue’s Cα—across the protein
universe [Fig. 5(a)]. We extract these protein neighborhoods
from all proteins in ProteinNet [41]. We then construct each
neighborhood’s Fourier representation by computing the ZFT
[Eq. (2)] over the point clouds associated with each atom type
within the neighborhood (C, N, O, and S) and concatenating
atom-specific features of the same degree �.

We train several H-AE models with varying architectures
with different maximum spherical degree L and latent space
sizes z (see details in Sec. A 5 e); note that we do not ex-
periment with variational models for this task. H-AE shows
strong reconstruction ability, but its accuracy worsens with
smaller latent space sizes and higher maximum spherical

023006-9

VISANI, PUN, ANGAJI, AND NOURMOHAMMAD PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

degree L (Table S7 within the SM [28]). Notably, the learned
latent space is smoothly structured according to the geometric
features of the neighborhoods, such as the presence of differ-
ent secondary structure components [Fig. 5(b), and Fig. S18
within the SM [28]) and the number of atoms comprising a
neighborhood (Fig. S19 within the SM [28]).

Predicting protein-ligand binding affinity (LBA). The bind-
ing interaction between proteins and ligands should be
primarily determined by the composition of the protein’s
binding pocket in complex with the ligand. Therefore, we
hypothesized that the inferred protein structure embeddings
[Fig. 5(b)] should contain information about protein-ligand
binding interactions, if the neighborhood is defined along the
binding pocket and contains atoms from the ligand. To test
this hypothesis, we follow the pipeline in Fig. 5(c). Specif-
ically, given a protein-ligand structure complex, we identify
residues in the binding pocket (i.e., residues with C-α within
10 Å of the ligand) and extract their structure neighborhoods,
which include atoms from both the protein and the ligand.
We then pass the residue-centered neighborhoods of the bind-
ing pocket through a trained H-AE’s encoder to extract their
rotationally invariant embeddings. We highlight that, since
the neighborhood centers are well defined at the residues’
Cα′s, the embeddings are not only rotationally invariant about
their center, but also translationally invariant with the respect
to translations of the whole system, i.e., they are effectively
SE(3) invariant.

Since protein-ligand binding affinity is an extensive quan-
tity in the number of interacting residues, we construct a
pocket embedding by summing over residue-level embed-
dings; the resulting pocket embedding is SE(3) invariant,
reflecting the natural symmetry of the LBA task. We use
these pocket embeddings as feature vectors to train simple
machine learning models to predict protein-ligand binding
affinities.

To test the performance of our method, we use the LBA
dataset in ATOM3D [37] that provides the PDB structure of
the protein-ligand complex together with either the measured
dissociation constant Kd or the inhibition constant Ki; see
Sec. A 6 for further details. To map between the learned
pocket embeddings to the log dissociation (or inhibition)
constants we train both a simple linear and a random forest
regressor on a training sets provided by ATOM3D. Fig-
ure 5(d) shows the performance of the model with the random
forest regressor and Table II provide a detailed benchmark
of our methods against prior approaches. The linear model
achieves competitive results, whereas the random forest re-
gressor achieves state-of-the-art.

These results demonstrate the utility of unsupervised
learning for residue-level protein structure representations in
predicting complex protein functions. Most of the competing
structure-based methods for LBA (Table II) learn complex
graph-based functions on top of simple atomic representation,
whereas our method uses simpler machine learning models
over rich residue-level representations. Notably, ProtMD (the
method competitive to ours) performs a pretraining scheme
using expensive molecular dynamics simulations that informs
the model about conformational flexibility, information that
our method does not have access to. Given the computational
cost of training complex atom-level graph-based models, our

residue-based approach can offer a more viable alternative for
modeling large protein interfaces.

V. DISCUSSION

In this paper, we have developed the first end-to-end
SO(3)-equivariant unsupervised algorithm, termed “holo-
graphic (variational) autoencoder” [H-(V)AE], suitable for
data distributed in three dimensions around a given central
point. The model learns an invariant embedding describing
the data in a “canonical” orientation alongside an equivariant
frame describing the data’s original orientation relative to the
canonical one.

Prior studies have attempted to learn representations that
are invariant to certain transformations. For example, in
Refs. [42,43] general “shape” embeddings are learned by
characterizing a separate “deformation” embedding. How-
ever, these networks are not explicitly equivariant to the
transformations of interest. Others proposed to learn an ex-
actly invariant embedding alongside an approximate (but not
equivariant) group action to align the input and the recon-
structed data. For example, Mehr et al. [44] learns in quotient
space by pooling together the latent encodings of copies of
the data that have been transformed with sampled group ac-
tions, and back-propagate the minimum reconstruction loss
between the decoded element and the transformed copies of
the data. This approach is best suited for discrete and finite
groups, for which it does not require approximations, and it is
computationally expensive as it is akin to data augmentation.
Lohit et al. [33] construct an SO(3)-invariant autoencoder for
spherical signals by learning an invariant latent space and
minimizing a loss, which first finds the rotation that best aligns
the true and reconstructed signals. Although this approach
is effective for nondiscrete data, it still manually imposes
rotational invariance, and can only reconstruct signals up to
a global rotation. In contrast, H-(V)AE is fully equivariant
and only requires simple MSE for reconstruction of data in
its original orientation.

A small body of work went beyond invariance to develop
equivariant autoencoders. Several methods construct data and
group-specific architectures to autoencode data equivariantly,
learning an equivariant representation in the process [45,46].
Others use supervision to extract class-invariant and class-
equivariant representations [47]. A recent theoretical paper
proposes to train an encoder that encodes elements into an
invariant embedding and an equivariant group action, then
using a standard decoder that uses the invariants to reconstruct
the elements in a canonical form, and finally applying the
learned group action to recover the data’s original form [15].
Our method in SO(3) is closely related to this paper, with the
crucial differences that our network is end-to-end rotationally
equivariant in that we use an equivariant decoder, and that
we learn to reconstruct the Fourier encoding of the data.
A more detailed comparison of the two approaches and the
benefits of our fully equivariant approach can be found in the
Appendix A 3 and in Table III.

Recently, generative models for 3D atomic point clouds
that are equivariant to Euclidean transformation have been
developed for molecules [11,16] and protein [17,18], us-
ing normalizing flows [11], and diffusion processes [16–18].

023006-10

HOLOGRAPHIC-(V)AE: AN END-TO-END … PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

TABLE III. Performance comparison between our H-(V)AE and a H-(V)AE with Ref. [15]’s nonequivariant decoder formulation, on the
MNIST-on-the-sphere dataset. The nonequivariant decoders are constructed as simple MLPs with SiLU nonlinearities, with the following
hidden layer sizes: [32, 64, 128, 160, 256]. We keep the number of parameters approximately the same to make model comparison fair, but we
do not tune the architecture of the invariant decoders. All other training details are kept the same (Sec. A 5).

Method z Speed MSE Cosine Purity V-meas. LC Class. Acc. KNN Class. Acc.

H-AE NR/R [ours] 16 1.0 1.2 × 10−3 0.031 0.66 0.55 0.850 0.902
H-AE unconst. decoder NR/R 16 1.3 1.1 × 10−3 0.028 0.62 0.53 0.838 0.907
H-VAE NR/R [ours] 16 1.0 2.8 × 10−3 0.068 0.73 0.60 0.878 0.897
H-VAE unconst. decoder NR/R 16 1.3 2.9 × 10−3 0.073 0.68 0.56 0.850 0.872

Our paper is partly related to these, but with some crucial
differences. First, our method is not limited to only point
clouds, but is designed for general 3D objects with a spec-
ified center, including spherical images. Second, the use of
an autoencoder architecture makes our method suitable for
learning compressed and low-dimensional representation of
complex data. Importantly, this reduced representations can
be used in semisupervised learning tasks when annotated
data is scarce, such the task to predict protein-ligand binding
affinity. By contrast, the latent space of normalizing flows
and diffusion-based models must have the same size as the
data, making them unsuitable for semisupervised learning
purposes.

There is also a diverse body of literature on using Fourier
transforms and and CG tensor products to construct repre-
sentations of atomic systems that are invariant/equivariant
to euclidean symmetries [48–50], but without reducing the
dimensionality of the representations in a data-driven way.

H-(V)AE’s learned embeddings are highly expressive. For
example, we used the learned invariants to achieve state-of-
the-art unsupervised clustering and classification results on
various spherical image datasets. By making our model vari-
ational in its invariant latent space, we enhanced the quality
of clustering and made the model generative. Our model is
defined fully in spherical Fourier space, and thus, can reach a
desired expressiveness without a need for excessive computa-
tional resources.

H-(V)AE also produces rich residue-level representations
of local neighborhoods in protein structures, which we use
as embeddings for downstream structure-based tasks such as
ligand binding affinity prediction. Indeed, H-(V)AE represen-
tations paired with a simple random forest regressor achieve
state-of-the-art results on learning the binding affinity be-
tween proteins and small molecule ligands.

More broadly, we expect that H-(V)AE can be used to
extract rich, symmetry-aware features from local neighbor-
hoods in spherical images and complex 3D objects, to be
used in more complex downstream tasks that benefit from the
symmetry constraints. For example, we expect our method
can be leveraged for modeling diffusion MRI data, for
which rotation-equivariant methods have recently proven to
be highly beneficial [51]. In structural biology, we expect
our method to be useful for coarse-graining full-atom repre-
sentations of protein structures—or other biomolecules—to
facilitate structure-based predictions of function. For example,
a large protein graph can be coarse grained by substituting its
full-atom representation with rich embeddings of local struc-
tural neighborhoods learned from an unsupervised model.

With an added supervised step, these coarse-grained embed-
dings can be leveraged to predict complex protein functions,
as we show for predicting ligand binding affinity. This ap-
proach is akin to using protein embeddings for sequence data,
learned by language models, to inform (few-shot) predictions
for protein function [52].

Currently H-(V)AE is limited by its ability to reconstruct
features associated with higher spherical degrees (types) �

(Fig. S17 within the SM [28]), indicating loss of information
for the fine-grained features of the data. This may be due to
the fact that in our current architecture features associated
with all types are simultaneously processed to form the set
of invariants (� = 0) in the latent space. We hypothesize that
information originating from lower � types could be more
easily processed into the � = 0 features, and thus, they may
be more preferentially represented in the invariants of the
latent space. This information integration imbalance could be
remedied by developing a multiscale autoencoder, similar to
Refs. [20,21], which separately encodes and processes the
features associated with different types. We leave the pursuit
of this idea to future work.

ACKNOWLEDGMENTS

This work has been supported by the National Institutes of
Health award R35 GM142795, the National Science Founda-
tion award (CAREER award; grant No: 2045054), the Royalty
Research Fund from the University of Washington (Grant
No. A153352), the Microsoft Azure Award from the eScience
institute at the University of Washington, and the Allen School
Computer Science Engineering Research Fellowship from the
Paul G. Allen School of Computer Science & Engineering at
the University of Washington. This work is also supported, in
part, through the Departments of Physics, the Computer Sci-
ence and Engineering, and the College of Arts and Sciences at
the University of Washington.

APPENDIX

1. Expanded background on SO(3) equivariance

a. Invariance and Equivariance

Let f : X → Y be a function between two vector spaces
and G a group, where G acts on X and via representa-
tion DX and on Y via representation DY . Then, f is said
to be G-equivariant iff f (DX (g)x) = DY (g) f (x),∀x ∈ X ∧
∀g ∈ G. We note that invariance is a special case of equiv-
ariance where DY (g) = I,∀g ∈ G.

023006-11

VISANI, PUN, ANGAJI, AND NOURMOHAMMAD PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

b. Group representations and the irreps of SO(3)

Groups can concretely act on distinct vector spaces via dis-
tinct group representations. Formally, a group representation
defines a set of invertible matrices DX (g) parameterized by
group elements g ∈ G, which act on vector space X . As an
example, two vector spaces that transform differently under
the 3D rotation group SO(3)—and thus have different group
representations—are scalars, which do not change under the
action of SO(3), and 3D vectors, which rotate according to
the familiar 3D rotation matrices.

A special kind of representation for any group are the
irreducible representations (irreps), which are provably the
“smallest” nontrivial (i.e., they have no nontrivial group-
invariant subspaces) representations. The irreps of a group are
special because it can be proven that any finite-dimensional
unitary group representation can be decomposed into a direct
sum of irreps [24]. This applies to SO(3) as well, whose irreps
are the Wigner D-matrices, which are (2� + 1 × 2� + 1)-
dimensional matrices, each acting on a (2� + 1)-dimensional
vector space,

D�(g) for � = 0, 1, 2, ... (A1)

Therefore, every element of the SO(3) group acting on any
vector space can be represented as a direct sum of Wigner
D-matrices.

c. Steerable features

A G-steerable vector is a vector x ∈ X that under some
transformation group G, transforms via matrix-vector multi-
plication DX (g)x; here, DX (g) is the group representation of
g ∈ G. For example, a vector in 3D Euclidean space is SO(3)
steerable since it rotates via matrix-vector multiplication using
a rotation matrix.

However, we can generalize 3D rotations to arbitrary vec-
tor spaces by employing the irreps of SO(3). We start by
defining a degree-� feature as a vector that is SO(3) steer-
able by the �th Wigner D-matrix D�. Given the properties
of irreps, we can represent any SO(3)-steerable vector as the
direct sum of two or more independent degree-� features,
e.g., x = x�1 ⊕ x�2 ⊕ ... ⊕ x�n . The resulting vector, which we
refer to as a tensor to indicate that it is composed of multiple
individually steerable vectors, is SO(3) steerable via the direct
sum of Wigner D-matrices of corresponding degrees. This
tensor is a block-diagonal matrix with the Wigner D-matrices
along the diagonal, D(g) = D�1 (g) ⊕ D�2 (g) ⊕ ... ⊕ D�n (g).

d. Spherical harmonics and the Spherical Fourier Transform

Spherical harmonics are a class of functions that form a
complete and orthonormal basis for functions f (θ, φ) defined
on a unit sphere; θ and φ are the azimuthal and the polar
angles in the spherical coordinate system. In their complex
form, spherical harmonics are defined as

Y�m(θ, φ) =
√

2n + 1

4π

(n − m)!

(n + m)!
eimφPm

� (cos θ) (A2)

where � is a non-negative integer (0 � �) and m is an integer
within the interval −� � m � �. Pm

� (cos θ) is the Legendre

polynomial of degree � and order m, which together with the
complex exponential eimφ define sinusoidal functions over the
angles θ and φ in the spherical coordinate system. Spherical
harmonics are used to describe angular momentum in quan-
tum mechanics.

Notably, spherical harmonics also form a basis for the
irreps of SO(3), i.e., the Wigner D-matrices. Specifically, the
SO(3) group acts on the �th spherical harmonic via the �th
Wigner D-matrix,

Y�m(θ, φ)
g∈SO(3)−−−−→

�∑
m′=−�

Dm′m
� (g)Y�m′ (θ, φ). (A3)

Therefore, any data encoded in a spherical harmonics basis is
acted upon by the SO(3) group via a direct sum of the Wigner
D-matrices corresponding to the basis functions being used.
Using our nomenclature, any such data encoding constitutes
a steerable tensor. We can thus map any function f (θ, φ)
defined on a sphere into a steerable tensor using the spherical
Fourier transform (SFT),

f̂�m =
∫ 2π

0

∫ π

0
f (θ, φ)Y�m(θ, φ) sin θ dθ dφ. (A4)

The signal can be reconstructed in the real space using the
corresponding inverse Fourier transform. For computational
purposes, we truncate Fourier expansions at a maximum
angular frequency L, which results in an approximate recon-
struction of the signal f̃ (θ, ϕ) up to the angular resolution
allowed by L,

f̃ (θ, ϕ) =
L∑

�=0

�∑
m=−�

f̂�mY�m(θ, φ). (A5)

Here, f̂�m are the functions’ spherical Fourier coefficients.

e. Zernike polynomials and the Zernike Fourier transform

To encode a function ρ(r, θ, φ) with both radial and angu-
lar components, we use Zernike Fourier transform,

Ẑn
�m =

∫
ρ(r, θ, φ)Y�m(θ, φ)Rn

� (r) dV (A6)

where Rn
� (r) is the radial Zernike polynomial in 3D defined as

Rn
� (r) = (−1)

n−�
2

√
2n + 3

(n+�+3
2 − 1

n−�
2

)
|r|�

× 2F1

(
−n − 1

2
,

n + � + 3

2
; � + 3

2
; |r|2

)
. (A7)

Here, 2F1(·) is an ordinary hypergeometric function, and n is a
non-negative integer representing a radial frequency, control-
ling the radial resolution of the coefficients. Rn

� (r) is nonzero
only for even values of n − � � 0. Zernike polynomials form
a complete orthonormal basis in 3D, and therefore, can be
used within a Fourier transform to expand and retrieve any 3D
shape, if large enough � and n coefficient are used. We refer
to the Fourier transform of Eq. (A6) as the Zernike Fourier
transform (ZFT).

023006-12

HOLOGRAPHIC-(V)AE: AN END-TO-END … PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

To represent point clouds, a common choice for the func-
tion ρ(r) ≡ ρ(r, θ, φ) is the sum of Dirac δ functions centered
at each point,

ρ(r) =
∑

i∈points

δ(ρ(ri) − ρ(r)). (A8)

This choice is powerful because the forward transform has a
closed-form solution that does not require a discretization of
3D space for numerical computation. Specifically, the ZFT of
a point cloud follows

Ẑn
�m =

∑
i∈points

R�
n(ri)Y�m(θi, ϕi). (A9)

Similar to SFT, we can reconstruct the data using inverse
ZFT and define approximations by truncating the angular and
radial frequencies at L and N , respectively,

ρ̃(r, θ, ϕ) =
L∑

�=0

�∑
m=−�

N∑
n

Ẑn
�mRn

� (r)Y�m(θ, ϕ). (A10)

The use of other radial bases is possible within our framework,
as long as they are complete. Orthonormality is also desirable
as it ensures that each basis encodes different information,
resulting in a more efficient encoding of the coefficients. We
use Zernike polynomials following Ref. [53], which demon-
strates that encoding with Zernike polynomials result in a
faster convergence compared to the radial basis functions
localized at different radii, as well as most other orthogonal
harmonic bases, with the exception of Logan-Shepp. “Faster
convergence” indicates that fewer frequencies are required
to encode the same information. Reference [50] also uses
Zernike to construct invariant descriptors of atomic environ-
ments. However, this choice is not unique and other special
functions such as Bessel functions can be used to encode the
data [10].

2. Holographic-(V)AE (H-(V)AE) details

a. Linearity

Let us consider a feature h� containing C features of the
same degree �. h� can be represented as a C × (2� + 1) matrix
where each row constitutes an individual feature. Then, we
learn weight matrix W � ∈ RC×K that linearly maps h� to h� ∈
RK×(2�+1),

h� = W T
� h�. (A11)

b. Efficient Tensor Product (ETP)

Channel-wise tensor product nonlinearity. We effectively
compute C tensor products, each between features belonging
to the same channel c, and concatenate all output features
of the same degree. In other words, features belonging to
different channels are not mixed in the nonlinearity; the
across-channel mixing is instead done in the linear layer. This
procedure reduces the computational time and the output size
of the nonlinear layers with respect to the number of channels
C, from O(C2) for a “fully connected” tensor product down
to O(C). The number of learnable parameters in a linear layer
are proportional to the size of the output space in the preceding
nonlinear layer. Therefore, reducing the size of the nonlinear

output substantially reduces the complexity of the model and
the number of model parameters. This procedure also forces
the input tensor to have the same number of channels for all
degrees. We refer the reader to Ref. [30] for further details and
for a nice visualization of this procedure.

Minimum spanning tree (MST) subset for degree mixing. To
compute features of the same degree �3 using the CG tensor
product, pairs of features of varying degrees may be used, up
to the rules of the CG tensor product. Specifically, pairs of
features with any degree pair (�1, �2) may be used to produce
a feature of degree �3 as long as |�1 − �2| � �3 � �1 + �2.
Features of the same degree are then concatenated to produce
the final equivariant (steerable) output tensor.

Since each produced feature (often referred to as a “frag-
ment” in the literature [6,30]) is independently equivariant,
computing only a subset of them still results in an equivariant
output, albeit with lower representational power. Reducing
the number of computed fragments is desirable since their
computation cannot be easily parallelized. In other words,
to reduce complexity we should identify a small subset of
fragments that can still offer sufficient representational power.
In this paper we adopt the “MST subset” solution proposed
in [30], which adopts the following strategy: when computing
features of the same degree �3, exclude the degree pair (�0,
�2) if the (�0, �1) and the (�1, �2) pairs have already been
computed. The underlying assumption behind this solution is
that the last two pairs already contain some information about
the first pair, thus making its computation redundant.

The resulting subset of pairs can be efficiently computed
via the minimum spanning tree of the graph describing the
possible pairs used to generate features of a single degree �3,
given the maximum desired degree �max. As multiple such
trees exist, we choose the one minimizing the computational
complexity by weighting each edge (i.e., each pair) in the
graph accordingly [edge (�1, �2) gets weight (2�1 + 1)(2�2 +
1)]. The subset is also augmented to contain all the pairs
with same degree to inject more nonlinearity. This procedure
reduces the complexity in number of pairs with respect to �max

from O(�2
max)—when all possible pairs are used—down to

O(�max). We refer the reader to Ref. [30] for more details.

c. Batch Norm

Let us consider a batch of steerable tensors h, which we
index by batch b, degree �, order m and channel c. During
training, we compute a batch-averaged norm for each degree
� and each channel c as

Nc
� = 1

B

B∑
b=1

1

2� + 1

�∑
m=−�

(
ĥcb

�m

)2
. (A12)

Similar to standard batch normalization, we also keep a run-
ning estimate of the training norms Nc,tr(i)

� using momentum
ξ , set to 0.1 in all our experiments,

Nc,tr(i)
� = ξNc

� + (1 − ξ)Nc,tr(i−1)
� . (A13)

We then update the features of the steerable tensor using the
real batch-averaged norms during training, and the running

023006-13

VISANI, PUN, ANGAJI, AND NOURMOHAMMAD PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

batch-averaged norms during testing, together with a learned
affine transformation,

ĥcb
�m = ĥcb

�m√
Nc

�

wc
� training, (A14)

ĥcb
�m = ĥcb

�m√
Nc,tr(i)

�

wc
� evaluation. (A15)

d. Signal Norm

Similar to for batch norm above, let us consider a batch of
steerable tensors h, which we index by batch b, degree �, order
m, and channel c. Formally, the total norm for an individual
tensor h is computed as

Ntot =
∑

�

∑
c

∑�
m=−�

(
ĥc

�m

)2

2� + 1
. (A16)

Then, the tensor features are updated as ĥc
�m = ĥc

�mw�/
√

Ntot ,
where w� is a degree-specific affine transformation for added
flexibility

e. Network architecture

Certain features of our problem formulation pose con-
straints upon the specific design choice of the network. For
example, within the decoder, the maximum degree �max,b that
can be outputted by each block b is constrained by the sparsity
of the CG tensor product. Specifically, �max,b � 2b where b
ranges from 1 (first block) to B (last block). Since we need to
reconstruct features up to degree L in the decoder, we arrive
at a lower bound for the number of blocks in the decoder
set by �max,B � L, or B � log2 L. In our experiments, we set
�max,b = min{2b, L} and do not let �max,b exceed the input’s
maximum degree L. Relaxing this condition might increase
the expressive power of the network but at a significant in-
crease in runtime and memory. We leave the analysis of this
trade-off to future work. For the encoder and the decoder to
have similar expressive power, we construct them to be sym-
metric with respect to the latent space [Fig. 1(c)]. Optionally,
we apply a linearity at the beginning of the encoder and at the
end of the decoder. However, this is required for input data
that does not have the same number of channels per degree
since the ETP operates channel-wise.

f. Tuning the hyperparameters of the training objective

We find it practical to scale the reconstruction loss by a
dataset-specific scalar α since the MSE loss varies in average
magnitude across datasets. When training H-VAE, we find it
beneficial to keep β = 0 for a few epochs (Erec) so that the
model can learn to perform meaningful reconstructions, and
then linearly increasing it to the desired value for Ewarmup

epochs to add structure to the latent space, an approach first
used by Ref. [54].

g. Data normalization

As per standard machine learning practice [55], we normal-
ize the data. We do this by dividing each tensor by the average
square-root total norm of the training tensors, analogously
to the signal norm. This strategy puts the target values on

a similar scale as the normalized activations learned by the
network, which we speculate to favor gradient flow.

h. Pairwise invariant reconstruction loss

To reconstruct a signal within an equivariant model it is
desirable to have a pairwise invariant reconstruction loss, i.e.,
a loss Lrec such that Lrec(x, y) = Lrec(D(g)x, D(g)y) where
D is the representation of the group element g acting on the
space that x and y inhabit (e.g., a rotation matrix if x and
y are vectors in Euclidean 3D space, or a degree-� Wigner
D-matrix if x and y are degree-� vectors). This property is
necessary for the model to remain equivariant, i.e., given that
the network is agnostic to the transformation of the input
under group operation x → D(g)x by producing a similarly
transformed output y → D(g)y, we want the reconstruction
loss to be agnostic to the same kind of transformation as well.

The MSE loss is pairwise invariant for any degree-� feature
on which SO(3) acts via the �′s Wigner D-matrix. Consider
two degree-� features x� and y� acted upon by a Wigner D-
matrix D�(g) parameterized by rotation g (we drop the g and
� indexing for clarity),

MSE(Dx, Dy) = (Dx − Dy)T (Dx − Dy)

= (D(x − y))T (D(x − y))

= (x − y)T DT D(x − y)

= (x − y)T (x − y)

× since Wigner D-matrices are unitary.

= MSE(x, y) (A17)

Since the MSE loss is pairwise invariant for every pair of
degree-� features, it is thus pairwise invariant for pairs of
steerable tensors composed via direct products of steerable
features.

i. Dependence of the reconstruction loss on feature degree

We observe that features of larger degrees � are harder to
reconstruct accurately. Specifically, Fig. S17 within the SM
[28] shows that the test reconstruction loss (MSE) increases
with degree � for both the MNIST-on-the-sphere and the toy
amino acids problems.

j. Cosine loss

We use the metric cosine loss to measure a model’s re-
construction ability. Cosine loss is a normalized dot product
generalized to operate on pairs of steerable tensors (akin to
cosine similarity), and modified to be interpreted as a loss (see
Sec. A 2 j for details),

cosine(x, y) = 1 − x � y√
(x � x)(y � y)

,

with x � y =
∑
�′

(x�′ ⊗cg y�′)�=0. (A18)

Importantly, unlike MSE, which depends on the characteris-
tics of the data (e.g., the size of the data tensors), cosine loss
is dimensionless and therefore, interpretable and comparable
across datasets. A measure with these characteristics is prac-
tically useful for evaluating a network because it provides an

023006-14

HOLOGRAPHIC-(V)AE: AN END-TO-END … PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

estimate for how much better the reconstructions can get if
the network’s hyperparameters were to be further optimized.
For example, looking at the cosine loss in Table S7 within
the SM [28], we see that our model trained on Shrec17 (best
cosine = 0.130) is not as well optimized as our model trained
on MNIST (best cosine = 0.017). Using MSE, the trend is
reversed (1.8×10−3 vs 6.7×10−3), since the scale of MSE
depends on the size of the irreps of the data (Fig. S3 within the
SM [28]). Nonetheless, as a measure of a model’s reconstruc-
tion ability, cosine loss correlates almost perfectly with MSE
for a given dataset and network, especially in the mid-to-low
reconstruction quality regime (SpearmanR = 0.99, Fig. S3
within the SM [28] and Table S7 within the SM [28]). Cru-
cially, however, as cosine loss ignores the relative norms of
data features, it is unable to reconstruct norms and thus, not
suitable as a training objective.

Proof: Invariance of cosine loss. The generalized dot prod-
uct � from Eq. (A18) is pairwise invariant in the same way
that the dot product between two 3D vectors depends only
on their relative orientations but not the global orientation of
the whole two-vector system. Therefore, the whole cosine loss
expression is pairwise invariant, since all of its components
are pairwise invariant.

3. Using a non equivariant decoder

Winter et al. [15] propose to construct group-equivariant
autoencoders by using an equivariant encoder that learns
an invariant embedding and a group element, and an un-
constrained decoder, which uses the invariants alone to
reconstruct each datapoint in the “canonical” form, before
applying the learned group action in the output space. By
contrast, for SO(3) we propose to use an equivariant de-
coder, whereby the learned group element is fed as input to
the decoder. Such “unconstrained decoder” procedure can in
principle be merged with our equivariant encoder and Fourier-
space approach in two ways. For each, we argue in favor of
using our equivariant decoder.

(1) Reconstructing the Fourier coefficients of the data. To
apply the learned group element on the decoder’s output, the
Wigner D-matrices for the data’s irreps need to be computed
from the group element. Then, the Wigner D-matrices can
be used to “rotate” the tensor. This has to be done on-the-
fly, and it can be done quickly using functions provided in
the e3nn package [1] and by smartly vectorizing operations.
We implemented this procedure by using a simple multilayer
perceptron with SiLU nonlinearities as a decoder. By using
e3nn to compute Wigner D-matrices in batches, and by clever
construction of tensor multiplications such that runtime scales
linearly with �max and is constant with regards to number of
channels and batch size, we achieve models that run with
comparable speed to those using our equivariant decoder,
and have comparable performance on MNIST (Table III).
Given the empirical similarities we observe, although on a
limited use case, we favor the simplicity and elegance of our
equivariant decoder. “Simplicity” because we construct the
decoder to be symmetric to the encoder, thus endowing it
automatically with similar representational power and without
the need to tune an architecture made with different base com-
ponents. Furthermore, we highlight that our method generates

intermediate equivariant representations in the decoder, rather
than intermediate invariant representations. These intermedi-
ate equivariant representations may be of interest to study in
and of themselves.

(2) Reconstructing the data in real space. In this case,
we do not have to compute Wigner D-matrices on-the-fly,
since the learned frame can be used directly in the output
space as a rotation matrix. However, since the encoder only
sees a truncated Fourier representation of the data, which is
by construction lossy, while the loss is computed over fine-
grained real-space, this model might be too difficult to train.
We suspect this would make the model akin to a denoising
autoencoder [56] and it might be interesting to analyze, but
that would be beyond the scope of this paper. To avoid the de-
noising effect, we could learn to reconstruct data in real space
after an Inverse Fourier transform (IFT). However, computing
the IFT on-the-fly is very expensive and requires a discretiza-
tion of the input space, to the point of being prohibitive for
point clouds. This is not a bottleneck for the forward Fourier
transform if the cloud is parameterized by Dirac delta distri-
butions, i.e., for point clouds, as the integral can be computed
exactly (Eq. (A9)).

4. Implementation details

Without loss of generality, we use real spherical harmonics
for implementation of H-(V)AE. We leverage e3nn [1], using
their computation of the real spherical harmonics and their
Clebsch-Gordan coefficients.

In our code, we offer the option to use the full tensor prod-
uct instead of the ETP. Specifically, at each block we allow
the users to specify whether to compute the tensor product
channel-wise or fully connected across channels, and whether
to compute using efficient or fully connected degree mixing.

5. Experimental details

a. Architecture specification

We describe model architectures as follows. We specify the
number of blocks B, which is the same for the encoder and the
decoder. We specify two lists, (i) DegreesList, which contains
the maximum degree �max,b of the output of each block b, and
(ii) ChannelsList, containing the channel sizes Cb, of each
block b. These lists are in the order as they appear in the
encoder, and are reversed for the decoder. When it applies,
we specify the number of output channels of the initial linear
projection Cinit. As noted in the main text, we use a fixed
formula to determine �max,b, but we specify it for clarity.

b. MNIST on the sphere

Model architectures. For models with invari-
ant latent space size z = 16, we use six blocks,
DegreesList = [10, 10, 8, 4, 2, 1] and ChannelsList =
[16, 16, 16, 16, 16, 16], with a total of 227k parameters.

For models with invariant latent space size z = 120,
we use six blocks, DegreesList = [10, 10, 8, 4, 2, 1] and
ChannelsList = [16, 16, 16, 32, 64, 120], with a total of 453k
parameters.

Training details. We keep the learning schedule as similar
as possible for all models. We use α = 50. We train VAE
models for 80 epochs using the Adam optimizer [57] with

023006-15

VISANI, PUN, ANGAJI, AND NOURMOHAMMAD PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

default parameters, a batch size of 100, and an initial learning
rate of 0.001, which we decrease exponentially by one order
of magnitude over 25 epochs. We tune β according to the
procedure outlined below. During training, we first set β = 0
for 25 epochs (Erec = 25) to allow the models to learn to
make meaningful reconstructions, and then linearly increase
β up to its target value over 35 epochs (Ewarmup = 35). We
then the model with lowest validation loss only during the
last 20 epochs of training. We instead train AE models for
50 epochs using the “reduce learning rate on plateau” scheme,
reducing the learning rate by a factor of 5, if the validation loss
does not improve for over one epoch. We utilize the model
with the lowest loss on validation data, only after the end of
the warmup epochs for the VAE models. Training took ∼3.3
minutes per epoch on a single NVIDIA A40 GPU for each
model.

Tuning the regularization strength β with the help of
conditioning. We select optimal values of β by optimizing
the expected quality of the generated samples. We define
samples to be of high quality if (i) they can be correctly
classified by a classifier trained on real data, and (ii) they
are diverse enough. We leverage conditional models to gen-
erate samples of known digit identity. Specifically, we train
an SO(3)-equivariant classifier, with the same architecture as
H-(V)AE’s encoder, to classify the digit identity of real data
at 97% accuracy. We use this classifier to assess the quality
of samples generated by conditional H-VAE models trained
with varying β. To do so, we sample the conditional models
to construct synthetic datasets of 10 000 spherical images,
balanced across digit identity. Finally, we compute (i) the
accuracy of the classifier on the synthetic datasets, and (ii)
the empirical variance of generated samples. We find that
there is a trade-off between the two metrics: If β is too low,
the generate samples are very diverse but do not resemble the
real digits (low classification performance), whereas if β is too
high, samples of the same digit start looking more and more
alike (i.e., a reduced diversity); see Fig. S9 within the SM [28].
We empirically select β = 0.6 and β = 2.0 for the z = 16 and
z = 120 models, respectively, based on the trade-off between
the above two criteria. We note that this procedure relies on
the assumption that the a given regularization strength β has
the same effect on the sample quality of the conditional and
the unconditional models. We believe this to be likely for the
following three reasons: (1) the reconstruction loss is similar
for the same values of β (Fig. S6 within the SM [28]); (2)
the optimal values of β found using the conditional models
approximately optimize the latent space metrics of uncondi-
tional models (Fig. S5 within the SM [28]) visual inspection
of the conditional vs the unconditional samples across same
values of β show similar patterns (Figs. S10 vs S7, S11 vs S8,
S12 vs S9 within the SM [28]). We perform this procedure
only on the NR/R dataset and use the same selected β to train
models on the R/R dataset.

c. Shrec17

Model architectures. Both AE and VAE models have
z = 40, 7 blocks, DegreesList = [14, 14, 14, 8, 4, 2, 1],
ChannelsList = [12, 12, 12, 20, 24, 32, 40], Cinit = 12, with
a total of 518k parameters.

Training details. We keep the learning schedule as similar
as possible for all models. We use α = 1000. We train all
models for 120 epochs using the Adam optimizer with default
parameters, a batch size of 100, and an initial learning rate
of 0.0025, which we decrease exponentially by two orders
of magnitude over the entire 120 epochs. For VAE models,
we use β = 0.2, Erec = 25, and Ewarmup = 10. We utilize the
model with the lowest loss on validation data, only after the
end of the warmup epochs for VAE models. Training took
∼11 hours on a single NVIDIA A40 GPU for each model.

d. Embedding of amino acid conformations

Preprocessing of protein structures. We sample residues
from the set of training structures preprocessed as described
in Sec. A5e.

Fourier projection. We set the maximum radial frequency
to N = 20 as it corresponds to a radial resolution matching
the minimum interatomic distances after rescaling the atomic
neighborhoods of radius 10.0 Å to fit within a sphere of radius
1.0, necessary for Zernike transform.

The channel composition of the data tensors can be de-
scribed in a notation—analogous to that used by e3nn but
without parity specifications—which specifies the number of
channels C for each feature of degree � in single units C × �:
44 × 0 + 40 × 1 + 40 × 2 + 36 × 3 + 36 × 4.

Model architectures. All models have z = 2, 6
blocks, DegreesList = [4, 4, 4, 4, 2, 1], ChannelsList =
[60, 40, 24, 16, 16, 8], Cinit = 48, with a total of 495k
parameters. We note that the initial projection is necessary
since the number of channels differs across feature degrees in
the data tensors.

Training details. We keep the learning schedule as similar
as possible for all models. We use α = 400. We train all
models for 80 epochs using the Adam optimizer with default
parameters and an initial learning rate of 0.005, which we
decrease exponentially by by one order of magnitude over 25
epochs. For VAE models, we use Erec = 25 and Ewarmup = 10.
We utilize the model with the lowest loss on validation data,
only after the end of the warmup epochs for VAE models.

We vary the batch size according to the size of the
training and the validation datasets. We use the following
(dataset_size-batch_size) pairs: (400-4), (1,000-10), (2,000-
20), (5,000-50), (20,000-20). Training took ∼45 minutes on
a single NVIDIA A40 GPU for each model.

Evaluation. We perform our data ablations by considering
training and validation datasets of the following sizes: 400,
1000, 2000, 5000, and 20 000. We keep relative proportions of
residue types even in all datasets. We perform the data ablation
with H-AE as well as H-VAE models with β = 0.025 and 0.1.

We further perform a β ablation using the full
(20 000) dataset, over the following choices of β:
[0(AE), 0.025, 0.05, 0.1, 0.25, 0.5].

For robust results, we train three versions of each model
and compute averages of quantitative metrics of reconstruc-
tion loss and classification accuracy.

For a fair comparison across models with varying amounts
of training and validation data, we perform a fivefold cross-
validation-like procedure over the 10k test residues, where
the classifier is trained over four folds of the test data and

023006-16

HOLOGRAPHIC-(V)AE: AN END-TO-END … PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

evaluated on the fifth one. If validation data is needed for
model selection (e.g., for LC), we use 10% of the training
data.

e. Embedding of protein structure neighborhoods

Preprocessing of protein structures. We model protein
neighborhoods extracted from tertiary protein structures from
the Protein Data Bank (PDB) [39]. We use ProteinNet’s split-
tings for training and validation sets to avoid redundancy, e.g.,
due to similarities in homologous protein domains [41]. Since
PDB ids were only provided for the training and validation
sets, we used ProteinNet’s training set as both our training and
validation set and ProteinNet’s validation set as our testing set.
Specifically, we make a [80%, 20%] split in the ProteinNet’s
training data to define our training and validation sets. This
splitting resulted in 10 957 training structures, 2730 validation
structures, and 212 testing structures.

Projection details. We set the maximum radial frequency
to N = 20 as it corresponds to a radial resolution matching
the minimum inter-atomic distances after rescaling the atomic
neighborhoods of radius 10.0 Å to fit within a sphere of radius
1.0, necessary for Zernike transform. We vary L and construct
models tailored to each one (Table S8 within the SM [28]).

Model architectures. We note that the initial projection
(Cinit) is necessary since the number of channels differs across
feature degrees in the data tensors, and the ETP necessitates
equal number of channels for all degrees (Sec. A2b and Ta-
ble S8 within the SM [28]).

Training details. We keep the learning schedule the same
for all models. We use α = 1000. We train all models for 8
epochs using the Adam optimizer with default parameters, a
batch size of 512, and a constant learning rate of 0.001. We
utilize the model with the lowest loss on validation data.

f. Latent space classification

Linear classifier. We implement the linear classifier as a
one-layer fully connected neural network with input size equal
to the invariant embedding of size z, and output size equal
to the number of desired classes. We use cross entropy loss
with logits as training objective, which we minimize for 250
epochs using the Adam optimizer with batch size 100, and
initial learning rate of 0.01. We reduce the learning rate by one
order of magnitude every time the loss on validation data stops
improving for 10 epochs (if validation data is not provided, the
training data is used). At evaluation time, we select the class
with the highest probability value. We use PyTorch for our
implementation.

KNN classifier. We use the sklearn [58] implementation
with default parameters. At evaluation time, we select the
class with the highest probability value.

g. Clustering metrics

Purity [34]. We first assign a class to each cluster based on
the most prevalent class in it. Purity is computed as the sum of
correctly classified items divided by the total number of items.
Purity measures classification accuracy, and ranges between 0
(worst) and 1 (best).

V-measure [35]. This common clustering metric strikes a
balance between favoring homogeneous (high homogeneity

score) and complete (high completeness score) clusters. Clus-
ters are defined as homogeneous when all elements in the
same cluster belong to the same class (akin to a precision).
Clusters are defined as complete when all elements belonging
to the same class are put in the same cluster (akin to a recall).
The V-measure is computed as the harmonic mean of homo-
geneity and completeness in a given clustering.

h. On the complementary nature of classification accuracy
and clustering metrics

The clustering metrics “purity” and “V-measure” and
the supervised metric “classification accuracy” characterize
different qualities of the latent space, and, while partly cor-
related, they are complementary to each other.

Both classes of metrics are computed by comparing the
ground truth labels to the predicted labels, and they mainly
differ by how the predicted labels are assigned; the clustering
metrics use an unsupervised clustering algorithm, while the
classification metric uses a supervised classification algorithm
to do so. As a result, these metrics focus on different features
of the latent space. For example, the clustering metrics are
largest when the test data naturally forms clusters with all
data points of the same label. While this case can result in
a high supervised classification accuracy, clustering is not a
necessary condition for high classification accuracy. Indeed,
the supervised signal could make the predicted labels depend
more heavily on a subset of the latent space features, instead
of relying on all of them equally, which is what the cluster-
ing algorithm naturally does. Therefore, it is reasonable to
conclude that having higher clustering metrics and a lower
classification accuracy is a sign that class-related information
is more evenly distributed across the latent space dimensions.
Overall, the complementary aspect of these metrics makes it
necessary to use all of them when comparing the performance
of different models in each task.

6. Protein-Ligand Binding Affinity Prediction

a. Data Preprocessing Details

We leverage the H-AE models trained on Protein Neigh-
borhoods (Sec. A 5 e) to predict the binding affinity between
a protein and a ligand, given their structure complex—an
important task in structural biology. For this task, we use
the data from the “refined-set” of PDBBind [36], contain-
ing ∼5000 structures. We use the dataset splits provided by
ATOM3D [37] to benchmark our predictions. ATOM3D pro-
vides two splits based on the maximum sequence similarity
between proteins in the training set and the validation/test
sets. We use the most challenging split for our benchmarking
in which the sequences of the two sets have at most 30%
similarity.

For each complex, we first identify residues in the bind-
ing pocket, which we define as residues for which the Cα

is within 10 Å of any of the ligand’s atoms. We then ex-
tract the 10 Å neighborhood for each of the pocket residues
that can contain atoms from both the protein and the ligand.
We compute the ZFT [Eq. (2)] for each neighborhood with
maximum degree L matching the degree used by the H-AE
of interest. We then compute residue-level SO(3)-invariant

023006-17

VISANI, PUN, ANGAJI, AND NOURMOHAMMAD PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

TABLE IV. Comprehensive benchmarking results on the Ligand Binding Affinity task with Atom3D’s 30% similarity split. Models are
sorted by date of release. In addition to the H-AE informed models, we also report the performance of baseline models that only use the
SO(3)-invariant (� = 0) component of each neighborhood’s Zernike transform (Zernike Inv.). H-AE consistently outperforms this baseline,
indicating that the SO(3)-invariant information from the higher-degree features extracted by H-AE are informative for this regression task.
Best scores are in bold and second-best scores are underlined. Errors for our models are computed as the standard deviation in prediction by
10 machine learning models trained with bootstrapped data.

Ligand Binding Affinity
30% Similarity

Method RMSD ↓ Pearson’s r ↑ Spearman’s r ↑ Kendall’s τ ↑
DeepDTA [59] 1.565 0.573 0.574
DeepAffinity [60] 1.893 ± 0.650 0.415 0.426
Cormorant [61] 1.568 ± 0.012 0.389 0.408
ProtTrans [62] 1.544 ± 0.015 0.438 ± 0.053 0.434 ± 0.058
3DCNN [37] 1.414 ± 0.021 0.550 0.553
GNN [37] 1.570 ± 0.025 0.545 0.533
MaSIF [63] 1.484 ± 0.018 0.467 ± 0.020 0.455 ± 0.014
DGAT [64] 1.719 ± 0.047 0.464 0.472
DGIN [64] 1.765 ± 0.076 0.426 0.432
DGAT-GCN [64] 1.550 ± 0.017 0.498 0.496
GVP-GNN [65] 1.648 ± 0.014 0.213 ± 0.013 0.164 ± 0.009 0.110 ± 0.012
EGNN [11] 1.492 ± 0.012 0.489 ± 0.017 0.472 ± 0.008 0.329 ± 0.014
HoloProt [66] 1.464 ± 0.006 0.509 ± 0.002 0.500 ± 0.005
GBPNet [67] 1.405 ± 0.009 0.561 0.557
EGNN + PLM [68] 1.403 ± 0.013 0.565 ± 0.016 0.544 ± 0.005 0.379 ± 0.007
ProtMD [69] 1.367 ± 0.014 0.601 ± 0.036 0.587 ± 0.042
Zernike Inv. + linear regression 1.455 ± 0.005 0.513 ± 0.005 0.516 ± 0.006 0.357 ± 0.005
Zernike Inv. + random forest 1.361 ± 0.011 0.587 ± 0.009 0.584 ± 0.010 0.408 ± 0.008
H-AE + linear regression 1.397 ± 0.019 0.560 ± 0.017 0.568 ± 0.018 0.397 ± 0.016
H-AE + random forest 1.332 ± 0.012 0.612 ± 0.009 0.619 ± 0.009 0.436 ± 0.006

embeddings by running the pretrained H-AE encoder on the
neighborhoods surrounding each of the residues in the pocket.
We sum over the residue-level embeddings to compute a
single pocket-level embedding, which is SE(3) invariant by
construction. Each pocket embedding is used as a feature
vector within a standard machine learning regression model to
predict protein-ligand binding affinity, provided by PDBBind
either in the form of a dissociation constant Kd , or an inhibi-
tion constant Ki. Due to data limitations, and consistent with
other studies on LBA, we do not distinguish between Kd and
Ki and regress over the negative log of either of the constants
that is provided by PDBBind; the transformed quantity is
closely related to the binding free energy of protein-ligand
interactions.

The protein-ligand binding free energy is an extensive
quantity, meaning that its magnitude depends on the number
of residues in the binding pocket. In other words, a larger
protein-ligand complex can establish a stronger binding. The
pocket embedding, which we define as the sum of the residue-
level embeddings, is a simple quantity that is extensive and
SE(3) invariant, and therefore, suitable for regressing over
protein-ligand binding free energy. Nonetheless, this map
is not unique and other extensive transformations to pool
together residue-level embeddings into a pocket-level embed-
ding can be used for this purpose.

It should be noted that in the protein-ligand structural
neighborhoods we only include the ligand atoms that are
found in proteins and were used in the training of the H-AE
models (i.e., C, N, O, and S). About 31% of the ligands

contain other kinds of atoms, and since our model does not
“see” these atoms, we hypothesize that our predictions are
worse in these cases. In fact, for H − AE + R.F. (Table II),
the Spearman’s correlation over the ligands containing only
protein atoms is higher than for the ligands containing other
kinds of atoms by about 0.3 points. Therefore, we expect
training H-(V)AE to recognize more atom types—or at least
making it aware that some other unspecified non-protein
atom is present—would yield even better results; as protein
structures are often found in complex with other nonprotein
entities, e.g., ligands and ions, there is training data available
for constructing such models.

b. Machine Learning models used for prediction

Linear regression. We implement a linear regression model
as a one-layer fully connected neural network with one output
layer. We use MSE loss as training objective, which we mini-
mize for 250 epochs using the Adam optimizer with batch size
32, and initial learning rate of 0.01. We reduce the learning
rate by one order of magnitude every time the loss on valida-
tion data stops improving for 10 epochs. We use PyTorch for
our implementation.

Random forest regression. We use the sklearn [58] imple-
mentation. We tune hyperparameters via grid search, choosing
the combination minimizing RMSD on validation data. We
consider the following grid of hyperparameter values:

(i) max_features: [1.0, 0.333, sqrt]
(ii) min_samples_leaf: [2, 5, 10, 15]

023006-18

HOLOGRAPHIC-(V)AE: AN END-TO-END … PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

(iii) n_estimators: [32, 64, 100]

c. Extended Discussion of Results

Table IV shows benchmarking results on the split of
ATOM3D with 30% sequence similarity, extending Table II
in the main text with more baselines. Notably, we show the
prediction results for the models that only use the SO(3)-

invariant (� = 0) component of each neighborhood’s Zernike
transform (our Zernike inv. baseline), instead of the com-
plete embeddings learned by H-AE. Using H-AE consistently
outperforms this baseline, implying that invariant informa-
tion encoded in higher spherical degrees, and extracted by
H-AE, can lead to more expressive models for downstream
regression tasks.

[1] M. Geiger and T. Smidt, e3nn: Euclidean neural networks,
arXiv:2207.09453.

[2] A. Capecchi, D. Probst, and J.-L. Reymond, One molecu-
lar fingerprint to rule them all: Drugs, biomolecules, and the
metabolome, J. Cheminform. 12, 43 (2020).

[3] M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. S.
Cohen, 3D Steerable CNNs: Learning rotationally equivariant
features in volumetric data, in Advances in Neural Informa-
tion Processing Systems, edited by S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Vol.
31 (Curran Associates, Inc., 2018).

[4] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, Spherical
CNNs, in 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3,
2018, Conference Track Proceedings (OpenReview.net, 2018).

[5] N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K.
Kohlhoff, and P. Riley, Tensor field networks: Rotation- and
translation-equivariant neural networks for 3D point clouds,
arXiv:1802.08219.

[6] R. Kondor, Z. Lin, and S. Trivedi, Clebsch-Gordan Nets: A
fully Fourier space spherical convolutional neural network, in
Advances in Neural Information Processing Systems, Vol. 31
(Curran Associates, Inc., 2018).

[7] C. Esteves, A. Makadia, and K. Daniilidis, Spin-weighted
spherical CNNs, in Advances in Neural Information Processing
Systems, Vol. 33 (Curran Associates, Inc., 2020), pp. 8614–
8625.

[8] F. B. Fuchs, D. E. Worrall, V. Fischer, and M. Welling,
SE(3)-Transformers: 3D roto-translation equivariant atten-
tion networks, in Advances in Neural Information Pro-
cessing Systems, Vol. 33 (Curran Associates, Inc., 2020),
pp. 1970–1981.

[9] J. Brandstetter, R. Hesselink, E. van der Pol, E. J. Bekkers,
and M. Welling, Geometric and physical quantities improve
E(3) equivariant message passing, in The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25–29, 2022 (OpenReview.net, 2022).

[10] A. Musaelian, S. Batzner, A. Johansson, L. Sun, C. J. Owen,
M. Kornbluth, and B. Kozinsky, Learning local equivariant rep-
resentations for large-scale atomistic dynamics, Nat. Commun.
14, 579 (2023).

[11] V. Garcia Satorras, E. Hoogeboom, F. Fuchs, I. Posner, and
M. Welling, E(n) equivariant normalizing flows, in Advances
in Neural Information Processing Systems, Vol. 34 (Curran
Associates, Inc., 2021), pp. 4181–4192.

[12] Y.-L. Liao and T. Smidt, Equiformer: Equivariant graph at-
tention transformer for 3D atomistic graphs, in The Eleventh
International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023 (OpenReview.net, 2023).

[13] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa,
M. Kornbluth, N. Molinari, T. E. Smidt, and B. Kozinsky,
E(3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials, Nat. Commun. 13, 2453 (2022).

[14] D. P. Kingma and M. Welling, Auto-encoding variational
Bayes, in 2nd International Conference on Learning Represen-
tations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014,
Conference Track Proceedings, edited by Y. Bengio and Y.
LeCun (ICLR, 2014).

[15] R. Winter, M. Bertolini, T. Le, F. Noé, and D.-A. Clevert,
Unsupervised learning of group invariant and equivariant rep-
resentations, Adv. Neural Inf. Process. Syst. 35, 31942 (2022).

[16] E. Hoogeboom, V. G. Satorras, C. Vignac, and M. Welling,
Equivariant diffusion for molecule generation in 3D, in Pro-
ceedings of the 39th International Conference on Machine
Learning (PMLR, 2022), pp. 8867–8887.

[17] J. Yim, B. L. Trippe, V. De Bortoli, E. Mathieu, A. Doucet,
R. Barzilay, and T. Jaakkola, SE(3) diffusion model with ap-
plication to protein backbone generation, in Proceedings of the
40th International Conference on Machine Learning, Honolulu,
Hawaii, USA (PMLR, 2023), pp. 40001–40039.

[18] J. L. Watson, D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim,
H. E. Eisenach, W. Ahern, A. J. Borst, R. J. Ragotte, L. F. Milles
et al., De novo design of protein structure and function with
RFdiffusion, Nature 620, 1089 (2023).

[19] Y. Bengio, A. Courville, and P. Vincent, Representation learn-
ing: A review and new perspectives, IEEE Trans. Pattern Analy.
Machine Intell. 35, 1798 (2013).

[20] S. Zhang, P. Zhang, and T. Y. Hou, Multiscale invertible gen-
erative networks for high-dimensional Bayesian inference, in
Proceedings of the 38th International Conference on Machine
Learning (PMLR, 2021), pp. 12632–12641.

[21] H.-Y. Hu, D. Wu, Y.-Z. You, B. Olshausen, and Y. Chen,
RG-Flow: A hierarchical and explainable flow model based
on renormalization group and sparse prior, Mach. Learn.: Sci.
Technol. 3, 035009 (2022).

[22] https://github.com/gvisani/Holographic-VAE.
[23] A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie,

Ann. Phys. 354, 769 (1916).
[24] W.-K. Tung, Group Theory in Physics (World Scientific, Singa-

pore, 1985).
[25] E. Schmidt, Zur Theorie der linearen und nichtlinearen Integral-

gleichungen, Math. Ann. 63, 433 (1907).
[26] I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. M.

Botvinick, S. Mohamed, and A. Lerchner, beta-VAE: Learning
basic visual concepts with a constrained variational framework,
in 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24–26, 2017, Conference
Track Proceedings (OpenReview.net, 2017).

023006-19

https://arxiv.org/abs/2207.09453
https://doi.org/10.1186/s13321-020-00445-4
https://arxiv.org/abs/1802.08219
https://doi.org/10.1038/s41467-023-36329-y
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1088/2632-2153/ac8393
https://github.com/gvisani/Holographic-VAE
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1007/BF01449770

VISANI, PUN, ANGAJI, AND NOURMOHAMMAD PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

[27] L. McInnes, J. Healy, N. Saul, and L. Großberger, UMAP: Uni-
form manifold approximation and projection, J. Open Source
Softw. 3, 861 (2018).

[28] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.023006 for figures showing train-
ing curves with and without batch norm layer (Fig. S1);
additional UMAP plots of the invariant latent space learned by
H-(V)AE (Figs. S2, S14–S16, S18–S19); correlation between
MSE and cosine loss (Fig. S3); ablation studies of varying
regularization strength β on the MNIST-on-the-sphere dataset
(Figs. S4–S6); random, conditional, and interpolated samples
from H-(V)AE trained on MNIST-on-the-sphere (Figs. S7–
S13); and the plot indicating that the test reconstruction loss
increases with feature degree type � (Fig. S17). Supplemetal
tables show evidence for equivariance of H-(V)AE (Table S1),
effect of different tensor product rules on performance and
speed (Table S2), networks’ performances for MNIST-on-the
sphere (Table S3), and Shrec17 (Table S4), ablation results for
the toy amino acid problem (Tables S5, S6), training losses in
all problems (Table S7), and model performances for different
hyperparameters (Table S8).

[29] K. Sohn, H. Lee, and X. Yan, Learning structured output
representation using deep conditional generative models, in
Advances in Neural Information Processing Systems (Curran
Associates, Red Hook, NY, 2015), Vol. 28.

[30] O. J. Cobb, C. G. R. Wallis, A. N. Mavor-Parker, A. Marignier,
M. A. Price, M. d’Avezac, and J. D. McEwen, Efficient gen-
eralized spherical CNNs, in 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3–7, 2021 (OpenReview.net, 2021).

[31] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization,
arXiv:1607.06450.

[32] L. Deng, The MNIST database of handwritten digit images
for machine learning research [Best of the Web], IEEE Signal
Process. Mag. 29, 141 (2012).

[33] S. Lohit and S. Trivedi, Rotation-invariant autoencoders for
signals on spheres, arXiv:2012.04474.

[34] M. Aldenderfer and R. Blashfield, Cluster Analysis (SAGE
Publications, Thousand Oaks, CA, 1984).

[35] A. Rosenberg and J. Hirschberg, V-Measure: A conditional
entropy-based external cluster evaluation measure, in Proceed-
ings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL) (Association for
Computational Linguistics, Prague, Czech Republic, 2007),
pp. 410–420.

[36] M. Su, Q. Yang, Y. Du, G. Feng, Z. Liu, Y. Li, and R. Wang,
Comparative assessment of scoring functions: The CASF-2016
update, J. Chem. Inf. Model. 59, 895 (2019).

[37] R. J. L. Townshend, M. Vögele, P. Suriana, A. Derry, A.
Powers, Y. Laloudakis, S. Balachandar, B. Jing, B. Anderson, S.
Eismann, R. Kondor, R. B. Altman, and R. O. Dror, ATOM3D:
Tasks on molecules in three dimensions, arXiv:2012.04035
[physics, q-bio].

[38] SHREC 2017: Large-scale 3D Shape Retrieval from ShapeNet
Core55.

[39] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov, and P. E. Bourne, The protein data
bank, Nucleic Acids Res. 28, 235 (2000).

[40] M. N. Pun, A. Ivanov, Q. Bellamy, Z. Montague, C. LaMont,
P. Bradley, J. Otwinowski, and A. Nourmohammad, Learning
the shape of protein microenvironments with a holographic
convolutional neural network, Proc. Natl. Acad. Sci. USA 121,
e2300838121 (2024).

[41] M. AlQuraishi, ProteinNet: A standardized data set for machine
learning of protein structure, BMC Bioinf. 20, 311 (2019).

[42] Z. Shu, M. Sahasrabudhe, R. A. Guler, D. Samaras, N. Paragios,
and I. Kokkinos, Deforming autoencoders: Unsupervised dis-
entangling of shape and appearance, in Proceedings of the
European Conference on Computer Vision (ECCV) (Springer,
Cham, 2018), pp. 650–665.

[43] K. Koneripalli, S. Lohit, R. Anirudh, and P. Turaga, Rate-
invariant autoencoding of time-series, in ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (IEEE, 2020), pp. 3732–3736.

[44] E. Mehr, A. Lieutier, F. S. Bermudez, V. Guitteny, N. Thome,
and M. Cord, Manifold learning in quotient spaces, in Proceed-
ings of the 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2018), pp. 9165–9174.

[45] G. E. Hinton, A. Krizhevsky, and S. D. Wang, Transform-
ing auto-encoders, in Artificial Neural Networks and Machine
Learning–ICANN 2011, Lecture Notes in Computer Science,
edited by T. Honkela, W. Duch, M. Girolami, and S. Kaski
(Springer, Berlin, 2011), pp. 44–51.

[46] A. R. Kosiorek, S. Sabour, Y. W. Teh, and G. E. Hinton, Stacked
capsule autoencoders, arXiv:1906.06818.

[47] I. Feige, Invariant-equivariant representation learning for multi-
class data, arXiv:1902.03251.

[48] R. Drautz, Atomic cluster expansion for accurate and trans-
ferable interatomic potentials, Phys. Rev. B 99, 014104
(2019).

[49] F. Musil, A. Grisafi, A. P. Bartók, C. Ortner, G. Csányi,
and M. Ceriotti, Physics-inspired structural representations for
molecules and materials, Chem. Rev. 121, 9759 (2021).

[50] M. Uhrin, Through the eyes of a descriptor: Constructing com-
plete, invertible descriptions of atomic environments, Phys.
Rev. B 104, 144110 (2021).

[51] P. Müller, V. Golkov, V. Tomassini, and D. Cremers, Rotation-
equivariant deep learning for diffusion MRI, arXiv:2102.06942.

[52] K. Swanson, H. Chang, and J. Zou, Predicting immune es-
cape with pretrained protein language model embeddings, in
Proceedings of the 17th Machine Learning in Computational
Biology meeting (PMLR, 2022), pp. 110–130.

[53] J. P. Boyd and F. Yu, Comparing seven spectral methods
for interpolation and for solving the Poisson equation in
a disk: Zernike polynomials, Logan–Shepp ridge polynomi-
als, Chebyshev–Fourier series, cylindrical Robert functions,
Bessel–Fourier expansions, square-to-disk conformal map-
ping and radial basis functions, J. Comput. Phys. 230, 1408
(2011).

[54] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz,
and S. Bengio, Generating sentences from a continuous space,
in Proceedings of the 20th SIGNLL Conference on Computa-
tional Natural Language Learning, edited by S. Riezler and Y.
Goldberg (Association for Computational Linguistics, Berlin,
Germany, 2016), pp. 10–21.

[55] M. Shanker, M. Y. Hu, and M. S. Hung, Effect of data standard-
ization on neural network training, Omega 24, 385 (1996).

023006-20

https://doi.org/10.21105/joss.00861
http://link.aps.org/supplemental/10.1103/PhysRevResearch.6.023006
https://arxiv.org/abs/1607.06450
https://doi.org/10.1109/MSP.2012.2211477
https://arxiv.org/abs/2012.04474
https://doi.org/10.1021/acs.jcim.8b00545
https://arxiv.org/abs/2012.04035
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1073/pnas.2300838121
https://doi.org/10.1186/s12859-019-2932-0
https://arxiv.org/abs/1906.06818
https://arxiv.org/abs/1902.03251
https://doi.org/10.1103/PhysRevB.99.014104
https://doi.org/10.1021/acs.chemrev.1c00021
https://doi.org/10.1103/PhysRevB.104.144110
https://arxiv.org/abs/2102.06942
https://doi.org/10.1016/j.jcp.2010.11.011
https://doi.org/10.1016/0305-0483(96)00010-2

HOLOGRAPHIC-(V)AE: AN END-TO-END … PHYSICAL REVIEW RESEARCH 6, 023006 (2024)

[56] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol,
Extracting and composing robust features with denoising au-
toencoders, in Proceedings of the 25th international conference
on Machine learning, ICML ’08 (Association for Computing
Machinery, New York, 2008), pp. 1096–1103.

[57] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, in 3rd International Conference on Learning Rep-
resentations, San Diego, CA, USA, May 7–9, 2015, Conference
Track Proceedings, edited by Y. Bengio and Y. LeCun (ICLR,
2015).

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg et al., Scikit-learn: Machine learning in python, J.
Mach. Learn. Res. 12, 2825 (2011).

[59] H. Öztürk, A. Özgür, and E. Ozkirimli, DeepDTA: Deep
drug–target binding affinity prediction, Bioinformatics 34, i821
(2018).

[60] M. Karimi, D. Wu, Z. Wang, and Y. Shen, DeepAffin-
ity: Interpretable deep learning of compound–protein affinity
through unified recurrent and convolutional neural networks,
Bioinformatics 35, 3329 (2019).

[61] B. Anderson, T.-S. Hy, and R. Kondor, Cormorant: Covariant
molecular neural networks, in Advances in Neural Information
Processing Systems, Vol. 32 (Curran Associates, Inc., 2019).

[62] A. Elnaggar, M. Heinzinger, C. Dallago, G. Rehawi, Y. Wang,
L. Jones, T. Gibbs, T. Feher, C. Angerer, M. Steinegger et al.,
ProtTrans: Toward understanding the language of life through
self-supervised learning, IEEE Trans. Pattern Anal. Mach.
Intell. 44, 7112 (2022).

[63] P. Gainza, F. Sverrisson, F. Monti, E. Rodolà, D. Boscaini,
M. M. Bronstein, and B. E. Correia, Deciphering interaction
fingerprints from protein molecular surfaces using geometric
deep learning, Nat. Methods 17, 184 (2020).

[64] T. Nguyen, H. Le, T. P. Quinn, T. Nguyen, T. D. Le, and
S. Venkatesh, GraphDTA: Predicting drug–target binding affin-
ity with graph neural networks, Bioinformatics 37, 1140
(2021).

[65] B. Jing, S. Eismann, P. Suriana, R. J. L. Townshend, and
R. Dror, Learning from protein structure with geometric vec-
tor perceptrons, in 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021 (OpenReview.net, 2021).

[66] V. R. Somnath, C. Bunne, and A. Krause, Multi-scale represen-
tation learning on proteins, in Advances in Neural Information
Processing Systems, Vol. 34 (Curran Associates, Inc., 2021),
pp. 25244–25255.

[67] S. Aykent and T. Xia, GBPNet: Universal geometric represen-
tation learning on protein structures, in Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD’22 (Association for Computing Machinery, New
York, NY, 2022), pp. 4–14.

[68] F. Wu, Y. Tao, D. Radev, and J. Xu, When geometric
deep learning meets pretrained protein language models,
arXiv:2212.03447.

[69] F. Wu, S. Jin, Y. Jiang, X. Jin, B. Tang, Z. Niu, X. Liu, Q.
Zhang, X. Zeng, and S. Z. Li, Pre-training of equivariant graph
matching networks with conformation flexibility for drug bind-
ing, Adv. Sci. 9, 2203796 (2022).

023006-21

https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1093/bioinformatics/btz111
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1038/s41592-019-0666-6
https://doi.org/10.1093/bioinformatics/btaa921
https://arxiv.org/abs/2212.03447
https://doi.org/10.1002/advs.202203796

