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Security proof for variable-length quantum key distribution
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We present a security proof for variable-length QKD in the Renner framework against IID collective attacks.
Our proof can be lifted to coherent attacks using the postselection technique. Our first main result is a theorem to
convert a sequence of security proofs for fixed-length protocols satisfying certain conditions to a security proof
for a variable-length protocol. This conversion requires no new calculations, does not require any changes to
the final key lengths or the amount of error-correction information, and at most doubles the security parameter.
Our second main result is the description and security proof of a more general class of variable-length QKD
protocols, which does not require characterizing the honest behavior of the channel connecting the users before
the execution of the QKD protocol. Instead, these protocols adaptively determine the length of the final key, and
the amount of information to be used for error correction, based upon the observations made during the protocol.
We apply these results to the qubit BB84 protocol, and show that variable-length implementations lead to higher
expected key rates than the fixed-length implementations.
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I. INTRODUCTION

Security proofs for QKD protocols are typically proven in
the “fixed-length” scenario, where two users Alice and Bob
either produce a key of a fixed length, or abort the protocol
[1–6]. Such protocols accept and produce a key of fixed length
if and only if their observed statistics belong to some predeter-
mined “acceptance set”. Otherwise, the protocol aborts. Such
protocols have two main disadvantages.

First, in order to ensure that the protocol accepts with high
probability for honest behavior, the acceptance set needs to
be chosen carefully. Typically, the acceptance set is chosen to
be the set of statistics that are close to what is expected from
honest behavior [2–4]. This requires Alice and Bob to know
the honest behavior of the channel connecting Alice and Bob,
before a run of the QKD protocol. In many practical scenarios,
such as ground-to-satellite QKD [7–11], it is difficult to know
the behavior of the channel in advance. In fact, this can be a
problem even in fibre-based setups [12–14].

Second, even if the honest behavior is known, the size of
the acceptance set affects the length of the final key that can be
produced. This reflects the fact that the key has to be secure for
the worst-case event that accepts. Larger acceptance sets have
a high probability of accepting on any given run of the QKD
protocol, but lead to a shorter length of the final key, since they

*djtupkary@uwaterloo.ca
†yzetan@uwaterloo.ca
‡nlutkenhaus.office@uwaterloo.ca

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

include worse accept events. In particular, if users choose a
large acceptance set, and then find that their observed statistics
are much better than expected, they are not allowed to produce
a larger key. Thus, there is a trade-off between protocols that
accept with high probability, and protocols, which produce a
large key on accepting.

A variable-length QKD protocol is one that allows users
to adjust the length of the key generated based upon the
observed statistics during the protocol [15,16]. This eliminates
the trade-off described above. It also does not require the
expected behavior of the channel to be known in advance. In
fact, many prior studies have implemented such a variable-
length protocol based upon intuition. For the qubit BB84
protocol, a rigorous treatment of variable-length protocols can
be found in Ref. [16], using the phase-error approach for
security proofs.

In this paper, we present a security proof for variable-
length QKD protocols against IID collective attacks, which
can be lifted to coherent attacks using the postselection tech-
nique [17]. Since that lift to coherent attacks is technical, and
requires details of the postselection technique, it is included
in Ref. [18] for pedagogical reasons. This paper differs from
Ref. [16] in that it follows the lines of the Renner framework
(i.e., bounding suitable entropies and applying a leftover hash-
ing lemma) rather than the phase-error approach; in particular,
it does not involve an explicit reduction to an analysis of a
virtual phase-error-correction procedure.

This paper is organized as follows: In Sec. II we describe
the QKD protocol steps, and setup the notation used in this
paper. In Sec. III we show how, under certain conditions, a
sequence of fixed-length QKD security proofs against IID col-
lective attacks can be lifted to a variable-length QKD security
proof against IID collective attacks. Our approach involves
at most a doubling of the security parameter. Therefore, for
the same target security parameter, the various key lengths
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for the variable-length protocol are nearly identical to the key
lengths for the fixed-length protocols. In Sec. IV, we consider
the scenario where the expected channel behavior is known in
advance, and compute expected key rates for the qubit BB84
protocol, and show that the variable-length protocol generates
better expected key rates than the best fixed-length protocol.

We then move on to study scenarios where the chan-
nel behavior is unpredictable, and not known in advance. In
Sec. V we present another variable-length protocol, where
the procedure for choosing the final key length (and length
of error-correction information) is especially suited for such
scenarios. Our protocol allows Alice and Bob to perform QKD
without any prior knowledge about the channel connecting
them. In Sec. VI we apply these results to the qubit BB84
protocol, and show that the variable-length implementation
lead to higher expected key rates than the best fixed-length
implementation.

In Sec. VII, we point out and remedy a gap between the
theory and implementation of privacy amplification in QKD
protocols. This gap exists because in implementations, privacy
amplification is typically done on a register of variable length
containing the raw sifted key, whereas in theory, privacy
amplification is typically done on a register of fixed length
containing data from all the signals. In Sec. VIII we present
concluding remarks. Various technical details are delegated to
the appendices.

II. NOTATION AND PROTOCOL SPECIFICATIONS

In this paper, we will either consider a sequence of fixed-
length protocols indexed by i, or a single variable-length
protocol where different events in the variable-length decision
(see below) are indexed by i. We use the same index i since
we construct the variable-length protocol from the sequence
of fixed-length protocols in Sec. III. We describe the proto-
col steps for both fixed-length and variable-length protocols
below.

A. Protocol steps

(1) State preparation and transmission. Alice prepares sig-
nal states and sends them to Bob, who measures them. We let
N be the total number of signals sent by Alice. For prepare-
and-measure protocols, the source-replacement scheme [19]
can be used to equivalently describe this step as Alice and Bob
receiving subsystems of the state ρAN BN EN , followed by Alice
measuring her subsystem AN . In this case, one can assume
that TrBN EN (ρAN BN EN ) = σ̄⊗N

A , where σ̄⊗N
A is a fixed marginal

state, which reflects the fact that Alice’s system never leaves
her laboratory, and that each signal is prepared independently.
Furthermore, since we assume IID collective attacks, we have
ρAN BN EN = ρ⊗N

ABE .
(2) Measurement. Bob performs measurements on the re-

ceived states, and stores measurement data.
(3) Public announcements. Alice and Bob select at ran-

dom m rounds [20] out of the total N rounds, and announce
their measurement outcomes for those rounds in the register
Cm

AT . These announcements will be used to determine whether
to accept or abort in the fixed-length protocol, or to determine

appropriate lengths of various strings in the variable-length
protocol.

On the remaining n := N − m rounds, Alice and Bob
perform round-by-round announcements Cn (such as basis-
choice, detect/no-detect). They store their private data in
registers X n and Y n. The state of the protocol at this stage is
given by ρX nY nCnCm

AT EN = ρ⊗n
XYCE ⊗ ρCm

AT Em , where we split up
the m test rounds and n key generation rounds. Note that since
we assume IID collective attacks, the test round announce-
ments Cm

AT and registers Em are independent of the raw key
Zn.

From the public announcements Cm
AT , Alice and Bob com-

pute Fobs, which is the observed frequency of outcomes in the
test rounds of the QKD protocol.

(4) Acceptance test/variable-length decision. For the ith
fixed-length protocol, Alice and Bob accept the protocol if
Fobs ∈ Q̃i. Here Q̃i denotes the acceptance set for the protocol,
and we use �̃i to denote the event Fobs ∈ Q̃i. Note that in
this paper, we use variables � and �̃ (with subscripts) to
denote the boolean variables corresponding to the occurrence
of various events.

For the variable-length protocol, we instead use the follow-
ing procedure: We have multiple disjoint sets Qi, and use �i

to denote the event Fobs ∈ Qi. Depending on which event �i

is observed, Alice and Bob can choose different parameters
in the processing of the data to the final key (for instance, the
number of bits used in error correction, and the length of the
final key).

Remark 1. It is important to note that for fixed-length pro-
tocols, the details of the acceptance test need to be determined
before looking at Fobs. In particular, current security proofs for
such protocols do not allow users to first look at the observed
statistics Fobs and then decide the nature of the acceptance test.
This is the reason why it is important to know the expected
behavior of the channel before the QKD protocol is run, in
order to design an acceptance test that accepts with high
probability for honest behavior.

(5) Key map and sifting. Alice maps her raw data X n to
her raw key Zn where Z is a binary variable, based on the
announcements Cn. In this paper, we assume that Alice sets
Z to 0 for signals that are sifted out, and let dZ denote the
dimension of the Z register.

(6) Error correction. Alice and Bob implement error cor-
rection by exchanging classical information in the register
CE . For the ith fixed-length protocol, we use λEC

i to denote
the number of bits of communication during error correction,
when the protocol accepts. For variable-length protocols we
use λEC

i to denote the number of bits of communication during
error correction, when event �i occurs. Note that CE may
contain additional information beyond λEC

i bits, as long as
the information is independent of Alice and Bob’s data. For
example, if the error-correction protocol randomly divides
the data into blocks, then the descriptions of the randomly
generated blocks can be included in CE . Thus λEC

i actually
refers to the number of bits in CE that are computed from Alice
and Bob’s data.

Remark 2. It is important to note that one has to fix the ex-
act number of bits of communication during error correction
before the QKD protocol is run. In particular, current security
proofs do not allow users to first count the number of bits used
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during error correction and then adjust the length of the final
key produced. For the framework described in this paper for
variable-length protocols, it is still the case that the values λEC

i
need to be decided before the protocol is run, i.e., for each i,
the users must implement an error-correction procedure that
uses a fixed number [21] of bits, rather than one that uses a
randomly varying number of bits.

(7) Error verification. Alice chooses a two-universal hash
function that hashes to �log(1/εEV)� bits, computes the hash
of her raw key, and sends the hash value to Bob, along with
the description of the hash function. Bob hashes his guess for
Alice’s key, compares the hash values, and announces whether
the values match or not. We use CV to denote the classical
register that stores this communication. We note that since
the hash function is chosen independently of Alice and Bob’s
data, only �log(1/εEV)� bits of CV are correlated to Alice
and Bob’s data [22]. We use �EV to denote the event that
the hash values match, and Alice and Bob continue with the
protocol. The state of the protocol at this stage is given by
ρZnZn

BCnCECV En ⊗ ρCm
AT Em , where Zn

B is Bob’s guess for Alice’s
raw key after error correction.

(8) Privacy amplification. For the ith fixed-length proto-
col, if event �̃i ∧ �EV occurs, Alice chooses a two-universal
hash function from n bits to li bits. She announces the descrip-
tion of the hash function in the register CP, and Alice and Bob
apply the hash function to their data to produce their final keys

in registers KA and KB. We use ρ
(li,λEC

i )

KAKBC̃EN |�̃i∧�EV
to denote the

final state of the protocol, conditioned on the event �̃i ∧ �EV,
where we use C̃ to denote the registers CnCm

AT CECV CP for
brevity.

For the variable-length protocol, if event �i∧�EV occurs,
Alice chooses a two-universal hash function from n bits to li
bits. She announces the description of the hash function in
the register CP, and Alice and Bob apply the hash function
to their data to produce their final keys in registers KA and KB.

We use ρ
(li,λEC

i )

KAKBC̃EN |�i∧�EV
to denote the final state of the protocol,

conditioned on the event �i∧�EV.
Thus for all the fixed-length QKD protocols, the details

of the acceptance test, and the value of λEC
i and li must be

fixed before the start of the protocol. For the variable-length
QKD protocol, the details of the variable-length decision (in
particular the values of λEC

i and li) must be fixed before the
start of the protocol. Moreover, the events �̃i,�i determine
the pair of values (li, λEC

i ) for the corresponding protocol.

III. VARIABLE-LENGTH SECURITY
FROM FIXED-LENGTH SECURITY

In this section, we show how a sequence of security proofs
for fixed-length protocols (against IID collective attacks) can
be converted to a security proof for variable-length protocols
(against IID collective attacks). Let us suppose that we have
M fixed-length QKD protocols, indexed by i ∈ {1, 2, . . . , M}.
The protocols differ only in their choice of acceptance test,
the number of bits used for error correction, and length of the
final key generated. In particular, the ith protocol accepts if
and only if Fobs ∈ Q̃i, where Q̃i is the acceptance set. Upon
acceptance, it uses λEC

i bits for error correction and produces
a key of fixed length li.

A. Fixed-length security statements

Following standard composable security definitions
[23,24], the ith fixed-length QKD protocol is said to be
εsecure-secure against some class of attacks if the following
condition holds: for all attacks in that class, at the end of the
protocol we have

1
2 Pr(�̃i∧�EV)

∥∥∥ρ (li,λEC
i )

KAKBC̃EN |�̃i∧�EV
− ρ

(li,λEC
i ,ideal)

KAKBC̃EN |�̃i∧�EV

∥∥∥
1

� εsecure. (1)

Here, ρ (li,λEC
i )

KAKBC̃EN |�̃i∧�EV
denotes the actual output state at the end

of the protocol, while ρ
(li,λEC

i ,ideal)

KAKBC̃EN |�̃i∧�EV
denotes an “ideal state”

obtained by replacing the key registers of ρ
(li,λEC

i )

KAKBC̃EN |�̃i∧�EV
with

perfect keys, i.e.,

ρ
(li,λEC

i ,ideal)

KAKBC̃EN |�̃i∧�EV
:=

∑
k∈{0,1}li

|kk〉 〈kk|
2li

⊗ ρ
(li,λEC

i )

C̃EN |�̃i∧�EV
. (2)

Note that ρ
(li,λEC

i ,ideal)

KAKBC̃EN |�̃i∧�EV
is not a “fixed” state but rather a

function of the input state.
In particular, in this paper we focus on restricting the class

of attacks to IID collective attacks, which means we suppose
that the input states supplied to the QKD protocol are always
of the form ρ⊗N

ABE . For prepare-and-measure protocols, the in-
put states are further constrained to satisfy TrBE (ρABE ) = σ̄A,
where σ̄A is the fixed marginal state on Alice’s system that
is obtained from the source-replacement scheme [19]. (For
entanglement-based protocols, this constraint is not imposed;
either version can be handled using the framework presented
in this paper.)

Furthermore, as explained in Ref. [15,23,24], to show that a
QKD protocol is εsecure-secure (against some class of attacks),
it suffices to prove a pair of simpler conditions, namely that
it is ε1-correct and ε2-secret (against that class of attacks)
with ε1 + ε2 � εsecure. Specifically, ε1-correctness means the
output state satisfies

Pr(KA 	= KB ∧ �EV) � ε1, (3)

while ε2-secrecy means it satisfies

1
2 Pr(�̃i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�̃i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�̃i∧�EV

∣∣∣∣∣∣
1
� ε2, (4)

i.e., the same condition as εsecure-security [Eq. (1)] but with
Bob’s key register omitted. (Both of the above conditions are
to be implicitly understood as holding against all attacks in
the considered class.) In our subsequent discussion, we shall
indeed proceed by proving the above pair of conditions rather
than Eq. (1) directly.

We assume that for each protocol i ∈ {1, 2, . . . , M}, the
following statements have been shown to be true. As we
shall shortly show, these statements together imply Eq. (1)
with εsecure = εEV + max{εAT, εPA}, following established ap-
proaches described in, e.g., [2–4].

(1) There is a “feasible” set S̃i ⊆ {ρ ∈ S◦(AB)|TrB(ρAB) =
σ̄A}, where S◦ denotes the set of normalized states, such that if
the state ρAB is not in the set S̃i, the protocol aborts with high
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probability, and is thus secure. That is,

ρAB /∈ S̃i ⇒ Pr(�̃i ) � εAT. (5)

Note that in the entirety of this paper, the statement ρ /∈
S̃i is assumed to be with respect to the parent set {ρ ∈
S◦(AB)|TrB(ρAB) = σ̄A} having the fixed marginal on A.

(2) The hash length li is given by

li =
⌊

n min
ρ∈S̃i

H (Z|CE )ρ − λEC
i − �log (1/εEV)�

−n(α − 1) log2(dZ + 1). − α

α − 1

(
log(

1

4εPA
) + 2

α

)⌋
,

(6)

where H denotes the conditional von Neumann entropy, and
dZ denotes the dimension of the Z register. This choice
of li is such that if the state ρAB ∈ S̃i, a key of length
li can be safely extracted from the protocol. In the en-
tirety of this work, we choose α = 1 + κ/

√
n with κ :=√

log(1/εPA)/log(dZ + 1), assuming n is large enough to

ensure that α � 1 + 1/ log(2dZ + 1) is satisfied. This is the
choice of α that maximizes Eq. (6) [up to a minor approx-
imation that α/(α − 1) ≈ 1/(α − 1)], and also leads to the
expected asymptotic scaling in the key rate expression.

(3) The error-verification step compares two-universal
hashes of length �log(1/εEV)�.

To see how these three statements imply Eq. (1), we first
note that the protocol is εEV-correct,

Pr(KA 	= KB ∧ �EV) � Pr
(
Zn 	= Zn

B ∧ �EV
)

� Pr
(
�EV|Zn 	= Zn

B

)
� εEV, (7)

where Zn
B denotes Bob’s guess for Alice’s raw key, and the

second inequality follows from the fact that KA 	= KB ⇒
Zn 	= Zn

B, while the final inequality follows from that the
fact that error-verification step compares hashes of length
�log(1/εEV)�.

Furthermore, we obtain the following chain of inequali-
ties using some technical lemmas from [25–27], which we
restate in Appendix A. The derivation of these inequalities is
explained below. We obtain

1

2
Pr(�̃i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�̃i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�̃i∧�EV

∣∣∣∣∣∣
1

� 1

2
Pr(�̃i∧�EV)2−( α−1

α
)(Hα (Zn|CnCm

AT CECV EN )ρ|�̃i∧�EV
−li )+ 2

α
−1

� 1

2
Pr(�̃i∧�EV)2−( α−1

α
)(Hα (Zn|CnEn )ρ|�̃i∧�EV

−λEC
i −�log(1/εEV )�−li )+ 2

α
−1

� 1

2
2−( α−1

α
)(Hα (Zn|CnEn )ρ−λEC

i −�log(1/εEV )�−li )+ 2
α
−1

= 1

2
2−( α−1

α
)(nHα (Z|CE )ρ−λEC

i −�log(1/εEV )�−li )+ 2
α
−1

� 1

2
2−( α−1

α
)(nH (Z|CE )ρ−n(α−1) log2(dZ +1)−λEC

i −�log(1/εEV )�−li )+ 2
α
−1

� εPA ∀ρ ∈ S̃i, (8)

where Hα denotes the Rényi entropy (see Definition 1 and
Appendix A) with α as the Rényi parameter. Here we used the
leftover hashing lemma for Rényi entropy [[26], Theorem 8]
(restated in Lemma 6) in the first inequality, and Lemma 11 to
split off the error-correction and error-verification information
for the second inequality, along with the registers Cm

AT Em

(which are independent of Zn). We further use Lemma 9
to get rid of the conditioning on acceptance events in the
third inequality. The fourth equality follows from additivity
of Rényi entropy (Lemma 7), and fifth inequality follows from
Lemma 8. The choice of li from Eq. (6) is the largest possible
value that guarantees the final inequality in Eq. (8). The IID
assumption comes into play in the use of Lemma 7.

Since either ρ ∈ S̃i or ρ /∈ S̃i, Eqs. (5) and (8) together
imply that the protocol is max{εAT, εPA}-secret,

1
2 Pr(�̃i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�̃i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�̃i∧�EV

∣∣∣∣∣∣
1

� max{εAT, εPA}, (9)

for all states TrBN EN (ρ⊗N
ABE ) = σ̄⊗N

A . Finally, as previously
mentioned, a fixed-length QKD protocol that is εEV-correct
[Eq. (7)] and max{εAT, εPA}-secret, is (max{εAT, εPA} + εEV)-
secure [Eq. (1)], as desired.

B. From fixed-length security to variable-length security

For a variable-length protocol, again following composable
security definitions [15,24], we say that it is εsecure-secure
against some class of attacks [28] if the following condition
holds: for all attacks in that class, at the end of the protocol
we have

∞∑
k=0

1

2
Pr(�len=k )

∣∣∣∣∣∣ρ (k)
KAKBC̃EN |�len=k

− ρ
(k,ideal)
KAKBC̃EN |�len=k

∣∣∣∣∣∣
1

� εsecure. (10)

Here, �len=k denotes the event that a final key [29] of length
k is produced, while ρ

(k)
KAKBC̃EN |�len=k

denotes the actual output
state at the end of the protocol conditioned on the event
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�len=k , and ρ
(k,ideal)
KAKBC̃EN |�len=k

denotes an “ideal state” obtained

by replacing the key registers of ρ
(k)
KAKBC̃EN |�len=k

with perfect
keys of length k [analogous to Eq. (2)]. Note that we recover
the security definition of fixed-length protocols [Eq. (1)] from
Eq. (10) by setting k to be a fixed value k = li in the sum in
Eq. (10), and noting that �len=k is the same event as �̃i∧�EV,
corresponding to a key length of li bits, and λEC

i bits used
for error correction. Again, in this paper we focus only on
IID collective attacks, in the sense previously described in
Sec. III A.

Similar to fixed-length protocols, one can define correct-
ness and secrecy for variable-length protocols. Specifically,
we shall take ε1-correctness to be defined the same way
as before [Eq. (3)], while ε2-secrecy is analogously defined
by omitting Bob’s registers from the variable-length εsecure-
security condition, i.e., for all attacks (in the considered class)
we have

∞∑
k=0

1

2
Pr(�len=k )

∣∣∣∣∣∣ρ (k)
KAC̃EN |�len=k

− ρ
(k,ideal)
KAC̃EN |�len=k

∣∣∣∣∣∣
1
� ε2. (11)

Just as in the fixed-length case, for the variable-length case
we also have the property that ε1-correctness and ε2-secrecy
together imply (ε1 + ε2)-security—the argument is identical
to the fixed-length case [15,23,24], and we provide it in
Lemma 12 of Appendix A.

In order to use the security statements from Sec. III A for
(a sequence of) fixed-length protocols to prove security for a
variable-length protocol, we require the acceptance sets Q̃i of
those fixed-length protocols to satisfy the following condition.
We assume that the acceptance sets Q̃i for the fixed-length
protocols are ordered such that Q̃i ⊆ Q̃i+1. This can in princi-
ple be satisfied by suitable construction of the acceptance sets,
as we show in Sec. IV (although the resulting variable-length
protocol may not be suitable in all contexts, as we discuss
later in Sec. V). Without loss of generality, we can then pick
feasible sets S̃i such that S̃i ⊆ S̃i+1, since

ρ /∈ S̃i+1 ⇒ Pr(�̃i+1) � εAT ⇒ Pr(�̃i ) � εAT. (12)

Thus, the feasible set S̃i can always be chosen to be smaller
than the feasible set S̃i+1.

Remark 3. Recall from Eq. (6), we have li =
�n minρ∈S̃i

H (X |CE )ρ − λEC
i − constant correction terms�.

Thus, S̃i ⊆ S̃i+1 implies that li + λEC
i is a nonincreasing

sequence in i. This property will play a crucial part in proving
the security of our variable-length protocol.

We now use the acceptance sets Q̃i from the sequence
of fixed-length protocols to construct the sets Qi (in the
variable-length decision step) for a variable-length protocol.
Specifically, let us define Q1 := Q̃1, and Qi := Q̃i \ Q̃i−1. We
then prove the following theorem concerning the security of
variable-length QKD protocols.

Theorem 1. Let there be a sequence of fixed-length QKD
protocols that vary only in their acceptance criterion (Q̃i),
length of error-correction communication (λEC

i ) and final hash
length li. Suppose that for each of these fixed-length protocols,
we have a security proof against IID collective attacks, in
which Eqs. (5)–(7) are true. Furthermore, suppose Q̃i ⊆ Q̃i+1

and S̃i ⊆ S̃i+1.Then, the variable-length protocol that upon the
event �i∧�EV, generates a key of length li while having used

λEC
i number of bits for error correction, is (εAT + εEV + εPA)-

secure against IID collective attacks, where the values of
εAT, εEV, εPA are the same as those in the fixed-length protocol
statements Eqs. (5)–(7).

Proof. As before, we will prove that the protocol is εEV-
correct and (εAT + εPA)-secret. This will then imply that the
protocol is (εEV + εAT + εPA)-secure.

The proof of εEV-correctness of the protocol remains es-
sentially the same as before [Eq. (7)],

Pr(KA 	= KB ∧ �EV) � Pr
(
Zn 	= Zn

B ∧ �EV
)

� Pr
(
�EV|Zn 	= Zn

B

)
� εEV. (13)

We now focus on proving the (εAT + εPA)-secrecy of the
protocol. To do so, we first note that the secrecy definition
for variable-length protocols [Eq. (11)] groups together terms
with the same output length of the key. However, the different
events �i∧�EV may correspond to the same output length
of the key and different lengths of error-correction infor-
mation. Nevertheless, the events �i∧�EV are deterministic
functions of public announcements Cm

AT ,CV . Thus, the states

ρ
(li,λEC

i )

KAC̃EN |�i∧�EV
conditioned on event �i∧�EV have orthogonal

supports. Therefore, it is sufficient to show that

M∑
i=1

1

2
Pr(�i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�i∧�EV

∣∣∣∣∣∣
1

� εAT + εPA, (14)

since we can group terms with the same output key length in
Eq. (14) to show that Eqs. (11) and (14) are equivalent. (An
analogous argument can be conducted at the level of the secu-
rity condition [Eq. (10)] directly, though here we focus on just
the secrecy condition since that (together with correctness) is
sufficient to imply the security condition.) We will now prove
Eq. (14).

We proceed by noting that since we have the ordering S̃i ⊆
S̃i+1, any input state ρAB has to fall under exactly one of the
following three cases:

(1) ρAB ∈ S̃1.
(2) ρAB /∈ S̃ j but ρ ∈ S̃ j+1 for some j.
(3) ρAB /∈ S̃M .
We prove the secrecy claim separately for each case. We

start with Case 2.
Case 2. If ρ /∈ S̃ j but ρ ∈ S̃ j+1 for some j, we split up the

security definition from Eq. (10) into two parts. For the first
part, we show that if ρ /∈ S̃ j , the probability of the protocol
obtaining the event �1 ∪ ...� j is small,

j∑
i=1

1

2
Pr(�i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�i∧�EV

∣∣∣∣∣∣
1

�
j∑

i=1

Pr(�i∧�EV) �
j∑

i=1

Pr(�i ) = Pr(�̃ j ) � εAT,

(15)

where the final inequality follows from the fixed-length secu-
rity statement [Eq. (5)].
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To bound the remaining terms, we use some technical lemmas from [25–27] (which are restated in Appendix A), to obtain
the following chain of inequalities:

M∑
i= j+1

1

2
Pr(�i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�i∧�EV

∣∣∣∣∣∣
1

�
M∑

i= j+1

1

2
Pr(�i∧�EV)2−( α−1

α )(Hα (Zn|CnCm
AT CECV EN )ρ|�i∧�EV −li )+ 2

α
−1

�
M∑

i= j+1

1

2
Pr(�i∧�EV)2−( α−1

α )(Hα (Zn|CnCm
AT CV En )ρ|�i∧�EV −λEC

i −li )+ 2
α
−1

�
M∑

i= j+1

1

2
Pr(�i∧�EV)2−( α−1

α )(Hα (Zn|CnCm
AT CV En )ρ|�i∧�EV −λEC

j+1−l j+1 )+ 2
α
−1

� 1

2
2−( α−1

α )(Hα (Zn|CnCm
AT CV En )ρ−λEC

j+1−l j+1 )+ 2
α
−1

� 1

2
2−( α−1

α )(Hα (Zn|CnEn )ρ−λEC
j+1−�log (1/εEV )�−l j+1 )+ 2

α
−1

= 1

2
2−( α−1

α )(nHα (Z|CE )ρ−λEC
j+1−�log (1/εEV )�−l j+1 )+ 2

α
−1

� 1

2
2−( α−1

α )(nH (Z|CE )ρ−n(α−1) log2(dZ +1)−λEC
j+1−�log (1/εEV )�−l j+1 )+ 2

α
−1 � εPA. (16)

The inequalities above are explained below, with the crucial
step explained in Remark 4. We used the leftover hashing
lemma for Rényi entropy in the first inequality (Lemma 6),
and Lemma 11 to split off the information leakage due to error
correction and the Em register (which is independent of Zn),
in the second inequality. For the third inequality, we use the
fact that li + λEC

i is a nonincreasing sequence in i (Remark 3).
We use Lemma 10 to get rid of the conditioning on events for
the fourth inequality, and Lemma 11 to split off information
leakage due to error verification and the Cm

AT register (which is
independent of Zn) in the fifth inequality. The sixth equality
follows from the additivity of Rényi entropy (Lemma 7),
while the seventh inequality follows from Lemma 8. Finally,
we use the security proof statement for fixed-length protocols
[Eq. (8)] and the fact that ρ ∈ S̃ j+1 for the final inequality.

Remark 4. We highlight two critical steps in Eq. (16). The
first is in the third inequality, where we replace li + λEC

i with
the constant value l j+1 + λEC

j+1, using Remark 3. The second is
in the use of Lemma 10 in the fourth inequality, which allows
us to get rid of terms involving Rényi entropies of the state
conditioned on events. In particular, smooth min-entropy does
not straightforwardly allow a statement analogous to Lemma
10, which is the reason for using Rényi entropy in this paper.
Moreover we split off the Cm

AT ,CV registers after using Lemma
10, since we require the events �i∧�EV to be known to Eve
to use Lemma 10 for the fourth inequality.

Bringing Eqs. (15) and (16) together, we obtain that the
protocol is (εAT + εPA)-secret,

M∑
i=1

1

2
Pr(�i ∧ �EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�i∧�EV

∣∣∣∣∣∣
1

� εAT + εPA. (17)

Case 1 and Case 3. The analysis of Case 1 is a special case
of the above analysis, and follows from choosing j = 0 in
Eq. (16). The analysis of Case 3 is also a special case, and
follows from choosing j = M in Eq. (15).

The theorem claim then follows from the correctness and
secrecy statements. �

Thus, a sequence of security proofs for fixed-length pro-
tocols satisfying certain conditions can be turned into a
security proof for a variable-length protocol. Moreover, the
only penalty imposed by our approach is a minor increase
in the security parameter of the protocol, which goes from
(max{εAT, εPA} + εEV) for the fixed-length case, to (εAT +
εPA + εEV) for the variable-length case. In fact, this minor
penalty is completely compensated by the ability to generate
longer keys in the variable-length case, as we show in the next
section.

IV. APPLICATION TO QUBIT BB84

In this section we will show how Theorem 1 can be
utilized to improve the expected key rate [30] of QKD
protocols. For the sake of simplicity, we consider the qubit-
based BB84 protocol to illustrate our results. However,
Theorem 1 can be directly applied to any fixed-length pro-
tocols whose security proof satisfies 567. We use Ref. [2]
for the finite-size security proof of qubit BB84, and the
numerical key rate framework from Ref. [31] to compute
key rates. The signal preparation and measurement steps of
the qubit BB84 protocol are described in Appendix B. The
acceptance test and key rate computation is described in
Sec. IV B. We start by explaining the notion of expected key
rates.
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A. Expected key rate

Before defining expected key rates we first set up the fol-
lowing notation:

(1) Rfixed,i: This denotes the key rate obtained upon the
event �̃i∧�EV for the ith fixed-length protocol.

(2) Rvariable,i: This denotes the key rate obtained upon the
event �i∧�EV for the variable-length protocol.

(3) R̄fixed,i: This denotes the expected key rate for the ith
fixed-length protocol.

(4) R̄variable: This denotes expected key rate for the
variable-length protocol.

(5) ρhon: This denotes the state corresponding to the honest
implementation of the QKD protocol.

Note that Rfixed,i and Rvariable,i are obtained from the security
proofs, and are independent of honest behavior.

For the purposes of this paper, in all the expected key rate
computations we assume that the probability of the event �EV

in the honest case is approximately 1. We make this simpli-
fying assumption because the true value would depend on the
(honest) probability of Bob correctly guessing Alice’s key in
the error-correction step, but many error-correction protocols
used in practice do not have rigorous lower bounds on this
probability, only heuristic estimates. We stress, however, that
this in no way affects our proof that the protocol satisfies the
security condition, which does not require any lower bound
on this probability.

With this approximation, the expected key rate for the ith
fixed-length protocol is given by

R̄fixed,i := Pr(�̃i ∧ �EV)ρhon Rfixed,i

≈ Pr(�̃i )ρhon Rfixed,i, (18)

where Pr(�̃i )ρhon is the probability of the protocol accepting
during honest behavior, and Rfixed,i is the key rate upon ac-
cepting for the ith protocol. We use R̄fixed as a useful metric to
compare the practical key rate of a QKD protocol.

We can generalize the notion of expected key rate to the
variable-length case in a straightforward manner. We define

R̄variable :=
M∑

i=1

Pr(�i∧�EV)ρhon Rvariable,i

≈
M∑

i=1

Pr(�i )ρhon Rvariable,i, (19)

where Pr(�i )ρhon is the probability of obtaining the event �i

for honest implementations, and Rvariable,i is the key rate ob-
tained upon the event �i. Again, R̄variable is a useful metric to
compare the practical key rate of a QKD protocol.

Thus, the expected key rates can be computed from
Eqs. (18) and (19). The values of Rfixed,i and Rvariable,i can
be obtained from security proofs. The probabilities Pr(�̃i )ρhon

and Pr(�i )ρhon can be estimated numerically, by simulating the
channel a large number of times, and computing the fraction
of runs that lead to events �̃i and �i.

We now describe the acceptance test from Ref. [2], and key
rate computations.

B. Acceptance test and key rates

Consider a sequence of fixed-length protocols indexed by
i ∈ {1, 2, . . . , M}. Let 
 denote the set of outcomes that can
take place in the test rounds. For qubit BB84, 
 consists of
the 16 possible outcomes corresponding to Alice’s choice of
signal state and Bob’s measurement outcome. Then following
Ref. [2], we shall define the acceptance set Q̃i for each of these
fixed-length protocols as

Q̃i := {Fobs ∈ P (
) | ‖Fobs − F̄‖1 � ti}, (20)

where P (
) the set of probability distributions on 
. Here
F̄ is the probability vector of outcomes for the honest imple-
mentation, i.e., each entry of F̄ is the probability of obtaining
some outcome in a single round of the honest implementation,
as determined by Eq. (21) below. Fobs is the observed fre-
quency of outcomes, and the acceptance test checks whether
the observed frequency of outcomes is close to the expected
frequency (F̄). Note that one can easily satisfy the condition
Q̃i ⊆ Q̃i+1, by choosing ti � ti+1. This ensures that Theorem
1 can be applied safely.

Let � j be the POVM element corresponding to the jth
outcome, and define

�(ρ) :=
∑
j∈


Tr(� jρ) | j〉 〈 j| (21)

to be the map that takes the state ρ and outputs the probability
distribution over the outcomes. Given such an acceptance set
Q̃i, a feasible set S̃i satisfying Eq. (5) is given by [[2], Theorem
8]

S̃i := {ρ ∈ S◦(AB)|‖�(ρ) − F̄‖1 � ti + μ}, (22)

where μ is given by

μ :=
√

2

√
ln(1/εAT) + |
| ln(m + 1)

m
. (23)

The construction of this set crucially uses the concentration
inequality from Lemma 13 (Appendix B 1).

Therefore, the key length li satisfying Eq. (6) is given by

li � n min
ρ∈S̃i

TrB (ρ)=σ̄A

H (Z|CE )ρ − λEC
i − n(α − 1) log2(2dZ + 1)

− �log (1/εEV)� − α

α − 1

(
log

(
1

4εPA

)
+ 2

α

)
, (24)

where dZ is the dimension of Z , λEC
i is the number of bits used

for error correction, n is the number of signals for key genera-
tion, and we set the Rényi parameter to be α = 1 + κ/

√
n with

κ := √
log(1/εPA)/log(dZ + 1). Moreover, λEC

i can be chosen
to be any number for the purposes of proving the security
of the protocol. However, a careful choice of λEC

i and design
of the error-correction protocol is necessary to guarantee that
the protocol passes error verification with high probability for
honest behavior.

C. Results

We now use the above results to compare the expected key
rates for fixed-length protocols and variable-length protocols.
We consider a protocol with honest behavior determined by
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FIG. 1. Expected key rate for fixed-length protocols (R̄fixed,i) for
various values of ti, key rate upon acceptance for fixed-length proto-
cols (Rfixed,i) for various values of ti, and the expected key rate for the
variable-length protocol (R̄variable) constructed from the fixed-length
protocols.

a depolarization probability of 0.02, and misalignment angle
about the Y axis of θ = 2◦. We set the basis choice probabili-
ties to pz = px = 0.5. The total number of signals is given by
N = 106, and the number of signals used for testing is given
by m = 0.05N . The number of bits used for error correction
is always taken to be λEC

i = λEC = f nH (Z|YC)ρhon where f =
1.16 is the efficiency parameter. We set α = 1 + κ/

√
n with

κ := √
log(1/εPA)/log(dZ + 1), and fix a range of values of

ti (horizontal axis of Fig. 1) such that ti � ti+1. This deter-
mines the acceptance sets Q̃i for the fixed-length protocols,
and thus also the sets Qi in the variable-length decision of
the variable-length protocol we construct (Sec. III). We set a
target security parameter of εsecure = 10−12. We plot various
key rates in Fig. 1, which are explained below.

(1) Rfixed,i: This is the key rate upon acceptance for fixed-
length protocols for various values of ti. Since εsecure =
max{εPA, εAT} + εEV for fixed-length protocols, we set εAT =
εPA = εEV = εsecure/2. We use Eqs. (24) and (22) to compute
li for various values of ti, and plot Rfixed,i = li/N . We see
that Rfixed,i decreases monotonically on increasing values of
ti, which reflects the fact that larger acceptance sets lead to
lower key rate upon acceptance.

(2) R̄fixed,i: This is the expected key rate for fixed-length
protocols, for various values of ti. We use the values of Rfixed,i

obtained above, along with Eq. (18) to compute R̄fixed,i. The
probability of accepting the protocol Pr(�̃i )ρhon is computed
as follows:

(1) We first compute the probability vector F̄ corre-
sponding to the honest behavior ρhon, by setting F̄ =
�(ρhon), where � is defined in Eq. (21).

(2) We sample m times from F̄, and obtain the observed
frequency of outcomes Fobs. We check whether Fobs ∈ Q̃i.

(3) We estimate Pr(�̃i )ρhon by repeating (b) 100 000
times, and computing the fraction of times we obtained
Fobs ∈ Q̃i.
We see that the R̄fixed,i is small at low values of ti, since

the probability of the protocol accepting is small. We also see
that R̄fixed,i is small at larger values of ti, since the key rate
upon acceptance is small. The expected key rate thus captures

the trade-off between accepting with large probability, versus
producing a large key upon acceptance.

(3) R̄variable: This is the expected key rate for variable-
length protocols. Note that this is a fixed value and not plotted
as a function of ti (since we obtain a single variable-length
protocol from a sequence of fixed-length protocols determined
by the tis). Anticipating the use of Theorem 1, we set εAT =
εsecure/4, εPA = εsecure/4, and εEV = εsecure/2. We compute li
using Eq. (24) for various values of ti, and set Rvariable,i = li/N .
Using Theorem 1, we obtain that the variable-length proto-
col constructed from the sequence of fixed-length protocols,
for the given set of tis, is εsecure = (εAT + εPA + εEV)-secure.
We compute the various probabilities Pr(�i )ρhon in the same
manner as (2) above (by simulating 100000 runs of the QKD
protocol), and compute R̄variable using Eq. (19).

Crucially, we find that the variable-length protocol has
higher expected key rate than the best fixed-length protocol.
Since the variable-length protocol consists of exactly the same
steps as the fixed-length protocol, and only differs in the
parameters of the classical processing of the data, the im-
plementation of the variable-length protocol does not impose
any additional difficulties, and is accompanied by an increase
in the expected key rate. In fact, we expect that implement-
ing a variable-length protocol will almost always lead to an
improvement in the expected key rate, as we argue in the
following remark.

Remark 5. Consider any fixed-length protocol where the
honest behavior is given by ρhon. Suppose that Alice and Bob
choose to implement a fixed-length protocol, with parame-
ters l , λEC and t . Now, consider the variable-length protocol
for the same honest behavior ρhon, for the same choice of
εPA, εAT, εEV, obtained by choosing li according to t1 � t2... �
t , and choosing λEC

i = λEC. Then since l1 � l2... � l , using
Theorem 1, one is guaranteed to improve upon the expected
key rate by switching to a variable-length protocol (albeit with
a small increase in the security parameter). This is because the
variable-length protocol always has some nonzero probability
of producing keys of larger length when compared to the
fixed-length protocol. We believe that in almost all cases,
this improvement will remain even after choosing the same
security parameter for both fixed-length and variable-length
protocols (as we saw in Fig. 1).

V. A TRUE VARIABLE-LENGTH PROTOCOL

In the preceding section, we considered a scenario where
the honest implementation of the protocol is fixed and known
beforehand. However, in scenarios where the honest im-
plementation varies unpredictably between each run of the
protocol, it is not clear how Theorem 1 can be used to obtain
good key rates. For instance, suppose that the channel has
a 50% chance of having honest behavior ρhon (leading to
statistics F̄) and ρ ′

hon(leading to statistics F̄′), and F̄ and F̄′ are
very different frequencies. Then it is not clear how to choose
suitable acceptance sets that: (a) give good key rates and (b) on
which Theorem 1 can be applied. This is because the size of
the acceptance test that includes both F̄ and F̄′, is of the order
of ‖F̄ − F̄′‖1, which can be quite large. This leads to low (or in
many cases zero) key rate upon acceptance. Thus, we have not
yet resolved the problem of unpredictable channels, which we
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shall now address in this section. We note that one potential
solution to this problem is to coarse grain the acceptance
data, and set the acceptance condition to be “QBER is less
than some fixed value”. However, coarse graining involves
throwing away information, and has been shown to lead to
suboptimal key rates [32]. Note that an unpredictable channel
connecting Alice and Bob is already a significant issue for ex-
perimental implementations, which is sometimes incorrectly
resolved by choosing the acceptance test (F̄, t) after seeing
the observed statistics Fobs (see Remark 1).

In this section, we will propose and analyze a variable-
length protocol that directly uses Fobs, the observed frequency
of outcomes, to determine the length of the secret key to
be produced and the number of bits to be used for error
correction. Note that unlike Sec. III, we no longer need to go
through a sequence of fixed-length protocols in this section.
Instead, we will design the variable-length decision in a differ-
ent manner that does not depend on a sequence of fixed-length
acceptance tests. Crucially, this will involve the construction
of a statistical estimator bstat(Fobs), that with high probability
is a lower bound on the Rényi entropy Hα (Zn|CnEn)ρ of the
state ρ in the QKD protocol. That is, we will first construct a
bstat such that for any state ρ, it is the case that

Pr
Fobs

(bstat(Fobs) � Hα (Zn|CnEn)ρ ) � 1 − εAT. (25)

This estimator will then be used to determine the length of
the output key. We start by presenting some results that allow
us to construct such an estimator in Sec. V A. In Sec. V B
we specify the variable-length protocol, and explain how the
users use bstat(Fobs) to decide the length of the key and the
number of bits to use for error correction. Finally, in Sec. V C
we prove the security of the variable-length protocol.

We highlight that the only place we use the IID collective
attacks assumption is in Sec. V A, in the construction of bstat.
Therefore, if alternative methods could be found that construct
bstat without this assumption, our proof framework would
generalize to coherent attacks.

A. Constructing the estimator

In a QKD protocol, we deal with a fixed yet unknown ρAB.
In particular ρAB is a fixed state and not a random variable.
This ρAB then gives rise to a random variable Fobs. Given that
Alice and Bob observe Fobs, obtained by performing mea-
surements on ρ⊗m

AB , we would like to construct a set of states
V (Fobs), such that V (Fobs) contains ρAB with high probability.

Remark 6. In general, one can use a variety of concentra-
tion inequalities to obtain such a set. In the following Lemma,
we will use the concentration inequality from Lemma 13
(Appendix B 1). We make this choice since it is the same
concentration inequality used in the construction of the fea-
sible set Eq. (22), and we wish to make a fair comparison
between the variable-length and fixed-length protocols. Thus,
for our comparisons later in Sec. VI, the acceptance tests
for the fixed-length protocols and the variable-length decision
in the variable-length protocol are designed using the same
concentration inequalities.

Lemma 1. For any state ρ, let Fobs ∈ P (
) be the fre-
quency vector obtained from measuring the state m times,
where 
 is the set of possible outcomes. Let � j be the POVM

element corresponding to outcome j. Define parameters

μ :=
√

2

√
ln(1/εAT) + |
| ln(m + 1)

m
, (26)

and the map �(ρ) := ∑
j∈
 Tr(� jρ) | j〉 〈 j|, and the set

V (Fobs) := {ρ ∈ S◦(AB) | ‖�(ρ) − Fobs‖1 � μ}. (27)

Then, V (Fobs) contains ρ with probability greater than 1 −
εAT. That is,

Pr
Fobs

(ρ ∈ V (Fobs)) � 1 − εAT. (28)

Proof. Fobs is sampled from the probability distribution
given by �(ρ). The claim follows from Lemma 13, which
states that if Fobs is obtained by sampling m times from the
probability distribution �(ρ), then

Pr(‖Fobs − �(ρ)‖1 � μ) � 1 − εAT. (29)

�
Next, we use the above result to obtain a statistical estima-

tor of a lower bound on the Rényi entropy of the state ρ⊗n
ZCE .

Lemma 2. For any state ρ satisfying TrBE (ρABE ) = σ̄A, let
Fobs ∈ P (
) be the frequency vector obtained from measur-
ing the state m times. Define

bstat(Fobs) := min
ρ∈V (Fobs ),
TrBE (ρ)=σ̄A

nH (Z|CE )ρ − n(α − 1) log2(dZ + 1),

(30)

where dZ = dim(Z ) and 1 < α < 1 + 1/ log(2dZ + 1). Then,

Pr
Fobs

(
bstat(Fobs) � Hα (Zn|CnEn)ρ

)
� 1 − εAT. (31)

Proof. From Lemmas 7 and 8, we have that
Hα (Zn|CnEn)ρ � nH (Z|CE )ρ − n(α − 1) log2(dZ + 1).
The claim then follows from Lemma 1. �

B. Variable length decision

We will use bstat(Fobs) to construct the following variable-
length decision procedure. Let F be the (possibly infinite
[33]) set of all possible observations Fobs in the variable-
length decision step. Let {0, 1, . . . , lmax} denote all the
possible values of output key lengths in our protocol. Let
{0, 1, . . . , λEC

max} denote all the possible values of the number
of bits used for error correction in our protocol. Then, the
variable-length decision is implemented as follows:

(1) From public announcements Cm
AT , Alice and Bob com-

pute Fobs and bstat(Fobs).
(2) They compute λEC(Fobs), the number of bits to be

used for error-correction information, where λEC(·) : F →
{0, 1, . . . , λEC

max} is some predetermined function.
(3) They compute l (Fobs), the length of the final key to

be produced, where l (·) : F → {0, 1, . . . , lmax} is a function
defined as

l (Fobs) := max(0,

�bstat(Fobs) − λEC(Fobs) − θ (εPA, εEV)�),

θ (εPA, εEV) := α

α − 1

(
log(

1

4εPA
) + 2

α

)
+ �log (1/εEV)�.

(32)
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Recall that �i denotes the event that a key of length li
is produced using λEC

i bits for error correction for some
values (li, λEC

i ). In other words, the index i determines the
pair (li, λEC

i ) of values of the key length and length of error-
correction information. The sets Qi for the variable-length
decision in our protocol are thus formally defined by

Qi = {
Fobs ∈ F |l (Fobs) = li, λ

EC(Fobs) = λEC
i

}
. (33)

Note that number of possible events �i is always finite (unlike
the set of possible observations F), and we denote it by
M. The remaining steps of the variable-length protocol are
identical to the ones described in Sec. II.

Remark 7. Recall that in the proof of Theorem 1, the fact
that li + λEC

i was a nonincreasing sequence in i played a
crucial role. This property is required for similar reasons in
the proof of Theorem 2. Thus, without loss of generality, we
label the events �i such that li + λEC

i forms a nonincreasing
sequence in i.

Such an ordering allows us to prove the following Lemma,
which we use in the next section in our security proof.

Lemma 3. Let Tp = {i|li > 0} be the set of values of i that
lead to nontrivial length of the key. Then,

j∑
i=1
i∈Tp

Pr(�i ) � Pr(bstat(Fobs) � l j + λEC
j + θ (εPA, εEV)),

(34)

for any j ∈ {1, 2, . . . , M}.
Proof. For any i ∈ Tp, using Eq. (32) we have

�i ⇒ bstat(Fobs) � li + λEC
i + θ (εPA, εEV). (35)

Therefore
j∑

i=1
i∈Tp

Pr(�i ) = Pr

(
j⋃

i=1
i∈Tp

�i

)

� Pr

(
j⋃

i=1
i∈Tp

(bstat(Fobs) � li + λEC
i +θ (εPA, εEV))

)

� Pr(bstat(Fobs) � l j + λEC
j + θ (εPA, εEV)),

(36)

where we used the fact that �i are disjoint events in the first
equality, Eq. (35) for the second inequality, and the ordering
on li + λEC

i (Remark 7) in the final inequality. �
We now have all the tools necessary to prove the security

of our variable-length protocol. Before presenting the security
proof, we compare the fixed-length and variable-length imple-
mentations in the following remark.

Remark 8. Note that with the way we construct the accep-
tance tests and variable-length decision in this section, the
following property holds. Focusing on the fixed-length im-
plementation for some specific i, the key length whenever the
protocol accepts is given by Eq. (24), which is an optimization
over the feasible set S̃i [Eq. (22)] whose size is determined
by ti + μ. On the other hand, the variable-length implemen-
tation determines the key length [Eq. (32)] by looking at
the observed value Fobs and optimizing over the set V (Fobs)

[Eq. (27)] whose size is determined by μ. Now observe that
whenever Fobs takes a value such that the fixed-length imple-
mentation would accept during the acceptance test [Eq. (20)],
V (Fobs) is smaller than S̃i, and the only difference between
Eq. (24) and Eq. (32) is in the optimization set. Therefore,
it follows that the variable-length key rate is always higher
when the same values of εAT, εEV, εPA are used in the two
cases (although as previously discussed, this results a minor
increase in εsecure).

C. Security proof of variable-length protocol

Theorem 2. The variable-length protocol that, on obtaining
Fobs during the variable-length decision and passing error
verification, hashes to length l (Fobs) using λEC(Fobs) bits for
error correction [according to Eq. (32)], is (εAT + εEV + εPA)-
secure.

Proof. As in the proof of Theorem 1, we will show that
the protocol is εEV-correct and (εPA + εAT)-secret, implying
that the protocol is (εEV + εAT + εPA)-secure (Lemma 12 or
Ref. [15]). First note that the proof of εEV-correctness of the
protocol is the same as in the proof of Theorem 1 [Eq. (13)].
Thus we only need to prove secrecy.

Again, as in the proof of Theorem 1, it is sufficient to show
that

M∑
i=1

1

2
Pr(�i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�i∧�EV

∣∣∣∣∣∣
1

� εAT + εPA, (37)

since each of the states ρ
(li,λEC

i )

KAC̃EN |�i∧�EV
have orthogonal sup-

ports. This is because the event �i∧�EV is a deterministic
function of the registers Cm

AT ,CV . Thus, Eqs. (37) and (11) are
equivalent.

Recall that the values li + λEC
i are ordered such that they

form a nonincreasing sequence (Remark 7). Thus, for any
ρAB that the protocol can start with, the Rényi entropy
Hα (Zn|CnEn)ρ has to fall under at least one of the following
three cases:

(1) Hα (Zn|CnEn)ρ � l1 + λEC
1 + θ (εPA, εEV).

(2) l j + λEC
j + θ (εPA, εEV) � Hα (Zn|CnEn)ρ � l j+1 +

λEC
j+1 + θ (εPA, εEV) for some j ∈ {1, ..., M − 1}.

(3) lM + λEC
M + θ (εPA, εEV) � Hα (Zn|CnEn)ρ .

We will prove the secrecy claim separately for each case.
Suppose ρ is such that it satisfies case 2, for some value j.
In this case, the secrecy bound can be obtained similar to
the proof of Theorem 1, by splitting up the sum into two
convenient parts. The first part groups the set of events that
happen with low probability, and is given by

j∑
i=1

1

2
Pr(�i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�i∧�EV

∣∣∣∣∣∣
1

=
j∑

i=1
i∈Tp

1

2
Pr(�i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�i∧�EV

∣∣∣∣∣∣
1
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�
j∑

i=1
i∈Tp

Pr(�i∧�EV) �
j∑

i=1
i∈Tp

Pr(�i )

� Pr(bstat(Fobs) � l j + λEC
j + θ (εPA, εEV))

� Pr(bstat(Fobs) � Hα (Zn|CnEn)ρ ) � εAT. (38)

Here the first equality follows from the fact that the real and
the ideal outputs are identical when the length of the key

generated is zero, the second inequality uses the fact that the
trace norm is upper bounded by 2, and the third inequal-
ity follows from the properties of probabilities. The fourth
inequality uses Lemma 3, the fifth inequality follows from
the fact that l j + λEC

j + θ (εPA, εEV) � Hα (Zn|CnEn)ρ , and the
final inequality from Lemma 2.

For the remaining terms, we follow the same steps as
Eq. (16) from the proof of Theorem 1. We obtain the following
inequalities:

M∑
i= j+1

1

2
Pr(�i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�i∧�EV

∣∣∣∣∣∣
1

=
M∑

i� j+1
i∈Tp

1

2
Pr(�i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�i∧�EV

∣∣∣∣∣∣
1

�
M∑

i� j+1
i∈Tp

1

2
Pr(�i∧�EV)2−( α−1

α )(Hα (Zn|CnCm
AT CECV EN )ρ|�i∧�EV −li )+ 2

α
−1

�
M∑

i� j+1
i∈Tp

1

2
Pr(�i∧�EV)2−( α−1

α )(Hα (Zn|CnCm
AT CV En )ρ|�i∧�EV −leaki−li )+ 2

α
−1

�
M∑

i� j+1
i∈Tp

1

2
Pr(�i∧�EV)2−( α−1

α )(Hα (Zn|CnCm
AT CV En )ρ|�i∧�EV −leak j+1−l j+1 )+ 2

α
−1

� 1

2
2−( α−1

α )(Hα (Zn|CnCV En )ρ−leak j+1−l j+1 )+ 2
α
−1

� 1

2
2−( α−1

α )(Hα (Zn|CnEn )ρ−leak j+1−l j+1−�log (1/εEV )�)+ 2
α
−1

� 1

2
2−( α−1

α )(θ (εPA,εEV )−�log (1/εEV )�)+ 2
α
−1

� εPA. (39)

We now explain the derivation of the expressions above, and
highlight the crucial steps in Remark 9. The first equality
follows from the fact that the real and the ideal outputs are
identical when the length of the key generated is zero. We
use the leftover hashing lemma for Rényi entropy for the
second inequality (Lemma 6), and Lemma 11 to split off
the information leakage due to error correction, and the Em

register (which is independent of Zn) in the third inequality.
The ordering on li + λEC

i from Remark 7 allows us obtain
the fourth inequality, and we use Lemma 10 to get rid of the
conditioning on events for the fifth inequality. We use Lemma
11 again to split off the error-verification communication, and
the Cm

AT register (which is independent of Zn) in the sixth in-
equality. We use the fact that Hα (Zn|CnEn)ρ � l j+1 + λEC

j+1 +
θ (εPA, εEV) for the seventh inequality, and Eq. (32) for the
eighth inequality.

Remark 9. As in the proof of Theorem 1, the critical steps
in the above chain of inequalities are the replacement of
li + λEC

i with l j+1 + λEC
j+1 in the third inequality, and using

Lemma 10 in the fourth inequality to get rid of the con-
ditioning on events in the Rényi entropies. As in the proof
of Theorem 1, we split of Cm

AT and CV registers after using
Lemma 10, since we need the events �i∧�EV to be known to
Eve in order to use Lemma 10.

Case 1 and Case 3. The analysis of Case 1 is a special case
of Case 2, and is obtained by setting j = 1 in Eq. (39). The
analysis of Case 3 is a special case of Case 2, and is obtained
by setting j = M in Eq. (38).

Bringing Eqs. (38) and (39) together, we obtain

M∑
i=1

1

2
Pr(�i∧�EV)

∣∣∣∣∣∣ρ (li,λEC
i )

KAC̃EN |�i∧�EV
− ρ

(li,λEC
i ,ideal)

KAC̃EN |�i∧�EV

∣∣∣∣∣∣
1

� εAT + εPA. (40)

Since the protocol is εEV-correct, and (εAT + εPA)-secret, it
is also (εEV + εAT + εPA)-secure. �
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Remark 10. Since the protocol from Theorem 2 does not
impose any condition on the sets Qi, unlike Theorem 1, which
requires the acceptance sets Q̃i of the fixed-length protocols to
form a nested sequence, one can use Theorem 2 in scenarios
where the channel behavior is unpredictable and chaotic. This
is especially desirable for ground-to-satellite QKD, where the
channel behavior is difficult to predict in advance. In the next
section, we show how Theorem 2 can be used to improve the
expected key rate in such scenarios.

VI. APPLICATION TO QUBIT BB84

In this section, we compute expected key rates for fixed-
length and variable-length qubit BB84 protocols for a scenario
where the honest behavior is unpredictable. The fixed-length
implementation is identical to the one from Sec. IV. The
variable-length implementation is also similar, except the
variable-length decision, which is implemented as described
in Sec. V B above. In particular, after signal transmission,
measurements, and public announcements, Alice and Bob
compute Fobs from public announcements, and determine
l (Fobs) and λEC(Fobs) according to Eq. (32).

For the sake of simplicity, we consider a channel model
that can take a discrete set of values for the depolarization
probability and the misalignment angle. We assume that the
channel is such that, on any given run, the depolarization
probability is chosen randomly from {0.02, 0.03, 0.04, 0.05}
with equal probability, and the misalignment angle is cho-
sen randomly from {2◦, 4◦, 6◦, 8◦, 10◦} with equal probability.
Thus the channel has nch = 20 possible values, which it takes
with equal probability. We use ρ

( j)
hon to denote the state corre-

sponding to the jth honest behavior of the channel. We set the
basis choice probabilities to px = pz = 0.5, the total number
of signals to N = 106, and the number of signals used in the
public announcement to m = 0.05N . We estimate the number
of bits to be used for error correction from Fobs, by setting
λEC(Fobs) = f nH (Z|YC)Fobs where f = 1.16 is the efficiency
factor. We set a target security parameter of εsecure = 10−12.

We now explain the various key rates plotted in Fig. 2.
(1) Rfixed,i: This is the key rate upon acceptance for the

fixed-length protocol, plotted against ti, the size of the ac-
ceptance set, and is identical to the plot from Fig. 1. We

FIG. 2. Expected key rate for fixed-length protocols (R̄fixed,i) for
various values of ti, key rate upon acceptance for fixed-length pro-
tocols (Rfixed,i) for various values of ti and the expected key rate for
variable-length protocol (R̄variable).

set εPA = εEV = εAT = εsecure/2, and compute Rfixed,i = li/N ,
where li is computed according to Eq. (24) for the acceptance
test in Eq. (20). We choose the center (F̄) of the fixed-length
acceptance set [Eq. (20)] to be the expected frequency of
outcomes corresponding to the channel with the least possible
depolarization probability (0.02) and least possible misalign-
ment angle (2◦). As expected, we see that Rfixed,i decreases
monotonically as we increase ti, reflecting the fact that larger
acceptance sets lead to lower key rates upon acceptance.

(2) R̄fixed,i: This is the expected key rate for fixed-length
protocols. Let Q̃i be the acceptance set for the fixed-length
protocol for a given value of ti. Then, the expected key rate is
given by

R̄fixed,i = 1

nch

nch∑
j=1

(
M∑

i=1

Pr(Fobs ∈ Q̃i )ρ ( j)
hon

Rfixed,i

)
, (41)

where the expression in the parenthesis represents the ex-
pected key rate for the jth channel behavior. We use the
values of Rfixed,i obtained above, and numerically estimate
Pr(Fobs ∈ Q̃i )ρ ( j)

hon
from the following steps.

(1) For each channel model, we compute the probability
vector F̄( j) corresponding to the honest behavior ρ

( j)
hon, by

setting F̄( j) = �(ρ ( j)
hon), where � is defined in Eq. (21).

(2) From each F̄( j), we sample m times to obtain Fobs. We
check whether Fobs ∈ S̃i or not.

(3) We estimate Pr(Fobs ∈ Q̃i )ρ ( j)
hon

by repeating step (b) 50
times for reach possible honest behavior, and computing the
fraction of times we obtained Fobs ∈ S̃i.

Thus, the whole process is a simulation of 1000 runs of the
QKD protocol, with each channel being used 50 times.

In Fig. 2 we see that R̄fixed,i is much smaller than Rfixed,i

since the fixed-length protocol only accepts on a small number
of channel behaviors. As t increases, the fixed-length accep-
tance set becomes larger, starts accepting on multiple values of
F̄ j , and therefore has a larger probability of acceptance. Thus,
the expected key rate R̄fixed,i increases slightly. However, the
size of the acceptance test is already large, and the key rate
upon acceptance (Rfixed,i), rapidly goes to zero for large ti. This
causes R̄fixed,i to also go to zero rapidly.

(3) R̄variable: This is the expected key rate for variable-length
protocols. This is given by

R̄variable = 1

nch

nch∑
j=1

⎛⎝∑
Fobs

Pr(Fobs)
ρ

( j)
hon

Rvariable(Fobs)

⎞⎠, (42)

where Pr(Fobs)
ρ

( j)
hon

is the probability of obtaining Fobs when

the honest behavior is ρ
( j)
hon, and Rvariable(Fobs) is the key rate

obtained for the observed frequency Fobs. The term in the
parenthesis represents the expected key rate for the jth chan-
nel behavior. Note that R̄variable is a fixed value and not plotted
against ti, and is computed as follows.

(1) For each channel model, we compute the expected
statistics F̄( j) corresponding to the honest behavior ρ

( j)
hon.

(2) From each F̄( j), we sample m times to obtain Fobs.
We compute l (Fobs) according to Eq. (32), with εPA =
εAT = εsecure/4 and εEV = εsecure/2, and set Rvariable(Fobs) =
l (Fobs)/N .
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(3) For each channel model, we repeat step (b) 50 times,
and compute the average value of Rvariable(Fobs). This is our
estimate of (

∑
Fobs Pr(Fobs)

ρ
( j)
hon

Rvariable(Fobs)).

(4) R̄variable is then computed by averaging the key rate
obtained in step (c), over all the possible channel models.

Thus the above procedure is a simulation of 1000 runs of
the QKD protocol, with each channel behavior being used 50
times. Crucially, we find the expected key rate for variable-
length protocols is much higher than the expected key rate for
the fixed-length protocols.

Remark 11. Note that the degree of improvement shown
by the variable-length protocol in Fig. 2 depends on nch.
Larger values of nch reflect a higher variation in the channel
behavior, and will lead to a bigger difference between the
performance of fixed-length and variable-length protocols. In
this paper, we chose the above channel model for the sake of
simplicity. Detailed studies of practical QKD protocols over
realistic, unpredictable channel models will be the subject of
future work.

VII. VARIABLE INPUT-LENGTH PRIVACY
AMPLIFICATION

So far we have studied the variable-length aspects of the
final key that is generated after privacy amplification in QKD
protocols. In this section, we will turn our attention to the
variable-length aspect of the sifted raw key in QKD imple-
mentations, before privacy amplification. In particular, we will
point out and remedy a gap between the theoretical analysis
of privacy amplification and its experimental implementation.
For simplicity, we only consider fixed-length QKD protocols.
However, our results can be generalized to variable-length
protocols in a straightforward manner.

A. Sifting in QKD

Consider the following three ways of implementing the
sifting step in QKD protocols.

(1) Map the discard outcomes to ⊥. In this case, the state
prior to privacy amplification is given by ρẐnY nC̄EN , where Ẑ is
a register that takes values in {0, 1,⊥}, and C̄ = CnCm

AT CECV

for brevity. In this case, one has to implement privacy am-
plification using two-universal hashing from Ẑn to l bits. In
particular, binary Toeplitz hashing, a widely used choice, is
not possible.

(2) Map the discard outcomes to 0. In this case, the state
prior to privacy amplification is given by ρZnY nC̄EN , where Z
is a register that takes values in {0, 1}. In this case, one has to
implement privacy amplification using two-universal hashing
from n bits to l bits. In particular, binary Toeplitz hashing, a
widely used choice, is possible; however, the hash matrices
must always be for input strings of a fixed length n.

(3) Actually discard the discard outcomes. In this case,
the state prior to privacy amplification is given by ρZ�nY nC̄EN ,
where Z�n is a register that takes values in the set of bitstrings
of length less than or equal to n, which we shall denote
as {0, 1}�n. In this case, one first looks at the number of
bits in the register Z�n, denoted by len(Z�n), and chooses
a two-universal hashing procedure from len(Z�n) bits to l
bits. This is what is commonly done in QKD experiments.

Practically, one would like to use binary Toeplitz hashing in
this procedure. However, we will see below that this is not a
valid two-universal hashing procedure from {0, 1}�n to l bits.

The theoretical analysis of Case 1 and Case 2 is straight-
forward, since they constitute valid two-universal hashing
procedures from {0, 1,⊥}n to l bits, and n bits to l bits re-
spectively. Thus, the leftover hashing lemma can be directly
applied. However, Case 3 is not necessarily a two-universal
hashing procedure from {0, 1}�n to l bits, as we now explain.
Thus we cannot directly apply the leftover hashing lemma in
this case.

B. The problem

For every i ∈ {0, 1, . . . , n}, let Fhash
i denote a two-universal

hash family from i bits to l bits. Then, the procedure described
in Case 3 above is equivalent to first randomly sampling fi ∈
Fhash

i for every i, followed by computing flen(Z�n )(Z�n). Note
that in this case, only one of the sampled fis is ever applied.
In order for this procedure to be a valid two-universal hashing
procedure from {0, 1}�n to l , by definition it must be the case
that for any two inputs z1 	= z2, we have

Pr
f1, f2,..., fn

[ flen(z1 )(z1) = flen(z2 )(z2)] � 1

2l
. (43)

When z1 and z2 are of the same length, then Eq. (43) follows
from the two-universal property of Fhash

i . When z1 and z2

are of different length, an explicit counter example can be
obtained by considering z1 and z2 to be all-zero strings of
different lengths. In this case, if Fhash

i is a two-universal linear
hash family, then flen(z1 )(z1) = flen(z2 )(z2) = 0 with probabil-
ity 1. Thus for binary Toeplitz hashing, Case 3 is not a valid
two-universal hashing procedure. Thus we cannot directly
apply the leftover hashing lemma.

Remark 12. We note that if every Fhash
i is chosen such that

it is two-universal and has the following “uniform output”
property,

Pr
fi∈Fhash

i

[ fi(z) = k] � 1/2l ∀ z ∈ {0, 1}i, k ∈ {0, 1}l , (44)

then it is straightforward to prove that Eq. (43) holds and
hence the described procedure is a valid two-universal hash-
ing. Furthermore, in principle any two-universal hashing
procedure can be modified into one that satisfies Eq. (44),
via the construction we describe in the Lemma 4 proof be-
low. However, physically implementing this conversion in an
actual QKD protocol would be an undesirable additional cost,
hence we instead provide a proof that shows that this is not
necessary.

C. The solution

We address this issue with Lemmas 4 and 5 below. We start
by proving the following modified leftover hashing lemma
that is applicable to Case 3, as long as the protocol satisfies
the property that the positions and values of the discarded
outcomes can be determined from the public announcements
C̄ (we return to this point after presenting the lemmas and their
proofs). Our approach is to first use Remark 12 to construct a
virtual hashing procedure that is a valid two-universal hashing
procedure from {0, 1}�n to l bits. We will then show that the
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actual output states can be obtained by performing a CPTP
map on the virtual output states. The required result then
follows from data-processing inequalities.

Lemma 4. Let ρZ�nC̄EN be a state classical in Z�nC̄ (where
the Z�n register takes values in {0, 1}�n), with the property
that conditioned on each possible value c̄ on the C̄ register,
the resulting distribution on Z�n is only supported on val-
ues in {0, 1}kc̄ for some constant kc̄ ∈ N. Let ρ

KAC̃EN be the
state obtained from ρZ�nC̄EN by first computing the number
of bits len(Z�n) in the Z�n register, then implementing a
two-universal hashing procedure from len(Z�n) bits to l bits,
where C̃ := C̄CP with CP being the choice of hashing function
(in other words, the procedure described above in Case 3).
Then for any event � on the classical register C̄, we have (for

ρ
(ideal)
KAC̃EN := IKA

|KA| ⊗ ρ
C̃EN ),

1

2
Pr(�)

∣∣∣∣∣∣ρKAC̃EN |� − ρ
(ideal)
KAC̃EN |�

∣∣∣∣∣∣
1

� 1

2
Pr(�)2−( α−1

α
)(Hα (Z�n|C̄EN )ρ|�−l )+ 2

α
−1

� 1

2
2−( α−1

α
)(Hα (Z�n|C̄EN )ρ−l )+ 2

α
−1. (45)

Proof. As explained in Sec. VII B, the hashing procedure
described above can be thought of as first randomly sam-
pling fi ∈ Fhash

i for every i, and then computing flen(Z�n )(Z�n).
However, as noted in that section, this process is not a
valid two-universal hashing procedure from {0, 1}�n to l
bits.

Consider instead the following virtual hashing process,
based on new hash families [34] F̂hash

i := Fhash
i × {0, 1}l (for

every i). This virtual process first randomly samples ( fi, ui ) ∈
F̂hash

i for every i, i.e., fi is sampled from the same two-
universal hash family Fhash

i as before, and ui is a random
l-bit string. It then computes flen(Z�n )(Z�n) ⊕ ulen(Z�n ) as its
hash output. Now, this virtual hashing procedure is a valid
two-universal hashing procedure from {0, 1}�n to l bits, be-
cause each hash family F̂hash

i is two-universal and satisfies the
“uniform output” property [Eq. (44)].

Denote the output state of the virtual process (acting on

ρZ�nC̄EN ) as ρ
(virtual)

KA
ˆ̃CEN

, where ˆ̃C = C̄ĈP with ĈP being the de-

scription of the hash function chosen in the virtual process [in
particular, all the values ( fi, ui ) from the virtual process]. Let

us analogously define ρ
(ideal,virtual)

KA
ˆ̃CEN

:= IKA
|KA| ⊗ ρ

(virtual)
ˆ̃CEN

.

Now, we construct a CPTP map E : KA
ˆ̃CEN → KAC̃EN

that will map the virtual output states to the actual output
states. This map E does the following operations:

(1) Look at C̄ and determine the corresponding value kC̄
(as defined in the conditions of this lemma) [35], to be used in
the subsequent steps.

(2) Look at ĈP and determine ukC̄
, to be used in the subse-

quent steps.
(3) Replace KA with KA ⊕ ukC̄

.
(4) Partial trace on the ĈP register, on everything except

the fkC̄
information.

It is straightforward to verify that this map E indeed satis-
fies

E
(
ρ

(virtual)

KA
ˆ̃CEN

)
= ρKAC̃EN ,

E
(
ρ

(ideal,virtual)

KA
ˆ̃CEN

)
= ρ

(ideal)
KAC̃EN , (46)

and analogously for the above states conditioned on the event
� (since E does not disturb the register C̄).

Therefore, we have

1

2
Pr(�)

∣∣∣∣∣∣ρKAC̃EN |� − ρ
(ideal)
KAC̃EN |�

∣∣∣∣∣∣
1

= 1

2
Pr(�)

∣∣∣∣∣∣E(ρ (virtual)

KA
ˆ̃CEN |� − ρ

(ideal,virtual)

KA
ˆ̃CEN |�

)∣∣∣∣∣∣
1

� 1

2
Pr(�)

∣∣∣∣∣∣ρ (virtual)

KA
ˆ̃CEN |� − ρ

(ideal,virtual)

KA
ˆ̃CEN |�

∣∣∣∣∣∣
1

� 1

2
Pr(�)2−( α−1

α
)(Hα (Z�n|C̄EN )ρ|�−l )+ 2

α
−1

� 1

2
2−( α−1

α
)(Hα (Z�n|C̄EN )ρ−l )+ 2

α
−1, (47)

where we used the fact that CPTP maps cannot increase trace
norm in the third inequality, and leftover hashing lemma for
Rényi entropies (Lemma 6) for the fourth inequality, and
Lemma 9 for the final inequality.

Remark 13. While here we have focused on proving an
analog of the leftover hashing lemma for Rényi entropy
(Lemma 6), a similar result for the smooth min-entropy
version can be obtained by exactly the same proof (except
that when conditioning on the event �, one should use the
subnormalized conditional states; see [[1], Lemma 10 and
Proposition 9]).

In order to use Lemma 4, we have to compute bounds
on the Rényi entropy Hα (Z�n|C̄EN )ρ , which is computed
on the state just prior to privacy amplification in Case 3.
However, we expect that if the registers that were discarded
to produce Z�n are completely determined by the register C̄,
then this entropy should be the same as the value before the
discarding process, since the conditioning register C̄ could be
used to isometrically convert between the values before and
after discarding some registers. We formalize this claim in the
following Lemma and subsequent discussion.

Lemma 5. Suppose ρRC̄EN , ρZ�nC̄EN are states that are clas-
sical in C̄, and related to each other as follows: letting Rc̄ be a
register containing the support of the conditional state ρR|C̄=c̄,
there exist isometries V (c̄)

Rc̄→Z�n such that [36]

V ρRC̄EN V † = ρZ�nC̄EN , where

V :=
∑

c̄

V (c̄)
Rc̄→Z�n ⊗ |c̄〉 〈c̄|C̄ . (48)

Then we have

Hα (Z�n|C̄EN )ρ = Hα (R|C̄EN )ρ. (49)

Proof. We intuitively expect Eq. (49) to be true, since
Eq. (48) essentially states that C̄ can be used to isometrically
convert R to Z�n. To formalize this, we first note that each
isometry V (c̄)

Rc̄→Z�n can always be extended to an isometry

V (c̄)
R→Z�n , i.e., where the domain is the full Hilbert space of
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R [padding the output space Z�n with extra dimensions if
dim(R) > dim(Z�n)]. Furthermore, Eq. (48) still holds with
V defined in terms of these new isometries instead, i.e., we
have

V ρRC̄EN V † = ρZ�nC̄EN , where

V :=
∑

c̄

V (c̄)
R→Z�n ⊗ |c̄〉 〈c̄|C̄ . (50)

(It does not matter how we chose the extensions, since ρRC̄EN

is only supported on a subspace that is unaffected by these
choices of extensions.)

Furthermore, letting C̄c be a copy of the register C̄, using
[[25], Lemma B.7] we have

Hα (Z�nC̄c|C̄E )ρ = Hα (Z�n|C̄E )ρ,

Hα (RC̄c|C̄E )ρ = Hα (R|C̄E )ρ. (51)

Thus, it is enough to show that Hα (Z�nC̄c|C̄E )ρ =
Hα (RC̄c|C̄E )ρ . This follows from Eq. (50), and the fact
that the Rényi entropy is invariant under isometries on the
first subsystem, since by defining the isometry ṼRC̄c→Z�nC̄c

:=∑
c̄ V (c̄)

R→Z�n ⊗ |c̄〉 〈c̄|C̄c
we have

Ṽ ρRC̄cC̄EṼ † = ρZ�nC̄cC̄E , (52)

which concludes the proof [37]. �
To apply Lemmas 4 and 5 in comparing Cases 1, 2, and 3

described previously, we can begin by viewing R as being Ẑn

in Case 1 or Zn in Case 2. If the protocol satisfies the condition
that the positions and values of discarded outcomes are fixed
by the public announcements C̄, we can define operations
V (c̄)

Rc̄→Z�n that simply drop the discarded outcomes specified by
c̄, and it is not difficult to show the state ρZ�nC̄EN in Case 3 has
the following properties:

(1) These V (c̄)
Rc̄→Z�n operations are indeed isometries, and

ρZ�nC̄EN is related to ρRC̄EN in the sense expressed in Eq. (48).
(2) ρZ�nC̄EN satisfies the conditions of Lemma 4, and hence

Eq. (45) is valid.
(3) ρZ�nC̄EN satisfies the conditions of Lemma 5, and hence

Hα (Z�n|C̄EN )ρ in Eq. (45) can be replaced with Hα (R|C̄EN )ρ .
(Basically, the above statements hold because under that

protocol condition, for each value c̄, the output length of
V (c̄)

Rc̄→Z�n is fixed, and all the discarded positions have fixed
values so there are no “collisions”.)

With this, we see that for Case 3 the bound in Eq. (45)
holds with Hα (Z�n|C̄EN )ρ replaced by Hα (Ẑn|C̄EN )ρ from
Case 1 or Hα (Zn|C̄EN )ρ from Case 2 [38]; in particular, for
the purposes of this work this means the third line in Eq. (39)
(and similar bounds in other calculations) is valid even if we
apply the procedure in Case 3 rather than Case 2. To quali-
tatively summarize, under that protocol condition, the bounds
obtained on the privacy amplification procedure in QKD are
unaffected if the actual protocol implements Case 3 in place
of Case 1 or Case 2.

VIII. CONCLUSIONS

In this paper, we presented a security proof for variable-
length QKD protocols in the security analysis framework
of Renner, against IID collective attacks. First, we showed

how a sequence of security proofs for fixed-length protocols
satisfying certain conditions can be converted to a security
proof for a variable-length protocol. This conversion did not
require any new calculations, or any changes to the final
key lengths or the lengths of error-correction information.
Moreover, the maximum penalty imposed by this approach
is a doubling of the security parameter. We exemplified
this result by studying the performance of variable-length
and fixed-length implementations of the qubit BB84 proto-
col, implemented over a fixed, known channel. We showed
that the variable-length implementation leads to an improve-
ment in the expected key rate of the protocol, compared
to the best fixed-length implementation. Additionally, we
showed that implementing the variable-length protocol elim-
inates the typical trade-off in fixed-length implementations,
where a larger acceptance test leads to a higher probability
of accepting during honest behavior, but low key rate upon
acceptance.

Next, we moved on to consider scenarios of unpredictable
channels. Here, we construct the variable-length decision in
a way that does not rely on a nested sequence of acceptance
tests, and proved the security of the resulting class of variable-
length protocols. These protocols did not require users to
characterize their channel before running the QKD protocol.
Instead, they include instructions for adjusting the length of
the final key, and the amount of error-correction information,
for every possible observation during the protocol. We exem-
plified this result by studying the performance of the qubit
BB84 protocol implemented in this fashion. We showed that
the variable-length implementation leads to a significant im-
provement in the expected key rate compared to fixed-length
implementations, especially for scenarios where the channel
is chaotic and unpredictable.

These results are a significant step towards practical QKD
implementations, since they eliminate the typical trade-off
from fixed-length implementations, and remove the require-
ment of channel characterization. Moreover, variable-length
protocols have already been implemented in several works
based on intuition. This paper puts such claims (under the
Renner framework) on a solid mathematical footing. (We
highlight that in particular, our proof approach relies on a
leftover hashing lemma for Rényi entropies that was only
recently developed, in Ref. [26]. It does not seem entirely
straightforward to construct a similar rigorous analysis using
the earlier leftover hashing lemma versions that were based on
smooth min-entropy.)

In order to use the results of this paper to implement a valid
variable-length QKD protocol, one can follow the following
steps. First, decide λEC(Fobs) to be any function of the ob-
served statistics Fobs. This fixes the number of bits used for
error correction, for any Fobs. Second, construct a set V (Fobs)
satisfying Eq. (28). This fixes bstat(Fobs) via Lemma 2, and
l (Fobs) via Eq. (32). Then, the variable-length protocol that
produces a key of length l (Fobs), and uses λEC(Fobs) bits for
error correction, upon obtaining Fobs, is secure. In practice,
one should choose λEC(Fobs) such that the error-correction
protocol has a high chance of succeeding. Furthermore, while
we have provided one construction of V (Fobs) in this paper, it
is straightforward to construct V (Fobs) using other concentra-
tion inequalities.
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Finally, all our security proofs can be lifted to coherent
attacks using the postselection technique. For pedagogical
reasons, this will be included in Ref. [18], where we also
fix a technical flaw in the application of postselection tech-
nique to QKD. Alternatively, we highlight that the only
part of our Sec. V proof that relied on the IID collective-
attacks assumption was the construction of bstat in Lemmas
1 and 2. Therefore, any alternative approach that could con-
struct a valid bstat for coherent attacks would also serve to
yield a security proof against such attacks for variable-length
protocols.

ACKNOWLEDGMENTS

We would like to acknowledge useful discussions with R.
Renner, especially for most results in Sec. VII. We would like
to thank L. Kamin for helpful discussions on the finite-size
security proof of QKD protocols. We would like to thank
J. Burniston for help with debugging code. This work was
funded by the NSERC Discovery Grant No. 341495, and was
conducted at the Institute for Quantum Computing, Univer-
sity of Waterloo, which is funded by Government of Canada
through ISED. This work was partially funded by the Mike
and Ophelia Laziridis Fellowship.

APPENDIX A: TECHNICAL DEFINITIONS AND LEMMAS

We use S◦(A) denote the normalized states on A. We start
by defining the Rényi entropy used in this paper.

Definition 1 (Rényi entropy). For ρ ∈ S◦(AB), and α ∈
(0, 1) ∪ (1,∞), the sandwiched Rényi entropy of A given B
for a state ρAB is given by

Hα (A|B)ρ := max
σB∈S◦(B)

Hα (A|B)ρ|σ , (A1)

where

Hα (A|B)ρ|σ

:=
{

1
1−α

log Tr
[(

σ
1−α
2α

B ρABσ
1−α
2α

B

)α]
if ρ ∈ A ⊗ supp(σ ),

−∞ otherwise.
(A2)

We will require several results regarding the Rényi entropy
defined above from [25–27]. Note that the sandwiched Rényi
entropy is referred to as Hα (A|B) in Ref. [26] (Definition
1), and H̃↑

A|B in Ref. [27] (Definition 5.2), and H↑
α (A|B) in

Ref. [25] (Definition B.1).
Lemma 6. (Leftover hashing lemma using Rényi entropy

[[26], Theorem 8]) Let ρXE ∈ S◦(XE ) be classical on X . Let
F be a family of two-universal hash functions from X to K =
{0, 1}l . Let ωK = ∑2l −1

k=1
|k〉〈k|

2l be the perfectly mixed state on

K , and let ωF = ∑
f ∈F

| f 〉〈 f |
|F | . ρKEF be the state obtained from

ρXE ⊗ ωF by applying the two-universal hash function in the
register F to X . Then,

||ρKEF − ωK ⊗ ρE ⊗ ωF ||1 � 2− (α−1)
α (Hα (X |E )ρ−l)+ 2

α
−1, (A3)

where α ∈ (1, 2).
The following two lemmas are used to convert the Rényi

entropy of an IID state to the von Neumann entropy on a single
round state.

Lemma 7. (Additivity of Rényi entropy [[27], Corollary
5.2]) For any two states ρAB ∈ S◦(AB), σCD ∈ S◦(CD), and
α � 1

2 , we have

Hα (AC|BD)ρ⊗σ = Hα (A|B)ρ + Hα (C|D)σ . (A4)

Lemma 8. ([[25], Lemma B.9]) For any ρAB ∈ S◦(AB), and
1 < α < 1 + 1/ log(1 + 2dA), we have

Hα (A|B)ρ > H (A|B)ρ − (α − 1) log2(1 + 2dA). (A5)

In some cases the slightly more elaborate continuity bound
derived in [[39], Corollary IV 2] may perform better than
Lemma 8; we leave a more detailed analysis for future work.

Lemma 9. (Conditioning on events [[25], Lemma B.5]) Let
ρAB ∈ S◦(AB) be a state of the form ρAB = ∑

x pxρAB|x, where
px is a probability distribution. Then, for α > 1,

Hα (A|B)ρ|x � Hα (A|B)ρ − α

α − 1
log

(
1

px

)
. (A6)

The following Lemma plays a crucial role in getting rid of
terms involving the Rényi entropy evaluated on states condi-
tioned on events, in the proofs of Theorems 1 and 2.

Lemma 10. Let ρABCY = ∑
y∈� p(y)ρABC|y ⊗ |y〉 〈y| ∈

S◦(ABCY ) be classical in Y,C, where p(y) is a probability
distribution over �, and Y can be generated from C (more
precisely: Y ↔ C ↔ AB forms a Markov chain). Let �′ ⊆ �.
Then, ∑

y∈�′
p(y)2− (α−1)

α
Hα (A|BC)ρ|y � 2− (α−1)

α
Hα (A|BC)ρ . (A7)

Proof. We have∑
y∈�′

p(y)2− (α−1)
α

Hα (A|BC)ρ|y �
∑
y∈�

p(y)2− (α−1)
α

Hα (A|BC)ρ|y , (A8)

since we only add positive terms to the expression to go from
the left-hand side (LHS) to the right-hand side (RHS). Now,
on the RHS, p(y) is a normalized probability distribution func-
tion over �. Therefore, we can directly use [[27], Proposition
5.1], and we obtain∑

y∈�

p(y)2− (α−1)
α

Hα (A|BC)ρ|y = 2− (α−1)
α

Hα (A|BCY )ρ . (A9)

Since Y can be generated from C, the fact that Hα (A|BCY ) =
Hα (A|BC) follows by applying the data-processing inequality
for Rényi entropy [[27], Corollary 5.1] in both directions
YC → C and C → YC. Therefore, the claim follows. �

The following Lemma is used to split off the information
leakage due to error correction and error verification.

Lemma 11. (Splitting off a classical register [27]) Let
ρABCC′ ∈ S◦(ABCC′) = ρABC ⊗ ρC′ be classical on CC′, then,

Hα (A|BCC′)ρ = Hα (A|BC)ρ

� Hα (AC|B)ρ − log ( dim(C))

� Hα (A|B)ρ − log ( dim(C)). (A10)

Proof. The equality follows from the use of data-
processing inequalities [[27], Eq. 5.40]. The inequalities
follow from [[27], Eq. 5.94]. �

Although the fact that ε1-correctness and ε2-secrecy im-
plies (ε1 + ε2)-security for QKD protocols has been shown in
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many places for fixed-length protocols [3,15,23,24], here we
show that the same claim holds for variable-length protocols
as well.

Lemma 12. (Correctness and secrecy imply security) Con-
sider an variable-length QKD protocol that only produces a
key if �EV occurs (error-verification passes). Suppose that the
protocol satisfies the correctness condition [Eq. (3)],

Pr(KA 	= KB ∧ �EV) � ε1, (A11)

and the secrecy condition [Eq. (11)],∑
k

1
2 Pr(�len=k )

∣∣∣∣∣∣ρ (k)
KAC̄EN |�len=k

− ρ
(k,ideal)
KAC̄EN |�len=k

∣∣∣∣∣∣
1
� ε2,

(A12)
where �len=k is the event that a key of length k is produced.
Then the protocol satisfies the security statement∑

k

1
2 Pr(�len=k )

∣∣∣∣∣∣ρ (k)
KAKBC̄EN |�len=k

− ρ
(k,ideal)
KAKBC̄EN |�len=k

∣∣∣∣∣∣
1

� ε1 + ε2. (A13)

Proof. Let

ρ
(k)
KAKBC̄EN |�len=k

=
∑

sA,sB∈{0,1}k

Pr(sA, sB|�len=k )

⊗ |sA, sB〉 〈sA, sB| ⊗ ρ
(k,sA,sB )
C̄EN

ρ
(k,equal)
KAKBC̄EN |�len=k

=
∑

sA,sB∈{0,1}k

Pr(sA, sB|�len=k )

⊗ |sA, sA〉 〈sA, sA| ⊗ ρ
(k,sA,sB )
C̄EN

ρ
(k,ideal)
KAKBC̄EN |�len=k

=
∑

sA∈{0,1}k

1

2k
|sA, sA〉 〈sA, sA| ⊗ ρ

(k)
C̄EN . (A14)

By the triangle inequality, we have∑
k

1

2
Pr(�len=k )

∣∣∣∣∣∣ρ (k)
KAKBC̄EN |�len=k

− ρ
(k,ideal)
KAKBC̄EN |�len=k

∣∣∣∣∣∣
1

=
∑

k

1

2
Pr(�len=k )

∣∣∣∣∣∣ρ (k)
KAKBC̄EN |�len=k

− ρ
(k,equal)
KAKBC̄EN |�len=k

∣∣∣∣∣∣
1

+
∑

k

1

2
Pr(�len=k )

∣∣∣∣∣∣ρ (k,equal)
KAKBC̄EN |�len=k

− ρ
(k,ideal)
KAKBC̄EN |�len=k

∣∣∣∣∣∣
1
.

(A15)

We will now relate the first term on the RHS with the cor-
rectness condition, and the second term on the RHS with the
secrecy condition. To bound the first term in Eq. (A15) we first
obtain

1

2

∣∣∣∣∣∣ρ (k)
KAKBC̄EN |�len=k

− ρ
(k,equal)
KAKBC̄EN |�len=k

∣∣∣∣∣∣
1

�
∑

sA 	=sB

Pr(sA, sB|�len=k )

= Pr(KA 	= KB|�len=k ), (A16)

where the first inequality follows from the definition of the
states in Eq. (A14). Therefore, the first term in Eq. (A15) can

be bounded via∑
k

1

2
Pr(�len=k )

∣∣∣∣∣∣ρ (k)
KAKBC̄EN |�len=k

− ρ
(k,equal)
KAKBC̄EN |�len=k

∣∣∣∣∣∣
1

�
∑

k

1

2
Pr(�len=k ) Pr(KA 	= KB|�len=k )

=
∑

k

Pr(KA 	= KB ∧ �len=k )

� Pr(KA 	= KB ∧ �EV) � ε1, (A17)

where in the penultimate step, we use the fact that a key is
produced only if event �EV occurs.

The second term in Eq. (A15) is identical to the secrecy
statement Eq. (A13) since KA = KB, and hence we obtain the
desired result. �

APPENDIX B: BB84 PROTOCOL

Our protocol is such that in every round Alice and
Bob select their basis independently, with probabilities pz

(for Z basis) and px = 1 − pz (for X basis). If basis Z is
selected, Alice sends the states |0〉 , |1〉 with equal probabil-
ity. If basis X is selected, Alice sends the states |+〉 , |−〉
with equal probability. Using the source-replacement scheme
[19], this process can be equivalently described as Alice
creating the Bell-state |ψ〉AA′ = |φ+〉 = |00〉+|11〉√

2
, and send-

ing A′ to Bob. Eve then interacts with the A′ system, and
forwards the system B to Bob. This is then followed by
Alice and Bob measuring their respective systems using
the POVMS {P(Z,0) = pz |0〉 〈0| , P(Z,1) = pz |1〉 〈1| , P(X,0) =
px |+〉 〈+| , P(X,1) = px |−〉 〈−|}. The rest of the protocol
steps (such as sifting, key map etc.) are the same as in Sec. II.
After n such rounds have been performed, Alice and Bob
choose a uniformly random subset of size m out of the n
rounds, to be publicly announced [40].

To simulate the channel statistics, we model misalignment
as a rotation of angle θ about the Y axis on A′, with

U (θ ) = IA ⊗
(

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

)
,

Emisalign(ρ) = U (θ )ρU (θ )†. (B1)

Depolarization is modelled as a map

Edepol(ρ) = (1 − q)(ρ) + qTrA′ (ρ) ⊗ IB

2
, (B2)

where q is the depolarization probability. The state on
which expected statistics are computed is given by ρhon =
Edepol(Emisalign(|φ+〉 〈φ+|)).

1. Concentration inequality

We state the following lemma from Ref. [2], which forms
the basis of our acceptance tests in the fixed-length protocols
and the variable-length decision in the variable-length proto-
col [Lemma 2, Eq. (22)].

Lemma 13. Let F̄ ∈ P (
) be a probability distribution,
and let Fobs ∈ P (
) be a frequency of outcomes obtained

from m IID samples from F̄. Let μ = √
2
√

ln(1/εAT )+|
| ln(m+1)
m .
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Then,

Pr(‖Fobs − F̄‖1 � μ) � εAT. (B3)

Proof. From [[41], Theorem 11.2.1 (Sanov’s theorem)],
we obtain

Pr(D(Fobs||F̄) > ε) � 2−m(ε−|
| log2 (m+1)
m ), (B4)

where D is the classical relative entropy. Furthermore, from
[[41], Theorem 11.6.1], we have√

2 ln(2)D(Fobs||F̄) � ‖Fobs − F̄‖1. (B5)

Combining (B4) and (B5) we obtain

Pr(‖Fobs − F̄‖1 � μ) � Pr(
√

2 ln(2)D(Fobs||F̄) � μ)

= Pr

(
D(Fobs||F̄) � μ2

2 ln(2)

)
� 2

−m
(

μ2

2 ln(2) −|
| log2 (m+1)
m

)
. (B6)

The required result is obtained by setting εAT =
2−m( μ2

2 ln(2) −|
| log2 (m+1)
m ). �

2. Numerics

We use the numerical framework from [31] to compute
key rates in this paper. This framework equivalently describes
the steps in the QKD protocol via Kraus operators {Ki},
which represent measurements, announcements and sifting
done by Alice and Bob, and {Zj}, which implement a pinch-
ing channel on the key register. The optimization problem

minρ∈S H (Z|CE )ρ is then restated as

min
ρ∈S

H (Z|CE )ρ = min
ρ∈S

f (ρ), (B7)

where

f (ρ) = D(G(ρ)||Z (G(ρ))),

G(ρ) =
∑

i

KiρK†
i , (B8)

Z (G(ρ)) =
∑

j

Z jG(ρ)Z†
j ,

and where D(X ||Y ) = Tr(X log(X )) − Tr(X log(Y )) is the
quantum relative entropy where log denotes the matrix log-
arithm.

The construction of the Kraus operators Ki and Zi is spec-
ified in [31] along with improvements in [42]. The Kraus
operators for qubit BB84 protocol are given by

KZ =
[(

1
0

)
Z

⊗ √
pz

(
1

0

)
A

+
(

0
1

)
Z

⊗ √
pz

(
0

1

)
A

]
⊗ √

pz

(
1

1

)
B

⊗
(

1
0

)
C

,

KX =
[(

1
0

)
Z

⊗
√

px

2

(
1 1
1 1

)
A

+
(

0
1

)
Z

⊗
√

px

2

(
1 −1

−1 1

)
A

]
⊗ √

px

(
1

1

)
B

⊗
(

0
1

)
C

, (B9)

and

Z1 =
(

1
0

)
⊗ Idim(A)×dim(B)×dim(C),

Z2 =
(

0
1

)
⊗ Idim(A)×dim(B)×dim(C). (B10)

[1] M. Tomamichel and A. Leverrier, A largely self-contained and
complete security proof for quantum key distribution, Quantum
1, 14 (2017).

[2] I. George, J. Lin, and N. Lütkenhaus, Numerical calculations of
the finite key rate for general quantum key distribution proto-
cols, Phys. Rev. Res. 3, 013274 (2021).

[3] R. Renner, Security of quantum key distribution, arXiv:quant-
ph/0512258.

[4] D. Bunandar, L. C. G. Govia, H. Krovi, and D. Englund,
Numerical finite-key analysis of quantum key distribution, npj
Quantum Inf. 6, 104 (2020).

[5] D. Rusca, A. Boaron, F. Grünenfelder, A. Martin, and H.
Zbinden, Finite-key analysis for the 1-decoy state QKD pro-
tocol, Appl. Phys. Lett. 112, 171104 (2018).

[6] C. C. W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden,
Concise security bounds for practical decoy-state quantum key
distribution, Phys. Rev. A 89, 022307 (2014).

[7] J.-P. Bourgoin, E. Meyer-Scott, B. L. Higgins, B. Helou, C.
Erven, H. Hübel, B. Kumar, D. Hudson, I. D’Souza, R. Girard
et al., A comprehensive design and performance analysis of low

Earth orbit satellite quantum communication, New J. Phys. 15,
023006 (2013).

[8] D. Dequal, L. Trigo Vidarte, V. Roman Rodriguez, G. Vallone,
P. Villoresi, A. Leverrier, and E. Diamanti, Feasibility of
satellite-to-ground continuous-variable quantum key distribu-
tion, npj Quantum Inf. 7, 3 (2021).

[9] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren,
J. Yin, Q. Shen, Y. Cao, Z.-P. Li et al., Satellite-to-ground
quantum key distribution, Nature (London) 549, 43 (2017).

[10] P. V. Trinh, A. Carrasco-Casado, H. Takenaka, M. Fujiwara,
M. Kitamura, M. Sasaki, and M. Toyoshima, Statistical veri-
fications and deep-learning predictions for satellite-to-ground
quantum atmospheric channels, Commun. Phys. 5, 225 (2022).

[11] J. S. Sidhu, T. Brougham, D. McArthur, R. G. Pousa, and
D. K. L. Oi, Finite key effects in satellite quantum key distri-
bution, npj Quantum Inf. 8, 18 (2022).

[12] S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, R.-Q. Wang, P. Ye, Y.
Zhou, G.-J. Fan-Yuan, F.-X. Wang, W. Chen et al., Twin-field
quantum key distribution over 830-km fibre, Nat. Photon. 16,
154 (2022).

023002-18

https://doi.org/10.22331/q-2017-07-14-14
https://doi.org/10.1103/PhysRevResearch.3.013274
https://arxiv.org/abs/quant-ph/0512258
https://doi.org/10.1038/s41534-020-00322-w
https://doi.org/10.1063/1.5023340
https://doi.org/10.1103/PhysRevA.89.022307
https://doi.org/10.1088/1367-2630/15/2/023006
https://doi.org/10.1038/s41534-020-00336-4
https://doi.org/10.1038/nature23655
https://doi.org/10.1038/s42005-022-01002-1
https://doi.org/10.1038/s41534-022-00525-3
https://doi.org/10.1038/s41566-021-00928-2


SECURITY PROOF FOR VARIABLE-LENGTH QUANTUM … PHYSICAL REVIEW RESEARCH 6, 023002 (2024)

[13] C. Clivati, A. Meda, S. Donadello, S. Virzí, M. Genovese, F.
Levi, A. Mura, M. Pittaluga, Z. Yuan, A. J. Shields et al.,
Coherent phase transfer for real-world twin-field quantum key
distribution, Nat. Commun. 13, (2022).

[14] J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan,
M. Fujiwara, M. Sasaki, and A. J. Shields, Stability of high bit
rate quantum key distribution on installed fiber, Opt. Express
20, 16339 (2012).

[15] M. Ben-Or, M. Horodecki, D. W. Leung, D. Mayers, and J.
Oppenheim, The universal composable security of quantum key
distribution, in Theory of Cryptography, edited by J. Kilian
(Springer, Berlin, 2005).

[16] M. Hayashi and T. Tsurumaru, Concise and tight security anal-
ysis of the Bennett–Brassard 1984 protocol with finite key
lengths, New J. Phys. 14, 093014 (2012).

[17] M. Christandl, R. König, and R. Renner, Postselection
technique for quantum channels with applications to
quantum cryptography, Phys. Rev. Lett. 102, 020504
(2009).

[18] S. Nahar, D. Tupkary, Y. Zhao, N. Lütkenhaus, and E. Tan,
Postselection technique for optical Quantum Key Distribution
with improved de Finetti reductions, arXiv:2403.11851.

[19] M. Curty, M. Lewenstein, and N. Lütkenhaus, Entanglement as
a precondition for secure quantum key distribution, Phys. Rev.
Lett. 92, 217903 (2004).

[20] For the purposes of this paper we take m to be a constant; with
minor modifications our proof should generalize to the case
where m could be a random variable.

[21] This condition can be slightly weakened to having a fixed upper
bound νEC

i on the number of bits used, by noting that the number
of bitstrings of length up to some value ν is 2ν+1 − 1, so an
(ν + 1)-bit register suffices to encode all such bitstrings. With
this, it suffices to replace the λEC

i values in our subsequent key
length formulas with νEC

i + 1.
[22] While Bob’s announcement technically constitutes an extra bit,

we note that in our security proofs, when accounting for the
“leakage” caused by CV , we only consider the state conditioned
on accepting in this step, in which case this extra bit takes a
deterministic value and does not affect any entropies.

[23] C. Portmann and R. Renner, Cryptographic security of quantum
key distribution arXiv:1409.3525.

[24] C. Portmann and R. Renner, Security in quantum cryptography,
Rev. Mod. Phys. 94, 025008 (2022).

[25] F. Dupuis, O. Fawzi, and R. Renner, Entropy accumulation,
Commun. Math. Phys. 379, 867 (2020).

[26] F. Dupuis, Privacy amplification and decoupling without
smoothing, IEEE Trans. Inf. Theory,697784 (2023).

[27] M. Tomamichel, Quantum Information Processing with Fi-
nite Resources, SpringerBriefs in Mathematical Physics
Vol. 5 (Springer International Publishing, Cham, 2016).

[28] A full specification of a composable security framework
[23,24] also technically requires describing some honest ideal
functionality in the case where Eve does not attack the protocol.
For a variable-length protocol, we can take this to simply be a
functionality that outputs perfect keys (of variable length) to
Alice and Bob and nothing to Eve except the length of the key,
with the distribution of key lengths being the same as that of
the honest protocol behavior. (This behavior does not have to
be explicitly known, for instance when considering the Sec.
V protocol. We merely require this honest behavior to exist in

principle, and (to avoid only having trivial operational implica-
tions) for it to produce some “reasonable” expected key rate.)
With this choice of ideal functionality, the protocol satisfies the
property of completeness (see [23,24] for details) with perfect
completeness parameter.

[29] In principle there is the technicality that for an arbitrary
variable-length protocol, Alice and Bob might produce final
keys of different lengths. For this work, we focus on protocols
where the final key length is completely determined from the
public announcements, and so this is not an issue.

[30] F. Kanitschar, I. George, J. Lin, T. Upadhyaya, and
N. Lütkenhaus, Finite-size security for discrete-modulated
continuous-variable quantum key distribution protocols, PRX
Quantum 4, 040306 (2023).

[31] A. Winick, N. Lütkenhaus, and P. J. Coles, Reliable numer-
ical key rates for quantum key distribution, Quantum 2, 77
(2018).

[32] W. Wang and N. Lütkenhaus, Numerical security proof
for the decoy-state BB84 protocol and measurement-device-
independent quantum key distribution resistant against large
basis misalignment, Phys. Rev. Res. 4, 043097 (2022).

[33] For protocols compatible with the specific bstat construction we
use in this work, F would have to be finite because the formula
we use in [26] requires the outcome space 
 to be finite in
order to obtain nontrivial results. However, we cover a possibly
infinite F in this part of our analysis to accommodate potential
follow-up work; in particular, for continuous-variable QKD it
should be possible to construct an appropriate estimator bstat

(via a different concentration inequality) even if the outcome
space is infinite.

[34] This specification of F̂ hash
i is not technically a set of functions,

since each element of F̂ hash
i is instead a tuple where the second

term is an l-bit string. However, each such element uniquely
specifies a function in a simple manner that we shall shortly
specify.

[35] E cannot “directly” compute len (Z�n) because the register Z�n

is no longer present in the states it acts on.
[36] Equation (48) is a well-defined expression despite the fact that

V is not defined on all of RC̄, because ρRC̄EN is only supported
on the subspace on which V is defined.

[37] An alternative proof would be to instead use [[27], Proposition
5.1] to split the conditional entropies into terms conditioned
on each value of C̄, and note that the equality holds for each
term by invariance of Rényi entropy under isometries on the
first subsystem.

[38] Note that depending on the proof method used, the bound on
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