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Random graphs and real networks with weak geometric coupling
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Geometry can be used to explain many properties commonly observed in real networks. It is therefore often
assumed that real networks, especially those with high average local clustering, live in an underlying hidden
geometric space. However, it has been shown that finite-size effects can also induce substantial clustering,
even when the coupling to this space is weak or nonexistent. In this paper, we study the weakly geometric
regime, where clustering is absent in the thermodynamic limit but present in finite systems. Extending Mercator,
a network embedding tool based on the popularity × similarity S1/H2 static geometric network model, we show
that, even when the coupling to the geometric space is weak, geometric information can be recovered from
the connectivity alone for networks of any size. The fact that several real networks are best described in this
quasigeometric regime suggests that the transition between nongeometric and geometric networks is not a sharp
one.
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I. INTRODUCTION

Over the past few decades, the use of complex networks
to describe the properties of systems of many interacting
particles has become widespread in many fields of science.
Examples of such fields include ecology [1], neurology [2],
the social sciences [3], and technology [4]. Real networks
from all these fields have been found to share several im-
portant properties, such as the small-world property [5],
scale-free degree distributions [6], and high levels of clus-
tering [7]. The search for models that can reproduce these
features has led to the field of network geometry [8] and,
more specifically, to the introduction of geometric random
graphs. In this class of models, nodes are assumed to live in
an underlying metric space that conditions the connectivity
of the graph. The fact that this approach is able to repro-
duce all the basic network properties and symmetries [9–15]
as well as produce strong results in practical tasks such as
community detection [16,17], information routing [18–20],
and link prediction [21,22] has led many to wonder if there
is a way to determine if real networks are indeed geometric
in nature [23,24]. In general, (some function of) the amount
of closed triangles in the network, expressed, for example, by
the average local clustering coefficient, is taken to indicate the
presence of geometry. However, these studies do not contem-
plate the fact that the transition between nongeometric and
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geometric networks might not be sharp. Indeed, in Ref. [25] it
was shown that there exists a quasigeometric region where the
coupling of a network to its underlying metric space is weak.
Here, even though in the thermodynamic limit the average
local clustering coefficient vanishes, its decay with the system
size is extremely slow, which means that for finite systems the
level of clustering remains significant.

This observation raises several questions, the most impor-
tant being what it implies for real networks that might live in
this regime. How strongly does the underlying metric space
affect the topology of networks when the coupling is weak?

We study how well the original coordinates of the nodes,
used to generate a network, can be reproduced from the topol-
ogy alone. Being able to reproduce the coordinates with high
precision means that information about the geometry is con-
tained in the topology, and one can thus say that the network
is truly geometric. Conversely, if the coordinates cannot be
found, it is a good indication that the connection between the
geometry and the topology is too weak for the network to be
considered geometric.

To study this, we extend Mercator [26], a network em-
bedding tool that uses a combination of machine learning
and maximum likelihood techniques to recover the hidden
coordinates of the nodes in a network from its connectivity.
It is based on the S1 model, the only maximal entropy random
geometric network model that can reproduce the small-world
property, heterogeneous degree distributions, and high levels
of clustering. However, as is the case with many network
embedding tools [27–30], Mercator does not contemplate the
possibility of weakly geometric networks, i.e., those networks
where the coupling to the underlying metric space is so weak
that clustering vanishes in the thermodynamic limit. In this
paper, we extend Mercator to this regime.

Embedding these type of networks, we find that for a
range of weak couplings, the original geometry can indeed
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be recovered based solely on the topology. We note that this
is not a finite-size effect and that geometric information can
be extracted for networks of any size in the quasigeometric
regime. We also show that this region coincides with the
quasigeometric regime defined in Ref. [25] on the basis of the
scaling properties of the average local clustering coefficient
in the S1 model. Additionally, it is found that Mercator can
also provide meaningful embeddings when the network is
explicitly nongeometric, even in the case of the configuration
model [31]. Similarly to how fluctuations can induce spurious
communities [32,33], finite-size effects can lead to an effective
geometry, which can be used, for example, in greedy routing
algorithms.

Finally, we show that some real networks are best de-
scribed in the quasigeometric regime, where the embedding
is capable of reproducing the topological properties of the
network accurately.

II. METHODS

A. The S1/H2 models

We base this paper on the S1 geometric network model
[9], as well as on its isomorphic equivalent, the H2 model
[15]. In the S1 model, nodes are assumed to live in a metric
similarity space, where similarity encodes for all attributes of
a node, apart from its degree. This similarity space is given
by a circle of radius R, where each node i has an angular
coordinate θi ∼ U (0, 2π ). Note that the angular distribution
does not necessarily need to be uniform, and choosing another
distribution leads to the creation of soft communities [34].
The degree of a node is determined by its popularity, which
in the S1 model is represented by an internal parameter κi

drawn from some distribution ρ(κ ). We then impose that the
probability of two nodes being connected resembles a gravity
law. Nodes that are further away in similarity space are less
likely to be connected, whereas nodes with higher popularity
are more likely to form a connection. Finally, we want the
model to define an ensemble of geometric random graphs that
maximizes entropy. This fixes the connection probability up
to a single free parameter that sets the level of randomness in
the system and can thus be thought of as a temperature [35].
The functional form of the connection probability is given by

pi j =
(

1 + xβ
i j(

μ̂κiκ j
)max(1,β )

)−1

, (1)

where xi j is the distance in similarity space between the two
nodes i and j. In the S1 model, this is the distance along the
circle given by xi j = R (π − |π − |θi − θ j ||). The radius R is
given by R = N/(2π ), such that in the thermodynamic limit,
N → ∞, the distribution of nodes is given by a Poisson point
process along the real line with rate one. We set the parameter
μ̂ such that the expected degree of a node with hidden degree
κ is given by k(κ ) = κ . This allows us to interpret the hidden
degree as the expected degree of a node. In the thermody-
namic limit, one can give a closed form for μ̂. For β > 1,
one has μ̂ = β sin(π/β )/(2π〈k〉) whereas for β < 1 the pa-
rameter becomes size dependent: μ̂ = (1 − β )Nβ−1/(2β〈k〉).
When working close to β = 1, second-order terms become

important and the approximations above break down for finite
systems and one needs to find μ̂ numerically.

The parameter β = 1/T is the inverse temperature of the
system. The temperature T represents the coupling strength
between the geometry and topology, i.e., how strictly the
connectivity of points is dictated by their coordinates in sim-
ilarity space. At zero temperature, the model is completely
deterministic, which means that a certain distribution of θ ’s
and κ’s leads to exactly one network realization. At infinite
temperature, the role of the underlying metric space is com-
pletely lost. Note that we want the connection probability to
remain dependent on the hidden degrees, even when β → 0.
This way, the model reduces to the hypersoft configuration
model [31] in the infinite temperature limit. The coupling
strength between the similarity space and the topology can
be associated with the level of clustering in the system, and
it has been shown that at the critical beta βc = 1 the system
transitions from a region of high clustering at high β to a
region of vanishing clustering at low β [9]. This can be under-
stood as follows: As the underlying similarity space is metric,
the triangle inequality holds; if a node lies close to two of
its neighbors, these must necessarily also lie close together.
When the coupling is strong, this effect translates over to
the topology of the network, thus leading to many triangles.
When the coupling is weak, connections become long range
and the effect of triangle inequality diminishes, leading to less
triangles.

The H2 model is the hyperbolic equivalent of the S1 model.
Here, the underlying metric space is not a one-dimensional
sphere but rather the two-dimensional hyperbolic plane, where
the radial coordinate encodes the popularity dimension. As
there exists an isomorphism between the hidden degree κ and
the radial degree r, the two models are isomorphic to one
another.

In the hyperbolic plane, distances between points are
defined by the hyperbolic law of cosines:

cosh(ζxi j ) = cosh(ζ ri) cosh(ζ r j )

− sinh(ζ ri) sinh(ζ r j ) cos �θi j, (2)

where ζ = √−K and K is the constant, negative curvature
of the hyperbolic disk. It has, however, been shown that the
distance can be approximated as

xi j ≈ ri + r j + 2

ζ
ln

�θi j

2
, (3)

where the amount of node pairs for which this approximation
fails vanishes in the thermodynamic limit [36]. The con-
nection probability that maximizes entropy while fixing the
expected degree distribution is given by

pi j = (
1 + e

βζ

2 (xi j−RH2 )
)−1

, (4)

where RH2 is the radius of the hyperbolic disk and ζ is the
curvature. To find the transformation between both models,
we must equate the connection probabilities given in Eqs. (1)
and (4). This then leads to the following transformation:

κ (r) = κ0 exp

(
βζ

2 max(1, β )
(RH2 − r)

)
, (5)
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where we have defined the radius such that κ (RH2 ) = κ0, the
smallest possible hidden degree. Nodes with larger degrees
thus necessarily lie closer to the center of the disk. In this case,
the hyperbolic radius is given by

RH2 = 2

ζ
ln

(
N

π

)
− 2 max(1, β )

βζ
ln

(
μ̂κ2

0

)
. (6)

Let us now take a closer look at the curvature of the hyperbolic
disk. Interestingly, Eq. (4) is reminiscent of the Fermi-Dirac
distribution. We can think of the distance xi j as defining the
energy of a certain link, and RH2 acting as a chemical po-
tential. In this picture, 2/ζ is equivalent to the Boltzmann
constant. Similarly to how setting this constant to one in
statistical physics implies a change of units, a change in the
curvature in hyperbolic space can always be reabsorbed into
a change of length scale. We are thus free to choose ζ in any
way that is convenient. For β > 1, we choose to set ζ = 1,
as is typically done when studying this regime [36]. In the
case β < 1, we set ζ = β−1, leading to an infinite negative
curvature at β = 0 [15].

This choice has several advantages. First, it is the only def-
inition that leads to a finite hyperbolic radius at β = 0, which
is important as the H2 model is mostly used for visualization
purposes. Second, it allows for an intuitive interpretation of
the hyperbolic distance defined in Eq. (3). As β → 0, the
dependence on the angular distance �θi j vanishes, which is in
line with the fact that this limit corresponds to the hypersoft
configuration model, where only the popularity dimension
plays a role. If the curvature were set to some other value,
the typical length scale in the popularity dimension would
diverge, whereas it would remain constant in the similarity
dimension, effectively leading to the same situation.

B. Embedding of networks in the weakly geometric regime

Network geometry has important practical implications for
real systems. For example, it can be used for routing infor-
mation on the Internet [37], for community detection [16,17],
or for the prediction of missing links [21,22], as well as for
creating downscaled network replicas [38]. To do so, one
needs to be able to faithfully embed real-world networks into
the hidden metric space using only the information contained
in their topology.

Even though there are many ways to obtain such an em-
bedding [27–30,39–43], in this paper we focus on Mercator
[26], which finds the hidden S1/H2 coordinates of real net-
works such that realizations based on these coordinates best
reproduce the properties of the original network. Mercator
employs a combination of machine learning and maximum
likelihood methods to achieve this goal, which allows it to be
both precise as well as efficient.

Mercator first proposes a (random) β and sets μ̂ as a func-
tion of the average degree. The hidden degrees {κi} are then
set such that the expected degree k(κi ) of each node coincides
with the observed degree ki in the original network. This is
done iteratively starting from κi = ki. With this information,
the expected average local clustering coefficient is calculated.
If the clustering is higher (lower) than in the original network,
β is adjusted downwards (upwards). This process is then
repeated until the correct level of clustering is achieved.

FIG. 1. Inferring beta for the Foodweb–Eocene (details in
Table I). (a) The orange points represent the inferred average local
clustering coefficient given the fitted hidden degree and different
betas, and the blue horizontal line indicates the original clustering
coefficient of the network. (b) The histogram represents the proba-
bility density of the local clustering coefficient produced by degree
preserving randomization of the connectivity of the original network.
The black dotted line is the fitted normal distribution and the contin-
uous blue line indicates the original clustering.

The next step uses Laplacian eigenmaps [41,44] to infer
the initial positions of the nodes in similarity space. Mercator
then makes order preserving adjustments by calculating the
expected gap size in the S1 model. It then refines the positions
by maximizing the likelihood that the observed network is
generated by the model. The final step of Mercator refines the
set of κi’s, now using the angular information found in the
previous steps.

In this original version, Mercator is only able to handle
strongly geometric networks with β > 1. It is a standard as-
sumption that geometric networks must live in this regime due
to their finite levels of clustering. However, as explained in
the Introduction, the S1/H2 model in the regime 0 < β � 1
can produce networks with substantial clustering away from
the thermodynamic limit. It is therefore necessary to extend
Mercator to this new region. This implies implementing the
change in connection probability when crossing the critical
temperature as found in Eq. (1). The same goes for the param-
eter μ̂. However, here we cannot just take the other asymptotic
equation for β < 1 because we want Mercator to be applicable
to small networks with β ≈ 1 as well. Hence, we produced an
updated version of Mercator that is able to handle networks
in the whole range of β values and where μ̂ is determined
numerically such that the observed average degree of the real
network matches exactly the expected average degree of a S1

network with uniform node distribution and a hidden degree
distribution that matches the observed one.

One of the challenges of embedding networks below β = 1
comes from the fact that the function c(β ) flattens off as one
approaches the infinite temperature limit β → 0, as can be
seen in Fig. 1(a). Here, we take as an example the network
Foodweb–Eocene [45], where nodes represent taxa and edges
trophic relationships. As per the initial steps of Mercator, we
choose a certain β and set the hidden degrees such that the
degree distribution is reproduced and with this calculate the
expected average local clustering coefficient 〈c〉. Repeating
this for a range of β’s, one observes that the function ap-
proaches a constant as β approaches zero. The horizontal
line in the figure represents the actual level of clustering
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TABLE I. Set of real networks classified by type: (I) nongeometric, (II) quasigeometric. Network properties are also shown. The following
abbreviations are used: (MB) metabolic, (GI) genetic interactions, (GMP) genetic multiplex, (PPI) protein-protein interactions, (PoP) point of
presence. Detailed descriptions of the networks can be found in Appendix B.

Network Area N 〈k〉 kmax c β Type

Foodweb–Eocene Ecological 700 18.3 192 0.10 β ≈ 0 I
Foodweb–Wetland Ecological 128 32.4 110 0.33 β ≈ 0 I
WordAdjacency–English Language 7377 12.0 2568 0.47 β ≈ 0 I
WordAdjacency–Japanese Language 2698 5.9 725 0.30 β ≈ 0 I
MB–R.norvegicus Cell 1590 5.9 498 0.19 β ≈ 0 I
WikiTalk–Catalan Social 79209 4.6 53234 0.83 β ≈ 0 I
GI–S.cerevisiae Cell 5933 149 2244 0.17 0.63 II
GMP–C.elegans Cell 3692 4.1 526 0.11 0.69 II
Gnutella Technological 10876 7.4 103 0.01 0.73 II
PPI–S.cerevisiae Cell 7271 45.0 3613 0.37 0.75 II
PPI–D.melanogaster Cell 11319 23.7 889 0.10 0.84 II
Transport–London Transportation 369 2.3 7 0.03 0.86 II
GMP–S.cerevisiae Cell 6567 68.1 3254 0.22 0.88 II
Internet-PoP Technological 754 2.4 7 0.03 0.90 II
PPI–H.sapiens Cell 27578 37.9 2883 0.15 0.91 II
WikiVote Social 7066 28.5 1065 0.21 0.91 II
MathOverflow Social 13599 10.5 949 0.32 0.99 II

in the network under study. We can say, with confidence,
that βreal � 0.5, but cannot determine a lower bound. As
the true value could be β = 0, i.e., the levels of cluster-
ing in the network could be described by the configuration
model, the coupling between the geometry and topology of
the network is extremely weak and it is, thus, effectively
nongeometric. We conjecture that these networks either have
no associated geometry to begin with or are coupled so weakly
to it that it cannot be reproduced. Thus, Mercator must be
able to detect these types of networks, i.e., it must be able to
filter out nongeometric networks. To do so, we want Mercator
to answer the following question: Can the observed levels of
clustering be plausibly explained by the configuration model?

To answer this question, we need to add a step to the
algorithm. Before the embedding of a network starts, a large
amount of random copies are created using degree-preserving
randomization [46]. This randomization step destroys all in-
formation contained in the network, except for the degrees
of the nodes and structural correlations imposed by global
constraints at finite sizes. Because the angular coordinate in
the S1/H2 model functions as a proxy for all attributes of
a node, apart from its degree, it is clear that removing this
information is equivalent to decoupling the network from its
similarity dimension, exactly what happens at β = 0. Thus,
these random copies are just realizations of the configuration
model preserving the original degree distribution. We then
calculate the average local clustering coefficient for all ran-
domized copies, leading to the distribution shown in Fig. 1(b).
The observed level of clustering is given by the vertical
line, and we can conclude that it is completely in line with
the configuration model. Had the observed clustering been
much larger, we might conclude that it is statistically unlikely
that the network was generated with the configuration model
and that β > 0.We stress, however, that networks not being
congruent with the configuration model does not necessarily
mean the S1 model is a good fit for explaining the observed
network structure. It merely implies that Mercator has at

least the potential to find a meaningful embedding. How well
this embedding reproduces the network’s structural properties
must be studied separately. We do precisely this in Sec. III C.

III. RESULTS

A. Artificial networks: Embeddings

It is important to first study if it is indeed possible to
recover geometric information from the topology of a weakly
geometric network when the ground truth about its geometry
is known. To do this, we study the performance of Mercator on
artificial networks generated from the S1 model with 0 < β �
1. We generate heterogeneous networks where the distribution
of hidden degrees is given by the Pareto distribution:

ρ(κ ) = (γ − 1)κγ−1
0 κ−γ . (7)

Here, γ > 2 determines the exponent of the tail of the result-
ing degree distribution.

We focus on Mercator’s ability to recover the angular co-
ordinates of the original network, as it is only the coupling to
the similarity dimension that becomes weaker as β → 0. The
performance with respect to the popularity dimension should
not be much different than in the region β > 1, which has
been already extensively studied in Ref. [26].

In Fig. 2, we show the performance of Mercator for various
inverse temperatures β and γ = 2.5. We see that, as expected,
the embedding gets progressively worse as the temperature
increases. As β → 0, the coupling to the geometry becomes
weaker and there is thus less geometric information contained
in the topology. We do, however, observe that the embedding
is still good even for β’s relatively far below the transition
point. For small values of β � 0.6, Mercator is not able to
infer the correct β because the geometric coupling in these
networks is extremely weak. Even so, by feeding Mercator
with the correct value of β, we are able to obtain an embed-
ding. However, as shown in Fig. 2(d), the obtained coordinates
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FIG. 2. Examples of the inferred angular coordinate versus the
original angular coordinate for artificial networks generated with the
S1 model at varying inverse temperatures (a) β = 1.2, (b) β = 0.9,
(c) β = 0.6, and (d) β = 0.3. All networks were created with the
following parameters: N = 5000, 〈k〉 = 12, γ = 2.5.

are completely different from the original ones so, even if the
nodes were originally placed on an underlying geometry, the
resulting topology is not congruent with it.

Now that we have an intuitive idea of the performance
of Mercator in the weakly geometric region 0 < β � 1, the
next step is to substantiate these results. To this end, we
generate 20 network realizations for particular values of γ and
a range of β’s. We then embed these and test the quality of
the embedding. In Figs. 3(a)–3(c), we show the results for the
C score, which measures how well the original ordering of
the nodes on the circle is reproduced in the embedding (we
provide a complete definition of the C score in Appendix A).
We observe a transition between almost perfect reproduction
of the ordering by Mercator (C = 1) at high β to a situation
where the ordering is completely random (C = 0.5) at low β.
This confirms the results we obtained in Fig. 2.

In Figs. 3(d)–3(f), we investigate how the performance
varies as a function of N . To this end, we fit the function
(C score − 0.5)(N ), assuming that it scales as ∝ NσC . We use
networks of sizes N ∈ [1000, 16000] to perform this fit. We
then plot the exponent σC as a function of the inverse temper-
ature β. We see that σC = 0 for a range of β, and then quickly
decreases. This implies that the performance remains constant
for a wide range of weak couplings, meaning that here ge-
ometric information can always be extracted irrespective of
the system size. This is true despite the fact that clustering
vanishes in the thermodynamic limit in this region. While
the presence of nonzero triangle densities in this region is a
finite-size effect, the presence of geometric information is not.

FIG. 3. (a)–(c) Dots represent the C score as a function of the
inverse temperature β for individual realizations of the S1 model
for N = 4000. (d)–(f) The scaling exponent of the C score, as-
suming (C score − 0.5) ∝ NσC . For the fit, networks of size N ∈
{1000, 2000, 4000, 8000, 16000} where used. For all panels, 〈k〉 =
12 and for (a), (d) γ = 2.1; (b), (e) γ = 2.5; and (c), (f) γ = 2.9.
The vertical dashed lines indicate the critical inverse temperature
β ′

c = 2/γ separating the quasigeometric and nongeometric regimes.
The shaded regions represent the 2σ confidence interval.

We note that the region where the performance is constant
is larger for higher γ , and that the transition point lies around
β = 2/γ , indicated by the dotted lines in Figs. 3(d)–3(f). The
fact that σC < 0 below this point and σC = 0 above it implies
that, in the thermodynamic limit, we should observe a jump in
the performance, reminiscent of a first-order phase transition.
This is in line with the observation that at β = 2/γ the vari-
ance in the C score explodes, as can be seen in Figs. 3(a)–3(c).

The location of this transition is in agreement with the
theoretical results in Ref. [25]. There, β = β ′

c = 2/γ marked
the transition between the slow, temperature-dependent decay
of the average local clustering coefficient for β > β ′

c and a
faster decay for β < β ′

c, equivalent to the one observed in
the soft configuration model [47]. These two regions were
then coined the quasigeometric and nongeometric regimes,
respectively. The fact that we recover this transition here is
a very profound result, as it confirms that the division of the
region β � 1 into these two subregions is not just theoretical
in nature but has very real, observable consequences.

B. Artificial networks: Greedy routing

The second test we discuss here is more practical in nature
and involves the performance of the greedy routing protocol
[15]. In this protocol, a pair of nodes is selected at random,
and the goal is to efficiently send a packet of information from
one to the other. This is done by looking at the neighbors of
the node that contains the packet, which is then forwarded
to whichever neighbor is closer in hyperbolic space to the
destination. This is repeated until one of two scenarios occurs.
In scenario (1), the packet reaches the destination. In scenario
(2), the neighbor closest to the goal is the node from which
the parcel just arrived. In this latter case, the packet is dropped
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FIG. 4. Results for the greedy routing routine. (a) Success prob-
ability ps based on the original coordinates, using both the definition
of the hyperbolic distance where the contribution vanishes at β = 0
(xi j) as well as where it remains constant (x̂i j). The shaded regions
represent the 2σ confidence interval. Similar results are shown in
(b), where now the inferred coordinates are used. Parameters used:
{N, 〈k〉, γ } = {4000, 12, 2.5}. In (c) and (d), a schematic represen-
tation of greedy routing paths based on the original and inferred
coordinates, respectively, are shown.

as the destination cannot be reached using the greedy routing
method.

One of the measures to define how well this algorithm
performs is the success probability ps, defined as the frac-
tion of node pairs for which a greedy routing path exists. In
Ref. [15], it was shown that information can be efficiently
routed through the network if one uses the coordinates in the
latent space. Of course, this works better when the connection
to this underlying space is stronger, i.e., when β is higher. This
is confirmed in Fig. 4(a). When using the original coordinates
and the hyperbolic distance as defined in Eq. (3), one observes
that the success probability ps decays with β until leveling out
at β = 0. Here, the angular coordinates are no longer taken
into account and the greedy routing is purely based on the
degrees of the network. If we redefine the hyperbolic distance
such that it reads

x̂i j = ri + r j + 2 ln
�θ

2
, (8)

i.e., such that the effect of the angular coordinates does not
diminish, we see that the results are worse. This is because,
for extremely low β, the connection between the topology
and the geometry is lost and the angular coordinates are thus
meaningless, impeding proper routing. Let us now turn to
the inferred coordinates, for which the results can be found in
Fig. 4(b). Returning to the original definition of the hyperbolic
distance, we see that for β � 1, the results are better than in
the case of the original coordinates. This can be understood
as follows: As lowering β can be interpreted as increasing the
temperature, more of the connectivity is determined by noise

(conditioned on the hidden degrees). However, Mercator will
always try and find as much geometry as possible and place
nodes in such a way that the inputted network realization is
most congruent with it. In practice, this means that two nodes
that were originally far away from each other, but are con-
nected due to the large fluctuations, will most likely be placed
close together in the embedding. In other words, the fact that
for finite systems even nongeometric random graphs display
clustering implies that an effective geometry can be found
such that the effect of the triangle inequality on the topology
is strongest. This is reminiscent of the fact that fluctuations
in random graphs can lead to high modularity [32], which
can lead to the detection of spurious communities [48]. In
our case, Mercator is able to uncover an effective geometry,
arising from the noise in the system (which makes this a finite
size effect). However, where detecting spurious communities
can be considered undesirable, the effective geometry can be
useful. For example, it is beneficial to the greedy routing rou-
tine, as nodes that are close together are now also connected.
Of course, when using the original hyperbolic distance, this
effect will eventually disappear as the angular coordinates are
no longer taken into account, leading to a success probability
that coincides with that of the original coordinates at β = 0.
However, if we again use Eq. (8), keeping the influence of
θ constant, we note that high success probabilities can be
achieved, even for low betas. Note that exactly at β = 0 this
is no longer the case as Mercator does not even try to find
meaningful angular coordinates.

In Figs. 4(c) and 4(d). this effect is clarified graphically.
Here, the goal is to send a packet from the source node labeled
S to the target node labeled T . There is only one correct path,
passing through node A. In the original metric space, due to
fluctuations, the source node is also connected to node B, even
though it lies far away from it. As B lies closer to the target,
the packet will get forwarded there. There is, however, no
connection between B and T and so the packet gets dropped.
In the case of the inferred coordinates, node B gets placed
closer to the source, and further from the target, in accordance
with its connectivity. Node A now lies closer to the target than
B does, and so a successful routing is achieved.

C. Real networks

So far, our study has been based on analyzing artificial
networks generated from the S1 model. In the following, we
show that many real networks are best described by the region
β � 1. In the case of real networks, the theoretical transition
point β ′

c = 2/γ between the non- and quasigeometric regions
is less useful as it is mostly not possible to accurately extract
the exponent γ . We therefore define a classification of three
distinct types of networks. Type-I networks are classified by
Mercator as being effectively nongeometric, i.e., their clus-
tering can be explained by the configuration model. Type-II
networks live in the region β � 1, but Mercator is still able
to determine their temperature as they have significantly more
clustering than one would expect from a network generated by
the configuration model. These networks can be considered
quasigeometric. Finally, type-III networks are those network
that have β > 1 and are, thus, fully geometric.
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FIG. 5. Summary of the results of Mercator for the GMP-S.cerevisiae network. (a) Representation of the embedding in the hyperbolic
plane as defined by the H2 model. The top 5% most geometric edges are shown. (b) Comparison between the expected and inferred densities
of nodes along the circle. (c) Comparison between the probability distribution as expected based on the model (expected) as well as the actual
distribution based on the inferred coordinates (inferred). The reproduction of the topological properties is also given: (d) the complementary
cumulative degree distribution, (e) the average local clustering coefficient per degree class, and (f) the degree-degree correlations per degree
class. The inferred results are obtained by generating 100 realizations of the S1 model based on the inferred coordinates. The orange shaded
regions represent the 2σ confidence interval.

In Table I, we show a selection of real networks and their
properties, as well as their classification into the categories
described above. There are several real networks for both
categories I and II, where β � 1. Note also that the absolute
value of the average local clustering is, on its own, not a good
indicator for geometric coupling strength. For example, the
value of c for the WordAdjacency–English network is rela-
tively high, but it is still a type-I network. This is because the
triangles in the network can also be formed due to the presence
of high degree nodes, meaning that this level of average local
clustering can also be obtained in the configuration model.
Another interesting observation is the presence of several
gene regulatory and protein-protein interaction networks in
the region β � 1, as well as the fact that several ecological
networks are deemed to have extremely weak geometry.

Real networks of type III have been extensively studied
in the literature [25,26,38,49]. Living in the region β > 1,
their coupling to the geometry is strong. In general, this leads
to relatively high levels of clustering. However, once again
exceptions arise. An example is the offline friendship network
studied in Ref. [50]. It can be shown that for this network
β = 1.3, squarely in the geometric regime. However, the av-
erage clustering c = 0.15 is lower than that of many type-I
or -II networks.

In Fig. 5, we show the full results for the embedding for the
GI–S.cerevisiae network, the genetic multiplex network of the
variety of yeast used in brewing beer. We see that the topolog-
ical properties of the real network are reproduced very well
by Mercator, even though the geometric coupling is weak.
In particular, in Fig. 5(c) we show that the inferred connec-
tion probability is congruent with the model. After inferring
the hidden coordinates, for each pair of nodes the param-
eter χ = xβ

i j/(μ̂κiκ j )max(1,β ) is calculated. These values are
then binned logarithmically, and for each bin the proportion

of links versus nonlinks is determined. This then gives the
inferred connection probability p(χ ). We see that this func-
tion fits the theoretical form p(χ ) = 1/(1 + χ ) well. Similar
results for the other real networks in Table I can be found
in the Supplemental Material [51]. Interestingly, Mercator is
still able to reproduce well the structural properties of type-I
networks, where β is set to zero manually. This does not come
as a surprise, as these networks should be well described by
the soft configuration model, i.e., on the basis of the hidden
degrees alone. As Mercator is still able to set these such that
the inferred degree sequence matches the observed one, the
other structural properties and the profile of the connection
probability are reproduced as well.

IV. DISCUSSION

Network geometry is an important framework that can
explain many structural properties of real networks. In the
past, the question if real networks are geometric was framed as
being binary: They are or they are not. However, recent results
[25] indicate that the transition between these regimes is, in
fact, not as hard for finite-sized networks, and the existence of
a quasi-geometric-regime was conjectured. In this region, the
clustering vanishes in the thermodynamic limit, implying that
geometry is lost, but it does so very slowly as a function of the
system size, which means that for real networks, which are of
finite size, clustering is significant. In this paper, we studied
what this implies for the geometricity of a network.

We extended Mercator, an accurate and efficient tool for
network embeddings based on the popularity × similarity S1

model, to the weak coupling regime. We then showed that, in
the quasigeometric region, the tool is able to recover a signif-
icant amount of geometric information from the topology of
the network alone. This implies that the geometry is indeed
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relevant in this regime. Only when the coupling strength is
very close to zero does the geometricity completely vanish.
Here, the properties of the network can be explained by the
soft configuration model. On the basis of these findings, we
define three classes of networks: type I: those with weak geo-
metric coupling where the topology is completely defined by
the degrees; type II: those with weak geometric coupling but
where the similarity dimension also plays a role in defining
the topology; and type III: those with strong geometric cou-
pling where the similarity dimensions is very important. We
show that real networks are represented in all three categories,
which means that it is important to take them all into account
when discussing the geometry of real networks. We show
that the presence of triangles in finite nongeometric random
graphs allows for the definition of an effective geometry by
Mercator. This geometry does not reflect the original under-
lying geometry, which is absent, but can still be useful for
information routing problems. Future work might investigate
if this effective geometry can also be used in other tasks, for
example, link prediction.

All in all, this paper shows that the discussion of whether
networks are geometric or not is limiting because the transi-
tion between these two extremes is not abrupt. Indeed, many
real networks are better described as being quasigeometric,
and even a weak geometric coupling can imply that geometric
information is stored in the topology of a network.
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APPENDIX A: C SCORE

The concordance or C score is a measure that quantifies
the similarity of two different orderings. In our case, the first
ordering is given by the set of vertices in a network, ordered
by their original coordinates and the second by ordering the
indices according to the inferred coordinates. Introduced in
Ref. [52], the C score was adjusted to a system with periodic
boundary conditions in Ref. [29], leading to the following
definition:

C score = 2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

δ(i, j), (A1)

where N is the total amount of nodes, i and j indicate two
nodes, and δ(i, j) is 1 if the shortest distance between i and
j along the circle has the same direction (clockwise or coun-
terclockwise) in both the original and inferred ordering, and
0 if the direction is different. Note that it is possible that

Mercator returns an inverted ordering, which, for example,
leads to an inverted diagonal in Fig. 2 as well as a C score
<0.5. Of course, the orientation of the ring does not influence
the quality of the embedding, as it is only the distance between
points along the circle that matters. Therefore, we are actually
interested in using max (C score, 1 − (C score)) as a measure,
such that 1 implies perfect ordering and 0.5 means the inferred
order is completely random.

APPENDIX B: REAL NETWORKS

In this Appendix, we give an overview of the networks
studied in the main text (Table I).

(i) Foodweb–Eocene [45]: A reconstructed food web
of an ecosystem from the early Eocene (48 000 000
years ago). Nodes represent taxa and edges rep-
resent consumer-resource relations. The original
network was directed.

(ii) Foodweb–Wetland [53]: A network of carbon ex-
changes among species in the cypress wetlands
of South Florida. Nodes represent taxa and edges
represent consumer-resource relations. The original
network was directed.

(iii) WordAdjacency–English [54]: A network of word
adjacency in English texts. Nodes represent words
and two words are connected if one directly fol-
lows the other in texts. The original network was
directed.

(iv) WordAdjacency–Japanese [54]: A network of
word adjacency in Japanese texts. Nodes represent
words and two words are connected if one directly
follows the other in texts. The original network was
directed.

(v) MB–R.norvegicus [55]: A metabolic network of
the rat (Rattus norvegicus), extracted from the Ky-
oto Encyclopedia of Genes and Genomes. Nodes
represent substances involved in enzymatic reac-
tions and edges represent reactant-product pairs.

(vi) WikiTalk–Catalan [56]: A network where nodes
represents Wikipedia editors for a certain language
(in this case, Catalan), and where user i and j are
connected if i leaves a message on the talk page of
j. The original network was directed.

(vii) GI–S.cerevisiae [57]: A network based on the
Molecular Interaction Search Tool (MIST) for
baker’s yeast (Saccharomyces cerevisiae). Here,
node represent genes and the edges indicate that the
effects of mutations in one gene can be modified by
mutations of another gene.

(viii) GMP–C.elegans [58]: A multiplex network repre-
senting different types of genetic interactions for the
nematode worm Caenorhabditis elegans. The lay-
ers represent physical, association, colocalization,
direct, suppressive, and additive interactions. In this
paper, we create a monolayer network by treating
the different interaction types equally and removing
repeated links. The original network was directed.

(ix) Gnutella [59]: A snapshot of the Gnutella peer-to-
peer file sharing network on August 4, 2002. Nodes
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are hosts and edges are connections between them.
The original network was directed.

(x) PPI–S.cerevisiae [57]: A network based on the
MIST for baker’s yeast (Saccharomyces cerevisiae).
Here nodes represent genes and the edges indicate
that there are physical interactions between their
associated proteins.

(xi) PPI–D.melanogaster [57]: A network based on the
MIST for the fruit fly (Drosophila melanogaster).
Here, nodes represent genes and the edges indicate
that there are physical interactions between their
associated proteins.

(xii) Transport–London [60]: A multiplex network of
the public transportation system in London. Nodes
are London train stations and the links can represent
either the underground, overground, or DLR con-
nections. There connections are treated equally as
to create a monolayer network.

(xiii) GMP–S.cerevisiae [58]: A multiplex network rep-
resenting different types of genetic interactions for
baker’s yeast (Saccharomyces cerevisiae). The lay-
ers represent physical, association, colocalization,
direct, suppressive, and additive interactions. In this
paper, we create a monolayer network by treating

the different interaction types equally and removing
repeated links. The original network was directed.

(xiv) Internet-PoP [61]: The Kentucky Datalink net-
work, an internet graph at the point of presence
(PoP) level. Nodes are physical network inter-
face points and links physical connections between
them.

(xv) PPI–H.sapiens [57]: A network based on the
MIST for humans (Homo sapiens). Here, nodes
represent genes and the edges indicate that there
are physical interactions between their associated
proteins.

(xvi) WikiVote [62]: The network represents the voting
process used to select Wikipedia administrators,
which are contributors with access to additional
technical features. Nodes represents Wikipedia
users and an edge is created if user i votes on the
selections of user j. The original network was di-
rected.

(xvii) MathOverflow [63]: An interaction network of
users (nodes) on the online Q&A site MathOver-
flow. An edge from node i to node j indicates that i
responded to an answer by j. The original network
was directed.
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