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Coherent states in microwave-induced resistance oscillations and zero resistance states
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We investigate irradiated high-mobility two-dimensional electron systems (2DES) under low or moderated
magnetic fields. These systems present microwave-induced magnetoresistance oscillations (MIRO) which, as
we demonstrate, reveal the presence of coherent states of the quantum harmonic oscillator. We also show that the
principle of minimum uncertainty of coherent states is at the heart of MIRO and zero-resistance states (ZRS).
Accordingly, we are able to explain, based on coherent states, important experimental evidence of these photo-
oscillations, such as their physical origin, their periodicity with the inverse of the magnetic field and their peculiar
oscillations minima and maxima positions in regards of the magnetic field. Thus, remarkably enough, we come
to the conclusion that 2DES, under low magnetic fields, become a system of quasiclassical states or coherent
states and MIRO would be the smoking gun of the existence of these peculiar states in these systems.
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I. INTRODUCTION

The first idea of coherent states or quasiclassical states was
introduced by Schrödinger [1] describing minimum uncer-
tainty constant-shape Gaussian wave packets of the quantum
harmonic oscillator. They were constructed by the quantum
superposition of the stationary states of the harmonic os-
cillator. These wave packets displaced harmonic oscillating
similarly as their classical counterpart [1]. Later on, Glauber
[2] applied the concept of coherent states to the electro-
magnetic field being described by a sum of quantum field
oscillators for each field frequency or mode. These coherent
states of electromagnetic radiation introduced by Glauber are
extensively used nowadays in quantum optics. Coherent states
[3–6] are also an essential and powerful tool in condensed
matter when describing the dynamics of quantum systems
that are very close to a classical behavior. One remarkable
example of this consists of one electron under the influence
of a moderate and constant magnetic field (B). The quan-
tum mechanical solution of this problem leads us to Landau
states which are mere stationary states of the quantum har-
monic oscillator. Under low or moderate values of B, this
system can be described by an infinite superposition of Lan-
dau states, i.e., a coherent state. The resulting wave packet
oscillates classically at the cyclotron frequency (wc) inside
the quadratic potential keeping constant the Gaussian shape
(see Fig. 1) and complying with the minimum uncertainty
condition.
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The discovery of microwave-induced magnetoresistance
oscillations (MIRO) [7–9] two decades ago led to a great deal
of theoretical works back then as the displacement model [10],
the inelastic model [11], and the microwave-driven electron
orbits model [12–15]. According to the latter, Landau states,
under radiation, spatially and harmonically oscillate with the
guiding center at the radiation frequency (w) performing
classical trajectories. In this swinging motion electrons are
scattered by charged impurities giving rise to oscillations in
the irradiated magnetoresistance, i.e., MIRO.

In this letter we demonstrate that the electron dynamics and
magnetotransport in high-mobility 2DES is governed by the
coherent states of the quantum harmonic oscillator. In fact,
we conclude that 2DES under low or moderate B become a
systems of coherent states and when irradiated, MIRO [7–9]
brings to light the peculiar nature of these states. In other
words, irradiated coherent states of the quantum harmonic os-
cillator are at the heart of MIRO. Accordingly, we incorporate
the concept of coherent states to the microwave-driven elec-
tron orbit model [12–15]. Thus, a remarkable obtained result
is that the time τ (evolution time [16]) it takes a scattered
electron to jump between coherent states to give significant
contributions to the current has to be equal to the cyclotron
period Tc = 2π/wc. For different values of τ , the contribution
turns out negligible. This result holds in the dark and under
radiation where τ will play an essential role. Thus, MIRO is
mainly dependent on τ along with w. τ also determines the
peculiar B-dependent MIRO extrema position and explains
the periodicity of MIRO with the inverse of B. Thus, MIRO
finally reveals that coherent states of the quantum harmonic
oscillator are present in high-mobility 2DES when under low
B playing a lead role in magnetotransport both in the dark and
under radiation. On the other hand, coherent states minimize
the Heisenberg uncertainty principle and then, in our model,
this would establish which states can be reached by scattering.
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II. THEORETICAL MODEL

We first obtain an expression for the coherent states of
a radiation-driven quantum harmonic oscillator. The starting
point is the exact solution of the time-dependent Schrödinger
equation of a quantum harmonic oscillator under a time-
dependent force. This corresponds to the electronic wave
function for a 2DES in a perpendicular B, a dc electric field
EDC , and microwave (MW) radiation which is considered
semiclassically. The total hamiltonian H can be written as

H = P2
x

2m∗ + 1

2
m∗w2

c (x − X (0))2 − eEdcX (0)

+ 1

2
m∗ E2

dc

B2
− eE0 cos wt (x − X (0))

− eE0 cos wtX (0)

= H1 − eE0 cos wtX (0), (1)

where the corresponding wave function solution is given by
[12,17,18]

�n(x, t ) = φn(x − X (0) − xo(t ))e−iwc (n+1/2)t e
i
h̄ �(t ), (2)

where

�(t ) =
[

m∗ dxo(t )

dt
x −

∫ t

0
Ldt ′

]

+ X (0)

[
−m∗ dxo(t )

dt
x +

∫ t

0
E0 cos wt ′dt ′

]
. (3)

X (0) is the guiding center of the driven-Landau state, E0

the MW electric field intensity, φn is the solution for the
Schrödinger equation of the unforced quantum harmonic os-
cillator and x0(t ) is the classical solution of a forced harmonic
oscillator:

x0(t ) = eEo

m∗√(w2
c − w2)2 + w2γ 2

sin wt = A sin wt, (4)

where γ is a phenomenologically introduced damping factor
for the electronic interaction with acoustic phonons and L is
the classical Lagrangian. Apart from phase factors, the wave
function turns out to be the same as a quantum harmonic
oscillator (Landau state) where the center is driven by x0(t ).
Thus, all driven-Landau states harmonically oscillate in phase
at the radiation frequency.

A coherent state denoted by |α〉 is defined as the eigenvec-
tor of the annihilation operator â with eigenvalue α and can be
expressed as a superposition of quantum harmonic oscillator
states [16]

|α〉 =
∑

n

cn(α)|φn〉 = e−|α|2/2
∑

n

αn

√
n!

|φn〉. (5)

The coherent state |α〉 can be also obtained with the displace-
ment operator D(α) [16] acting on the quantum harmonic
oscillator ground state |φ0〉, |α〉 = D(α)|φ0〉, where the uni-
tary operator D(α) is defined by D(α) = eαa†−α∗a. The
coherent state in the position representation or wave function
then reads ψα (x) = 〈x|D(α)|φ0〉. We observe, according to
the obtained MW-driven wave function [Eq. (2)], that the
irradiated Landau-level structure remains unchanged with re-
spect to the undriven situation; same Landau-level index and

energy. Then, we conclude that the system is quantized, in the
same way as the unforced quantum harmonic oscillator [18].
Thus, we can construct the driven-coherent states based on
driven-Landau states similarly as if they were undriven [16]:

|ψα (x, t )〉 = e
i
h̄ �(t )e−iwct/2e−|α|2/2

×
∑

n

(αe−iwct )n

√
n!

|φn(x − X (0) − xo(t ))〉. (6)

Now applying the displacement operator, we can calculate the
wave function corresponding to the coherent state of the MW-
driven quantum oscillator:

ψα (x, t ) = e
i
h̄ �(t )e−iwct/2〈x|D(α)|φ0(x − X (0) − xo(t ))〉

= e
i
h̄ �(t )eiϑα e−iwct/2e

i
h̄ 〈p〉(t )xφ0[x − X (0) − xo(t )

−〈x〉(t )], (7)

where

φ0[x − X (0) − xo(t ) − 〈x〉(t )]

=
(mwc

π h̄

)1/4
e−[ x−X (0)−xo(t )−〈x〉(t )

2�x ]2

. (8)

〈x〉(t ) and 〈p〉(t ) are the position and momentum mean val-

ues, respectively [16], 〈x〉(t ) =
√

2h̄
m∗wc

|α0| cos(wct − ϕ), and

〈p〉(t ) = −√
2m∗h̄wc|α0| sin(wct − ϕ) where we have used

that α = |α0|e−(iwct−ϕ). �x is the position uncertainty and
the global phase factor eiϑα = eα∗2−α2

. Then, the wave packet
associated with �α (x, t ) is therefore given by

|�α (x, t )|2 = |φ0[x − X (0) − xo(t ) − 〈x〉(t )]|2. (9)

Thus, according to the above, the microscopic physical de-
scription of a high-mobility 2DES under low or moderate
B would consist of constant-shaped Gaussian wave packets
harmonically displacing with wc in the undriven case and with
wc and w under radiation.

To calculate the longitudinal magnetoresistance Rxx, we
first obtain the longitudinal conductivity σxx following a semi-
classical Boltzmann model [19–21]

σxx = 2e2
∫ ∞

0
dEρi(E )(�X0)2WI

(
−df (E )

dE

)
, (10)

with E being the energy, ρi(E ) the Landau states density
of the initial coherent state, and WI is the electron-charged
impurities scattering rate. We consider now that the scattering
takes place between coherent states of quantum harmonic
oscillators. Thus, �X0 is the distance between the guiding
centers of the scattering-involved coherent states.

We first study the dark case and according to the Fermi’s
golden rule, WI is given by

WI = Ni
2π

h̄
|〈ψα′ |Vs|ψα〉|2δ(Eα′ − Eα ), (11)

where Ni is the number of charged impurities, ψα and ψα′

are the wave functions corresponding to the initial and final
coherent states respectively, Vs is the scattering potential for
charged impurities [20] Vs = ∑

q Vqeiqxx = ∑
q

e2

2Sε(q+qT F ) e
iqxx,

S being the sample surface, ε the dielectric constant, qT F

is the Thomas-Fermi screening constant [20], and qx the x
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component of −→q , the electron momentum change after the
scattering event. Eα and Eα′ stand for the coherent states initial
and final energies, respectively.

The averaging on the impurities distribution has been con-
sidered in a very simple approach following Askerov [21],
Ando et al.[20], and J. H. Davies [22]. Thus, if the concen-
tration of impurities is not too high, and they are randomly
distributed in the sample, the interferences caused by the
impurity centers can be neglected. Then, we have ignored
those interferences and assume that the scattering due to each
impurity is independent of the others. As a result, the total
scattering is equal to the scattering rate for one impurity center
multiplied by the total number of impurities Ni.

The Vs matrix element is given by [19–21]

|〈ψα′ |Vs|ψα〉|2 =
∑

q

|Vq|2|Iα,α′ |2 (12)

and the term Iα,α′ [19–21]:

Iα,α′ =
∫ ∞

−∞
ψα′ (x − X ′(0) − 〈x′〉(t ′))

× eiqxxψα (x − X (0) − 〈x〉(t ))dx. (13)

After lengthy algebra we obtain an expression for Iα,α′ :

|Iα,α′ | = e− [X ′ (0)−X (0)+〈x′ 〉(t ′ )−〈x〉(t )]2

8(�x)2 e− q2
x (t )2(�x)2

4 , (14)

where qx(t )is given by

qx(t ) = qx +
√

2mh̄wc/h̄[|α′
0| sin(wct

′) − |α0| sin(wct )]

= qx + 2
√

2mh̄wc/h̄|α0| cos(wc(t + τ/2)) sin(wcτ/2)).

(15)

On the other hand,

〈x′〉(t ′) − 〈x〉(t ) 	
√

2h̄

mwc
|α0|2 sin

(
wc

(
t + τ

2

)
− ϕ

)

× sin

(
−wc

τ

2

)
, (16)

where t and t ′ are the initial and final times for the scattering
event and τ is the evolution time between coherent states.
Thus, t ′ = t + τ . We have considered also that for low values
of B, |α′

0| 	 |α0|. Developing the above exponential we can
finally get to

|Iα,α′ | ∝ e−2|α0|2 sin2 (wc(t+ τ
2 )−ϕ) sin2 (wc

τ
2 ). (17)

For typical experimental values of B, |α0|2 > 50 and thus,
Iα,α′ → 0. Accordingly, the scattering rate and conductivity
would be negligible, too. Nonetheless, there is an important
exception when τ equals the cyclotron period Tc: τ = 2π

wc
. In

other words, the scattered electron begins and ends in the same
position in the Landau orbit. Only in this case Iα,α′ �= 0. Thus,
only scattering processes fulfilling the previous condition of
τ will efficiently contribute to the current. The rest of the
contributions can be neglected. Finally the expression of Iα,α′

reads [19]

|Iα,α′ | = e
−

(
(X ′ (0)−X (0))2

8(�x)2
+ q2

x (�x)2

2

)
= e

−
(

q22(�x)2

4

)
, (18)

where X ′(0) − X (0) = [−qy2(�x)2] [19]. This, in turn, leads
us to a final expression for WI :

WI = nie4

2π h̄ε2

∫
e−q2(�x)2

(q + qT F )2
(1 − cos θ )δ(Eα′ − Eα )d2q,

(19)
where ni is the charged impurity density and θ is the scat-
tering angle. The density of initial Landau states ρi(E ) can
be obtained by using the Poisson sum rules to get to [23]
ρi(E ) = m∗

π h̄2 [1 − 2 cos( 2πE
h̄wc

e−π�/h̄wc )]. Finally, gathering all
terms and solving the energy integral, we obtain an expression
for σxx that reads

σxx = nie6m∗

2π3h̄3ε2
(�X0)2 1

h̄wc

(
1 + e−π�/h̄wc

1 − e−π�/h̄wc

)

×
(

1 − 2χs

sinh(χs)
cos

(
2πEF

h̄wc

)
e−π�/h̄wc

)

×
∫

e−q2(�x)2

(q + qT F )2
(1 − cos θ )d2q, (20)

where χs = 2π2kBT/h̄wc, kB being the Boltzmann constant,
EF the Fermi energy, and � the Landau level width. To obtain
Rxx we use the relation Rxx = σxx

σ 2
xx+σ 2

xy
	 σxx

σ 2
xy

, where σxy 	 nee
B

and σxx � σxy, ne being the 2D electron density.
One important condition that features coherent states is that

they minimize the Heisenberg uncertainty principle. Thus, for
the time-energy uncertainty relation [16], �t�E = h. For our
specific problem, �t = τ that implies �E = h̄wc, �E being
the energy difference between scattering-involved coherent
states. Thus, we obtain two conditions for the scattering be-
tween coherent states to take place, first τ = 2π

wc
, and second

the energy difference equals h̄wc. There are also physical
reasons that endorse the latter especially in high-mobility
samples where the levels are very narrow in terms of states
density. In these systems the only efficient contributions to
scattering are the ones corresponding to aligned Landau levels
(see Fig. 2), i.e., when �E = n × h̄wc. The most intense of
them is when n = 1 that corresponds to the closest in distance
coherent states or smallest value of �X0 [see Eq. (18)]. This
agrees with the condition that when n = 1, the Heisenberg
uncertainty principle is minimized. The two conditions dis-
cussed above hold in the dark and under radiation. For the
latter case, MIRO reveals the important role played by τ in
the based-on-coherent states magnetotransport processes.

When we turn on the light, the term that is going to be
mainly affected in the σxx expression is the distance between
the coherent states guiding centers, i.e., �X0. This average
distance now turns into �XMW [24–28]:

�XMW = X ′
MW − XMW

= �X0 − A(sin w(t + τ ) − sin wt )

+
√

2h̄

m∗wc
|α0|(cos wc(t + τ ) − cos wct ). (21)

If we consider, on average, that the scattering jump begins
when the MW-driven oscillation is at its midpoint, (wt =
2πn, n being a positive integer), and being τ = 2π/wc, we
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FIG. 1. Schematic diagrams of coherent states: The probability
density of the coherent state is a constant-shaped Gaussian distribu-
tion, whose center oscillates in a harmonic potential similarly as its
classical counterpart. The lower part exhibits the 2D approach.

end up having

�XMW = �X0 − A sin 2π
w

wc
. (22)

This result affects dramatically σxx and in turn Rxx. Now
photo-oscillations rise according to �XMW and its built-in
sine function. In Fig. 3 we present schematic diagrams for
the different situations regarding MIRO peaks and valleys
and zero-resistance states (ZRS). In the undriven scenario
an electron in the initial coherent state scatters with charged

FIG. 2. Schematic diagram of scattering process between coher-
ent states �α and �α′ . The scattering is quasielastic. The probability
density for both coherent states is a constant-shaped Gaussian wave
packet. The process evolution time τ is the cyclotron period, i.e.,
τ = 2π/wc = Tc. �E is the energy difference between the coherent
states.

FIG. 3. Schematic diagrams for electron scattering between co-
herent states in the dark (undriven) and with radiation (MW driven).
(a) Undriven scattering. The average distance (advanced distance)
between initial |ψα〉 and final coherent state |ψα′ 〉 is �X (0). This dis-
tance mainly determines Rxx . (b) MW-driven scattering giving rise to
peaks. Now the average advanced distance is larger because the final
state, minimizing the Heisenberg uncertainty principle, is farther than
the dark position due to the swinging motion of the driven-coherent
states. (c) MW-driven scattering giving rise to valleys. When the
final coherent state is closer we obtain MIRO valleys. (d) Situation
when MW power is high enough and the states go backwards. In this
scenario the final state ends up behind the initial-state dark position
and the scattering jump cannot take place.

impurities and jumps to the final coherent state, minimiz-
ing the Heisenberg uncertainty principle. The latter condition
determines what coherent states can be connected via scat-
tering. On average, the advanced distance is �X0 = X ′

0 − X0

[see Fig. 3(a)]. When the light is on, depending on the term
A sin 2π w

wc
, sometimes the minimum-uncertainty final state

will be further away than in the dark regarding the initial
state position. Thus, on average, �XMW > �X0 and Rxx will
be larger, giving rise to peaks [see Fig. 3(b)]. On the other
hand, other times the final coherent state will be closer and
�XMW < �X0 and Rxx will be smaller, giving rise to valleys
[see Fig. 3(c)]. Finally, when the driven coherent states are
going backward and the radiation power is large enough,
the final state, minimizing the uncertainty principle, will be
behind the initial state in the dark [see Fig. 3(d)]. However,
the scattered electron can only effectively jump forward due
to the dc electric field direction and the final coherent state
can never be reached; in the forward direction there is no final
coherent state fulfilling the minimum uncertainty condition
and the scattering cannot be completed. Thus, the system
reaches the ZRS scenario where the electron remains in the
initial coherent state.

III. RESULTS

In Fig. 4 we present calculated results of the irradiated Rxx

vs B for a radiation frequency of 103 GHz and T = 1 K. The
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FIG. 4. Calculated magnetoresistance as a function of B, for a
radiation frequency of 103 GHz and T = 1 K. The dark case is also
exhibited. Minima positions are indicated with arrows corresponding
to w

wc
= j + 1

4 , j being a positive integer. Zero resistance states
are obtained around B 	 0.2T . Inset: irradiated magnetoresistance
showing periodicity vs 1/B.

dark case is also exhibited. In our simulations all results have
been based on experimental parameters corresponding to the
experiments by Mani et al. [7]. We obtain clear MIRO where
the minima positions are indicated with arrows and, as in
experiments [7], correspond to w

wc
= j + 1

4 , j being a positive
integer. Minima positions show a clear 1/4-cycle shift, which
is a universal property that features MIRO and shows up in
any experiment about MIRO irrespective of the sort of carrier
[29] and platform [30]. In the minima corresponding to j = 1,
ZRS are found. Now with the help of our present model based
on coherent states we can explain such a peculiar value for
the minima position. Thus, it is straightforward to check out
that if we substitute equation w

wc
= j + 1

4 in �XMW [Eq. (22)],

we would obtain minima values of the latter and in turn of
Rxx. Therefore, from the minima-positions relation we can
obtain the value 2π/wc which would be the “smoking gun”
that would reveal the presence of coherent states of quan-
tum harmonic oscillators sustaining the magnetorresistance of
high-quality 2DES. Another evidence of the latter would be
the MIRO periodicity with the inverse of B (see inset of Fig. 4)
that would be explained by the presence of τ in the argument
of the sine function.

IV. SUMMARY

Summing up, we have demonstrated that magnetoresis-
tance in a high-mobility 2DES under MW radiation can be
explained in terms of the coherent states of the quantum
harmonic oscillator. When irradiated, these systems give rise
to MIRO that reveals the presence of these quasiclassical
states in high-quality samples when under low B. These MW-
driven coherent states have been used to calculate irradiated
magnetoresistance, finding that the principle of minimum un-
certainty of coherent states is crucial to understand MIRO
and their properties and zero-resistance states. We conclude
that any experiment on irradiated magnetoresistance of 2D
systems, regardless of carrier and platform [29,31], show that
MIRO reveals the existence of coherent states of the quantum
harmonic oscillator. We expect that dealing with even higher
mobility samples (μ > 107), it would be possible to achieve
the quantum superposition of coherent states yielding, for
instance in the case of two, even and odd coherent states of
the quantum harmonic oscillator. Then, when irradiated, we
expect that MIRO would evolve showing striking results re-
vealing the presence of coherent states superposition [32,33].
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