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Paradigm for approaching the forbidden spontaneous phase transition
in the one-dimensional Ising model at a fixed finite temperature
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The Ising model describes collective behaviors such as phase transitions and critical phenomena in various
physical, biological, economical, and social systems. It is well known that spontaneous phase transition at
finite temperature does not exist in the Ising model with short-range interactions in one dimension. Yet,
little is known about whether this forbidden phase transition can be approached arbitrarily closely—at fixed
finite temperature. Here I use symmetry analysis of the transfer matrix to reveal the existence of spontaneous
ultranarrow phase crossover (UNPC) at finite temperature in one class of one-dimensional Ising models on
decorated two-leg ladders, in which the crossover temperature T0 is determined solely by on-rung interactions and
decorations, while the crossover width 2δT is independently, exponentially reduced (δT = 0 means a genuine
phase transition) by on-leg interactions and decorations. These findings establish a simple ideal paradigm for
realizing an infinite number of one-dimensional Ising systems with spontaneous UNPC at desirable T0, which
would be characterized in routine laboratory measurements as a genuine first-order phase transition with large
latent heat thanks to the ultranarrow δT (say less than one nanokelvin), paving a way to push the limit in our
understanding of phase transitions and the dynamical actions of frustration arbitrarily close to the forbidden
regime.

DOI: 10.1103/PhysRevResearch.6.013331

I. INTRODUCTION

The textbook Ising model [1–4] consists of individuals that
have one of two values (+1 or −1, e.g., magnetic moments
of atomic spins pointing to the up or down direction, open or
close in neural networks, yes or no in voting, etc.),

H = −
∑

i j

Ji jσiσ j − h
∑

i

σi, (1)

where σi = ±1 is the ith individual’s value and h depicts
the bias (e.g., the external magnetic field that favors σi = +1
for h > 0). The individuals interact according to the simple
rule that neighbors with like values are rewarded more than
those with unlike values (i.e., the ferromagnetic interaction
Ji j > 0). Therefore, the society tends to form the order in
which all the members have the same value. This tendency
is, however, disturbed by heat, which favors the free choice
of the values or disorder. The model was originally proposed
for a central question in condensed matter physics, namely
whether a spontaneous phase transition (i.e., in the absence
of the bias, h = 0) between the high-temperature disordered
state and the low-temperature ordered state exists at finite
temperature, and in his 1924 doctoral thesis—one century
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ago—Ernst Ising solved the model exactly for spins localized
on a one-dimensional (1D) single chain but found no phase
transition [5]. The 2D square-lattice Ising model, which is
much harder to be solved exactly, is generally referred to as
one of the simplest statistical models to show a spontaneous
phase transition at finite temperature [6]. Moving from one
to two dimension was often described with n-leg spin ladders
(i.e., n coupled parallel chains, which are still 1D; the n → ∞
limit is 2D) [7], and again no phase transition was found for
finite n [8]. In fact, the Perron–Frobenius theorem implied
the nonexistence of any phase transition in 1D Ising mod-
els with short-range interactions [9]. The rigorously proved
nonexistence of spontaneous phase transition at finite temper-
ature in the 1D Ising model is deeply rooted in symmetry
[10] and becomes one of the most quoted limits of human
knowledge.

Here, we ask the question of how close the 1D Ising model
can get to a phase transition. The ideal answer would be such
an ultranarrow phase crossover (UNPC) that can approach a
genuine phase transition arbitrarily closely in a definite way—
at a fixed finite temperature T0 and with the crossover width
2δT getting narrower and narrower, best exponentially (δT =
0 means phase transition). The above asymptoticity means a
pathway in which T0 and 2δT are controlled independently
by different interactions; thus, broad phase crossovers can be
readily tuned to be ultranarrow at the same T0. Practically
speaking, when δT becomes so narrow (say less than one
nanokelvin), the UNPC would be characterized as a genuine
phase transition in laboratory measurements. The quest for
this kind of UNPC will not only push the limit in our under-
standing of phase transitions arbitrarily close to the forbidden
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regime, but also provide promising potentials in technology
applications.

A recent breakthrough relevant to this quest was the dis-
covery of UNPC in the name of “pseudotransition” in a few
decorated single-chain Ising models in the presence of the
magnetic field [11–22] and several zero-field cases in two-leg
[22,23] and three-leg [24] ladders. Those 1D Ising models
exhibit the entropy jump and a gigantic peak in specific heat,
resembling a first-order phase transition. The construction of
the “pseudotransition” utilized the concept of frustration as
follows: The Ising model can also accommodate the oppo-
site rule, namely neighbors with like values are rewarded
less than those with unlike values (i.e., antiferromagnetic
interaction Ji j < 0). Accordingly, the ordered state has alter-
nating values if such an arrangement can be made, such as
+1/ − 1/ + 1/ − 1/ + 1/ − 1 · · · on a 1D chain lattice, the
checkerboard pattern on the 2D square lattice, etc. However,
there are numerous situations where the between-neighbor
interactions cannot be simultaneously satisfied. The standard
example is a spin triangle [Fig. 2(a) below] where two spins
have opposite values, then it is impossible for the third spin
to have the opposite value to both of them, leading to the
state degeneracy of 2. This phenomenon is called geometrical
frustration [25,26]. Meanwhile, if the nondegenerate state,
where the first two spins couple more strongly to the third spin
and satisfactorily have the same value (because of having the
opposite value to the third spin), is tuned to be the ground state
with slightly lower energy than the aforementioned degener-
ated state, then a thermal (entropy) driven crossover between
them would occur at finite temperature [26]. This physics of
phase crossover is rather generic; however, it gives no hint
to the question of how to make 2δT narrower and narrower
while keeping T0 unchanged—2δT was not even defined and
expressed in terms of the model parameters in the previous
studies of pseudotransition [11–24].

The purpose of this paper is to present the finding of
spontaneous UNPC (SUNPC) in a family of decorated Ising
two-leg ladders with strong frustration, in which T0 is deter-
mined by on-rung interactions, while δT is independently,
exponentially reduced by on-leg interactions for fixed T0.
This establishes a simple ideal paradigm for implementing an

infinite number of 1D Ising systems with SUNPC [27]. We
further found that the SUNPC can be expressed accurately and
conveniently by a nonclassical order parameter providing a
microscopic description of the abrupt switching between two
unconventional long-range orders where the local two-parent-
spin correlations are ferromagnetic and antiferromagnetic,
respectively. The fact that the on-leg decoration (which con-
trols δT ) can be done independently of the on-rung decoration
(which controls T0) demonstrates an amazing advantage of
this paradigm; specifically, we show that δT can be exponen-
tially reduced by increasing the number of on-leg-decorated
spins.

The rest of the paper is organized as follows: Section II
heuristically describes the line of thinking and the use of a
dimensionality increase and reduction method that utilized
symmetry analysis to give rise to the SUNPC. For the sake
of clarity, Sec. III details the realization of SUNPC in a
minimal 1D Ising model by decorating the rungs and the
exact solutions about its thermodynamic properties, correla-
tion functions, and nonclassical order parameters. Section IV
showcases how to decorate the legs to approach a genuine
phase transition at finite temperature arbitrarily closely. Sec-
tion V addresses some immediate implications of the present
paper on further fundamental and technological research and
development.

II. THE METHOD

A. SUNPC from mimicking the first-order phase transition

The mathematical signature of phase transitions is the
nonanalyticity of the system’s thermodynamic free energy
f (T ) where T denotes temperature. A kth-order phase tran-
sition means that the kth derivative of f (T ) starts to be
discontinuous at the transition. The exactly solved 1D Ising
models on both the single chain [1–4] and ordinary n-leg
ladders with n = 2, 3, 4 [8] offer examples of analytic free
energies.

The simplest description of the phase transition phe-
nomenon is the level crossing in the first-order phase
transition, such as melting of ice or the boiling of water.
As illustrated in Fig. 1(a), suppose the free-energy functions

FIG. 1. SUNPC mimics a genuine phase transition. (a) Schematic of a first-order phase transition due to the free-energy crossing of the two
phases a and b (lines). The free energy of the whole system is represented by the line (not shown) connecting the red dots and is nonanalytic at
the level crossing. (b) Schematic of SUNPC, whose free energy looks the same as (a) except when getting too close to the ultranarrow phase
crossover. For shorthand notation, T means kBT in all the figures labels from now on.
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of two phases −g[a(T )] and −g[b(T )] cross at the critical
temperature T0. Then, the free energy of the system taking the
lower value of −g[a(T )] and −g[b(T )] is given by

fPT(T ) = −g

[
a + b

2
+ |a − b|

2

]
, (2)

which is nonanalytic at T0 with its first derivative with respect
to T being discontinuous.

We hypothesize that SUNPC can be created by using an
analytic function to mimic Eq. (2) and consider here [13]

fSUNPC(T ) = −g

⎡
⎣a + b

2
+

√(
a − b

2

)2

+ c2

⎤
⎦, (3)

which satisfies the following two conditions: (i) a(T ) and
b(T ) cross at T0, and (ii) c(T ) � |a − b| except for an ul-
tranarrow temperature region around T0. The width of the
crossover 2δT can be estimated by solving |a−b|

2 = c at T =
T0 ± δT . This definition of δT is consistent with the crossover
width later defined by measuring the order parameter [see
Eq. (23)]. Equation (3) looks the same as Eq. (2) except when
zoomed into the ultranarrow region around T0 [see Fig. 1(b)].
Importantly, these two conditions imply that T0 and δT could
be independently controlled by different interactions.

The form of Eq. (3) can result from the 1D Ising model on
a single chain. In the thermodynamic limit, the free energy
per unit cell f (T ) = − limN→∞

1
N kBT ln Z , where N is the

number of unit cells, Z = Tr(e−βH ) is the partition function,
and β = 1/(kBT ) with kB being the Boltzmann constant. Z of
a 1D Ising model can be obtained exactly by using the transfer
matrix method [1–4,8,11–24,27] and is given by

Z = Tr(�N ) =
∑

k

λN
k → λN for N → ∞, (4)

where � is the transfer matrix, λk the kth eigenvalue of �,
and λ the largest eigenvalue. Thus, f (T ) = −kBT ln λ. For
the single-chain Ising model, the transfer matrix is of the
following form:

�single−chain =
(

a c
c b

)
, (5)

with λ = 1
2 [a + b +

√
(a − b)2 + 4c2]. Compared with

Eq. (3), f (T ) is of the same form when the function g(x) is
defined as g(x) = kBT ln(x).

B. The absence of SUNPC in single-chain Ising models

However, in the absence of the bias (h = 0), the Ising
model is invariant with respect to flipping all σi. By this spin
up-down symmetry, a = b and λ = a + c in Eq. (5) for single-
chain Ising models, including decorated Ising chains. This
means the absence of SUNPC, which requires the crossing
of a and b as T changes.

The nonzero bias h breaks the above invariance and lifts the
degeneracy of a and b. For the simplest single-chain model,
a = eβ(J+h), b = eβ(J−h), c = e−βJ . Thus, a and b do not cross
at all. How to make a and b cross in decorated single-chain
Ising models in the presence of the bias was the subject of
the so-called “pseudotransition” [11–22]. It was understood

that certain decorations could renormalize the bias to be effec-
tively T dependent and the resulting heff (T ) changes its sign at
the pseudocritical temperature T0 [21]. Nevertheless, heff (T )
vanishes for h = 0, in agreement with the aforementioned spin
up-down symmetry. Therefore, no spontaneous pseudotransi-
tion would occur in those systems.

The extensively studied 1D Ising chain with the first-
and second-nearest-neighbor interactions, the J1-J2 model
[28–31], showcases the emerging of an effective magnetic
field heff for h = 0 by the transformation σiσi+1 = σ̃i. This
was inspiring. However, heff = J1, the nearest-neighbor in-
teraction, is not T dependent, and the transformed model is
an ordinary single-chain Ising model with Jeff = J2 in this
T -independent effective field [28–30]. Therefore, the resultant
effective a and b do not cross at all.

C. Dimensionality increase and reduction for SUNPC

To find SUNPC, we resort to the strategy of dimensionality
increase and reduction: First, we increase the transfer matrix
from 2 × 2 to 4 × 4. Then, we identify the 4 × 4 transfer
matrix that has such high symmetry that it can be block
diagonalized and reduced back to a 2 × 2 matrix [1] now with
the new effective a and b crossing.

We consider the following 4 × 4 transfer matrix:

� =

⎛
⎜⎜⎝

a z z u
z b v z
z v b z
u z z a

⎞
⎟⎟⎠. (6)

It can be block diagonalized by the parity-symmetry opera-
tions U ,

U = 1√
2

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 −1 1 0

−1 0 0 1

⎞
⎟⎟⎠ (7)

and the result is

U T �U =

⎛
⎜⎜⎝

a − u 0 0 0
0 b − v 0 0
0 0 b + v 2z
0 0 2z a + u

⎞
⎟⎟⎠. (8)

Thus, the eigenvalues of the 4 × 4 transfer matrix are a − u,
b − v, and

λ± = a + u + b + v

2
±

√(
a + u − b − v

2

)2

+ 4z2. (9)

Then, the task is transformed to how to realize the crossing of
a + u and b + v.

The 4 × 4 transfer matrix can be obtained for the 1D Ising
model on a two-leg ladder. The ordinary two-leg Ising ladder
[8], the spin-1/2 Ising tetrahedral chain [22], and the spin-1/2
Ising-Heisenberg ladder with alternating Ising and Heisenberg
inter–leg couplings [23] are known special cases satisfying
the symmetry of Eq. (6). Among them, the ordinary two-leg
ladder does not host the SUNPC, and the latter two cases
with zero-field pseudotransition have not been analyzed with
the above symmetry-based block diagonalization technique,
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FIG. 2. The model and the phase diagram. The two-leg ladder
with (a) triangle rungs or (b) trimer rungs, where the balls stand for
the spins and the bonds for the interactions J , J ′, and J ′′. The two
ladders are equivalent. Spin frustration is illustrated in the leftmost
triangle rung of (a): when the two end spins have opposite values,
the middle one has no preference despite strong interactions. (c) The
color map of the order parameter C12(0) as a function of temperature
T and the frustration parameter α = (|J ′| + J ′′)/|J|. J ′′ = −3 and
|J| = 1 is the energy unit. Red stands for the nearly +1 region
governed by J ′ (where spin1 and spin 2 on the same rung have
like values), purple stands for the nearly −1 region governed by
J ′′ (where spin 1 and spin 2 on the same rung have unlike val-
ues and spin 3 is decoupled). The SUNPC between them takes
place at T0 = 2(|J ′| + J ′′)/(kB ln 2) with the ultranarrow crossover
width 2δT = 2−1/α T0 8/ ln 2 for strong frustration 0 < α < 0.15.
The bluish-to-greenish region is the exotic high-T phase where
frustration effectively decouples the two legs of the ladder. The
microscopic mechanism of the decoupling is illustrated with two
kinds of spin flip, which are marked by the red circles: The spin
flip that does not involve the child spin (bottom left) costs the en-
ergy of 4|J| + 2|J ′′|. The spin flip in the high-T phase (top), for
which the child spin responds cooperatively, costs the energy of
4|J| + 2|J ′′| − 2|J ′| ≈ 4|J|, similar to the case of two decoupled
chains. In the illustrations, J < 0 and J ′ < 0 are used without loss
of generality.

which is vital to systematically looking for more cases of
spontaneous ultranarrow phases crossover. Here, we take the
ordinary two-leg ladder as the parent system and investigate
how to properly decorate it with child spins.

III. A MINIMAL MODEL

For clarity, we focus the presentation on the trimer-rung
ladder that has only one decorated spin per rung in this

section. The spin trimer [Fig. 2(b)] or equivalently triangular
[Fig. 2(a); hence the source of frustration is more obvious]
represents the simplest form of frustration. The model is de-
fined as

H = Hparents +
∑

i

H (i)
children,

Hparents = −
N∑

i=1

[J (σi,1σi+1,1 + σi,2σi+1,2) + J ′′σi,1σi,2],

H (i)
children = −J ′(σi,1σi,3 + σi,2σi,3), (10)

where σi,m = ±1 denotes the spins on the mth site of the ith
rung of the ladder and σN+1,m ≡ σ1,m (i.e., the periodic bound-
ary condition). N is the total number of the rungs and we are
interested in the thermodynamical limit N → ∞. Each rung
has three sites with m = 1, 2 on the two legs (referred to as the
parent sites) and m = 3 decorated at the middle (referred to as
the child site) of the rung; so a rung is also called a household
for ease of memory. J is the nearest-neighbor interaction along
the legs, J ′′ the interaction that directly couples the two legs,
and J ′ the interaction that couples the child spin to the two
parent spins (J ′ = 0 reduces the system to the ordinary two-
leg ladder); J ′ and J ′′ are intrahousehold. The parameter space
for strong frustration can be estimated from the J = 0 limit, in
which the system is reduced to decoupled trimers or triangles:
J ′′ < 0 (antiferromagnetic interaction) and |J ′| ≈ |J ′′|. In the
following, the frustration is parameterized by

α = J ′′ + |J ′|
|J| . (11)

The smaller the magnitude of α, the stronger the frustration.
To make the ground state have much less degeneracy or en-
tropy, the two parent spins of a household must have the same
value by coupling more strongly to the child spin via J ′ than
their direct antiferromagnetic coupling J ′′, i.e., α > 0.

A. The transfer matrix and SUNPC

Since the model has three spins and 23 = 8 possible states
per unit cell, its transfer matrix is 8 × 8 at a glance. However,
the m = 3 child spins can be exactly summed out as they are
coupled only to the m = 1, 2 parent spins on the same rung,
yielding the children’s contribution functions

±
±

i
=

⎡
⎣ ∑

σi,3=±1

(eβH (i)
children )σi,2=±

σi,1=±

⎤
⎦

1
2

. (12)

They are translationally invariant, i.e., ±
±

i
= ±

± . Then,

using the spin up-down symmetry, i.e., −
− = +

+ =
[2 cosh(2βJ ′)]1/2 and −

+ = +
− = √

2, we found the 4 × 4

transfer matrix in the order of (σ2
σ1

) = (++), (−+), (+−), (−−) to be

of the same form as Eq. (6), with a = eβ(2J+J ′′ ) +
+

2
, b =

eβ(2J−J ′′ ) −
+

2
, u = eβ(−2J+J ′′ ) +

+
2
, v = eβ(−2J−J ′′ ) −

+
2
, and z =

+
+

−
+ .
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FIG. 3. Temperature dependence of thermodynamical properties. (a) T0 as a function of J ′ with the exact results of Eq. (15) (solid lines)
and the estimates by Eq. (16) (dashed lines). (b) Specific heat and (c) entropy per trimer for four sets of model parameters. (d) Entropy per
trimer for fixed α = 0.05 and four different values of J ′′. J ′′ = −3 unless specified and |J| = 1 is the energy unit.

The largest eigenvalue of the transfer matrix is

λ = ϒ+[cosh(2βJ ) +
√

1 + (ϒ−/ϒ+)2 sinh2(2βJ )], (13)

with the household’s frustration functions

ϒ± = eβJ ′′ +
+

2
± e−βJ ′′ −

+
2

= 2eβJ ′′
cosh(2βJ ′) ± 2e−βJ ′′

, (14)

which are controlled by the intrahousehold interactions J ′ and
J ′′, but independent of the interhouseld interaction J . Here we
have used the relationship ϒ2

+ = ϒ2
− + 4z2 and cosh2(x) =

sinh2(x) + 1. λ depends on J ′ and J ′′ solely via ϒ±. Note that
the equations of (13) and (14) are invariant upon the trans-
formation of J → −J or J ′ → −J ′ (i.e., ferromagnetic and
antiferromagnetic interactions are interchangeable), but they
are not for J ′′ → −J ′′. That is, only J ′′ < 0 (antiferromagnetic
interaction) introduces frustration.

ϒ− ∝ a + u − b − v measures the crossing of a + u and
b + v. It changes sign at T0 where ϒ− = 0, i.e.,

eβJ ′′ +
+

2
− e−βJ ′′ −

+
2

= 2eβJ ′′
cosh(2βJ ′) − 2e−βJ ′′ = 0.

(15)

This means that T0 is determined only by the on-rung
interactions J ′, J ′′ and independent of the on-leg interac-
tion J . For sufficiently large 2|J ′|/kBT0, 2 cosh(2J ′/kBT0) 

e2J ′/kBT0 � 1,

T0 
 2

kB ln 2
(|J ′| + J ′′)

for J ′′ < 0 and |J ′| � |J ′′| (i.e., α � 0). (16)

For example, kBT0 ≈ 0.144 for J ′ = 3.05 and J ′′ = −3 yield-
ing 2 cosh(2J ′/kBT0) ≈ e42 � 1. As shown in Fig. 3(a), for
J ′′ = 0.05 − |J ′| < 0 to keep kBT0 
 0.144, T0 as a function
of J ′ estimated by Eq. (16) (dashed lines) accurately repro-
duces the exact results of Eq. (15) (solid lines) except for
J ′ < 0.15 where T0 increases exponentially; indeed, in the
unfrustrated limit of J ′′ = 0, T0 → ∞ and no crossover would
happen at finite temperature.

It is now clear that SUNPC was not found in the ordinary
two-leg ladder without the children. In that case, J ′ = 0 leads
to ϒ− = 4 sinh(βJ ′′), which does not change sign for given
J ′′. For J ′′ = 0 as the other limit of no frustration, ϒ− =
4 sinh2(βJ ′) does not change sign, either.

Secondly, (ϒ−/ϒ+)2 in Eq. (13) has a prefactor of
sinh2(2βJ ), which scales as 21/α in the vicinity of T0. So, if
Eq. (13) is approximated by neglecting 1 inside

√· · · for the
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strong frustration of α � 1,

λ 
 ϒ+ cosh(2βJ ) + |ϒ− sinh(2βJ )|, (17)

which becomes nonanalytic. The difference between Eq. (13)
and Eq. (17) takes place in a region of (T0 − δT, T0 +
δT ), where the crossover width 2δT can be estimated by
|ϒ−/ϒ+ sinh(2βJ )| = 1 at T0 ± δT , yielding

2δT = 2kBT 2
0

sinh
(

2J
kBT0

)[
J ′′ + J ′ tanh

(
2J ′

kBT0

)] (18)


 8

ln 2
T0 e− 2J

kBT0 
 8

ln 2
T0 2− 1

α , (19)

where Eq. (18) is exact and Eq. (19) is based on Eq. (16). 2δT
has two paths to approach zero: (i) T0 → 0, which is not un-
expected as zero-temperature phase transition is allowed. (ii)
For fixed finite T0, which is determined by J ′ and J ′′, the width
2δT approaches zero exponentially as J increases. Using the
above example of kBT0 = 0.144, 2kBδT 
 1.6 × 10−6 and
1.5 × 10−12 for J = 1 and 2, respectively. Note that α → 0
for both cases by Eqs. (11) and (16). Although the proof
of nonexistence of any phase transition in 1D Ising models
with short-range interactions based on the Perron–Frobenius
theorem does not work for infinite-strength interactions [9],
similar to zero temperature, it is amazing to realize such an
ideal paradigm of SUNPC in which T0 and δT are controlled
by different model parameters and for fixed T0, δT decays
exponentially with the single parameter J . This issue will be
further addressed in Sec. IV.

B. Thermodynamic properties

The thermodynamical properties can be retrieved from the
free energy per trimer f (T ) = −kBT ln λ, the entropy S =
−∂ f /∂T , and the specific heat Cv = T ∂S/∂T .

We compare the free energies per trimer f (T ) obtained
from using the exact Eq. (13) [Fig. 1(b)] and the mimicked
Eq. (17) [Fig. 1(a)] for α = 0.05; they differ within sub-
millikelvins for |J| = 300 K when the slope changes from
near 0 to near −kB ln 2. The SUNPC resembles a first-order
phase transition with the large latent heat of kBT0 ln 2 per
trimer.

Figure 3(b) shows a sharp peak in the exact specific heat
for α = 0.05 (blue line), resembling a second-order phase
transition. In comparison, the three typical unfrustrated cases,
namely (i) α = 3 or governed by J ′ (orange line), (ii) J ′ = 0
the ordinary two-leg ladder governed by J ′′ (green line), and
(iii) J ′ = J ′′ = 0 the decoupled double chains (red line), do
not show such a sharp peak.

Figure 3(c) show the temperature dependence of the exact
entropy S = −∂ f /∂T for the same four cases as Fig. 3(b).
The strongly frustrated case for α = 0.05 (blue line) shows
a waterfall behavior at T0, where the entropy falls vertically
(within 2δT ) from a plateau at ln 2 down to zero. Its low-T
zero-entropy behavior is in line with the unfrustrated case
for α = 3 (orange line), while its intermediate-T ln 2-plateau
behavior is in line with the ordinary two-leg ladder case for
J ′ = 0 (green line) where the child spins are completely de-
coupled from the system and thus yield the specific entropy
of ln 2. This offers a hint to the nature of the SUNPC: it

is an entropy-driven transition, in which the child spins are
tightly coupled to the two parent spins on the legs in the low-T
region because |J ′| > |J ′′|, but they are decoupled from the
outer ones in the intermediate-T region just above T0 thanks
to the jumping contribution of entropy in terms of −T S to
the free energy. Mathematically, in the temperature region
near T0, one can estimate from Eq. (17) that λ ≈ eβ(2J+2J ′+J ′′ )

below T0 − δT and λ ≈ 2eβ(2J−J ′′ ) above T0 + δT , i.e., the
low-T region is controlled by J ′, while the intermediate-T
region is controlled by J ′′ < 0 with the decoupled child spin
contributing the factor of 2 to λ and ln 2 to entropy. Moreover,
in the high-T region beyond the ln 2 plateau, the entropy does
not continue following the ordinary two-leg ladder case (green
line) but behaves closer to the decoupled double chains for
J ′ = J ′′ = 0 (red line). A similar behavior also shows up in the
high-T region of the specific heat [Fig. 3(a)], indicating that
frustration effectively decouples the chains. We shall come
back to understand this strange behavior soon.

For the revealed three T -region behavior of the specific
entropy, Eqs. (16) and (18) determine that the SUNPC itself is
a sole function of α. This is demonstrated in Fig. 3(d) for fixed
α = 0.05 but with different J ′′, which directly couples the two
legs: The lines overlap in the first two T regions surrounding
the waterfall at T0. In contrast, in the high-T region, the detail
behavior of spin frustration is sensitive to J ′′ (and J ′ shown
below). It is understandable that as |J| and |J ′′| decreases, the
entropy moves up to be closer to the case of the decoupled
double chains. What is strange is why the chains with strong
interchain interactions also appear to be decoupled.

C. Spin-spin correlation functions and order parameters

To find an appropriate order parameter that describes the
three T regions and the associated transitions, we proceed to
calculate the spin-spin correlation functions, which allow us
to have detailed site-by-site information,

Cmm′ (L) = 〈σ0,mσL,m′ 〉T

=
∑

ν

(
λν

λ

)L

〈max|σ0,m|ν〉〈ν|σL,m′ |max〉, (20)

where 〈· · · 〉T denotes the thermodynamical average, |max〉
is the eigenvector of the transfer matrix corresponding
to the largest eigenvalue λ, and |ν〉 is the eigenvector
corresponding to the νth eigenvalue λν . So, Cmm′ (∞) =
〈max|σ0,m|max〉〈max|σ∞,m′ |max〉.

As shown in Figs. 4(c) and 4(d), the behavior of intrachain
correlation C11(L) as a function of both T and L (blue lines)
is closer to the decoupled double chains of J ′ = J ′′ = 0 (red
lines), consistent with the specific heat [Fig. 3(b)] and the
entropy data [Fig. 3(c)]. The data of the unfrustrated yet
strongly coupled chains for both α = 3 (orange lines) and
J ′ = 0 (green lines) cases move to considerably higher tem-
peratures, suggesting that the chain decoupling is related to
the energy cost for attempts to break the order.

The conventional choice of the order parameter is the mag-
netization 〈σi,m〉T = √

Cmm(∞) = 〈max|σ0,m|max〉 = 0 at fi-
nite T . This agrees with the theorems about the nonexistence
of finite-T phase transition in 1D Ising models with short-
range interactions [9]. Hence, the magnetization cannot
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FIG. 4. Spin-spin correlation functions and unconventional order parameters. (a) C12(0), (b) C13(0), and (c) C11(1) as a function of T as
well as (d) C11(L) as a function of L at T = J for four sets of model parameters. The dashed line in (b) is the trimer energy −J ′′C12(0) −
J ′C13(0) − J ′C23(0), shifted up by |J ′′| for easy reading. J ′′ = −3 unless specified and |J| = 1 is the energy unit.

be used as the order parameter for the SUNPC. Instead,
let us look at the on-rung correlation function Cmm′ (0) =
〈max|σi,mσi,m′ |max〉,

C12(0) = −∂ f (T )

∂J ′′ = (ϒ−/ϒ+) cosh(2βJ )

[1 + (ϒ−/ϒ+)2 sinh2(2βJ )]
1
2

,

(21)

C13(0) = C23(0) = −1

2

∂ f (T )

∂J ′ = tanh(2βJ ′)(1 + C12(0))/2.

(22)

C12(0), the correlation between two parent spins on the
legs, is proportional to the frustration function ϒ− and
changes sign at T0 (exactly zero at T0). Because of the
exponentially large cosh(2βJ ) and sinh(2β|J|) near T0,
C12(0) ≈ sgn(ϒ−) coth(2β|J|) ≈ +1 below T0 and −1 above
T0, as shown in Fig. 4(a) (blue line for α = 0.05). Below T0,
the blue line overlaps with the unfrustrated J ′-dominated case
of α = 3 (orange line). In the intermediate-T region, it shows
a plateau and overlaps with the unfrustrated J ′′-dominated
ordinary two-leg ladder case (green line). That is, the two
parent spins changes from having like values in the low-T
region to having unlike values in the intermediate-T region
where the child spins appear to be decoupled from the ladder.

So, one rung’s contribution to the free energy for T < T0

and T > T0 is approximately −J ′′ − 2|J ′| and J ′′ − kBT ln 2,
respectively. They cross at kBT0 = 2(|J ′| + J ′′)/ ln 2 =
2α|J|/ ln 2, in agreement with Eq. (16). What is remarkably
new to learn is that for the high-T region, while remaining
negative, the blue line of C12(0) does not continue following
the green line, which gradually decays to zero as temperature
increases. Instead, it decays significantly faster with an
inflection point at T ∗ ≈ 0.88 before gradually decaying to
zero. Yet, with C12(0) ≈ −0.82 at T ∗, it is still far away from
the zero red line for the case of the completely decoupled
double chains. The two chains seem to be strongly coupled.
How can we reconcile this with the effective decoupling seen
in the above thermodynamic properties and the intrachain
correlation functions?

The answer is Eq. (22) for C13(0) and C23(0), the correla-
tions between the child spin and the two parent spins on the
same rung. They are equal by symmetry. Since C12(0) just
told us that spin 1 and spin 2 on the same rung strongly want
to have unlike values, it would have been expected in static
mean-field theory that C13(0) and C23(0) should have opposite
signs; considering that they are required to be equal by sym-
metry, they should be zero. Indeed, in the intermediate-T re-
gion, C13(0) is nearly zero [blue line in Fig. 4(b)]. However, as
soon as the temperature increases beyond the intermediate-T

013331-7



WEIGUO YIN PHYSICAL REVIEW RESEARCH 6, 013331 (2024)

region, C13(0) jumps up, meanwhile the magnitude of C12(0)
decreases [blue line in Fig. 4(a)]. This means that the child
spin starts to recouple to the parent spins to gain energy at
the expense of C12(0), following the astonishing near-linear
relationship of Eq. (22). The total energy within one trimer
−J ′′C12(0) − J ′C13(0) − J ′C23(0) remains nearly unchanged
in a wide range of temperatures [dashed line in Fig. 4(b)],
which indicates that the trimers can self-organize to relieve en-
ergy cost in their value-changing dynamics. Sizable C13(0) =
C23(0) encourages the two parent spins to have like values,
which counters negative C12(0). The net effect is decoupling
the two legs.

The correlation length of the two-spin quantities σi,mσi,m′

is infinite at T0, since the four-spin correlation function
limL→∞〈σ0,mσ0,m′σL,m′′σL,m′′′ 〉T = Cmm′ (0)Cm′m′′ (0) is not van-
ishing. Therefore, Cmm′ (0) are bona fide order parameters. To
check with the ordinary ladders, Figs. 4(a) and 4(b) show that
C12(0) and C13(0) can be finite for the other three unfrus-
trated cases; however, they do not change sign or they are
vanishing only at T = ∞. This means that using Cmm′ (0) as
the order parameters for the ordinary unfrustrated cases still
satisfies the theorems that no phase transitions take place at
finite temperature in those systems. Therefore, the unconven-
tional order parameters Cmm′ (0) can unify the description of
both the ordinary two-leg ladder system and the unconven-
tional phase transitions in the present frustrated ladder Ising
model.

To further verify that C12(0) is a bona fide order parameter,
we redefine the crossover width δT by measuring the slope of
C12(0) at T0 as shown in Fig. 6(a),

2δT = 2kBT 2
0

cosh
(

2J
kBT0

)[
J ′′ + J ′ tanh

(
2J ′

kBT0

)] (23)


 8

ln 2
T0e− 2J

kBT0 
 8

ln 2
T0e− 1

α , (24)

which differs from the previous definition of 2δT in Eq. (18)
by replacing sinh( 2J

kBT0
) with cosh( 2J

kBT0
). They are consistent

as cosh2( 2J
kBT0

) = sinh2( 2J
kBT0

) + 1 
 sinh2( 2J
kBT0

) for an ultra-
narrow phase crossover. Therefore, this nonclassical order
parameter, which has a well-defined value space of [−1, 1]
with the value 0 at the temperature meaning T0 and its inverse
slope at T0 meaning δT , provides an accurate, convenient, and
microscopic description of SUNPC.

The phase diagram in terms of the unconventional order
parameter C12(0) is shown in Fig. 2(c). The frustrated two-leg
ladder Ising model can have three phases for 0 < α < 0.15:
(i) the low-T phase (red zone) is governed by J ′ forcing the
two parent spins on the same rung to have like values. (ii) The
intermediate-T phase (purple zone) is governed by J ′′ forcing
the two parent spins on the same rung to have unlike values
and the child spin to be decoupled. The abrupt switching
between the two phases is an entropy-driven SUNPC with
large latent heat, resembling the first-order phase transition.
(iii) The exotic high-T phase (blue-green zone) is governed by
the dynamics of the frustration. The much broader crossover
between the intermediate-T phase and the exotic high-T phase
reveals itself via the phenomenon of frustration-driven de-
coupling of the strongly interacted chains. The microscopic

mechanism for the decoupling is illustrated in Fig. 2(c), where
the high energy cost associated with the thermal activated
flipping of a parent spin in the strongly interacted double
chains can be relieved in the trimer dynamics by flipping the
child spin cooperatively. The exact result of sizable nonzero
C13(0) = C23(0) demonstrates that the child spin is not a slave
to the mean field generated by the two parent spins, but they
have equal rights. The dynamics of the trimers exhibits the art
of compromise and finds the way to have created a triple-win
workplace in which every neighboring bond gains an opti-
mized share of rewards.

IV. THE ASYMPTOTICITY

We proceed to discuss how to arbitrarily approach the
genuine phase transition at finite temperature, i.e., δT → 0
for fixed T0. This hard task becomes obvious in our model,
since the value of T0 is determined by J ′ and J ′′, while the
width 2δT approaches zero exponentially as J increases for
fixed T0. Nevertheless, we hereby ask how we can improve
the asymptoticity if J has to be fixed or its strength cannot be
further increased.

One simple answer is to effectively enhance J by deco-
rating the legs in such a symmetric way that the resulting
4 × 4 transfer matrix—after the decorated spins (referred to
as the bridge sites) are summed out—is of the same form as
Eq. (6). The convenience of using effective interactions was
emphasized recently in the context of pseudotransition [21]
and extended to study Eq. (10) the minimal model for SUNPC
[32] soon after the model appeared in arXiv [27]. We will
show that the decoration of the legs (which controls δT ) can
be done independently of the decoration of the rungs (which
controls T0), revealing an amazing advantage of this paradigm.

For simplicity, we consider M identical bridge sites for
each bond on the legs; the bridge sites do not interact with
one another (Fig. 5). Thus, we add the term �i jH

(i j)
bridge to the

model Hamiltonian Eq. (10),

H (i j)
bridge = −Jb

∑
k=1,2,...,M

si, j,k (σi, j + σi+1, j ), (25)

where si, j,k = ±1 is the Ising spin on the kth of the M bridges
connecting the ith and (i + 1)th parent spins on the jth leg.

Like the child spins, the bridge spins can be exactly
summed out, yielding the bridges’ contribution functions

±±
i j

=
∑

si, j,1=±1
···

si, j,M=±1

(eβH (i j)
bridge )σi, j=±, σi+1, j=±. (26)

They are translationally invariant and identical for both legs,
i.e., ±±

i j
= ±± . Then, using the spin up-down symmetry,

i.e., −− = ++ = [2 cosh(2βJb)]M and +− = −+ =
2M , we found the 4 × 4 transfer matrix in the order of
(σ2
σ1

) = (++), (−+), (+−), (−−) to be of the same form as Eq. (6),

with a = eβ(2J+J ′′ ) +
+

2
++ 2

, b = eβ(2J−J ′′ ) −
+

2
++ 2

, u =
eβ(−2J+J ′′ ) +

+
2

+− 2
, v = eβ(−2J−J ′′ ) −

+
2

+− 2
, and z =

+
+

−
+ ++ +− .
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FIG. 5. On-leg decoration. (a) M = 1 and (b) M = 2, where M is the number of the decorated spins (green balls) bridging one J bond
connecting the nearest neighboring parent spins (yellow balls) on the legs. Jb is the Ising interaction between the bridge spins and the parent
spins; it effectively enhances J for J > 0 (see text).

We found that after introducing the following effective Jeff

in the place of J ,

cosh(2βJeff ) = e2βJ ++ 2 + e−2βJ +− 2

2 ++ +− (27)

= 1
2 (e2βJ [cosh(2βJb)]M+ e−2βJ [cosh(2βJb)]−M),

(28)

which is independent of the on-rung (intrahousehold) interac-
tions, the partition function remains the same except for an
additional factor of ++ +− . This means that the house-
hold’s frustration functions ϒ± are the same as defined in
Eq. (14) and after substituting Jeff for J , the order parameter
looks the same, too,

C12(0) = −∂ f (T )

∂J ′′ = (ϒ−/ϒ+) cosh(2βJeff )

[1 + (ϒ−/ϒ+)2 sinh2(2βJeff )]
1
2

.

(29)

Note that Jeff = J for T → ∞. At the relevant low tempera-
ture,

Jeff 
 J + M|Jb| − 1
2 MkBT ln 2, (30)

that is, the effect of this bridge decoration is to enhance J by
about M|Jb| for ferromagnetic J > 0. As shown in Fig. 6(c),
Jeff as a function of T estimated by Eq. (30) (dashed lines)
accurately reproduces the exact results of Eq. (28) (solid
lines).

The order parameter C12(0) shows in Fig. 6(b) that M = 0
with J doubled (red-solid line) and the decoration of M = 1
with Jb = J (green-dashed line) have almost the same effect
on the exponential reduction of the crossover width from
2kBδT 
 1.6 × 10−6 to 1.5 × 10−12, given kBT0 = 0.144, in
agreement with Eq. (30). Therefore, we can improve the

asymptoticity by adding those bridges if J has to be fixed
or its strength cannot be further increased. To see the effect
of M more clearly, we present in Fig. 6(d) the results with
Jb = 0.1J . The SUNPC becomes exponentially narrower and
narrower as M increases, manifesting the asymptoticity of the
SUNPC and making it clear that spontaneous phase transition
at finite temperature does not exist in the 1D Ising model with
a finite number of short-range interactions.

The present model can be be easily extended to the
case of multiple coupled children and coupled bridges. In
Eqs. (12) and (26) for the children’s and bridges’ contribu-
tion functions, respectively, the detailed form of H (i)

children or
H (i j)

bridge is unlimited. It works for arbitrary forms of inter-
actions among the children in the same household (among
the bridges between the same pair of the parents) and for
both classical and quantum children/bridges—as long as their
interactions with the parents are of Ising type—because the
commutator [H (i)

children, H] = 0 and [H (i j)
bridge, H] = 0. So, the

children/bridges can be more than spins. They can be elec-
trons, phonons, excitons, Cooper pairs, fractons, anyons, etc.
For the systems with mixed quantum particles and classical
Ising spins [15,17,19,20,23,24], one first obtains the eigen-
values (energy levels) of the quantum Hamiltonian H (i)

children
for one of the four (σ2

σ1
) = (++), (−+), (+−), (−−) combinations of

the spin configurations of the parents in the same household,
say (++), and thermally populates those energy levels to get
+
+ . Then move on to work out for the other three combina-

tions one by one. Likewise, for quantum H (i j)
bridge, work out the

four combinations of the spin configurations of the nearest-
neighbor parents on the same leg. Such diversity generates
an infinite number of 1D systems with SUNPC. The urgent
questions as to how to classify nontrivial cases and reveal
more and more novel effects of SUNPC will be addressed in
subsequent publications [27].
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(a) (b)

(c) (d)

FIG. 6. The asymptoticity of SUNPC. (a) The key measures of SUNPC in terms of the order parameter C12(0) (blue line), where C12(0) = 0
defines T0 and its inverse slope at T0 (orange line) defines the width 2δT . (c) Jeff resulting from the bridge decoration for M = 1, 2 the number
of bridges per parent bond on the legs. Jeff as a function of T estimated by Eq. (30) (dashed lines) accurately reproduces the exact results
of Eq. (28) (solid lines). Note that Jeff = J for T → ∞. (b), (d) The near-T0 temperature dependence of C12(0). kBT0 = 0.144, J = 1, and
|Jb| = 1 except for (d) where |Jb| = 0.1. The crossover width exponentially decreases to zero as either J or M increases.

V. OPEN QUESTIONS

Given the prominent roles of the Ising model and frus-
tration in understanding collective phenomena in various
physical, biological, economical, and social systems, and
the prominent roles of 1D systems in research, education,
and technology applications, we anticipate that the present
insights to phase transitions and the dynamical actions of frus-
tration will stimulate further research and development about
UNPC. We thus leave a few open questions as our closing
remarks:

(1) What are other asymptotic paths of SUNPC for h =
0? Moreover, given the present success in finding SUNPC,
we reconsider h �= 0: what is a simple paradigm for in-field
asymptotic UNPC at a fixed finite temperature T0? In gen-
eral, the presence of the magnetic field will break the high
symmetry of the 4 × 4 matrix shown in Eq. (6), making it
irreducible to the 2 × 2 matrix needed for the present analysis.
These challenges are expected to serve as a driving force for
further exploration of possibilities in functionalities and their

optimized performance within the huge capacity of the infinite
number of 1D systems with UNPC in the absence or presence
of a bias (magnetic) field.

(2) What are the first-generation SUNPC-ready 1D devices
for thermal applications? This appears to be feasible right
now, since the Ising model has already been implemented in
electronic circuits [33], optical networks [34], and optical lat-
tices [35]. The features that T0 and 2δT can be independently
controlled by different parameters and different decoration
methods could be attractive in engineering 1D thermal sen-
sors, for example.

(3) In the SUNPC, the intermediate-temperature phase
(ITP) is not a conventional, fluctuating, or short-range or-
dered continuation of the low-temperature phase (LTP). The
essence of strong frustration in driving SUNPC is that the
ITP is slightly higher in energy than the LTP but pos-
sesses gigantic entropy [26] as some degrees of freedom
in the ITP decouple from the rest of the system. The
appearance of such an ITP is reminiscent of recently dis-
covered strange fluctuating orbital-degeneracy-lifted states at
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intermediate temperature in CuIr2S4 and other materials with
active orbital degrees of freedom [36]. To date, the com-
monly known effect of strong frustration is to dramatically
suppress Tc (the critical temperature at the spontaneous phase
transition) despite strong interactions, as seen in many frus-
trated magnets [25]; hence, frustration has been regarded as a
driver for achieving spin liquids, which do not order down to
zero temperature [25,37–39]. Could the present exact lesson
encourage the use of strong frustration to understand, con-
trol, and engineer more and more LTP-ITP transitions in real
materials?

(4) In a broader sense, the idea of pushing the limit in our
knowledge as close as possible to the forbidden regime can be
applied to other domains. For example, the Mermin–Wagner

theorem [40] rules out spontaneous phase transition at finite
temperature in 1D or 2D isotropic Heisenberg models for
quantum spins with short-range interactions. Now we ask:
Does a SUNPC at finite temperature exist in those quantum
systems?
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