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Kanato Goto,1,2,3,* Masahiro Nozaki,3,4,† Shinsei Ryu,1,‡ Kotaro Tamaoka,5,§ and Mao Tian Tan 6,‖
1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

2Center for Gravitational Physics and Quantum Information (CGPQI), Yukawa Institute for Theoretical Physics,
Kyoto University, Kyoto 606-8501, Japan

3RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako, Saitama 351-0198, Japan
4Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

5Department of Physics, College of Humanities and Sciences, Nihon University, Sakura-josui, Tokyo 156-8550, Japan
6Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673, Korea

(Received 28 June 2023; accepted 11 December 2023; published 1 April 2024)

We study various quantum quench processes induced by the Möbius/sine-square deformation of the Hamilto-
nian in two-dimensional conformal field theories starting from the thermofield double state in the two copies of
the Hilbert space. These quantum quenches, some of which are directly related to the operator entanglement of
the time-evolution operators, allow us to study scrambling and recovery of quantum information. In particular,
under the sine-square deformed time evolution, we show from the time dependence of mutual information that
the Bell pairs, initially shared by the subsystems of the two Hilbert spaces, may revive even after the mutual
information for small subsystems is completely destroyed by quantum information scrambling dynamics. This
mutual information is robust against the strong scrambling dynamics. As a consequence, the steady state has a
nonlocal correlation shared not by any of two parties but by three parties. In the holographic dual description, a
wormhole connecting the two Hilbert spaces may nonlinearly grow with time during the quantum quenches. We
also propose effective pictures that describe the dynamics of mutual information during the time evolution by
inhomogeneous Hamiltonians.
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I. INTRODUCTION AND SUMMARY

Nonequilibrium dynamics in quantum many-body systems
is a subject of intense research. One of the recurrent themes is
how quantum entanglement is generated and propagates dur-
ing nonequilibrium processes. It has been shown that complex
(“chaotic”) quantum many-body systems can scramble quan-
tum information nonlocally. Quantum information scrambling
entails the loss of the information of initial states at least
locally and results in thermalization [1–5]. Experimental tech-
niques to measure scrambling in laboratories have rapidly
been developed in the past few years (e.g., [6–19]).

Nonequilibrium dynamics in the context of (1 + 1)-
dimensional conformal field theory (CFT) have been widely
studied in recent years [5,20–28]. In particular, recent studies
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constructed a series of solvable models of quantum quench
and Floquet dynamics in (1 + 1)-dimensional CFT using a
class of inhomogeneous Hamiltonians. These works provide
rare examples where the dynamics of interacting many-body
quantum systems can be solved exactly. The inhomogeneous
Hamiltonians used in these studies include, in particular, the
so-called sine-square deformation (SSD) and Möbius defor-
mation of (1 + 1)-dimensional quantum many-body systems.
In these deformations, evolution operators are given as a
linear superposition of three Virasoro generators (L0, L±1),
which form an sl (2,R) subalgebra of the Virasoro algebra.
Not only being exactly solvable, these quantum quench and
Floquet dynamics exhibit rich behaviors, such as dynami-
cal “phase transitions” that separate heating and nonheating
behaviors during time evolution [29–43]. For additional dis-
cussions on spatial inhomogeneity in nonequilibrium setting,
see Refs. [44,45].

Reference [31] studied quantum quench problems in 2d
CFT using these inhomogeneous Hamiltonians starting from
the Gibbs state as an initial state. One of the main find-
ings of Ref. [31] is that the time evolution generates an
inhomogenous temperature profile. In particular, when the
inhomogeneous postquench Hamiltonian is the SSD Hamil-
tonian, it heats up a spatial subregion near the point where
the Hamiltonian density vanishes, while it cools down the
rest of the system. (The idea of using inhomogeneous
Hamiltonians to prepare low-temperature states has been
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explored also outside the Möbius/sine-square deformation—
see, for example, [46–51].) This heating process results in
a local excitation that carries the (almost) entire entropy
of the system, which we call a black-hole-like excitation
(B.H.-like excitation). On the other hand, for the cooled
region, nonlocal quantum correlations emerge under the
inhomogeneous time evolution. The SSD Hamiltonian can
thus be used to “simulate” the formation of a black hole.

In this paper, we further study inhomogeneous deforma-
tions of the CFT Hamiltonian and the associated nonequilib-
rium dynamics. To be concrete, we will discuss three setups
presented in Sec. II. All these processes are quantum quenches
starting from the thermofield double (TFD) state defined on
two copies of the Hilbert space, H1 and H2.

There are three motivations for studying these setups
(roughly one for each setup). First, in the previous papers
almost all properties discussed (cooling/heating, the forma-
tion of B.H.-like excitations) are universal in the sense that
they depend only on conformal symmetry. Little is known
about the effects of the inhomogeneous deformations on
the details of theories and quantum information scrambling
[52]. Different CFTs can exhibit different kinds of dynamics,
e.g., integrable, chaotic, or something in between. For these
dynamics, effective descriptions of dynamics have been devel-
oped, namely the quasiparticle picture for integrable dynamics
and the membrane picture (line-tension picture) for chaotic
and holographic dynamics. As discussed in [53,54], quantum
information scrambling can be detected by studying oper-
ator entanglement. In particular, the operator entanglement
for undeformed CFT time-evolution operators was previously
discussed in [54]. In this paper, we study the effect of the
inhomogeneous temperature profile and B.H.-like excitations
on quantum information scrambling. In the quantum quench
setups starting from the TFD state, we will study bipartite and
tripartite mutual information between subsystems in H1 and
H2, which measures operator entanglement in disguise.

Second, by considering two-step time-evolution operators,
we discuss the recovery of quantum information. In the past
decades, information retrieval from a black hole has received
considerable attention [15,55–57]. In the setups considered in
these papers, quantum information is thrown into a black hole,
scrambled in its interior, and then emitted as the Hawking
radiation. These papers investigated efficient ways of retriev-
ing the quantum state from the emitted Hawking radiations.
Investigating the information retrieval from typical states, i.e.,
states in which information is scrambled, should lead to a
deep understanding of quantum thermalization and black hole
dynamics. Our setups using inhomogeneous time-evolution
operators in 2d CFT that are rather different from those
considered in the above papers, where quantum information
theoretical models were considered. Nevertheless, we will
demonstrate the recovery of quantum information in our se-
tups: If we start from the TFD state or a typical state and
then evolve the system with the SSD Hamiltonian acting on
the single Hilbert space, then the mutual information between
the subsystems on the different Hilbert spaces, H1 and H2,
locally returns to its initial value. (Here, in our setups, the
time-evolution operator acts solely on H1.) From this mutual
information recovery, we can see the Bell pairs initially shared
by the subsystems of H1 and H2 may be revived during

the SSD time evolution. This recovered correlation may be
robust against the scrambling effect of 2d holographic CFTs.
Furthermore, under the evolution induced by the uniform
holographic Hamiltonian, when the subsystems do not include
the so-called fixed points, the system can develop a genuine
tripartite correlation, i.e., a nonlocal correlation shared by
three parties, but not by two parties only.

Finally, we are also interested in the dynamics of B.H.-like
excitations. In Setup 3 presented in Sec. II, we once again
consider two-step time evolution where the first step creates
a pair of B.H.-like excitations while the second step induces
nontrivial dynamics thereof.

We back up the above analyses for the specific setups
by developing an effective description of the entanglement
dynamics. In particular, we develop the line-tension picture
for inhomogeneous time evolution. We also develop the holo-
graphic bulk description of these inhomogeneous quenches by
keeping track of the spatiotemporal deformations of the bulk
black hole horizon. Finally, we also discuss the wormhole
connecting the two Hilbert spaces. Due to the nontrivial dy-
namics of the B.H.-like excitations, the size of the wormhole
exhibits an oscillatory growth.

The results are quite remarkable and may pave the way for
important developments in the simulation of quantum dynam-
ics in near-term quantum simulators and quantum computers.
To make it easier for the reader to grasp our findings in this
study, let us mention four salient points:

(1) As detailed in Sec. IV, we found that during the SSD
time evolution, the bipartite mutual information exhibits the
recovery of the nonlocal correlations. This suggests that SSD
unitary time evolution can be used as a unitary process, which
recovers the nonlocal correlations of a system.

(2) In Sec. V, the system first undergoes time evolution
with the SSD Hamiltonian before undergoing a subsequent
time evolution with the maximally scrambling uniform holo-
graphic CFT Hamiltonian. The black hole-like excitations in
the atypical state prepared by the initial SSD Hamiltonian is
stable under the subsequent uniform holographic CFT Hamil-
tonian evolution, which suggests that the SSD Hamiltonian
can be used to prepare atypical quantum states that have fea-
tures that are robust against maximally scrambling dynamics.
See Sec. V for more details.

(3) The production of genuine tripartite mutual informa-
tion from an inhomogeneous quench of the holographic CFTs
is, to the best of our knowledge, an example of the conversion
of bipartite entanglement to tripartite entanglement in a field
theory or a many-body system. This is explained in Sec. V B.

(4) By subsequently evolving the system with the uniform
Hamiltonian after an initial SSD time evolution, these black
hole-like excitations can be moved around the system, open-
ing up the possibility of simulating the dynamics of black
holes in actual experiments. This is explained in Sec. V.

The rest of the paper is organized as follows: In Sec. II, we
will describe the inhomogeneously deformed Hamiltonians in
2d CFT, the three setups considered in this paper, and the
measures of entanglement of our interest. In Secs. III and
IV, we will present the time dependence of mutual informa-
tion under the evolution by the inhomogeneous Hamiltonians,
starting from the thermofield double and typical states. In the
following three sections, we report the time dependence of
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the entanglement measures in the three setups: In Sec. V, we
will report the time dependence of entanglement entropy and
mutual information when we start from the thermofield dou-
ble state, evolve the system with the SSD Hamiltonian, and
then subsequently evolve it with the uniform Hamiltonian. In
Sec. VI, we will propose an effective model that describes the
operator entanglement hydrodynamics of the Möbius/SSD
time-evolution operators. In Sec. VII, we will report the dual
geometries of the systems considered in this paper, and also
present the growth of wormholes. Finally, in Sec. IX, we will
discuss the possible applications of our results to experiments,
and comment on a few future directions.

II. PRELIMINARIES

In this section, we describe the inhomogeneously deformed
Hamiltonian, the setups of our interest, and the measures of
entanglement considered in this paper.

A. Inhomogeneously deformed Hamiltonians

Inhomogeneously deformed Hamiltonians considered in
this paper are defined by modulating the Hamiltonian den-
sity. Let us start from a homogeneous Hamiltonian H0 =∫ L

0 h(x)dx defined on a one-dimensional circle of circum-
ference L, i.e., the periodic spatial boundary condition is
imposed. The integrand of the homogeneous Hamiltonian
h(x) is the Hamiltonian density. An inhomogeneous deforma-
tion of H0 can be introduced as

HInho =
∫ L

0
dx f (x)h(x), (1)

where f (x) is an envelope function. The envelope functions
considered in this paper are

fMöbius(x) = 1 − tanh 2θ cos

(
2πx

L

)
,

fSSD(x) = 2 sin2
(πx

L

)
,

fCSD(x) = 2 cos2
(πx

L

)
. (2)

Here, fMöbius(x) reduces to fSSD(x) and fCSD(x) in the θ →
±∞ limits respectively. The inhomogeneously deformed
Hamiltonians with the envelope functions f (x) = fMöbius(x),
fSSD(x), fCSD(x) are called Möbius, sine-square (SS) and
cosine-square (CS) deformed Hamiltonians, respectively.

The SSD Hamiltonian was originally proposed as a sim-
ple way of removing the boundary effect in finite-size
systems [58–66]. Subsequently, the SSD in 2d CFTs and
its one-parameter deformation (Möbius deformation) were
also discussed [67–72]. Recently, these deformations have
been used to study thermalization and nonthermalization
[29–31,41,42] and Floquet dynamics [32–40].

In these deformations, we naturally identify two special
locations on the spatial circle, x = 0 ≡ X 1

f and x = L/2 ≡ X 2
f .

Being the minimum or maximum of the envelope functions,
we expect the effect of the envelope functions on quantum
dynamics is most significant around these points. We will
soon show that these points play special roles under the in-

homogeneous time evolution by looking at various quantities
such as the Heisenberg time evolution of operators.

For the bulk of the paper, we mainly focus on the Möbius
and SS deformations. The details of the analysis and calcu-
lations of the entanglement dynamics under the CSD time
evolution are presented in Appendix C.

B. The systems evolved with the inhomogeneously
deformed Hamiltonians

We consider the following three setups in this paper. In all
setups, we consider the thermofield double (TFD) state

|TFD〉 = N e− ε(H1
0 +H2

0 )

2

∑
a

|a〉1 ⊗ |a〉2, (3)

as our initial state of time evolution. Here, the TFD state
is defined in the doubled Hilbert space, H = H1 ⊗ H2, and
Hi=1,2

0 and |a〉i=1,2 denote the undeformed 2d CFT Hamil-
tonian, and its eigenstates respectively. The regulator ε is
half of the inverse temperature, ε = β/2. The square of the
normalization factor N guarantees that 〈TFD|TFD〉 = 1. We
will mainly work with holographic CFTs, i.e., CFTs that ad-
mit holographic dual descriptions. However, we also study
the 2d free fermion CFT as a representative of nonchaotic
(integrable) CFTs and make comparisons between the two.
The TFD state was previously used as a “convenient” initial
condition in quantum quench problems [48]. The TFD state
is a short-range entangled state, and can be considered as a
ground state of a gapped Hamiltonian [73,74]. Our setups
above are hence in a similar spirit to the seminal work by
Calabrese and Cardy on quantum quench in 2d CFTs [5,20].

Setup 1. In the first setup, starting from the TFD state
we consider the time evolution under the unitary operator
UMöbius/SSD = e−it1H1

Möbius/SSD ⊗ 12, where H1
Möbius/SSD and 12 de-

note the Möbius/SS deformed Hamiltonian acting on H1, and
identity operator on H2, respectively. The evolved state is

|�1(t1)〉 = (
e−it1H1

Möbius/SSD ⊗ 12
)|TFD〉. (4)

Setup 2. In the second setup, we once again start from the
TFD state, and then consider the two-step time-evolution first
by e−it0H0 and then e−it1HMöbius/SSD , both acting on H1,

|�2(t1, t0)〉 = (
e−iH1

SSDt1 ⊗ 12
)(

e−iH1
0 t0 ⊗ 12

)|TFD〉. (5)

Here, the first time evolution can be interpreted as creating an
excited state, which is then time evolved during the second
step of the time evolution.

Setup 3. Finally, in the third setup, we exchange the or-
dering of the two time-evolution operators in Setup 2, and
consider

|�3(t1, t0)〉 = (
e−iH1

0 t0 ⊗ 12
)(

e−iH1
SSDt1 ⊗ 12

)|TFD〉. (6)

Let us now elaborate on the motivations for studying these
setups and provide an overview of our results.

We first note that, in addition to the interpretation as
quantum quench, we can give an interpretation of these
states (and entanglement measures for these states) from
the perspective of operator entanglement. Consider, for a
unitary time-evolution operator Uunitary, an effective unitary
time-evolution operator Ueffective = Uunitarye−εH0 . By using the
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channel-state map [53,75], define the dual state of Ueffective as
the state on the doubled Hilbert space, H1 ⊗ H2,

|Ueffective〉 = N
∑

a

Uunitarye− ε
2 (H1+H2 )|a〉1 ⊗ |a∗〉2, (7)

where |·∗〉 is CPT conjugate of |·〉, and |a〉i is an eigenstate
of Hi [76] The definition of dual state is not unique. The
unitary time-evolution operator acts only on H1. The dynam-
ical properties of Ueffective are represented as the entanglement
structure of the dual state. Thus, the above states can be
interpreted as the dual states of the effective unitary time-
evolution operators. In particular, by considering the state
(4) and its entanglement structure, we can discuss the opera-
tor entanglement of the Möbius/SS deformed time-evolution
operator and the effect of the inhomogeneous deformation
on quantum information scrambling. For the case of regular,
homogeneous Hamiltonian H0 of 2d CFTs, the operator en-
tanglement and quantum information scrambling were studied
in [54].

In Setup 2 and 3, we have two-step time evolution opera-
tors. In Setup 2, the first time evolution under H0 is expected
to scramble quantum information (for holographic CFTs). Our
interest here is the effect of the second time evolution on
the scrambled information. As we will see, the SSD evolu-
tion recovers the nonlocal correlation between subsystems A
and B in H1 and H2 when the subsystem A includes X 1

f .
Namely, by the SSD evolution, we can retrieve the informa-
tion from the typical state, the state where the information
is fully scrambled. The motivation for Setup 2 is thus in
line with information retrieval from a black hole [15,55–
57]. In these papers, quantum information is first thrown
into a black hole, scrambled in its interior, and then emit-
ted as Hawking radiation. They investigated efficient ways
of retrieving the quantum state from the emitted Hawking
radiations.

In Setup 3, the first part of the two-step time evolution (with
the SSD Hamiltonian on H1) can be interpreted as preparing
a pair of black-hole-like excitations (B.H.-like excitations)
[31]. The created B.H.-like excitations are then subject to the
second step of the time evolution under the regular Hamilto-
nian H1

0 . Setup 3 can thus be used to study the dynamics of
the B.H.-like excitations. As we will show, the second time
evolution induces an interesting dynamics of the B.H.-like
excitations that can be detected by monitoring various en-
tanglement measures. Also, the wormhole growth measured
by the geodesic length is described by the propagation of the
B.H.-like excitations. From this perspective, it would also be
interesting to consider a similar time evolution,

|�(t1, t2)〉 = (
e−iH1

CSDt2 ⊗ 12
)(

e−iH1
SSDt1 ⊗ 12

)|TFD〉. (8)

Here, the first step of the time evolution is the same and
still creates a pair of B.H.-like excitations. The second time
evolution is, however, given by HCSD, instead of H0, whose
envelope function profile is complimentary to HSSD. The de-
tails of the entanglement dynamics for (8) are presented in
Appendix C.

C. Entanglement entropies, and the twist operator formalism

1. Entanglement entropies, bipartite, and tripartite
mutual information

The main quantities of interest in this paper are entangle-
ment entropies for various subsystems as well as the bipartite
and tripartite mutual information (BMI and TMI, respec-
tively). Below, we consider a subsystem (sub-Hilbert space)
of H2, which we call A. Similarly, we consider a sub-Hilbert
space B of H1. When discussing TMI, we consider two sub-
systems of H2, denoted as B1 and B2. More specifically,
subsystem A is a spatial interval with its left and right ends
located at X1 and X2, and, similarly, B is an interval with its
left and right ends located at Y1 and Y2. Here, 0 < X2 < X1 and
0 < Y2 < Y1. (B1 and B2 are also intervals—their geometries
are specified in the following.) Starting from the total density
matrix |�〉〈�|, we consider the reduced density matrix ρV
(V = A, B, A ∪ B, · · · ), and the corresponding von Neumann
and/or Rényi entropies. They are denoted by SV and S(n)

V ,
respectively.

Bipartite mutual information (BMI) for A and B is defined
as the linear combination of the entanglement entropies,

IA,B = SA + SB − SA∪B. (9)

We note that IA,B is independent of the lattice spacing. Since
the universal pieces of entanglement entropies cancel out, IA,B

depends on only the nonuniversal pieces of these entropies.
To define tripartite mutual information (TMI) we consider

three subsystems A, B1, and B2. Then, the TMI for A, B1, and
B2 is defined as a linear combination of BMI,

IA,B1,B2 = IA,B1 + IA,B2 − IA,B1∪B2 . (10)

As in [53,54,77–83], the TMI for operator entanglement can
be a measure of scrambling. The time dependence of TMI
may detect how the Bell pairs initially shared by A and H1

are delocalized and become nonlocally hidden in H1 under
the time evolution.

2. Parameter regimes of interest

For the bulk of the paper, we are interested in the above
entanglement quantities in the coarse-grained regime. This
regime is defined as follows. Let V̂ denote the subsystem
consisting of the spatial intervals, and then let L̂, l̂V , â, ε̂, and
t̂ denote a system size, a subsystem size, a lattice spacing,
a regularization parameter that guarantees the norm of states
considered in this paper is one, and the times associated to
some Hamiltonian considered. Here, ∗̂ denotes a dimensionful
parameter, and ∗ is the dimensionless one defined as ∗̂

â . In the
following, we will use only dimensionless parameters. The
parameter region considered is

L � lV , t � ε � 1. (11)

The interest in this regime comes from the expectation that
in this regime we can potentially use effective descriptions of
entropy propagation such as the quasiparticle picture or the
line-tension (membrane) picture.

023001-4



SCRAMBLING AND RECOVERY OF QUANTUM … PHYSICAL REVIEW RESEARCH 6, 023001 (2024)

D. Path integral formulation and twist operators

To develop the path-integral formalism, let us define Eu-
clidean density operators as

ρE = N 2
E

∑
a,b

e−ε(Ea+Eb)
(
U 1

E |a〉〈b|1Ũ 1
E ⊗ |a∗〉〈b∗|2

)
, (12)

where N−2
E = tre−2εH0 guarantees that trρE = 1. These den-

sity operators may be obtained from the ones defined in
Sec. II B by analytically continuing to imaginary time. Here,

the Euclidean evolution operator is given, depending on the
setups above,

U 1
E =

⎧⎪⎪⎨
⎪⎪⎩

e−H1
Möbiusτ1

e−H1
SSDτ1 e−H1

0 τ0

e−H1
0 τ0 e−H1

SSDτ1

, Ũ 1
E =

⎧⎪⎪⎨
⎪⎪⎩

eH1
Möbiusτ1

eH1
0 τ0 eH1

SSDτ1

eH1
SSDτ1 eH1

0 τ0

. (13)

We now define the reduced Euclidean density operators for V
as ρE ,V = trV ρE . They are given explicitly as

ρE ,V =

⎧⎪⎪⎨
⎪⎪⎩
N 2

E trA(e−2εH0 ) V = A,

N 2
E trB

(
U 1

E e−2εH0Ũ 1
E

)
V = B,

N 2
E

∑
a,b e−ε(Ea+Eb)trB̃

(
U 1

E |a〉〈b|1Ũ 1
E

) ⊗ trÃ(|a∗〉〈b∗|2) V = A ∪ B,

(14)

where Ā denotes the complement of A. Let us define Euclidean
entanglement entropy associated with ρE ,V as von Neumann
entropy for this reduced density matrix,

SE ,V = −trV (ρE ,V log ρE ,V ) = lim
n→1

1
1−n log trV (ρE ,V )n. (15)

Thus, in the von Neumann limit n → 1, the nth Rényi entropy,
S(n)

E ,V = 1
1−n log trV (ρE ,V )n, reduces to the Euclidean entangle-

ment entropy. In the path-integral formalism, S(n)
E ,V is given

by S(n)
E ,V = 1

1−n log Zn
Zn

1
, where Zn is the partition function on

an n-sheeted geometry defined by sewing V together in a
cyclic fashion as in [84,85]. At the end of the calculations,
we analytically continue τi=0,1,2 to iti=0,1,2 to obtain the time
evolution of entanglement entropies. With this procedure in
mind, from now on, we drop the subscript “E” and simply
write SE ,V → SV .

To compute SV , let us now employ the twist-operator for-
malism where trV (ρV )n is given by the 2mV -point functions
arising from insertion of the twist and antitwist operators on
the torus. Here, V is composed of mV intervals. Consequently,
the Rényi entropies can be expressed as

S(n)
A = 1

1 − n
log

{〈
σ n
(
wX1 ,wX1

)
σn
(
wX2 ,wX2

)〉
2ε

}
,

S(n)
B = 1

1 − n
log

{
N 2

E tr
[
Ũ 1

E σn
(
wY1 ,wY1

)
× σ n

(
wY2 ,wY2

)
U 1

E e−2εH0
]}

,

S(n)
A∪B = 1

1 − n
log

{
N 2

E tr
[
e−εH0 Ũ 1

E σn
(
wY1 ,wY1

)
σ n
(
wY2 ,wY2

)
×U 1

E e−εH0 σ n
(
wX1 ,wX1

)
σn
(
wX2 ,wX2

)]}
, (16)

where 〈·〉2ε denotes the expectation value on the thermal torus
where thermal and spatial circumstances are 2ε and L, re-
spectively. The complex coordinate is defined as (wx,wx ) =
(ix,−ix), and hn = c(n2−1)

24n denotes the conformal dimen-
sion of twist and antitwist operators. By using the identities,
Ũ 1

EU 1
E = U 1

EŨ 1
E = 1 and e−εH0 eεH0 = eεH0 e−εH0 = 1, we can

rewrite 2mV -point functions in (16) as the ones in Heisenberg
picture. In the Heisenberg picture, the evolution of the twist

and antitwist operators in Euclidean time is given by

eεH0 Ũ 1
E σn(wx,wx )U 1

E e−εH0 =
∣∣∣∣∣dwNew

x,ε

dwx

∣∣∣∣∣
2hn

σn
(
wNew

x,ε ,wNew
x,ε

)
.

(17)
Some details of wNew

x,ε and wNew
x,ε are presented in Appendix A.

During the evolution by U 1
E e−εH0 , the location of the operators

is mapped to wNew
x,ε ,wNew

x,ε . As a consequence, S(n)
V is written as

S(n)
A = 1

1 − n
log

[〈
σ n
(
wX1 ,wX1

)
σn
(
wX2 ,wX2

)〉
2ε

]
,

S(n)
B = 1

1 − n
log

⎡
⎣�i=1,2

∣∣∣∣∣dwNew
Yi,ε

dwYi

∣∣∣∣∣
2hn
⎤
⎦

+ 1

1 − n
log

〈
σn
(
wNew

Y1,ε
,wNew

Y1,ε

)
σ n
(
wNew

Y2,ε
,wNew

Y2,ε

)〉
2ε

,

S(n)
A∪B = 1

1 − n
log

⎡
⎣�i=1,2

∣∣∣∣∣dwNew
Yi,ε

dwYi

∣∣∣∣∣
2hn
⎤
⎦

+ 1

1 − n
log

〈
σn
(
wNew

Y1,ε
,wNew

Y1,ε

)
σ n
(
wNew

Y2,ε
,wNew

Y2,ε

)
× σ n

(
wX1 ,wX1

)
σn
(
wX2 ,wX2

)〉
2ε

. (18)

We note that | dwNew
x,ε

dwx,ε
|2hn is independent of the details of 2d

CFTs. We hence call this factor the universal piece. On the
other hand, the two- and four-point functions of the twist
fields on the torus depend on the details of 2d CFTs, and
we call them the nonuniversal pieces. These variables, wNew

x,ε

and wNew
x,ε , depend on the imaginary times τi=0,1,2. After we

analytically continue τi=0,1,2 to iti=0,1,2, only these imaginary
parts of wNew

x,ε and wNew
x,ε depend on these real times. In other

words, during the evolution by U 1
E e−εH0 , the twist and an-

titwist operators spatially move with time as in Appendix A 1.
Under the evolution by HSSD/CSD, the primary operators at
x = X f

1 = 0 or x = X f
2 = L

2 does not spatially move. We call

X f
1 and X f

2 fixed points.
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1. Nonuniversal pieces in 2d holographic CFTs

Let us have a closer look at the nonuniversal pieces of the
entanglement entropy for the single and double intervals in 2d
holographic CFTs. To compare the results on 2d holographic
CFTs with the ones in the 2d free fermion CFT, we also
calculated the nonuniversal pieces in the free fermion CFT.
The results and calculations for the free fermion CFT are
reported in Appendix D 1.

Single interval. Here, we present the nonuniversal piece
of entanglement entropy for the single interval in the coarse-
grained regime. In this regime, the gravity dual of the system
on the torus is the BTZ black hole [86]. Therefore, in the von
Neumann limit when n → 1, the nonuniversal piece is given
by the geodesic length in the BTZ black hole [87,88]. Let V
denote the subsystem, and also v1 and v2 denote the endpoints
of V . Here, we assume that v1 > v2 > 0. The nonuniversal
piece of entanglement entropy for the reduced density matrix
associated with V is holographically given by

lim
n→1

1

1 − n
log

〈
σn
(
wNew

v1,ε
,wNew

v1,ε

)
σ n
(
wNew

v2,ε
,wNew

v2,ε

)〉
2ε

≈ c

3
log

(
2ε

π

)
+

⎧⎨
⎩

Min
[

c
6 log

∣∣ sin
(

π
2ε

(
wNew

v1,ε
− wNew

v2,ε
± iL

))∣∣2, c
6 log

∣∣ sin
(

π
2ε

(
wNew

v1,ε
− wNew

v2,ε

))∣∣2 + cπL
6ε

]
if x = X 1

f ∈ V

Min
[

c
6 log

∣∣ sin
(

π
2ε

(
wNew

v1,ε
− wNew

v2,ε
± iL

))∣∣2 + cπL
6ε

, c
6 log

∣∣ sin
(

π
2ε

(
wNew

v1,ε
− wNew

v2,ε

))∣∣2] if x = X 1
f /∈ V

.

(19)

Double intervals. Let us turn to the nonuniversal piece of
the entanglement entropy for a union of double intervals. In
2d holographic CFTs, the nonuniversal piece for a pair of
intervals is given by

lim
n→1

1

1 − n
log

〈
σn
(
wNew

Y1,ε
,wNew

Y1,ε

)
σ n
(
wNew

Y2,ε
,wNew

Y2,ε

)
× σ n

(
wX1 ,wX1

)
σn
(
wX2 ,wX2

)〉
2ε

≈ 2c

3
log

(
2ε

π

)
+ Min[Sdis, Scon], (20)

where Sdis is determined by the length of geodesic that con-
nects the endpoints of intervals at the same Euclidean time
slices, while Scon is determined by that of geodesics connect-
ing points on different Euclidean time slices. Some details of
Sdis and Scon are reported in Appendix B 1. The Euclidean
temporal and spatial locations, τNew

x,ε and X New
x,ε , of endpoints

are defined as

τNew
x,ε = wNew

x,ε + wNew
x,ε

2
, X New

x,ε = wNew
x,ε − wNew

x,ε

2i
. (21)

III. SETUP 1

Let us now turn to the analysis of the time dependence
of BMI and TMI in Setup 1, (4). One of the main findings
is Fig. 2 (see below) where we plot BMI as a function of
time for various choices of θ . This plot should be compared
with, e.g., Fig. 11 in Ref. [54] where BMI (or bipartite
operator mutual information) of the regular, homogeneous
time-evolution operator for holographic CFTs was studied.
Interestingly, we find a threshold value of θ that separates the
two types of behaviors of BMI presented in the left and right
panels of Fig. 2 (see below), respectively. We also compare
holographic CFTs and the free fermion CFT described by the
quasiparticle picture.

A. Analysis of the geodesic length

We first discuss the time dependence of geodesics corre-
sponding to the nonuniversal pieces of SA, SB, and SA∪B in

the Heisenberg picture. For simplicity, let us suppose that the
center of B is at x = X f

1 . The twist and antitwist operators
associated with ρA are stationary, so that in the coarse-grained
region, the entanglement entropy is approximated by a sta-
tionary constant,

SA ≈ cπ lA
6ε

, (22)

where lA is the subsystem size of A. Let us look closely at the
time dependence of the nonuniversal pieces of SB and SA∪B.
The twist and antitwist operators associated with B evolve un-
der HMöbius/SSD and periodically move between the two fixed
points x = X f

1 and x = X f
2 with period L cosh 2θ . In the SSD

limit θ → ∞, the oscillation disappears, and these operators
move asymptotically toward one of the fixed points, x = X f

2 .
The traveling speed of these operators depends on their loca-
tions and θ . According to the time evolution of the twist and
antitwist operators, the size of the subsystem associated with
these operators grows and shrinks with time. Consequently,
the geodesic length associated with this subsystem increases
and decreases.

For the nonuniversal piece of SA∪B, in the small-t1 regime,
the nonuniversal piece of SA∪B may be given by the lengths
of geodesics connecting the endpoints of A and B, Scon,
while in the large-t1 regime, it may be given by the ones
connecting the endpoints on the same Euclidean time slices
Sdis. Therefore, for large t1, the nonuniversal pieces of
SB and SA∪B may be determined by the lengths of the
geodesics connecting the endpoints of the subsystems on the
same Euclidean time slices as in Fig. 1. More specifically,
for the t1 regime where (wNew

Y1,ε
− wNew

Y2,ε
)/(iε) � 1, (wNew

Y1,ε
−

wNew
Y2,ε

)/(iε) � 1, [iL − (wNew
Y1,ε

− wNew
Y2,ε

)]/(iε) � 1 and [iL +
(wNew

Y1,ε
− wNew

Y2,ε
)]/(iε) � 1, SA∪B should be approximated by

SA∪B ≈ Min[Ŝ1, Ŝ2]

= cπ

6ε
× Min

[
L + (

X New
Y1,ε

− X New
Y2,ε

− lA
)
,

L − (
X New

Y1,ε
− X New

Y2,ε

) + lA
]
, (23)
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FIG. 1. The Möbius evolution of the subsystem in the Heisen-
berg picture. The green lines illustrate the subsystems, A and B. The
blue solid line illustrates the nonuniversal piece of SA. The gray solid
line illustrates the nonuniversal pieces of SB for small θ , while the
light green solid line illustrates that of SB for large θ . For 0 � θ � θC ,
the nonuniversal piece of SA∪B is the orange dashed line, while for
θC < θ , it is given by the purple dotted lines. The red arrow illustrates
the growth of X Nearest

i=Y1,Y2
with the increase of θ . The details of θC is

reported in Appendix B 2.

where Ŝ2 is the same as the nonuniversal piece of SB in this
time regime.

Which of these contributions, Ŝ1 and Ŝ2, is dominant de-
pends on θ and there is a threshold value θC separating the
two cases. In the small-θ regime, 0 � θ � θC , Sdis is given
by Ŝ2, so that for small θ but large t1, IA,B is zero. On the
other hand, in the large-θ regime, θC < θ , Sdis is given by Ŝ1.
In this time regime, SA and SB are approximated by (22) and
cπ[L−(X New

Y1 ,ε −X New
Y2 ,ε )]

6ε
, respectively, so that IA,B is approximated by

IA,B ≈ cπ
[
lA − (

X New
Y1,ε

− X New
Y2,ε

)]
3ε

. (24)

The critical value θC separating these two cases depends on
Yi=1,2, Xi=1,2, and L and can be determined as follows. Let
us suppose that σ n(wNew

Y2,ε
,wNew

Y2,ε
) moves with time between

x = X Nearest
Y2

and x = X Furthest
Y2

where 0 < X Furthest
Y2

< X Nearest
Y2

<

L/2, while σn(wNew
Y1,ε

,wNew
Y1,ε

) moves between x = X Nearest
Y1

and
x = X Furthest

Y1
where L/2 < X Nearest

Y1
< X Furthest

Y1
< L. If θ be-

comes larger, then X Nearest
i=Y1,Y2

gets closer to X f
2 . Let t1,Max denote

the time for the effective size of B to reach its maximum. This
time, t1,Max, depends on θ , Y1, and Y2. Let θC denote the value
of inhomogeneous parameter, for which L − (X New

Y1,ε
− X New

Y2,ε
)

is equal to X New
Y1,ε

− X New
Y2,ε

at t1 = t1,Max. The details of the
analysis of θC are reported in Appendix B 2.

For HSSD, in the time regime when the B.H.-like excita-
tions, with each of them having half of the thermal entropy on
H1, emerge around x = X f

1 [31], IA,B is approximated by

IA,B ≈ 2cπ lA
6ε

, (25)

where lA = X1 − X2. One possible interpretation for IA,B after
the emergence of the B.H.-like excitations is that IA,B may
measure the Bell pairs initially shared by A and H1.

If B does not include x = X 1
f , then for the large-t1 regime

under the SSD evolution, the nonuniversal piece of SA∪B is

FIG. 2. The time dependence of IA,B for (a) 0 � θ � θC and (b)
θc < θ as a function of t1. Here, lα=A,B and PC,α=A,B denote the size
and the center of α.

given by that of SA + SB where SB is approximated by the
entanglement entropy of the vacuum state. As a consequence,
IA,B is zero at late times. This means that the reduced density
matrix on A ∪ B approximately factorizes as

ρA∪B(t1 � 1) ≈ ρThermal,A ⊗ ρVacuum,B, (26)

where ρThermal,A is the reduced density matrix of a ther-
mal state at inverse temperature 2ε for subsystem A, and
ρVacuum,B the reduced density matrix of the vacuum state for
subsystem B.

1. The θ and position dependence of IA,B

The behavior of the geodesic and the time evolution of
the subsystems in the Heisenberg picture described above is
directly translated into the time dependence of IA,B. In Fig. 2,
we plot IA,B for various choices of θ as a function of t1. In this
plot, the center of B is x = X f

1 . The solid lines illustrate the
time dependence of IA,B for A, the center of which is x = X f

1 ,
while the dashed line illustrates that for A, the center of which
is x = L

4 . In Fig. 2(a), we show the time dependence of IA,B for
the small θ region where 0 � θ � θC , while in (b), we show
that for the large θ region where θC < θ .

As discussed in Sec. III A, in the late time regime, IA,B for
0 � θ � θC is practically zero, while that for θC < θ becomes
positive. For 0 � θ � θC , IA,B monotonically decreases with
t1 up to t1,∗, and then is practically zero. Here, t1,∗ is the
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FIG. 3. The time dependence of IA,B for PC = L
4 , L

2 for θ = 0
(dashed line) and in the SSD limit (solid lines) as a function of
t1. Here, we choose lA = lB and PC,A = PC,B = PC . The solid lines
illustrate the t1 dependence of IA,B for PC = L

4 , L
2 in the SSD limit.

For θ = 0, the time dependence of IA,B is independent of PC .

phase-transition time where Scon exchanges dominance with
Sdis. The details of early time decay depends on θ : For larger θ ,
the early time decay is slower (t1,∗ is bigger). This behavior for
θ � θC is similar to what was found for bipartite operator mu-
tual information of the regular homogeneous time-evolution
operator of holographic CFTs in Ref. [54].

On the other hand, the behavior for θC < θ is markedly
different. Except for the SSD limit, IA,B first monotonically
decreases with t1 up to t1,∗, and then oscillates with periodicity
L cosh 2θ . For larger θ (closer to the SSD limit), the early time
decay is slower, and IA,B at t1 = t1,∗ is larger. In the SSD limit,
after t1 = t1,∗ IA,B grows with t1, and saturates to a value that
is proportional to the size of A. We will revisit this behavior
in Sec. VI by developing the line-tension picture (membrane
picture) for inhomogeneous chaotic time-evolution operators.

Let us turn to the analysis of the position dependence of
IA,B. For simplicity, let us consider the SSD limit, and lA = lB,
and PC,A = PC,B = PC . We can see from the time dependence
of IA,B how scrambling may destroy the nonlocal correlation
between A and B. Also, we can see the times when ρA∪B may
approximately factorize into ρA and ρB,

ρA∪B ≈ ρA ⊗ ρB. (27)

In Fig. 3, we depict IA,B for various PC as the function of t1. In
this figure, we take PC to be L

4 and L
2 . From the time depen-

dence of IA,B in Fig. 3, we can see that when θ becomes larger,
the early time decay of IA,B for PC = L

2 becomes faster and the
time for ρA∪B to factorize into ρA and ρB may become smaller.
For PC = L

4 , the t1 dependence of IA,B may be independence
of θ . One possible explanation for the t1 dependence is that
the inhomogeneous deformation may promote scrambling to
destroy the nonlocal correlation around PC = X 2

f , while this
deformation may make scrambling destroy it around PC = X 1

f
slower, and then prevent ρA∪B from factorizing into ρA and ρB.

2. Theory dependence of IA,B under evolution

We have so far focused on holographic CFTs. However, as
one of our motivations is to understand quantum information
scrambling behaviors and their theory dependence, we now

FIG. 4. The time dependence of IA,B in the SSD limit as a func-
tion of t1. Here, we compare the t1 dependence of IA,B that follows
from the propagation of quasiparticles (dotted lines) with that of IA,B

in 2d holographic CFTs (solid lines). In this figure, PC,J=A,B and lJ=A,B

denote the centers and sizes of J = A and B, respectively.

make a comparison, for the time dependence of IA,B, between
2d holographic CFTs with the 2d free fermion CFT. First,
as we show in Appendix D, for the free fermion CFT with
inhomogeneous time evolution, we can establish that its en-
tanglement dynamics is described by the quasiparticle picture,
just like the standard case of homogeneous time evolution. In
this picture, the time dependence of IA,B follows the propa-
gation of quasiparticles at speeds given by HMöbius/SSD. Some
details of the calculations of IA,B in the 2d free fermion CFT
and a detailed description of the quasiparticle picture can be
found in Appendix D. The upshot is that the BMI in the 2d free
fermion CFT is carried separately by left- and right-moving
quasiparticles that move independently of one another. These
quasiparticles are localized packets of information and their
number is conserved. In Fig. 4, we plot IA,B in the SSD limit as
a function of t1. We see that if the size and center of A are the
same as B, then the time dependence of IA,B in 2d holographic
CFTs follows the quasiparticle picture. This is, however, not
the case otherwise. We will propose an effective picture that
describes the t1 dependence of IA,B in the 2d holographic CFTs
in Sec. VI.

B. Tripartite mutual information

Let us turn to TMI. Suppose that we divide H2 into A
and its complement, and also H1 into B1 and B2, and then
define TMI as IA,B1,B2 = IA,B1 + IA,B2 − IA,B1∪B2 . Here, we also
assume that lA = lB1 and PC,A = PC,B = X 1

f . Then, the time
dependence of IA,B1 is the same as that of IA,B reported in
Sec. III A 1, while IA,B2 is independent of t1 and approximately
zero. In the coarse-grained regime, IA,B1∪B2 is also indepen-
dent of t1 and approximated by (25). During the evolution
by HMöbius with 0 � θ � θC , IA,B1,B2 is a stationary constant
in (25), while for θC < θ , IA,B1,B2 is a periodic function of t1
with period T = L cosh 2θ . The range of IA,B is between zero
and (25). In the SSD limit, the time dependence of IA,B1,B2 is
approximated by IA,B1,B2 ≈ IA,B − 2cπ lA

6ε
, where IA,B is reported

in Sec. III A 1. For large-t1 regime, IA,B1,B2 saturates to zero.
One possible explanation for the late-time value of IA,B1,B2 is
that the correlation initially shared by A and B1 may not be
scrambled in the whole H1, and this correlation between A
and B1 may be revived.
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IV. SETUP 2

In this section, we present the time dependence of BMI and
TMI for Setup 2, (5). Recall that in (5) the state is first time
evolved by the homogeneous Hamiltonian and then by the
SSD Hamiltonian. In holographic CFTs, the first step of the
time evolution scrambles quantum information of the initial
state and produce a typical state (the Page state) [89,90]. Our
focus here is the effect of the second step of the time evolution
on the scrambled information.

Let us focus on the analysis of the lengths of geodesics
corresponding to IA,B. Let V1 and V2 denote the subregions
on H1 and H2, respectively, and also let lVi=1,2 denote the
size of Vi=1,2, respectively. For large t0, t0 � O(L), the 2d
holographic CFTs Hamiltonian evolves the system to the Page
state, so that for all Vi=1,2 where

∑
i=1,2 lVi < L, IV1,V2 should

be completely destroyed. Subsequently, we evolve it with
HSSD. In the large-t1 regime, Scon should be larger than Sdis.
For simplicity let us assume that A and B include x = X 1

f . In
this case, wNew

x,ε and w̄New
x,ε in this setup are obtained from those

in Setup 1 by shifting by it0, wNew
x,ε → it0 + wNew

x,ε and wNew
x,ε →

it0 + wNew
x,ε . For Sdis and SB, the shifts by it0 are canceled, so

that SA∪B and SB in this setup is the same as those in Setup 1.
Since for small t1, SA∪B = SA + SB, the early time IA,B is zero.
For large t1, excluding the t1 regime when X New

Y1,ε
− X New

Y2,ε
� ε,

the t1 dependence of SA∪B should be given by

SA∪B ≈ cπ

6ε

[
X New

Y1,ε
− X New

Y2,ε
+ (X1 − X2)

]
. (28)

The distance between X New
Y1,ε

and X New
Y2,ε

decreases with t1, so
that IA,B may grow with t1 and saturate to (25).

In fact, as in Fig. 5, for PC,A = PC,B = 0 and lA = lB, even
in the large-t0 regime, the IA,B grows with t1, and then saturates
at the value in (25). One possible interpretation for the t1
dependence of IA,B in this figure is that the SSD evolution may
recover the nonlocal correlation between A and the subsystem
including x = X 1

f even when the system is in the typical state.
The SSD time evolution is able to recover the mutual infor-
mation from the typical state.

The above recovery of quantum information is analo-
gous to the one discussed in quantum circuit models of
quantum information scrambling and black holes, e.g., the
Hayden-Preskill thought experiment [15,55] where the au-
thors considered the retrieval of the quantum information from
a black hole. To make a comparison, we can describe Setup
2 in the quantum circuit language as in Fig. 5. Here, in the
parameter region considered in this paper [see (11)], the TFD
state may be approximated by the product of Bell states,
|TFD〉 ≈ ∏L

x=0 |Bell; x〉, where |Bell, x〉 denotes the Bell state
at the spatial location x. For example, if the dimension of the
local Hilbert space at x is d , then the definition of a single
Bell state is given by |Bell; x〉 = 1√

d

∑d
q=1 |q〉1 ⊗ |q〉2. Let us

divide these Bell pairs into two groups, G1 and G2. Let R
and E denote the subregions associated with G1 of H1 and
H2, respectively, while let B and N denote the subregions
associated with G2 of H1 and H2. In Fig. 5, USSD and UHol.

denote the time evolution induced by the holographic uniform
Hamiltonian and HSSD, respectively. The process under the
dashed line is the same as the one considered in the Hayden-

FIG. 5. (Top) The time dependence of IA,B in the SSD limit as
a function of t1. The solid line illustrates the t1 dependence of IA,B

for t0 = 10L. The dashed line is the asymptotic value in (25). In this
figure, PC,J=A,B and lJ=A,B denote the centers and sizes of J = A and
B, respectively. (Bottom) Quantum circuit description of Setup 2.

Preskill thought experiment. If we interpret USSD as a unitary
decoder, the location where this decoder acts is different from
that discussed in the Hayden-Preskill thought experiment.
Therefore, it would be interesting to consider the information
retrieval in the system where the USSD acts on E and R. This
is left for future work.

V. SETUP 3

In this section, we study the entanglement dynamics of the
state (6). Here, the first part of the two-step time evolution
(with the SSD Hamiltonian on H1, H1

SSD) can be interpreted
as preparing a pair of B.H.-like excitations. The created B.H.-
like excitations are then subject to the second step of the time
evolution under H1

0 (Fig. 7, see below). As we will show
below, the propagating B.H.-like excitations lead to periodic
behaviors of entanglement quantities. Furthermore, in this
setup, the system acquires genuine tripartite entanglement
due to the strong scrambling effect of the dynamics. On the
contrary, in the 2d free fermion CFT, the B.H.-like excitations
are just the clusters of quasiparticle, and no such tripartite
entanglement arises.

A. Entanglement entropy

Let us first study SB. In particular, we present the t0 de-
pendence of SB in three cases: (a) x = X 1

f ∈ B; (b) L
2 > Y1 >

Y2 > 0; (c) x = X 2
f ∈ B. In Fig. 6, we plot SB for various t1

as a function of t0. The t0 dependence of SB is periodic with
period L. This periodic behavior follows from the evolution
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of twist and antitwist operators reported in Appendix A 1.
The larger t1 is, the larger the amplitude of the oscillation
of SB is, and the system deviates further from the typical

state. The time dependence of SB for the single interval can
be understood by the quasiparticle picture (we provide the
details in Appendix D). For t1 � 1, the t0 dependence of SB is
approximated by

For (a), SB ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cπL
6ε

nL + Y2 > t0 > nL − Y2

cπL
12ε

(n + 1)L − Y1 > t0 > nL + Y2

c
3 log

[
L
π

sin
[

π (Y1−Y2 )
L

]]
nL + Y1 > t0 > (n + 1)L − Y1

cπL
12ε

(n + 1)L − Y2 > t0 > nL + Y1

,

For (b), SB ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c
3 log

[
L
π

sin
[

π (Y1−Y2 )
L

]]
nL + Y2 > t0 > nL − Y2

cπL
12ε

nL + Y1 > t0 > nL + Y2

c
3 log

[
L
π

sin
[

π (Y1−Y2 )
L

]]
(n + 1)L − Y1 > t0 > nL + Y1,

cπL
12ε

(n + 1)L − Y2 > t0 > (n + 1)L − Y1

For (c), SB ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c
3 log

[
L
π

sin
[

π (Y1−Y2 )
L

]]
nL + Y2 > t0 > nL − Y2

cπL
12ε

(n + 1)L − Y1 > t0 > nL + Y2

cπL
6ε

nL + Y1 > t0 > (n + 1)L − Y1

cπL
12ε

(n + 1)L − Y2 > t0 > nL + Y1

,

(29)

where n is an integer.

The periodic behavior (29) can be understood from the
relativistic propagation of the two local objects that have a
huge amount of information, i.e., B.H.-like excitations. Here,
we introduce an effective model that describes the time evolu-
tion of SB induced by H0 for the large-t1 regime. This model
describes the leading behavior of SB in the coarse-grained
regime. At t1 = t0 = 0, in the coarse-grained regime, the lead-
ing behavior of the TFD state (3) may be approximated by the
state consisting of the product of Bell pairs,

|TFD〉 ≈
∏

x̃

|Bell; x̃〉L|Bell; x̃〉R, (30)

where x̃ is defined as x̃ ≡ x
ε
, and |Bell; x̃〉L,R denote the Bell

pairs consisting of the two quasiparticles at x̃ in H1 and H2

respectively as in Fig. 7. During the unitary time evolution
by H1

0 or H1
SSD, the quasiparticles on H1 of |Bell; x̃〉L and

|Bell; x̃〉R correspond to the left- and right-moving particles
respectively. These particles move to the left and right at the
speed determined by H1 or H1

SSD. During the evolution by
H1

SSD, all particles on H1 move to x = X 1
f and accumulate

around x = X 1
f [31]. For large t1, two B.H.-like excitations

emerge around x = X 1
f . After these excitations emerge, the

entanglement entropy for the subsystem including x = X 1
f is

approximated by cπL
6ε

. Subsequently, we evolve this system
with H0, and then one of the B.H.-like excitation moves to
the left and the other moves to the right at the speed of
light. In the time regime where one of these excitations is
in B, SB is approximated by cπL

12ε
, while in the time regime

where both are in B, SB is approximated by cπL
6ε

. In the time

regime where no excitations are in B, SB is approximated by
c
3 log [ L

π
sin [π (Y1−Y2 )

L ]].

B. Bipartite and tripartite mutual information, and genuine
tripartite entanglement

In the previous sections, we have developed an effective
picture in terms of B.H.-like excitations to describe the time
evolution of entanglement entropy for a single interval. We
note that the above behavior is universal for any CFT. We
now generalize it to the time evolution of BMI and TMI.
Here, the distinction between integrable (e.g., the free fermion
theory) and chaotic theories (holographic theories) becomes
important. In the free fermion theory, the B.H.-like excitations
are just clusters of quasiparticles. On the other hand, this is
not the case in holographic CFTs and the interior of B.H.-like
excitations should have a strong scrambling effect.

1. Bipartite mutual information

Let us first consider BMI IA,B for the time-evolved state
(6). Here A and B are the subregions (single intervals) of
H1 and H2. BMI IA,B can be thought of as measuring the
number of Bell pairs shared by A and B. Let us consider
extracting a Bell pair from the B.H.-like excitations. At t0 =
t1 = 0, the system is in the TFD state approximated by (30).
Consider a single Bell pair shared by quasiparticles, qi

1,D

and qi
2,D. Here, qi

j=1,2,D=L,R denote a quasiparticle on ith site
of H j , and D = L/R refers left/right-moving quasiparticles.
When evolved with H1

SSD, the B.H.-like excitations emerge
around x = X 1

f . Then, we attempt to extract from the B.H.-like
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FIG. 6. The entanglement entropy SB as a function of t0 for various choices of t1 for three configurations (a) x = X 1
f ∈ B, (b) L

2 > Y1 >

Y2 > 0, and (c) x = X 2
f ∈ B. The subscript in (ai=1,2) distinguishes the small and large-t1 regimes (top and bottom rows, respectively). The

dashed line illustrates the asymptotic behavior of SB in (29) in the large-t1 limit.

FIG. 7. The emergence and the time evolution of the two B.H.-
like excitations.

excitations the Bell pair that qi
1,D and qi

2,D initially share.
In the free fermion theory, if a single B.H.-like excitation
includes qi

1,L, then we can extract the Bell pair shared by
qi

1,L and qi
2,L from this excitation [Fig. 8(a)]. The situation

is crucially different for 2d holographic CFTs; we cannot
extract this Bell pair from only the single B.H.-like exci-
tation [Fig. 7(b)]. This is because quasiparticles in H1 are
locally hidden in the two B.H.-like excitations by the scram-
bling effect. In fact, as we will show momentarily, when
only a single B.H.-like excitation is in B, IA,B is zero. On
the other hand, when both of the B.H.-like excitations are
in B, A and B share the Bell pairs initially shared by A
and H1.

In Fig. 9, we plot IA,B as a function of t0 for various choices
of t1, A and B. Here, for the configurations of A and B,
we consider the following three cases: (a) x = X 1

f ∈ B; (b)
L
2 > Y1 > Y2 > 0; (c) x = X 2

f ∈ B. For (b), we assume that
A and B are the disjoint intervals for simplicity. Then, IA,B

is approximately zero. For (a) and (c), for large t1, IA,B is
approximated by the following periodic function of t0 with
period L,

For (a) :

IA,B ≈
⎧⎨
⎩

cπ lA
3ε

for (n + 1)L − Y1 > t0 > nL − Y2

0 for (n + 1)L − Y2 > t0 > (n + 1)L − Y1,
,

For (c) :

IA,B ≈

⎧⎪⎪⎨
⎪⎪⎩

0 for (n + 1)L − Y1 > t0 > nL − Y2

cπ lA
3ε

for nL + Y1 > t0 > (n + 1)L − Y1

0 for (n + 1)L − Y2 > t0 > nL + Y1

. (31)

The dashed lines in Fig. 9 illustrate these asymptotic be-
haviors. In these cases, there are the t0 regimes where both
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FIG. 8. Retrieval of a single Bell pair from B.H.-like excitations
in the 2d free fermion theory (a) and 2d holographic CFTs (b).
Panel (c) illustrates the retrieval of a single Bell pair from both
B.H.-like excitations in 2d holographic CFTs. The subsystems, B1

and B2, are the symmetric intervals in (32). The red-shadowed re-
gion is the region where quantum information is scrambled. The
orange-shadowed region illustrates qi

1,L is shared by two B.H.-like
excitations.

B.H.-like excitations are in B, and in these regimes, IA,B is ap-
proximated by cπ lA

3ε
, while in (b), there are no such t0 regimes.

2. Tripartite mutual information

In summary, the two B.H.-like excitations in 2d holo-
graphic CFTs should be (local) excitations, each of which has
half the entropy of a black hole, and information inside this
excitation should be scrambled. We cannot extract Bell pairs
from a single B.H.-like excitation, while we can extract them
from both excitations [Fig. 8(c)]. To further discuss this, let
us now consider the case where B consists of two intervals, B1

and B2, B = B1 ∪ B2. Specifically, we consider the case where

FIG. 9. The BMI IA,B of (6) as a function of t0 for various choices
of t1. For simplicity, we take lA to be the same as lB. In (2) and (3),
the dashed lines are the asymptotic behavior in (31).

B is given by a union of symmetric double intervals,

B1 =
{

x

∣∣∣∣L > L − Y2 > x > L − Y1 >
L

2

}
,

B2 =
{

x

∣∣∣∣L2 > Y1 > x > Y2 > 0

}
, (32)

where L
2 > Y1 > Y2 > 0. In Fig. 10, we take Y1 > Y2 > X1 >

X2 > 0. In this case, for small t1, IA,B=B1∪B2 is practically zero,
while for large t1 the t0 dependence of IA,B is approximated by
the following periodic function of t0 with L,

IA,B=B1∪B2 ≈

⎧⎪⎪⎨
⎪⎪⎩

0 nL + Y2 > t0 > nL − Y2
cπ lA
3ε

nL + Y1 > t0 > nL + Y2

0 (n + 1)L − Y1 > t0 > nL + Y1
cπ lA
3ε

(n + 1)L − Y2 > t0 > (n + 1)L − Y1

.

(33)

In this case, there are t0 regimes where both the B.H.-like
excitations are in B = B1 ∪ B2. In these t0 regimes, the IA,B1∪B2
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FIG. 10. The BMI IA,B1∪B2 in the large-t1 regime as a function
of t0. The solid line illustrates the t1 dependence of IA,B1∪B2 for t1 =
102L. In this figure, lB1 = lB2 = lb, PC,B1 = 3L

4 , and PC,B2 = L
4 . The

center of A is x = X f
1 . The dashed line illustrates the t0 dependence

of IA,B1∪B2 in (33).

is approximated by cπ lA
3ε

. This suggests that we may be able to
reconstruct IA,B from all quasiparticles in A and H1 even under
the 2d holographic time evolution. Also, we can see from the
t0 dependence of IA,B for large t1 that the time evolution of IA,B

may follow the relativistic propagation of the local excitations
as in [24,25,91].

By combining BMI for single intervals A, B, and for a
single interval A and double interval B = B1 ∪ B2, we can
discuss TMI. By considering local and global TMI defined
below, let us show that the amount of information scrambled
by the dynamics depends on the observers. Define local TMI
for (32) as

IA,B1,B2 = IA,B1 + IA,B2 − IA,B1∪B2 , (34)

where A denotes the subsystem of H2. (Here, let us the t0
dependence of TMI in the large-t1 regime.) In the large-t1
regime, IA,Bi=1,2 is approximated by zero, while the t0 depen-
dence of IA,B1∪B2 is given by (33). Thus, the local TMI, IA,B1,B2

in the large-t1 regime is zero for nL + Y2 > t0 > nL − Y2 or
(n + 1)L − Y1 > t0 > nL + Y1, while it is approximated by
− cπ lA

3ε
for nL + Y1 > t0 > nL + Y2 or (n + 1)L − Y2 > t0 >

(n + 1)L − Y1. The negativity of IA,B1,B2 is the signature of
scrambling. On the other hand, define global TMI as

IA,B,B = IA,B + IA,B − IA,B∪B, (35)

where B is the complement to B in H1. This global TMI is a
stationary constant value and zero. One possible interpretation
for the t0 dependence of local and global TMI is that when
two B.H.-like excitations are in B, the quasiparticles on H1 of
the Bell pairs initially shared by A and H1 may be locally
hidden in B, while there may be no quasiparticles locally
hidden in H1.

By contrast, the local and global TMI for free fermions is
zero for the double interval setup in Fig. 10 in agreement with
the quasiparticle picture.

3. Genuine tripartite entanglement

Let us also note the following behavior of BMI in the
large-t1 regime. For the symmetric double intervals in (32),
IA,Bi=1,2 and IB1,B2 are approximately zero. On the other hand,

TABLE I. Summary of the properties in Setup 3.

t1 ρA∪B SB IA,B

Small ρA ⊗ ρB Approximately Chaotic
stationary

Large not factorized Quantum Quantum
revival revival

the t0 dependence of IA,B1∪B2 is given by (33). One possible
interpretation for these BMI is that the system in its steady
state may have only tripartite entanglement, which we call
genuine tripartite entanglement. This genuine tripartite entan-
glement may be a characteristic property of the system in the
steady state during the 2d SSD holographic time evolution. In
contrast, in the 2d free fermion theory, there are the t0 regimes
where IA,Bi=1,2 and IB1,B2 becomes positive (see Appendix D 3).
The reduced density of the system in this steady state may be
given by

ρA,B1,B2 ≈ ρA ⊗ ρB1 ⊗ ρB2 + σA,B1,B2 , (36)

where σA,B1,B2 is Hermitian and traceless, trAσA,B1,B2 =
trBi=1,2σA,B1,B2 = 0. The periodic behavior of IA,B1∪B2 in t0
may come from the periodicity of σA,B1,B2 , σA,B1,B2 (t + L) =
σA,B1,B2 (t ).

4. An atypical state

At the end of this section, let us consider the entanglement
structure of the steady state under the evolution by H1. In
Table I, we summarize the entanglement property of the sys-
tem with various t1 and large t0. From Table I, we can see that
if the system is highly inhomogeneous, then we can not evolve
it with even 2d holographic Hamiltonian to the typical state.
This atypical state may have a quantum nature because the t0
dependence of SB and IA,B is periodic (quantum revival).

VI. LINE TENSION PICTURE

In Sec. III, we studied the time dependence of BMI after
quantum quench with the inhomogeneous Hamiltonian as the
post quench Hamiltonian. We observed that the BMI is not
fully described by the quasiparticle picture. In this section, we
propose a generalization of the so-called line-tension picture
to a random unitary circuit with the SSD time evolution. In
a chaotic system, the entanglement production is effectively
described by the line-tension picture introduced in [92–96].
To explain the basic idea of the line-tension picture, here we
assume that the spatial direction is homogeneous and infinite.
For simplicity, we assume that the system is time evolved by
the unitary operator U (t1) from t = 0 to t = t1. We divide the
infinite line where the system lives into two pieces at position
x at t = t1. We also divide the line at position y at t = 0. Now
the entanglement entropy SU (x, y, t1) of the unitary operator
is computed as

SU (x, y, t1) = minC

∫
C

dt T (v), (37)

where the minimization is taken over all the possible curves C
that connects the point (x, t1) and (y, 0). The symbol T (v) is
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FIG. 11. A curve C that divides the unitary circuit into two parts.
In the line-tension picture, the entanglement entropy SU (x, y, t1) is
given by the integral of the line tension T (v) along the curve C.

the line tension associated to a curve C that connects the point
(x, t1) and (y, 0) as in Fig. 11. The curve C in spacetime has
a velocity v = dx/dt and a line tension T (v) that depends on
v. In our case, when the spacetime is uniform, the minimal
curve is given by a straight line with a constant velocity v =
(x − y)/t1.

The details of the function T (v) depend on the system
and are estimated in a chaotic system using random unitary
circuits, which illustrate the phenomenon of quantum infor-
mation scrambling. In the scaling limit and in the limit of large
bond dimension q, the line tension is simply given by counting
the number of bonds cut, which is

T (v) =
{

log q v < 1
v log q v > 1.

(38)

To compute the entanglement of the unitary operator in a
holographic CFTs using the line-tension picture, we need
to identify the bond dimension (the local Hilbert space
dimension) q in the random unitary circuit. This can be ac-
complished by comparing the rates at which the information
gets scrambled. While the entanglement entropy grows at a
rate of log q in random unitary circuits, it is known that in
holographic CFTs the entanglement of the unitary operator
(computed as the entanglement between two CFTs in the
time-evolved thermofield double state) grows at a rate of cπ

6ε
.

Here, ε is dimensionless as it has been written in units of the
lattice spacing. Therefore, we make the identification

q ∼ e
cπ
6ε . (39)

Notice that log q is simply equal to the entropy density given
by the Cardy formula SCardy/(2πR) = cπ

6ε
. Using this, one

can correctly reproduce the growth of the entanglement in
holographic CFTs, which is

SU (x, y, t1) ∼ cπ

6ε
t1. (40)

A. Line tension picture with inhomogenity

In the above we assumed the homogeneity and infiniteness
of the space direction. Here, we describe how to generalize
the line-tension picture to the situation where the spatial direc-
tion is inhomogeneous and compact, which fits the SSD time

FIG. 12. SSD time evolution deforms the spacetime in the line-
tension picture nonuniformly.

evolution in a compact space discussed in our paper. One can
make similar arguments in the cases of other inhomogeneous
Hamiltonians, and we will briefly comment on these in the
last part of this section. The main idea is as follows. The
aforementioned line-tension picture was based on a geomet-
ric representation of a random unitary circuit consisting of
quantum gates uniformly arranged in the spatial direction.
In the Schrödinger picture, the spatial direction is deformed
nonuniformly by the SSD time evolution, and to give a line-
tension picture that captures the dynamics of entanglement
by the SSD time evolution, we should consider line-tension
picture in a deformed inhomogeneous spacetime, see Fig. 12.
We look for an appropriate spacetime generated by the SSD
time evolution. We are especially interested in the coordinate
whose metric is conformally flat. As in [31], we introduce new
coordinates in which action of the SSD Hamiltonian is simple.
The evolution under the SSD Hamiltonian is simplified by
introducing the Poincaré coordinate (zP, z̄P ). The boundary
global coordinate (w, w̄) and the boundary Poincaré coordi-
nate (zP, z̄P ) are related as

zP = L cot

(
iπw

L

)
, z̄P = −L cot

(
iπw̄

L

)
, (41)

where zP = xP − iτP and z̄P = xP + iτP are the complex co-
ordinates in the Poincaré coordinate. The symbol τP is the
Euclidean time coordinate, and xP is the spatial coordinate
(−∞ < xP < ∞) in the plane where the Poincaré coordinate
is defined. Notice that in this Poincaré coordinate, the two
fixed points of the SSD Hamiltonian are located at the origin
and the spatial infinity.

Now let us see how the Poincaré coordinate simplifies
the translation under the SSD Hamiltonian. The flow of the
Poincaré time is generated by the following Hamiltonian:

HP =
∫ ∞

−∞
dxPTτPτP (xP ) = −

∫
dzPT (zP ) −

∫
dz̄PT (z̄P ).

(42)
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We use the usual transformation rule for the energy-
momentum tensor(

dzP

dw

)2

T (zP ) = T (w) − c

24π
Sch(zP,w)

= T (w) + πc

12L2
, (43)

with dzP
dw

= − iπ
sin2( iπw

L )
, dz̄P

dw̄
= iπ

sin2( iπw̄
L )

and move to the original

global coordinate (w, w̄) as

HP = −
∮

dw

(
dw

dzP

)(
T (w) + πc

12L2

)

−
∮

dw̄

(
dw̄

dz̄P

)(
T (w̄) + πc

12L2

)

=
∫

dx

2π
2 sin2

(πx

L

)
Tττ (x) + c

12L

= 1

2π

(
HSSD + cπ

6L

)
. (44)

Therefore, the SSD Hamiltonian generates the time flow in
the Poincaré coordinate defined as (41). This indicates that
the line-tension picture in the Poincaré coordinate appropri-
ately captures the entanglement dynamics under the SSD time
evolution. The metric is given by

ds2 = dwdw̄ = dzPdz̄P

π2
∣∣1 + z2

P/L2
∣∣2 . (45)

We propose the entanglement entropy computed in the line-
tension picture in a curved spacetime with metric gzz̄ is given
by the following line integral:

SA = min
∂γA=∂A

∫
γA

dsT (v), (46)

where γA is the curve anchored at the edges of the subregion
A and homologous to A.

Specifically, using a pair of coordinates [z(s), z̄(s)] on the
two-dimensional spacetime, we obtain

SA = min
∂γA=∂A

∫
γA

dz

z′ T +
∫

γA

dz̄

z̄′ T , (47)

where z′ = dz/ds and z̄′ = dz̄/ds.
In our case, we have a curved metric (45) with line tension

(38). Let us compute the entanglement entropy by simply
taking a subregion as A = [Y1,Y2] at time t after the SSD time
evolution. The entanglement: S1

A is given by the space-like (or
light-like) curve with T (v) = log q = c

6ε
as Fig. 13. Segments

of the curve γ1 and γ2 intersects at the point (zM
P , z̄M

P ). The
entanglement entropy for the subregion A is computed as

SA =
∫

γ2

dz

z′ T +
∫

γ1

dz̄

z̄′ T

= c

6ε

[ ∫ iL cot πY2
L −2πt

zM
P

dzP

1 + (zP/L)2

+
∫ z̄M

P

−iL cot πY1
L +2πt

d z̄P

1 + (z̄P/L)2

]
, (48)

FIG. 13. Configuration of the minimal curve in the line-tension
picture.

This can be simplified to the new coordinate system
(wNew, w̄New) with flat metric defined by pulling the curved
coordinate (zP, z̄P ) back to w coordinate after the SSD (=
Poincaré) time evolution [97]

zP + 2πt = L cot

(
iπwNew

L

)
,

z̄P − 2πt = L cot

(
iπw̄New

L

)
. (49)

That is, wNew and w̄New are related by the original w and w̄ as

wNew = L

iπ
cot−1

[
cot

iπw

L
− 2π

L
t

]
,

w̄New = L

iπ
cot−1

[
cot

iπw̄

L
+ 2π

L
t

]
. (50)

wNew and w̄New are nothing but wNew,α
x,ε and w̄New,α

x,ε with α =
1, ε = 0, τ0 = 0 and τ1 = it . This can be explicitly checked
by the formula cot−1(z) = i

2 log[(z − i)/(z + i)] with z =
cot iπw

L − 2π
L t .

Since we can treat t just as a parameter in the integral, we
have dwNew = dw, thus we can compute the integral as

SA = cπ

6ε

[
−i

∫ iX New
Y2

iX New
M

dwNew + i
∫ −iX New

M

−iX New
Y1

dw̄New

]

= cπ

6ε

[
X New

Y2
− X New

Y1

]
, (51)

where X New
M is the intersection point (zM

P , z̄M
P ) in the X New

coordinate. This correctly reproduces the result obtained by
the holographic computations (19) in the leading order of the
coarse-grained limit.

We have more interesting configurations for the entangle-
ment entropy for double intervals A and B placed at t = 0
and time t respectively. Let us consider a sufficiently late
time when the disconnected configuration dominates over the
connected ones as Fig. 14. Two candidates for the curve that
would give the entanglement entropy are drawn in Fig. 14.
In the case of the uniform Hamiltonian (see the left panel
in Fig. 12), if you take small enough regions, the left con-
figuration in Fig. 14 always dominates, and we have the
trivial mutual information, i.e., SA∪B = SA + SB. This is not
the case for the SSD Hamiltonian. As you can see in Fig. 14,
if the subregion contains the fixed point X 1

f of the SSD
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FIG. 14. Two candidates for the minimal curve that computes
SA∪B.

Hamiltonian, the vertical lines representing “gates” originally
aligned uniformly are condensed around X 1

f . The amount of
the entanglement counts the number of the lines cut by the
minimal curve. Therefore no matter how small a subregion
is taken, at sufficiently late times, it is more efficient to take
a curve like the right one in Fig. 14 that is not homologous
to subregions A and B respectively (while the union of each
curve is homologous to A ∪ B) than to take the right one.
Such curves give nontrivial mutual information. This is the
characteristic entanglement behavior of systems driven by
Hamiltonians with fixed points, such as the SSD Hamiltonian.
It correctly reproduces the holographic calculations.

This prescription of the line-tension picture proposed in
this section can be generalized to other inhomogeneous time
evolutions. In the case of the cosine-square deformation, an
appropriate coordinate system that simplifies the action of its
Hamiltonian is given by the coordinate transformation

z̃P = L tan

(
iπw

L

)
, ¯̃zP = L tan

(
iπw̄

L

)
. (52)

and the wNew
θ and w̄New

θ are defined as

z̃P + 2πt = L tan

(
iπwNew

L

)
,

¯̃zP − 2πt = L tan

(
iπw̄New

L

)
. (53)

As we pointed out in [31], in the case of the general Möbius
Hamiltonian, we can find an appropriate coordinate system by
the coordinate transformation

tan
zθ

2L cosh 2θ
=e−2θ cot

(
iπw

L

)
,

tan
z̄θ

2L cosh 2θ
= − e−2θ cot

(
iπw̄

L

)
, (54)

instead of (41) in the case of the SSD Hamiltonian. The
Möbius Hamiltonian generates the simple time translation in
the (zθ , z̄θ ) coordinate. The (wNew

θ , w̄New
θ ) coordinates analo-

gous to (48) is defined as

tan
zθ + 2πt

2L cosh 2θ
= e−2θ cot

(
iπwNew

θ

L

)
,

tan
z̄θ − 2πt

2L cosh 2θ
= − e−2θ cot

(
iπw̄New

θ

L

)
, (55)

which simplifies the integral that computes the entanglement.
One can check that wNew

θ and w̄New
θ are nothing but wNew,α

x,ε and
w̄New,α

x,ε with α = 0, ε = 0 and τ1 = it .

VII. GRAVITATIONAL DESCRIPTION

Let us now turn to the gravitational dual descriptions of
Setups 1, 2, and 3. As in [98,99], these dual geometries
are constructed from the expectation value of energy den-
sity under the evolution by the Hamiltonians considered.
Equivalently, these geometries are given by a map from the
BTZ-black hole in wNew

x,ε and wNew
x,ε to the time-dependent

one in terms of ti=0,1,2. The dual geometry of the reduced
density matrix associated with H2 is a stationary BTZ-black
hole. Since ρH1 is a mixed state, its gravity dual should be
a black hole geometry. The details of the complicated metric
associated with ρH1 are reported in Appendix E 1. Here, we
describe the spacetime profile of the black hole horizon in
these dual geometries. Let us introduce the radial coordinate r′
that guarantees the asymptotic geometry near the AdS bound-
ary is given by the pure AdS3 or the modified geometry, the
metric of which is given by replacing the time component
of the pure AdS3 with gtt = −4L2r′2 sin4 (πX/L). Then, the
spatial and temporal dependence of the black hole horizon
in the dual geometries for Setup 1 and 2 is almost the same
as that in [31]. In Fig. 15, we plot the black hole horizon
corresponding to Setup 3 for various t0 and t1 as a function
of x. The spacetime dependence of the black hole horizon for
Setup 4 is reported in Appendix E.

The extremes in the spatial direction of the black hole
horizon for α = 2 are given by

r′
α=2,Horizon =

r0

√
L2 + π2t2

1∣∣L cos
( 2πt0

L

) − πt1 sin
( 2πt0

L

)∣∣ . (56)

The details of the analysis on the black hole horizon are re-
ported in Appendix E 1 a. In the large-t1 regime, r′

α=2,Horizon is
extremized along the trajectories of the B.H.-like excitations.
These extremes along these trajectories are approximated by

r′
α=2,Horizon ≈

⎧⎨
⎩

r0∣∣∣sin
(

2πt0
L

)∣∣∣ for t0 �= nL
2

πr0t1
L for t0 = nL

2

. (57)

Thus, if the B.H.-like excitations are at x �= X i=1,2
f , then

r′
α=2,Horizon depends on only t0, while if these excitations are at

x = X i=1,2
f , then r′

α=2,Horizon depends on only t1, and it linearly
increases with t1.

VIII. WORMHOLE GROWTH

In addition to the horizon, another geometrical object of
our interest is a wormhole connecting the two Hilbert spaces.
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FIG. 15. The spatial dependence of the black hole horizon for
various t1 and t0 as a function of X . Here, Rα=2 is defined by
rα=2,Horizon/r0. For the large t1, the spatial locations where the peaks
of Rα=2 emerge are approximately equal to the locations of the
B.H.-like excitations.

Here, as a measure of wormhole growth, we use the “free”
energy defined from a two-point function as

F (X1,Y1) = − log [〈O1(Y1)O2(X1)〉], (58)

where Oi=1,2 are local primary operators in Hi=1,2 with con-
formal dimension (hO, hO ). In the Heisenberg picture, this
free energy is given by the universal and nonuniversal pieces
as

F (X1,Y1) = −hO log

[
dwNew

Y1,ε

dwY1

dwNew
Y1,ε

dwY1

]
+ 2hOG(X1,Y1).

(59)
Here, we consider light operators with c � hO � 1. In this
regime, the nonuniversal piece G is determined by the length
of geodesics in the stationary BTZ black hole.

A. Setup 1

Let us begin by analyzing the free energy in (59) for Setup
1. We consider the t1 dependence of (59) with general Y1.
We assume that L

2 > X1 > Y1 > 0. Under the evolution by
H1

Möbius with θ �= ∞, the imaginary parts of wNew
Y1,ε

and wNew
Y1,ε

of (59) monotonically increase with t1. In the large-t1 regime,
F (X1,Y1) is approximately given by a monotonically increas-

ing function of t1,

F (X1,Y1) ≈hOπ

ε

(
Im

[
wNew

Y1,ε

] + Im
[
w̄New

Y1,ε

]) + 4hO log

(
2ε

π

)
.

(60)

In small-t1 regime where 0 > Im [wNew
Y1,ε

] − X1 > −X1, L >

Im [wNew
Y1,ε

] > 0, and L
2 > X1 − X New

Y1,ε
, F (X1,Y1) is approxi-

mately given by a function following the trajectory of the local
operator,

F (X1,Y1) ≈ hOπ
(
X1 − X New

Y1,ε

)
ε

+ 4hO log

(
2ε

π

)
. (61)

In this t1 regime, F (X1,Y1) may decrease with t1.
In the SSD limit θ → ∞, if Y1 = 0, F (Y1 = 0, X1) is a

stationary constant, and approximated as F (Y1 = 0, X1) ≈
hOπX1

ε
. Unless Y1 = 0, for large t1, the imaginary parts of

wNew
Y1,ε

and w̄New
Y1,ε

reduce to Im [wNew
Y1,ε

] ≈ L and Im [wNew
Y1,ε

] ≈ 0.
Consequently, the t1 dependence of F (X1,Y1) in this limit is
approximated by

F (X1,Y1) ≈ 4hO log

[
2πt1

L
sin

(
πY1

L

)]
+ πhOL

ε

+ 4hO log

(
2ε

π

)
. (62)

Thus, F (X1,Y1) is approximately stationary except for the
logarithmic growth with t1.

From these analyses, we can see that Möbius/SS defor-
mation may prevent the wormhole from growing with t1. In
Fig. 16, we plot F (X1,Y1) in Setup 1 as a function of t1. We
can see for larger θ , the growth of F (X1,Y1) is slower.

B. Setup 2

In Setup 2, F (X1,Y1) grows linearly with t0 under the
evolution by H1, and then grows with t1 under the evolution
by H1

Möbius as in the previous section.

C. Setup 3

Let turn to the analysis on F (X1,Y1) in Setup 3. We, as
before, assume L

2 > X1 > Y1 > 0. As in Setup 1, for various
t1, the imaginary parts of wNew

Y1,ε
and wNew

Y1,ε
of (59) monotoni-

cally increase with t0. Therefore, the early time behavior of
F (X1,Y1) may be approximated by (61), while the late-time
t0 dependence is approximated by (60). For large t1, the t0
dependence of F (X1,Y1) is given by the asymptotic form,

F (X1,Y1)

≈ 4hO log

(
2ε

π

)
+ hO log

[
16π4t4

1

L4
sin2

(
π (t0 − Y1)

L

)

× sin2

(
π (t0 + Y1)

L

)]

+
⎧⎨
⎩

πhO (2m+1)L
ε

, mL + Y1 > t0 > mL − Y1

2πhO (m+1)L
ε

, (m + 1)L − Y1 > t0 > mL + Y1

,

(63)
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FIG. 16. (Top) The t1 dependence of F (X1,Y1) for various
θ in Setup 1. The dashed line illustrates the t1 dependence of
F (X1,Y1)/hO in (62). (Bottom) The t1 dependence of F (X1,Y1) for
various t1 in Setup 3. The dashed line illustrates the asymptotic
behavior of F (X1,Y1)/hO in (63).

where m is an integer. In Fig. 16, we plot F (X1,Y1) of Setup 3
for various t1 as a function of t0. We can see that for larger
t1, F (X1,Y1) is not given by the simple linear growth, but
approximated by a sequence of step functions.

The asymptotic behavior (63) can be interpreted by using
the description in Sec. V B 1. For large t1, at t0 = 0, two
B.H.-like excitations emerge near x = X 1

f and move towards
the left and right at the speed of light under the evolution
by H1 (Fig. 17). Here, we assume that the size of these
excitations is O(ε). Then, in the coarse-grained region, these
excitations are approximated as the local excitations. Recall
that we have operators Oi=1,2 on Hi=1,2 that are inserted as at
Y1 and X1, respectively. At t0 ≈ mL ± Y1 where m is an inte-
ger, the left- and right-moving B.H.-like excitations hit O1,
and simultaneously the information about O1 is scrambled
in the interior of the B.H.-like excitations. As a conse-
quence, the correlation between O1 and O2 is weakened each
time these B.H.-like excitations pass O1. The information
about O1 may be delocalized and encoded in these B.H.-like
excitations.

IX. DISCUSSIONS AND FUTURE DIRECTIONS

In this paper, we studied three quantum quench pro-
cesses with the inhomogeneously deformed Hamiltonians in
2d CFT. Of particular interest for us is interested in the in-
terplay between inhomogeneous deformation and quantum

FIG. 17. The destruction of the nonlocal correlation between O1

and O2 by the B.H.-like excitations.

information scrambling. With these setups, we discussed the
operator entanglement, the recovery of quantum information,
and the dynamics of B.H.-like excitations. As mentioned in
Ref. [31], these inhomogeneously deformed Hamiltonians
may be engineered both in digital and analog quantum simu-
lators, such as cold atoms and Rydberg atoms. Simulating our
quench processes in these systems opens up the possibility
of studying quantum aspects of black holes in the labora-
tory. In particular, from the findings in our paper, among
others, it would be interesting to look into the following
aspects:

(i) Quantum black hole. The t0 dependence of the corre-
lation function may be described by the propagation of the
B.H.-like excitation (see Sec. VIII C). In the frame where
one of the B.H.-like excitations is stationary, a local operator
falls into and is radiated from this excitation. As in [55],
this excitation has the almost same amount of entropy as
the black hole and its interior may have a strong scrambling
effect. Therefore, if we can create these excitations in the
experimental systems, then we may simulate the dynamics of
black holes in the laboratories.

(ii) Genuine tripartite entanglement. Let us consider the
application of the genuine tripartite entanglement obtained in
this paper. In 2d holographic CFTs, for the large-t1 regime, the
local BMI is approximately zero, while the global BMI can be
O( 1

ε
) in the certain t1 intervals (see Sec. V B 3). One possible
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interpretation for this entanglement property of the steady
state is that in the t1 regime where only IA,B1∪B2 is O( 1

ε
), three

persons belonging to A, B1, and B2, respectively, may be able
to share the quantum information, while only two of them may
not. In the other words, without the cooperation of these three
people, they may never get the quantum information correctly.
This entanglement property may be applied to secure quantum
communications.

Finally, we conclude by listings some of the future direc-
tions:

(i) Multipartite entanglement. It would be interesting to
create a system where the local MI is effectively zero, while
the global BMI that is shared by n(> 3)-parties is O( 1

ε
). If

the number of fixed points increases [35], then the number of
parties sharing the global BMI might increase.

(ii) Quantum scars. In this paper, we discovered the
systems, which are not evolved to the typical state with
a 2d homogeneous holographic Hamiltonian. These states
may be interpreted as quantum scar states. It would be in-
teresting to establish the relationship between these states
considered in this paper and the quantum scar states
[100–108].
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APPENDIX A: EVOLUTION OF OPERATORS INDUCED BY U 1
E,αe−εH

The Euclidean time-evolution operators considered in the main text and Appendices are [see (13) and (8)]

U 1
E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−H1
Möbiusτ1 α = 0

e−H1
SSDτ1 e−H1

0 τ0 α = 1
e−H1

0 τ0 e−H1
SSDτ1 α = 2

e−H1
CSDτ2 e−H1

SSDτ1 α = 3

, Ũ 1
E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eH1
Möbiusτ1 α = 0

eH1
0 τ0 eH1

SSDτ1 α = 1
eH1

SSDτ1 eH1
0 τ0 α = 2

eH1
SSDτ1 eH1

CSDτ2 α = 3

. (A1)

In these appendices, we use the index α = 0, 1, 2, 3 to distinguish these cases. The new complex variables (wNew,α
x,ε ,wNew,α

x,ε ) in
(17) are given by

wNew,0
x,ε = ε + L

2π
log

[
[(1 − λ1) cosh (2θ ) − (λ1 + 1)]zx + (λ1 − 1) sinh (2θ )

(1 − λ1) sinh (2θ )zx + [(λ1 − 1) cosh (2θ ) − (λ1 + 1)]

]
,

w̄New,0
x,ε = ε + L

2π
log

[
[(1 − λ1) cosh (2θ ) − (λ1 + 1)]zx + (λ1 − 1) sinh (2θ )

(1 − λ1) sinh (2θ )zx + [(λ1 − 1) cosh (2θ ) − (λ1 + 1)]

]
,

wNew,1
x,ε = ε + τ0 + L

2π
log

[
πτ1(1 − zx ) − Lzx

πτ1(1 − zx ) − L

]
,

wNew,1
x,ε = ε + τ0 + L

2π
log

[
πτ1(1 − zx ) − Lzx

πτ1(1 − zx ) − L

]
,

wNew,2
x,ε = ε + L

2π
log

[
πτ1(1 − e

2πτ0
L zx ) − e

2πτ0
L Lzx

πτ1(1 − e
2πτ0

L zx ) − L

]
,

wNew,2
x,ε = ε + L

2π
log

[
πτ1(1 − e

2πτ0
L zx ) − e

2πτ0
L Lzx

πτ1(1 − e
2πτ0

L zx ) − L

]
,

wNew,3
x,ε = ε + L

2π
log

[
zx(L2 + πL(τ1 + τ2) + 2π2τ1τ2) + π (L(τ2 − τ1) + 2πτ1τ2)

L2 − πLτ1 − πLτ2 + πzx(L(τ1 − τ2) + 2πτ1τ2) + 2π2τ1τ2

]
,

wNew,3
x,ε = ε + L

2π
log

[
zx(L2 + πL(τ1 + τ2) + 2π2τ1τ2) + π (L(τ2 − τ1) + 2πτ1τ2)

L2 − πLτ1 − πLτ2 + πzx(L(τ1 − τ2) + 2πτ1τ2) + 2π2τ1τ2

]
, (A2)
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where the variables and parameters, z, z, and λ1, are defined by

zx = e
2πwx

L , zx = e
2πwx

L , λ1 = exp

(
2πτ1

L cosh (2θ )

)
. (A3)

1. Real-time evolution of operators

After the analytic continuation, τi=0,1,2 = iti=0,1,2, only the imaginary parts of wNew,α
x,ε and wNew,α

x,ε depend on ti=0,1,2. The
dependence of wNew,α

x,ε and wNew,α
x,ε on ti=0,1,2 is given by

wNew,0
x,ε = ε + i

Lϕx,0

π
, wNew,0

x,ε = ε + i
Lϕx,0

π
,

wNew,1
x,ε = ε + it0 + i

Lϕx,1

π
, wNew,1

x,ε = ε + it0 + Lϕx,1

π
,

wNew,2
x,ε = ε + i

Lϕx,2

π
, wNew,2

x,ε = ε + i
Lϕx,2

π
,

wNew,3
x,ε = ε + i

Lϕx,3

π
, wNew,3

x,ε = ε + i
Lϕx,3

π
, (A4)

where the variables, ϕx,α , ϕx,α , rx,α , and rx,α , are defined by

rx,0 =
[(

− cos

(
πt1

L cosh 2θ

)
cos

(πx

L

)
+ sin

(
πt1

L cosh 2θ

)
sin

(πx

L

)
e2θ

)2

+
(

cos

(
πt1

L cosh 2θ

)
sin

(πx

L

)
+ sin

(
πt1

L cosh 2θ

)
cos

(πx

L

)
e−2θ

)2
] 1

2

,

cos ϕx,0 = cos
(

πt1
L cosh 2θ

)
cos

(
πx
L

) − sin
(

πt1
L cosh 2θ

)
sin

(
πx
L

)
e2θ

rx,0
,

sin ϕx,0 = cos
(

πt1
L cosh 2θ

)
sin

(
πx
L

) + sin
(

πt1
L cosh 2θ

)
cos

(
πx
L

)
e−2θ

rx,0
,

rx,0 =
[(

cos

(
πt1

L cosh 2θ

)
cos

(πx

L

)
+ sin

(
πt1

L cosh 2θ

)
sin

(πx

L

)
e2θ

)2

+
(

cos

(
πt1

L cosh 2θ

)
sin

(πx

L

)
− sin

(
πt1

L cosh 2θ

)
cos

(πx

L

)
e−2θ

)2
] 1

2

,

cos ϕx,0 = cos
(

πt1
L cosh 2θ

)
cos

(
πx
L

) + sin
(

πt1
L cosh 2θ

)
sin

(
πx
L

)
e2θ

rx,0
,

sin ϕx,0 = − cos
(

πt1
L cosh 2θ

)
sin

(
πx
L

) + sin
(

πt1
L cosh 2θ

)
cos

(
πx
L

)
e−2θ

rx,0
, (A5)

rx,2 =
√

4π2t2
1 sin2

(
π (t0 + x)

L

)
− 4πLt1 sin

(
π (t0 + x)

L

)
cos

(
π (t0 + x)

L

)
+ L2,

cos ϕx,2 = −2πt1 sin
(

π (t0+x)
L

) + L cos
(

π (t0+x)
L

)
rx,2

, sin ϕx,2 = L sin
(

π (t0+x)
L

)
rx,2

.

rx,2 =
√

4π2t2
1 sin2

(
π (t0 − x)

L

)
− 4πLt1 sin

(
π (t0 − x)

L

)
cos

(
π (t0 − x)

L

)
+ L2,

cos ϕx,2 = −2πt1 sin
(

π (t0−x)
L

) − L cos
(

π (t0−x)
L

)
r1

x

, sin ϕx,2 = L sin
(

π (t0−x)
L

)
rx,2

,

ϕx,1 = ϕx,2|t0=0, ϕx,1 = ϕx,2|t0=0, (A6)
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rx,3 =
[(

(L2 − 4π2t1t2) cos
(πx

L

)
− 2πLt1 sin

(πx

L

))2
+
(

L2 sin
(πx

L

)
+ 2πLt2 cos

(πx

L

))2
] 1

2

,

rx,3 =
[(

(L2 − 4π2t1t2) cos
(πx

L

)
+ 2πLt1 sin

(πx

L

))2
+
(
−L2 sin

(πx

L

)
+ 2πLt2 cos

(πx

L

))2
] 1

2

,

cos ϕx,3 = 1

rx,3

[
(L2 − 4π2t1t2) cos

(πx

L

)
− 2πLt1 sin

(πx

L

)]
,

sin ϕx,3 = 2πL cos
(

πx
L

)
rx,3

[
t2 + L

2π
tan

(πx

L

)]
,

cos ϕx,3 = 1

rx,3

[
(L2 − 4π2t1t2) cos

(πx

L

)
+ 2πLt1 sin

(πx

L

)]
,

sin ϕx,3 = 2πL cos
(

πx
L

)
rx,3

[
t2 − L

2π
tan

(πx

L

)]
. (A7)

APPENDIX B: THE DETAILS OF CALCULATIONS AND RESULTS IN 2D HOLOGRAPHIC CFTs

Let us present the details of the calculations and results in 2d holographic CFTs.

1. Nonuniversal piece of OEE in 2d holographic CFTs

We now present the details of the nonuniversal pieces, Sdis and Scon, of the entanglement entropy. Let us concentrate on Sdis.
This nonuniversal piece Sdis is given by

Sdis = Min
[
S1

dis, S2,±
dis , S3,±

dis , S4,±
dis

]
, (B1)

where S̃i
dis are defined by

S̃1
dis = c

6
log

[∣∣∣sin
[ π

2ε

(
wNew,α

Y1,ε
− wNew,α

Y2,ε

)]∣∣∣2∣∣∣sin
[ π

2ε

(
wX1 − wX2

)]∣∣∣2],
S̃2,±

dis = c

6
log

[∣∣∣sin
[ π

2ε

(±iL − (
wNew,α

Y1,ε
− wNew,α

Y2,ε

))]∣∣∣2∣∣∣sin
[ π

2ε

( ± iL − (
wX1 − wX2

))]∣∣∣2],
S̃3,±

dis = c

6
log

[∣∣∣sin
[ π

2ε

(
wNew,α

Y1,ε
− wNew,α

Y2,ε

)]∣∣∣2∣∣∣sin
[ π

2ε

( ± iL − (
wX1 − wX2

))]∣∣∣2],
S̃4,±

dis = c

6
log

[∣∣∣sin
[ π

2ε

(±iL − (
wNew,α

Y1,ε
− wNew,α

Y2,ε

))]∣∣∣2∣∣∣sin
[ π

2ε

(
wX1 − wX2

)]∣∣∣2] (B2)

Then, let us turn to Scon. This contribution from the geodesics connecting the endpoints of the subsystems on the different
Euclidean time slices is given by

Scon = Min
[
S̃1

con, S̃2,±
con , S̃3,±

con , S̃4,±
con

]
(B3)

where S̃i
con are defined by

S̃1
con = c

6
log

[∣∣∣sin
[ π

2ε

(
wNew,α

Y1,ε
− wX1

)]∣∣∣2∣∣∣sin
[ π

2ε

(
wNew,α

Y2,ε
− wX2

)]∣∣∣2],
S̃2,±

con = c

6
log

[∣∣∣sin
[ π

2ε

(±iL − (
wNew,α

Y1,ε
− wX1

))]∣∣∣2∣∣∣sin
[ π

2ε

(±iL − (
wNew,α

Y2,ε
− wX2

))]∣∣∣2],
S̃3,±

con = c

6
log

[∣∣∣sin
[ π

2ε

(
wNew,α

Y1,ε
− wX1

)]∣∣∣2∣∣∣sin
[ π

2ε

(±iL − (
wNew,α

Y2,ε
− wX2

))]∣∣∣2],
S̃4,±

con = c

6
log

[∣∣∣sin
[ π

2ε

(±iL − (
wNew,α

Y1,ε
− wX1

))]∣∣∣2∣∣∣sin
[ π

2ε

(
wNew,α

Y2,ε
− wX2

)]∣∣∣2]. (B4)
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FIG. 18. The entanglement entropy SB for various t1 as the function of t2. The panels (ai=1,2) show the t2 dependence of SB for case (a),
(bi) show the one for (b), and (ci) show the one for (c). In the top panels, we show the t2 dependence of SB for the small-t1 regime, while in the
bottom panels, we show the t2 dependence of SB for the large-t1 regime. The black dashed line illustrates the asymptotic behavior of SB in (C1)
in the large-t1 limit. The orange, brown, and dashed lines illustrate the entanglement entropy for the vacuum state, thermal entropy, and half of
it, respectively.

2. The definition of θC

Here, we describe the definition of θC that is introduced in Sec. III A 1. Let B be a subsystem including X 1
f of H1, and also let

A be a subsystem including the origin of H2. Furthermore, let us assume that Sdis for the small t1 is given by

Sdis = cπ

6ε

[
2L − (

X New,α=1
Y1,ε

− X New,α=1
Y2,ε

+ (X1 − X2)
)]

(B5)

The time for (B5) to be maximized is determined by ∂t1 [−(X New,α=1
Y1,ε

− X New,α=1
Y2,ε

)] = 0. Let t1,Max denote this time, and this time

depends on θ , Y1, Y2, and L. Let us define θC as the θ satisfying (X New,α=1
Y1,ε

− X New,α=1
Y2,ε

) = L − (X1 − X2) = lA at t = t1,Max.

APPENDIX C: THE ENTANGLEMENT DYNAMICS FOR (8)

1. The t2 dependence of entanglement entropy

Let us consider the state (8). We report the t2 dependence of entanglement entropy of (8). for the subsystems considered in
Sec. V A. In Fig. 18, we depict SB for various t1 as a function of t2. In the t1 limit, the t2 dependence of SB is approximated by

If x = X 1
f ∈ B, SB ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cπL
6ε

for
; L

2π

∣∣tan
(

πY2
L

)∣∣ > t2 > 0

cπL
12ε

for L
2π

∣∣tan
(

πY1
L

)∣∣ > t2 > L
2π

∣∣tan
(

πY2
L

)∣∣
c
3 log

[
sin

[
π (Y1−Y2 )

L

]]
for t2 >

∣∣ L
2π

tan
(

πY1
L

)∣∣
,

If
L

2
> Y1 > x > Y2 > 0, SB ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c
3 log

[
sin

[
π (Y1−Y2 )

L

]]
for L

2π

∣∣tan
(

πY2
L

)∣∣ > t2 > 0

cπL
12ε

for L
2π

∣∣tan
(

πY1
L

)∣∣ > t2 > L
2π

∣∣tan
(

πY2
L

)∣∣
c
3 log

[
sin

[
π (Y1−Y2 )

L

]]
for t2 > L

2π

∣∣tan
(

πY1
L

)∣∣
,

If x = X 2
f ∈ B, SB ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c
3 log

[
sin

[
π (Y1−Y2 )

L

]]
for L

2π

∣∣tan
(

πY2
L

)∣∣ > t2 > 0

cπL
12ε

for L
2π

∣∣tan
(

πY1
L

)∣∣ > t2 > L
2π

∣∣tan
(

πY2
L

)∣∣
cπL
6ε

for t2 > L
2π

∣∣tan
(

πY1
L

)∣∣
, (C1)
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FIG. 19. BMI, IA,B, of (8) for various t1 as the function of t2. For simplicity, lA = lB. In (a), the solid lines illustrate the t2 dependence of
IA,B with t1 = 10, 1000, 106 for (A). In (b), the solid lines illustrate the t2 dependence of IA,B with t1 = 10, 1000, 106 for (C). The dashed line
illustrates the asymptotic behavior in (C2).

where L
2 > L − Y1 > Y2 > 0. We can see from the t2 depen-

dence of SB that except for the vacuum entropy, it may be
described by the propagation of quasiparticles at the veloci-
ties, vL,R(x) = ±2 cos2 ( πx

L ). Here vL,R(x) denote the speeds
of left- and right-moving quasiparticles, respectively.

2. The t2 dependence of BMI

Now, we report the t2 dependence of BMI for the subsys-
tems discussed in Sec. V B.

a. The single interval

For the single intervals considered in Sec. V B 1, we depict
the IA,B for various t1 as a function of t2 in Fig. 19. For (C),
IA,B is approximately zero. In the large-t1 limit, the asymptotic
behavior of IA,B for the single interval is given by

If x = X 1
f ∈ B, IA,B ≈

t1�1

⎧⎨
⎩

cπ lA
3ε

L
2π

∣∣tan
(

πY2
L

)∣∣ > t2 > 0

0 t2 > L
2π

∣∣tan
(

πY2
L

)∣∣ ,

If x = X 2
f ∈ B, IA,B ≈

t1�1

{
0 L

2π

∣∣tan
(

πY1
L

)∣∣ > t2 > 0
cπ lA
3ε

t2 > L
2π

∣∣tan
(

πY1
L

)∣∣ ,

(C2)

where L − Y1 > Y2 > 0. For (A) and (C), there are t2 regimes
where both B.H.-like excitations introduced in Sec. V B 1 are
in B, while for (B), there are none.

b. The double intervals

Let us now turn to the t2 dependence of IA,B1∪B2 for the
subsystems in (32). In Fig. 20, we depict IA,B1∪B2 for large t1
as a function of t2. The asymptotic behavior of IA,B=B1∪B2 for
the t1 regime is given by

IA,B=B1∪B2 ≈

⎧⎪⎪⎨
⎪⎪⎩

0 L
2π

∣∣ tan
(

πY2
L

)∣∣ > t2 > 0
cπ lA
3ε

L
2π

∣∣ tan
(

πY1
L

)∣∣ � t2 � L
2π

∣∣ tan
(

πY2
L

)∣∣
0 t2 > L

2π

∣∣ tan
(

πY1
L

)∣∣ ,

(C3)

where L
2 > Y1 > Y2 > 0. In this case, there is a time regime

where both of the black-hole-like excitations can be in B =

B1 ∪ B2. However, there is no time regime where both of the
black-hole-like excitations are in only B1 or B2.

3. The t2 dependence of TMI

We present the asymptotic behavior of TMI in the large-t1
limit. The TMI, which we consider are IA,B,B and IA,B1,B2 .
They are defined by (34) and (35), respectively. The value
of the global TMI for the large t1 is zero. In the early t2
regime, L

2π
| tan ( πY2

L )| > t2 > 0, the local MI is zero, in the
intermediate t2 interval, L

2π
| tan ( πY1

L )| > t2 > L
2π

| tan ( πY2
L )|, it

is approximated by −2SReg.
A , and then, in the late t2 regime,

t2 > L
2π

| tan ( πY1
L )|, it is zero. We can see from the t2 depen-

dence of the global TMI that as in the case of (6), there is no
nonlocally hidden correlation between A, B, and B. Further-
more, we can see the time t2 dependence of the local TMI that
there may exist the nonlocally hidden correlation shared by A,
B1, and B2.

By contrast, both the local and global TMI for the setup
in Fig. 20 vanishes for both physical spin structures ν = 3, 4
in the free fermion CFT as expected. This is because the
entanglement is carried by bell pairs in the free theory and
hence there is no tripartite entanglement.

FIG. 20. The BMI, IA,B1∪B2 , in the large-t1 regime as the function
of t2. The solid line illustrates the t2 dependence of IA,B1∪B2 for
t1 = 107. In this figure, lB1 = lB2 = lb, PC,B1 = 3L

4 and PC,B2 = L
4 , and

PC,A = X 1
f . The dashed line illustrates the t2 dependence of IA,B1∪B2

in (C3).
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4. Growth of wormhole for (8)

Let us present the t2 dependence of F (X1,Y1) for the various t1 for (8). In Fig. 21, we depict F (X1,Y1) for the various t1 as a
function of t2. For the large-t1 regime, the t2 dependence of F (X1,Y1) is given by

F (X1,Y1) ≈ 4hO log

(
2ε

π

)
+ hO log

(
16π4t4

1

(
L2 sin2

(
πY1
L

) − 4π2t2
2 cos2

(
πY1
L

))2

L8

)
+
{

hOLπ
ε

for L
2π

tan
(

πY1
L

)
> t2 > 0

2πhOL
ε

for t2 > L
2π

tan
(

πY1
L

) .

(C4)

APPENDIX D: NONCHAOTIC THEORIES

Let us present the details of the calculations and results in
2d free fermion CFT.

1. The entanglement entropy in 2d free fermion CFT

In this section, we outline the technique for calculating
entanglement entropy for free Dirac fermions using bosoniza-
tion as explained in [109]. There are two possible boundary
conditions one can impose on the fermions along each cycle
of the torus, namely, the periodic (R) or anti-periodic (NS)
boundary conditions,

ψ

(
w

2ε
+ 1

)
= e2iπν1ψ

(
w

2ε

)
,

ψ

(
w

2ε
+ τ

)
= e2iπν2ψ

(
w

2ε

)
. (D1)

The four possibilities are summarized in Table II. In this
coordinate system, the cycle along τ = iL/2ε corresponds to
the spatial direction.

Let A and B denote the subsystems of H2 and H1, respec-
tively. The edges of A are denoted by X1 and X2. while those of
B are denoted by Y1 and Y2. Here, we assume that X1 > X2 > 0
and Y1 > Y2 > 0. The Rényi entanglement entropy is given
by a two-point function of the twist operators on the 2-torus.
This is equivalent to the partition function on the orbifolded
theory with a branch cut running along the entanglement cut.
Such a partition function can be computed using bosonization
[109]. The resulting operator entanglement entropy can be
divided into one piece that depends on the spin structure and
another that does not. For a subsystem V , the former shall
be referred to as the nonuniversal piece S(n)

V,ν,non-univ. while

FIG. 21. The t2 dependence of F (X1,Y1) for various t1 for (8).
The dashed line illustrates the t2 dependence of F (X1,Y1)/hO in (8).

the latter will be referred to as the universal piece S(n)
V,univ. so

that S(n)
V,ν = S(n)

V,univ. + S(n)
V,ν,non-univ.. For an interval B in the first

Hilbert space and A in the second Hilbert space as well as their
union, the universal and nonuniversal pieces are given by

S(n)
A,univ. = n + 1

12n
log

∣∣∣∣∣2εθ1
(wX1 −wX2

2ε

∣∣τ)
∂zθ1(0|τ )

∣∣∣∣∣
2

,

S(n)
A,ν,non-univ. = 1

1 − n

n−1
2∑

k=− n−1
2

log

∣∣∣∣∣θν

(
k
N

wX1 −wX2
2ε

∣∣τ)
θν (0|τ )

∣∣∣∣∣
2

,

S(n)
B,univ. = − c(n + 1)

24n
log

⎡
⎣∏

i=1,2

∣∣∣∣∣dwNew,α
Yi

dwYi

dw̄New,α
Yi

dw̄Yi

∣∣∣∣∣
⎤
⎦

+ n + 1

12n
log

∣∣∣∣∣∣
2εθ1

(w
New,α
Y1

−w
New,α
Y2

2ε

∣∣τ)
∂zθ1(0|τ )

∣∣∣∣∣∣
2

,

S(n)
B,ν,non-univ. = 1

1 − n

n−1
2∑

k=− n−1
2

log

∣∣∣∣∣∣
θν

(
k
N

wNew,α
Y1

−w
New,α
Y2

2ε

∣∣τ)
θν (0|τ )

∣∣∣∣∣∣
2

,

(D2)

S(n)
A∪B,univ. = S(n)

A,univ. + S(n)
B,univ. +

n + 1

12n

× log

∣∣∣∣∣∣
θ1
(wX2 −w

New,α
Y2

2ε

∣∣τ)θ1
(w

New,α
Y1

−wX1

2ε

∣∣τ)
θ1
(wX1 −w

New,α
Y2

2ε

∣∣τ)θ1
(wX2 −w

New,α
Y1

2ε

∣∣τ)
∣∣∣∣∣∣
2

,

S(n)
A∪B,ν,non-univ. = 1

1 − n

n−1
2∑

k=− n−1
2

× log

∣∣∣∣∣∣
θν

(
k
n

wX2 −wX1 +w
New,α
Y1

−w
New,α
Y2

2ε

∣∣τ)
θν (0|τ )

∣∣∣∣∣∣
2

,

(D3)

TABLE II. Spin structures of the fermion on a torus.

ν Sector (ν1, ν2)

1 (R,R) (0,0)
2 (R,NS) (0, 1

2 )
3 (NS,NS) ( 1

2 , 1
2 )

4 (NS,R) ( 1
2 ,0)
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where the log 2ε terms come from rescaling the torus coor-
dinates to have periodicities 1 and τ . Note also that when
applying the bosonization formulas in [109], the coordinates
of the twist operators in the different Hilbert spaces are
swapped relative to one another as explained in [54].

2. Quasiparticle picture

Suppose that we prepare the systems considered in the
thermofield double state, and then evolve them with the
Hamiltonians acting on only H1. In the infinite-temperature
limit, the thermofield double state can be written as a product
of Bell pairs of quasiparticles as in (30). The quasiparticles
that live on the Hilbert space that is being acted upon by
the Hamiltonians move according to inhomogeneous velocity
fields f (x) and − f (x) for the right-moving and left-moving
quasiparticles, respectively. These quasiparticles describe the
dynamics of entanglement in nonchaotic theories. When the
Hamiltonian changes as in the case where different unitary op-
erators are composed, the velocity field simply gets replaced
by the envelope of the new Hamiltonian that governs the time
evolution.

In the uniform case where f (x) = 1, the quasiparticles
simply propagate with unit speed as explained in [54]. In the
SSD limit, the speed vanishes at the fixed point X 1

f . Therefore,
the quasiparticles tend to cluster around the fixed point X 1

f as
shown in [31], giving rise to black hole-like excitations.

a. System 1

Let us begin by looking at the case where a single in-
homogeneous Hamiltonian acts on the first Hilbert space.
Denote the density of the right- and left-moving quasiparti-
cles at position x at time t by ρ

(n)
R (x, t ) and ρ

(n)
L (x, t ). The

superscript n denotes the Rényi index, which determines the
density of quasiparticles. Assuming that the quasiparticles
are conserved, the corresponding densities have to obey the
continuity equation

∂ρ
(n)
i (x, t )

∂t
= ±

(
f (x)

∂ρ
(n)
i (x, t )

∂x
+ ρ

(n)
i (x, t )

df (x)

dx

)
(D4)

where the +(−) sign is for the i = L(R) chiralities. Since the
quasiparticles are moving with a speed f (x), a quasiparticle
initially located at x0 at time t0 will be located at position x at
a later time t as determined by

dt = ± dx

f (x)
⇒ t − t0 = ±

∫ x

x0

dx′

1 − tanh 2θ cos 2πx′
L

(D5)

where “+” refers to right-moving quasiparticles while “−”
refers to the left-moving quasiparticles. The integral is
straightforward to perform and yields the trajectories xi(t )
for i = L, R. This trajectory can also be inverted to give the
initial position of xi,0(x, t ) of a quasiparticle that is at position
x at time t . Since the number of quasiparticles is conserved,
the number of particles initially located in the interval dxi,0,
ρ (n)(xi,0(x, t ), 0)dxi,0, is the same as the number of quasipar-
ticles in dx at time t , ρ (n)(x, t )dx. Hence, the solution to the
continuity equation (D4) for a constant velocities ± f (x) is

[110]

ρ
(n)
i (x, t ) = ρ

(n)
i (xi,0(x, t ), 0)

∂xi,0(x, t )

∂x
(D6)

for i = L, R. Since the trajectory, xi,0(x, t ), is a periodic func-
tion with period L cosh 2θ , the corresponding quasiparticle
densities also possess the same periodicity.

Now, we turn to the computation of entanglement entropy
and mutual information using the quasiparticle picture. In
this paper, the unitaries only act on one Hilbert space, so
only the quasiparticles in that Hilbert space move while their
immobile partners remain fixed at position x0. Each such Bell
pair contributes to the correlation between the point x in H1

and the point x0 in H2. The methods for computing the mutual
information and entanglement entropy in the quasiparticle
picture are very similar but not identical so we explain the
technique for computing each quantity separately.

Entanglement entropy. The entanglement entropy of a pure
state measures the amount of correlation between the subsys-
tem and its complement. Therefore, the entanglement entropy
for a subsystem B is proportional to the number of bell pairs
shared by subsystem B and its complement. Since the Bell
pair partner of any quasiparticle in B lives in the other Hilbert
space, any Bell pair with a quasiparticle that winds up in B
at a certain time t contributes to the entanglement entropy
SB(t ). Therefore, the initial quasiparticle density in (D6) is a
simple constant that can be fixed by equating the quasiparticle
prediction for the entanglement entropy to the entanglement
entropy in 2d free fermion CFT. This constant turns out to be
ρ0 = n+1

24n
π
ε

. For a single interval B = [Y2,Y1], the entangle-
ment entropy according to the quasiparticle picture is

SB(t ) =
∫

x∈B
ρL(x, t ) +

∫
x∈B

ρR(x, t )

=
∑

i=L,R

mod[x0,i(Y1, t ) − x0,i(Y2, t ), L] (D7)

where the integral was carried out by a simple change of
variables from x to the initial position x0,i(x, t ) and the modulo
operation takes the periodicity of the system into account.
This result simply states that the quasiparticles in the interval
[x0,i(X2, t ), x0,i(X1, t )] flow to [X2, X1] at time t .

Mutual Information. The MI is obtained by the same inte-
gral. The only difference comes from the initial quasiparticle
density in (D6). This is because the MI between subsystems
B and A of H1 and H2 measures the correlations between
subsystems A and B and hence only receives contributions
from Bell pairs one quasiparticle in subsystem A and the other
in subsystem B. Since the quasiparticles in the second Hilbert
space are immobile, only the quasiparticles that are initially in
subsystem A can potentially contribute to the MI. Therefore,
for the computation of mutual information, the initial quasi-
particle density is

ρi(x, 0) = ρ0θ (x ∈ A) (D8)

where ρ0 = N+1
12N

π
ε

is a constant that is fixed by equating the
initial MI for two symmetric intervals A = B with that of the
2d free fermion CFT. If B is the union of m disjoint [Y2 j,Y2 j−1]
for j = 1, . . . , m, the MI between two subsystems A and B at
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a fixed time t is given by

I (n)
AB (t ) =

m∑
j=1

∑
i=L,R

∫ Y2 j−1

Y2 j

dxρi(x0,i(x, t ), 0)
∂x0,i(x, t )

∂x

= ρ0

m∑
j=1

∑
i=L,R

length of [x0,i(Y2 j, t ), x0,i(Y2 j−1, t )] ∩ A.

(D9)

The second equality comes from the usual change of vari-
ables from x to x0,i where t is held fixed so that x0,i is
viewed as a function of a single variable x. The final expres-
sion has a simple interpretation; the quasiparticles located in
[x0,i(Y2, t ), x0,i(Y1, t )] are the only ones that can be in subsys-
tem B at time t . Out of these quasiparticles, only the ones that
were also simultaneously in A can contribute to the mutual
information between A and B.

b. System 2 and 3

System 2 and 3 correspond to time evolutions where two
different unitaries are applied one after the other. The overall
time evolution corresponds to a product of two unitary evolu-
tions for durations t and T that sends a quasiparticle with an
initial spacetime position

(0, x0) → (t, x) → (t + T, y). (D10)

Under each unitary, the quasiparticle density evolves accord-
ing to (D6), so the final quasiparticle density can be related to
the initial density by the chain rule

ρi(y, T + t ) = ρi(x0(x(y, T ), t ), 0)
∂x0

∂y
. (D11)

The entanglement entropy is given by

SB =
∑

i=L,R

∫ Y1

Y2

dy
n + 1

24n

π

ε

∂x0

∂y

= n + 1

24n

π

ε

∑
i=L,R

mod[x0(x(Y1, T ), t ) − x0(x(Y2, T ), t ), L]

(D12)

where the final equality comes from the exact same reasoning
as in the Möbius/SSD case. Just as in System 1, this result
simply says that the entanglement entropy of a subsystem
at a particular instant in time is given by the number of
quasiparticles that end up in the subsystem at that time. The
mutual information as predicted by quasiparticles is similar to
the entanglement entropy except for the initial quasiparticle
density. If the subsystem B is a union of m disjoint intervals
[Y2 j,Y2 j−1], j = 1, . . . , m, the mutual information is

I (n)
AB (t ) = n + 1

12n

π

ε

∑
i=L,R

m∑
j=1

∫ Y2 j−1

Y2 j

dy
∂xi,0

∂y
θ (xi,0 ∈ A)

= n + 1

12n

π

ε

∑
i=L,R

m∑
j=1

length of [x0(x(Y2 j, T ), t ),

x0(x(Y2 j−1, T ), t )] ∩ A (D13)

FIG. 22. Plots of the operator mutual information when the sys-
tem is first acted upon by the SSD evolution for a duration of t1

followed by a time evolution of t2 under the CSD Hamiltonian. The
solid lines are the 2d free fermion CFT results while the dots are the
predictions by the quasiparticle picture.

where a change of variables from the final spatial coordinate
y to the initial position xi,0 was made to carry out the integral.
The physical meaning of this result is identical to that in the
Möbius/SSD case.

3. Summary of results for nonchaotic systems

Using the formulas outlined in the previous subsections,
the entanglement entropy and MI can be computed in 2d
free fermion CFTs and quasiparticle pictures. For the vari-
ous subsystems and unitary time evolutions, the entanglement
for the two physical spin structures ν = 3 and ν = 4 are
found to be identical. Furthermore, the global TMI for 2d
free fermion CFT vanishes in all the cases considered. This
is because the entanglement entropy and MI for the 2d
free fermion CFT agree with the quasiparticle picture to
leading order in 1/ε [111]. The agreement with the quasi-
particle picture describes the key differences between 2d free
fermion and holographic CFTs. Firstly, for finite values of θ ,
the quasiparticle distributions are periodic with a period of
L cosh 2θ , so that the MI will possess the same periodicity.
Secondly, the MI is separately carried by the right-moving
and left-moving quasiparticles, which travel independently
of one another, as opposed to the holographic theory where
the MI is nonzero only when the subsystem contains both
the left and the right-moving B.H.-like excitations. Lastly,
the TMI is observed to vanish for the 2d free fermion
CFTs but that is not always the case for the holographic
theories.

In Fig. 22, we show a representative plot comparing the 2d
free fermion CFT MI with the quasiparticle prediction. In this
setup, we first evolve the system with the SSD Hamiltonian
before evolving it with the CSD Hamiltonian, which is es-
sentially the SSD Hamiltonian but with the envelope function
vanishing at X 2

f instead. The holographic results for this kind
of evolution are discussed in Appendix C. The subsystems
in Fig. 22 are placed away from both fixed points X 1

f and
X 2

f . The quasiparticles will pass through B, giving rise to a
nonzero BMI. However, since the subsystem does not contain
the CSD fixed point, these quasiparticles will eventually leave
B although they take a long time to do so for the subsystem
in Fig. 22 because B is located close to the CSD fixed point
X 2

f where the quasiparticle speed is small. This figure also
highlights the key difference between the dynamics of BMI
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in the free fermion CFT as well as the holographic CFTs.
The BMI vanishes for this choice of subsystems in the latter
but not the former for large values of t1. This is because
BMI is nonzero in the holographic theory when both chiral
and antichiral B.H.-like excitations are simultaneously present
in B, which does not occur when B does not contain any
of the fixed points and when the SSD evolution time t1 is
large, which causes the B.H.-like excitation to be sharply
peaked. By contrast, BMI is separately carried by the left- and
right-moving quasiparticles so as long as either one of them
is present in B, BMI is nonzero. For this choice of subsys-
tems, the left-moving quasiparticles travel leftwards around

the spatial circle and approach the CSD fixed point X 2
f from

the side opposite to subsystem B and hence do not contribute
to the BMI. When the SSD quench time is t1 = 5000, there are
already right-moving quasiparticles in the output subsystem,
so the initial value of BMI is nonzero. Some right-moving
quasiparticles start off at t2 = 0 at positions infinitesimally
close to the CSD fixed point X 2

f and take a long time to go
around the spatial circle leading to a long tail in the BMI.
When t1 = 11000, the right-moving quasiparticles start off at
t2 = 0 to the right of the CSD fixed point at X 2

f and eventually
circle around back to subsystem A giving rise to a bump in
the BMI.

APPENDIX E: THE GRAVITY DUAL OF THE SYSTEMS

Here, we report the gravity dual of the systems considered in this paper.

1. The dual geometries

The dual geometries of ρH1 considered in this paper are given by

ds2
α=1,2 = R2

[
dr2

r2 − r2
0

+
(

L

π

)4{(
r2 f 1

α=1,2;XX + r2
0 f 2

XX

)
dX 2 +

∑
j=0,1

(
r2 f 1

α=1,2;t j t j
+ r2

0 f 2
α=1,2;t j t j

)
dt jdt j

+ 2
(
r2 f 1

t0t1 + r2
0 f 2

t0t1

)
dt0dt1 + 2

∑
j=0,1

(
r2 f 1

α=1,2;Xt j
+ r2

0 f 2
α=1,2;Xt j

)
dXdt j

}]
,

ds2
α=3 = R2

[
dr2

r2 − r2
0

+
(

L

π

)4{(
r2 f 1

α=3;XX + r2
0 f 2

α=3;XX

)
dX 2 +

∑
j=1,2

(
r2 f 1

α=3;t j t j
+ r2

0 f 2
α=3;t j t j

)
dt jdt j

+ 2
(
r2 f 1

α=3;t1t2 + r2
0 f 2

α=3;t1t2

)
dt1dt2 + 2

∑
j=1,2

(
r2 f 1

α=3;Xt j
+ r2

0 f 2
α=3;Xt j

)
dXdt j

}]
, (E1)

where R is the AdS radius and the details of metric are summarized in Appendix E 3.
In the expression in (E1), the components such as dt jdti �= j exist. However, in the time evolution considered, one of them

should be constant. In the case of the system 1, this system is evolved with H1 from t0 = 0 to t0 = t0,const., and then it is
evolved with H1

SSD from t1 = 0. Therefore, we should take t0 to be constant and consider the t1 dependence of the geometry. In

this procedure, let us rewrite the radial direction as r′ = ( L2

π2 )
√

f 1
α=1;XX r that guarantees that the asymptotic geometry near the

boundary, r′ → ∞, is given by the SSD AdS3 geometry,

ds2
α=1 ≈ R2

[
dr′2

r′2 + r′2dX 2 + r′2 f 1
α=1;t1t1

f 1
α=1;XX

dt1dt1

]
= R2

[
dr′2

r′2 + r′2dX 2 − 4 sin4

(
πX

L

)
r′2dt1dt1

]
, (E2)

where the time-component of the metric depends on X .
In the case of the systems 2 and 3, the system is evolved with H1

SSD from t1 = 0 to t1 = t1,const., and then it is evolved with
H1 from t0 = 0 or H1

CSD from t2 = 0. Therefore, we should take t1 to be constant and consider the geometries. Rewrite the radial
coordinate as r′

α=2,3 = ( L2

π2 )
√

f 1
α=2,3;XX r, and then the metric near the boundary, r′

i=2,3 → ∞, is given by the global AdS3 for
α = 2 and the CSD AdS3 for α = 3,

ds2
α=3 ≈ R2

[
dr′

α=3

r′2
α=3

+ r′2
α=3dX 2 − 4 cos4

(
πX

L

)
r′2
α=3dt2dt2

]
. (E3)

As a consequence, the location of the black hole horizon in r′
α=2,3 coordinate is given by

r′
α=2,3:Horizon = r0

(
L2

π2

)√
f 1
α=2,3:XX . (E4)

Thus, r′
α=2:Horizon depends on X , t0 and t1, while r′

α=3:Horizon depends on X , t1, and t2.
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a. The temporal and spatial dependence of the inhomogeneous horizon

Let us focus on the temporal and spatial dependence of the black hole horizon of the black hole geometries dual to the system
2 and 3.

Asymptotic behavior of horizon with small t1. Let us begin by looking closely at the temporal and spatial dependence of
inhomogeneous black hole horizon in the small t1 region. At the second order of the small t1 expansion, the t0 dependence of
r′
α=2;Horizon and the t2 dependence of r′

α=3;Horizon are given by

r′
α=2:Horizon ≈ r0

(
π2

L2
+ 2

π3t1
L3

sin

[
2πt0

L

]
cos

[
2πX

L

])
,

r′
α=3:Horizon ≈ r0

[
π2√

L4 + 2π2t2
2

(
2
(
L2 + 2π2t2

2

)
cos

(
2πX

L

) + (
L2 + π2t2

2

)
cos

(
4πX

L

)) + 2π2L2t2
2 + 6π4t4

2

+ 8π4t1t2 cos2
(

πX
L

)((
L2 + 2π2t2

2

)
cos

(
2πX

L

) + 2π2t2
2

)
(
L4 + 2π2t2

2

(
2
(
L2 + 2π2t2

2

)
cos

(
2πX

L

) + (
L2 + π2t2

2

)
cos

(
4πX

L

)) + 2π2L2t2
2 + 6π4t4

2

)3/2

]
(E5)

where r′
α=2:Horizon at X = 0, L

2 is independent of t0, and r′
α=3:Horizon at X = L

2 is independent of t1.
Asymptotic behavior of horizon in t1 → ∞. Now, turn to the temporal and spatial dependence of inhomogeneous black hole

horizon in the large-t1 regime. In the large-t1 regime excluding t0 ≈ X + nL and t0 ≈ −X + nL, the asymptotic time dependence
of r′

i=2,Horizon is approximated by

r′
α=2,Horizon ≈ r0

4t2
1

∣∣sin
(

π (t0−X )
L

)
sin

(
π (t0+X )

L

)∣∣ , (E6)

where n is and integer number, and t0 = ±X + nL are the trajectories of the right- and left-moving B.H.-like excitations. This
suggests the black hole horizon far from the B.H.-like excitations is proportional to t−2

1 .
Extremes of r′

α=2,Horizon. Let us analyze the spatial extremes of r′
α=2,Horizon. These spatial extremes are determined by

∂X r′
α=2,Horizon = 0, and these solutions are given by

X = 0,
L

2
, cos

(
2πXj=L,R

L

)
= L2 + 2π2t2

1

2πt1
(
L2 + π2t2

1

)(L sin

(
2πt0

L

)
+ πt1 cos

(
2πt0

L

))
. (E7)

For Xj=L,R, r′
α=2,Horizon is given by

r′
α=2,Horizon =

r0

√
L2 + π2t2

1∣∣L cos
( 2πt0

L

) − πt1 sin
( 2πt0

L

)∣∣ (E8)

In the large-t1 limit, Xi=L,R are approximated by

Xj=L,R + mL = ±t0, (E9)

where m is an integer number. By using the physical interpretation discussed in Sec. V B 1, X + mL = ±t0 are interpreted as the
trajectories at t0 of the right- and left-moving B.H.-like excitations, respectively. In other words, the spatial extremes for the large
t1 are determined by the trajectories at t0 of the right- and left-moving B.H.-like excitations. As a consequence, the asymptotic
behavior of r′

α=2,Horizon for the large t1 is given by

r′
α=2,Horizon ≈

{ r0∣∣ sin
(

2πt0
L

)∣∣ for t0 �= nL
2

πr0t1
L for t0 = nL

2

, (E10)

where n is an integer number. Thus, if the B.H.-like excitations are at X �= X f
i=1,2, then r′

α=2,Horizon depends on only t0, while if

these excitations are at X = X f
i=1,2, then r′

α=2,Horizon depends on only t1, and it linearly increases with t1. Note that the asymptotic
form of the black hole horizon for t0 �= nL

2 is invalid in the t0 regimes where t0 ≈ nL
2 . In these t0 regimes, we need more detailed

calculations.
Extremes of r′

α=3,Horizon. Now, let us turn to the analysis of the spatial extremes of r′
α=3,Horizon. The spatial extremes are

determined by ∂X r′
α=3,Horizon = 0, and the solutions of this equation are given by

X = 0,
L

2
, cos

(
2πXj=L,R

L

)
= −

(
L4 + 2π2L2(t1 − t2)2 + 8π4t2

1 t2
2

)(
4π2t2

1 t2
2 − L2(t1 − t2)2

)
2
(
L4 + π2L2(t1 − t2)2 + 4π4t2

1 t2
2

)(
4π2t2

1 t2
2 + L2(t1 − t2)2

) . (E11)
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FIG. 23. The spatial dependence of the black hole horizon for various t1 and t2 as a function of X . Here, Rα=3 is defined by rα=3,Horizon/r0.
For the large t1, the spatial locations where the peaks of Rα=3 emerge are approximately equal to the locations of the B.H.-like excitations.

In the large-t1 limit, Xj=L,R are determined by

cos

(
2πXj=L,R

L

)
≈ −

(
4π2t2

2 − L2
)

(
4π2t2

2 + L2
) . (E12)

This is the same as the trajectories of the left- and right-moving B.H.-like excitations emerging at x = X f
1 at time t2 = 0. Under

the evolution by H1
CSD, these excitations moves at the velocities, v j=L,R = ±2 cos2 ( πx

L ), to the X f
2 . The extremes of the black

hole horizon for x = Xj=L,R are given by

r′
α=3,Horizon =

r0

√(
L2(t1 − t2)2 + 4π2t2

1 t2
2

) (
L4 + π2L2(t1 − t2)2 + 4π4t2

1 t2
2

)
∣∣L3(t2 − t1) + 4π2Lt2

1 t2
∣∣ . (E13)

In the large-t1 limit for t2 > 0, the extremes of r′
α=3,Horizon are given by

r′
α=3,Horizon ≈ r0

(
L2 + 4π2t2

2

)
4πLt2

. (E14)

Furthermore, take the large-t2 limit, and then these extremes are given by

r′
α=3,Horizon ≈ πr0t2

L
. (E15)

Thus, these extremes linear grow with t2. In Fig. 23, we depict r′
α=3,Horizon for various t1 and t2 as a function of X .

2. Geodesic length in the static BTZ black hole

Here, we present the nonuniversal piece of (59). It is given by

G(X1,Y1) = 2 log

(
2ε

π

)
+ Min[S1, S2, S3], (E16)

where Si=1,2,3 are defined as

S1 = log

[∣∣∣sin
[ π

2ε

(
wNew,α

Y1,ε
− wX1

)]∣∣∣2], S2 = log

[∣∣∣sin
[ π

2ε

(
iL − (

wNew,α
Y1,ε

− wX1

))]∣∣∣2],
S3 = log

[∣∣∣sin
[ π

2ε

(−iL − (
wNew,α

Y1,ε
− wX1

))]∣∣∣2]. (E17)

3. The metric of the inhomogeneous black holes

Here, we present the inhomogeneous black hole geometries. The dual geometries of ρH1 considered in this paper are given
by (E1) and the components are given as follows. For α = 1,

f 1
α=1;XX = π4

Dα=1
, f 2

α=1;XX = 4π6L2t2
1 sin2

(
2πX

L

)
(Dα=1)2 , f 1

α=1;t0t0 = −1, f 2
α=1;t0t0 = 1,

f 1
α=1;t1t1 = −4π4 sin4

(
πX
L

)
Dα=1

, f 2
α=1;t1t1 = 4π4 sin4

(
πX
L

)[
L2 − 2π2t2

1 cos
(

2πX
L

) + 2π2t2
1

]2

(Dα=1)2 ,
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f 1
α=1;t0t1 = f 2

α=1;t0t1 = −2π2 sin2
(

πX
L

)[
L2 + 4π2t2

1 sin2
(

πX
L

)]
Dα=1

,

f 1
α=1;Xt0 = − f 2

α=1;Xt0 = −2π3Lt1 sin
(

2πX
L

)
Dα=1

, f 1
α=1;Xt1 = 0,

f 2
α=1;Xt1 = 8π5Lt1 sin3

(
πX
L

)
cos

(
πX
L

)[
L2 − 2π2t2

1 cos
(

2πX
L

) + 2π2t2
1

]
(Dα=1)2 ,

Dα=1 =
[

L2 + 4π2t2
1 sin2

(
πX

L

)]2

− 4π2L2t2
1 sin2

(
2πX

L

)
. (E18)

For α = 2,

f 1
α=2;XX = π4

Dα=2
, f 2

α=2;XX = 4π6t2
1 sin2

(
2πX

L

)[
L cos

( 2πt0
L

) − πt1 sin
( 2πt0

L

)]2

(Dα=2)2
, f 1

α=2;t0t0 = − π4

Dα=2
,

f 2
α=2;t0t0 = π4

(Dα=2)2

(
L2 − πt1

{
πt1

[
cos

(
2π (t0 − X )

L

)
+ cos

(
2π (t0 + X )

L

)]

+ L

[
sin

(
2π (t0 − X )

L

)
+ sin

(
2π (t0 + X )

L

)]}
+ 2π2t2

1

)2

,

f 1
α=2;t1t1 = −4π4 sin2

(
π (t0−X )

L

)
sin2

(
π (t0+X )

L

)
Dα=2

,

f 2
α=2;t1t1 = π4

[
sin2

(
π (t0+X )

L

)
dα=2;p

+ sin2
(

π (t0−X )
L

)
dα=2;m

]2

+ sin2
(

π (t0−X )
L

)
(dα=2;m)2

(
2 sin2

(
π (t0+X )

L

)
dα=2;m + sin2

(
π (t0−X )

L

)
dα=2;p

dα=2;p

)
,

f 1
α=2;t0t1 = −π4

[
sin2

(
π (t0−X )

L

) + sin2
(

π (t0+X )
L

)]
Dα=2

,

f 2
α=2;t0t1 = 1

2
π4

[
sin2

(
π (t0−X )

L

)
(dα=2;m)2 + sin2

(
π (t0−X )

L

) + sin2
(

π (t0+X )
L

)
Dα=2

+ sin2
(

π (t0+X )
L

)
(dα=2;p)2

]
,

Dα=2 = dα=2;p × dα=2;m,

dα=2;m =
{

L2 − 2πt1

[
πt1 cos

(
2π (t0 − X )

L

)
+ L sin

(
2π (t0 − X )

L

)]
+ 2π2t2

1

}
,

dα=2;p =
{

L2 − 2πt1

[
πt1 cos

(
2π (t0 + X )

L

)
+ L sin

(
2π (t0 + X )

L

)]
+ 2π2t2

1

}
,

f 1
α=2;Xt0 = 0, f 2

Xt0 = 1

4
π4

[
1(

dα=2;p
)2 − 1

(dα=2;m)2

]
,

f 1
α=2;Xt1 = π4

[
sin2

(
π (t0+X )

L

) − sin2
(

π (t0−X )
L

)]
Dα=2

,

f 2
α=2;Xt1 = − π5t1

(Dα=2)2

[
sin2

(
π (t0 − X )

L

)
dα=2,p + sin2

(
π (t0 + X )

L

)
dα=2,m

]{
πt1

[
cos

(
2π (t0 − X )

L

)
− cos

(
2π (t0 + X )

L

)]

+ L

[
sin

(
2π (t0 − X )

L

)
− sin

(
2π (t0 + X )

L

)]}
. (E19)
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For α = 3,

f 1
α=3;XX = π4L4

d1
XX

, f 2
XX = 4π6L6

[
L2(t2 − t1) + 4π2t2

1 t2
]2

sin2
(

2πX
L

)
d2

XX

,

f 1
t1t1 = −π4

[−(
L2 + 4π2t2

2

)
cos

(
2πX

L

) + L2 − 4π2t2
2

]2

d1
t1t1

,

f 2
α=3;t1t1 = π4

d2
t1t1

{
L6 + π2L4

(
3t2

1 + 2t1t2 + t2
2

) + 4π4L2t2
2

(−2t2
1 − 6t1t2 + 3t2

2

)

+ π2
[
L4
(
t2
1 − 2t1t2 + 3t2

2

) + 4π2L2t2
2

(
2t2

1 − 2t1t2 + t2
2

) + 16π4t2
1 t4

2

]
cos

(
4πX

L

)

− [
L6 + 4π2L4(t1 − t2)(t1 + t2) + 16π4L2t3

2 (2t1 − t2) − 64π6t2
1 t4

2

]
cos

(
2πX

L

)
+ 48π6t2

1 t4
2

}2

,

f 1
α=3;t2t2 = −4π4L4 cos4

(
πX
L

)
d1

t2t2

,

f 2
α=3;t2t2 = 4π4L4 cos4

(
πX
L

)
d2

t2t2

{
L4 + 2π2

[
L2
(−t2

1 − 2t1t2 + t2
2

) + 4π2t2
1 t2

2

]
cos

(
2πX

L

)
+ 2π2L2(t1 − t2)2 + 8π4t2

1 t2
2

}2

,

f 1
α=3;Xt1 = 4π5L3t2 sin

(
2πX

L

)
d1

Xt1

,

f 2
α=3;Xt1 = −2π5L3

[
L2(t2 − t1) + 4π2t2

1 t2
]

sin
(

2πX
L

)
d2

Xt1

{
L6 + π2L4

(
3t2

1 + 2t1t2 + t2
2

)
+ 4π4L2t2

2

(−2t2
1 − 6t1t2 + 3t2

2

) + π2
[
L4
(
t2
1 − 2t1t2 + 3t2

2

) + 4π2L2t2
2

× (
2t2

1 − 2t1t2 + t2
2

) + 16π4t2
1 t4

2

]
cos

(
4πX

L

)
− [

L6 + 4π2L4(t1 − t2)(t1 + t2)

+ 16π4L2t3
2 (2t1 − t2) − 64π6t2

1 t4
2

]
cos

(
2πX

L

)
+ 48π6t2

1 t4
2

}
,

f 1
α=3;Xt2 = 0, f 2

Xt2 = 1

2
π4L4 cos2

(
πX

L

)(
1

d2,a
Xt2

− 1

d2,b
Xt2

)
,

f 1
α=3;t1t2 = −2π4L2 cos2

(
πX
L

)[−(
L2 − 4π2t2

2

)
cos

(
2πX

L

) + L2 + 4π2t2
2

]
d1

t1t2

,

f 2
α=3;t1t2 = Nt1t2

d2
t1t2

. (E20)

In the above equations, we used the following notations:

d1
XX =

(
L4 + 2π

{
π
[
L2
(−t2

1 − 2t1t2 + t2
2

) + 4π2t2
1 t2

2

]
cos

(
2πX

L

)

+ L
[
L2(t1 − t2) − 4π2t2

1 t2
]

sin

(
2πX

L

)}
+ 2π2L2(t1 − t2)2 + 8π4t2

1 t2
2

)

×
(

L4 + 2π

{
π
[
L2
(−t2

1 − 2t1t2 + t2
2

) + 4π2t2
1 t2

2

]
cos

(
2πX

L

)

+ L
[
L2(t2 − t1) + 4π2t2

1 t2
]

sin

(
2πX

L

)}
+ 2π2L2(t1 − t2)2 + 8π4t2

1 t2
2

)
,

d2
XX =

(
L4 + 2π

{
π
[
L2
(−t2

1 − 2t1t2 + t2
2

) + 4π2t2
1 t2

2

]
cos

(
2πX

L

)

+ L
[
L2(t1 − t2) − 4π2t2

1 t2
]

sin

(
2πX

L

)}
+ 2π2L2(t1 − t2)2 + 8π4t2

1 t2
2

)2
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×
(

L4 + 2π

{
π
[
L2
(−t2

1 − 2t1t2 + t2
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