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Circle fit optimization for resonator quality factor measurements:
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The control of material loss mechanisms is playing an increasingly important role for improving coherence
times of superconducting quantum devices. Such material losses can be characterized through the measurement
of planar superconducting resonators, which reflect losses through the resonance’s quality factor Ql . The reso-
nance quality factor consists of both internal (material) losses as well as coupling losses when resonance photons
escape back into the measurement circuit. The combined losses are then described as Q−1

l = Re{Q−1
c } + Q−1

i ,
where Qc and Qi reflect the coupling and internal quality factors of the resonator, respectively. To separate
the relative contributions of Qi and Qc to Ql , diameter-correcting circle fits use algebraic or geometric means
to fit the resonance signal on the complex plane. However, such circle fits can produce varied results, so to
address this issue, we use a combination of simulation and experiment to determine the reliability of a fitting
algorithm across a wide range of quality factor values from Qi � Qc to Qc � Qi. In addition, we develop a
measurement protocol that can not only reduce fitting errors by factors �2 but also mitigates the influence of
the measurement background on the fit results. This technique can be generalized for other resonance systems
beyond superconducting resonators.
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I. INTRODUCTION

Superconducting quantum technologies are the current
leading platform for the implementation of scaled quantum
computing, and large strides are being made to not only
scale up superconducting circuits but also improve their per-
formance by mitigating sources of error [1–5]. Coplanar
waveguide (CPW) resonators are one of the key components
for superconducting-based quantum computing platforms and
are used for qubit readout and coupling [6,7]. However, res-
onators can also be used to probe [8–14] the loss mechanisms
that limit qubit coherence times in quantum computing pro-
cessors. On the other hand, there are several methods used to
characterize resonance signals [15,16], and results can vary
depending on the method used to characterize the resonance
signal. However, a fair comparison between not only the
performance of these various resonance fitting models but
also the results across the broad spectrum of research that
applies these models requires uncertainty quantification for
these models and tests of their reliability to accurately apply
the model to experimental data.

One of the more popular resonance fitting methods is
the diameter-corrected circle fit [8,17–19]. This method uses
either algebraic or geometric methods to fit the circular
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projection of the resonance signal on the complex plane to
extract the resonance properties, such as the internal quality
factor Qi, which characterizes material losses. If Ql is the
total resonance efficiency (i.e., quality factor) and Qc is the
coupling efficiency to the measurement line, then the circle
diameter is d = Ql/|Qc|. When Ql is determined from an
independent method, such as a geometric fit of the resonance
phase signal θ , then d can be used to distinguish Qc from
the material loss efficiency factor Qi through the relationship
Q−1

l = Re{Q−1
c } + Q−1

i .
However, resonances can be difficult to measure or fit in

extreme limits when Qc and Qi differ by orders of magnitude.
This is further complicated by the measurement setup, which
can introduce systematic errors into the analysis [18,19].
Figure 1 shows a measurement of a CPW resonator in a
range of signal power levels. As power and the corresponding
resonance photon number 〈nr〉 decrease, the resonance signal
becomes less sharp as the Qi decreases due to increased two-
level system (TLS) losses [9,10,12,14,20–24]. At the lowest
powers, the resonance signal is almost lost into the microwave
background signal, which places a limitation on the extraction
of Qi at low powers. A method for bypassing this issue is to
use slightly or moderately overcoupled resonators to facilitate
low-power measurements. However, when Qc is relatively
small, the total contribution of Qi to the loaded quality factor
also becomes increasingly small. To better understand the lim-
itations imposed by design on Qi determination, we perform a
benchmark on the fitting algorithm of Probst et al. [18] and
an analysis of the model uncertainties to detail how fitting
errors behave under extreme conditions when Qc � Qi. We
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FIG. 1. Measurement of a superconducting CPW microwave res-
onator fabricated on an atomic layer deposition NbN film. Each curve
is measured with N = 4001 points distributed linearly across the
measurement bandwidth �F and with a specified vector network
analyzer (VNA) output power. A power-dependent trace averaging
protocol was used as described in Appendix B. VNA signals were
attenuated by an approximate −73 dB before propagating into the
chip. As on-chip power (Pchip) increases, the resonance grows sharper
as the linewidth decreases, signifying an increase in the loaded
quality factor. Inset: The loaded quality factor can be devolved into
internal and coupling quality factors, Qi and Qc, respectively, using
a diameter-correcting circle fit [18]. As the photon number 〈nr〉
decreases, Qi is also observed to decrease due to the presence of TLS
losses. 〈nr〉 is calculated using Eq. (E2) derived in Appendix E.

also perform tests for potential sources of fit bias and intro-
duce an alternative measurement point distribution to mitigate
such biases. The analytical techniques used here can also be
applied to other fitting methods, which is an important first
step toward reconciling any differences in results that they
may return [16].

II. MODELING

For a notch-type resonator coupled to a transmission line,
the frequency-dependent transmission S̃21 is given by [18,25]

S̃21 = aeiα−2π i f τ

[
1 − (Ql/|Qc|)eiφ

1 + 2iQl ( f / fr − 1)

]
, (1)

where f is the signal frequency, fr is the resonance frequency,
and φ is the phase shift of resonance due to impedance
mismatch with the transmission line [17]. The prefactor
aeiα−2π i f τ models the effects of the microwave background
environment, where a, α, and τ are the background trans-
mission amplitude, phase offset, and microwave delay, all of
which arise from the specifics of the measurement setup. To
assist the reader for this and subsequent sections, we have
included a list of variables and their definitions in Table I.
An artificial resonance signal can be generated using Eq. (1)
and randomly generated noise. In practice, this microwave
background can be calibrated out of the measurement [26,27],
and since our conclusions are independent of the inclusion of
the microwave background, we set a = 1, α = 0, and τ = 0
in the first section for analytical simplicity. In later sections,

when real measurements are modeled for comparison, these
microwave background parameter values will be reconsid-
ered.

To better represent actual resonator measurements, random
noise is injected into the artificial resonance data to simulate
the effects of measurement noise. Two different types of noise
are included. The first and simplest type of noise is Gaussian
noise from thermal fluctuations [28,29] in the resistive compo-
nents of instruments and measurement setup. We assume that
this noise is complex and scatters not only the amplitude of
the signal but also its phase by some small random degree. In
analogy to a more general mathematical study [30] on circle
fits, the complex thermal noise is injected into the artificial
signal for each frequency point fi as S21( fi ) = S̃21( fi)+δi+iεi,
where δi and εi are each random variables selected from
a Gaussian distribution with mean zero and standard
deviation σn.

In addition to thermal noise, the resonance itself exhibits
frequency (or phase) noise due to the presence of TLS fluctu-
ators [31,32]. Such noise follows a 1/

√
f spectral distribution

and can be modeled by small fluctuations of the resonance
frequency fr which are caused by time-dependent corrections
to the effective dielectric constant of the substrate. In this
work, the strength of this effect will be parametrized by the
standard deviation of the resonance frequency, σ fr , which for
the resonance measurements shown here are on the order of
tens of hertz. On the complex plane, this noise manifests as
a slight rotational jitter for data points on the circle’s cir-
cumference. As discussed in Appendix C, the inclusion of
such frequency noise is necessary for accurately modeling
measurements of superconducting resonators.

One of the goals of this study is to determine the reliability
of resonance quality factor measurements using a diameter-
correcting circle fit in the extreme limits where Qi � Qc

and Qc � Qi. To do this, artificial resonance signals can be
generated and then fit to determine fit error. The resonance
signals are generated with known or “true” internal quality
factors Q̃i, which can be compared to the Qi returned from
the circle-fit process. The algorithm from Ref. [18] is used
to determine Qi of the artificial S21 data. A series of artificial
signals is generated with varying Qi factors with a fixed Qc =
104e−iφ with φ = π/6 corresponding to a small impedance
mismatch [17,18] between the resonator and the measurement
line. Since the resonance linewidth � fr = fr/Ql can change
by several orders of magnitude, the frequency span �F for
the simulated data must be adjusted to accommodate very
high quality resonance signals. As we will show in Sec. IV,
changes in the ratio �F/� fr can affect the fitting results.
For each resonance signal, a frequency span encompassing
ten times the resonance linewidth was chosen (i.e., f ∈ [ fr −
5� fr, fr + 5� fr]) to ensure an appropriate fitting range for
the resonance signal.

Figure 2(a) shows a comparison of fit Qi values compared
to the true Q̃i values used to generate the artificial signals
for a range of Q̃i/Q̃c. The relative error |Qi − Q̃i|/Q̃i is the
deviation of the fit-determined Qi values from the true Q̃i and
can be measured across a range of coupling ratios Q̃i/Q̃c. The
behavior of the error is nonmonotonic with a minimum near
critical coupling Q̃i/Q̃c = 1. Away from critical coupling, the
error increases linearly with Q̃i/Q̃c. Figure 2(a) also shows
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TABLE I. Table of the variables used in this paper and their definitions.

Variable Definition

S̃21, S21 S̃21 is an ideal complex transmission resonance signal with zero measurement noise but potentially affected by the
measurement circuit. S21 is a resonance signal under the influence of measurement noise.

Q̃i, Qi The internal quality factor. Q̃i is used to calculate S̃21 in the generation of artificial resonance data. Qi is the
measured or fitted value.

Q̃c, Qc The complex coupling quality factor Qc = |Qc|e−iφ . Q̃c is used to calculate S̃21 in the generation of artificial
resonance data. Qc is the measured or fitted value.

σQi The fit error on Qi. σ SPD
Qi

and σ HPD
Qi

denote values specified for SPD and HPD distributions.
φ The phase shift of the resonance signal due to impedance mismatch.
Q̃l The loaded quality factor Q−1

l = Q−1
i + Re{Q−1

c }.
f , fi The signal frequency used to probe the transmission response. For a set of measurements, fi is the ith frequency of

the set.
θ The complex phase of S21.
N The number of data points in the measurement set.
�F The frequency span of the set of the frequencies in the measurement set.
fr , � fr The resonance frequency and the resonance linewidth: � fr = fr/Ql .
σ fr The standard deviation of the frequency noise introduced to fr .
a, α, τ The background transmission amplitude, phase offset, and microwave delay, all of which arise from the specifics of

the measurement setup.
δi, εi Random variables added to S̃21 calculated at fi and generated on a Gaussian distribution with a zero mean. δi is the

real component of the noise and ε is the imaginary component of the noise.
σn The standard deviation of the Gaussian distribution used to generate δi and εi.
N The number of data points within a VNA frequency scan.
Ntr The number of traces performed by a VNA during a measurement.
PV NA, Pchip The microwave power applied by the VNA during the measurement and the power applied to the chip under probe,

respectively.
H ( f ) The Shannon entropy of a probabilistic measurement.
Hset For a VNA scan of a set of N points, Hset is the total information entropy of the set.
〈nr〉, 〈nph〉, 〈n′

ph〉 The number of photons in the resonator, the VNA output signal, and the VNA return input after traversing the
system under probe, respectively.

the calculated relative fit error σQi/Qi. As shown, the error
curves closely follow the behavior of the relative error and,
for most cases, track with the upper limit of the relative

error. This indicates that the calculated errors of the circle
fit adequately cover the range where Q̃i can be found. We
note that in Fig. 2(a) resonance noise is omitted (σ fr = 0). As

FIG. 2. Fitting errors on the internal quality factor Qi for simulated resonance data. Simulations assume an ideal or calibrated microwave
background (a = 1, α = φ = 0, τ = 0), coupling quality factor Q̃c = 104, and resonance frequency fr = 5 GHz. Q̃i is varied from 10 to 1011

and N = 20 001. The measurement bandwidth is maintained at �F = 10� fr , where � fr = fr/Ql , and is centered around fr . Only complex
Gaussian noise with standard deviation σn is injected into the artificial signal (σ fr = 0). Such noise corresponds to noise in the transmission
measurement background. (a) The effects of this noise on the relative fitting error σQi /Qi (dashed lines) and the true relative error |Qi − Q̃i|/Q̃i

(solid points, corresponding colors). There is close agreement between fit and actual errors, indicating that fit error calculations adequately
describe the true error. (b) σQi /Qi for the data in Fig. 1 (red dots). Because measurement noise is power dependent, the fit error is normalized
by the background noise level σn, which is estimated as the standard deviation of data farthest from fr . The dashed blue line represents a fit of
artificial resonance data with identical fit and measurement parameters.
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discussed in detail in Appendix C, when resonance noise is
comparable to the background noise, fit errors are increased
and overestimate |Qi − Q̃i|/Q̃i. Therefore, while resonance
noise increases fit errors, such an increase does not reflect
the true error of the fit. Such an overestimation of the fitting
error should be universal for all fitting methods that do not
distinguish and separate phase and radial degrees of freedom
when calculating fit uncertainties.

The relative error can also be studied as a function of the
noise level σn. As shown in Fig. 2, the fit errors increase
with increasing noise levels. Indeed, we find that the error on
Qi scales geometrically with the measurement noise σn (see
Appendix C). Indeed, when the error is normalized by σn, it
falls onto a common curve [Fig. 5(a)]. The same behavior
is found when the errors are normalized by N−1/2, where
N is the number of data points used for the fitting process.
Therefore, the error is found to behave as σQi (Qi/Qc, σn, N ) =
(σn/

√
N )σ ∗

Qi
(Qi/Qc), where σ ∗

Qi
(Qi/Qc) is a function inde-

pendent of both the noise level σn and number of data points,
N . This result is consistent with a more general analysis for
algebraic circle fit errors [30]. The geometric dependence of
the uncertainty on σn/

√
N implies that, independent from the

coupling regime, the uncertainty on a fit of Qi can be reduced
by either decreasing the noise level (e.g., through trace aver-
aging or filtering) or by increasing the number of data points
of the measurement.

III. MEASUREMENTS

The results shown in Fig. 2(a) have been verified experi-
mentally using a measurement of a CPW resonator fabricated
from an NbN film on a Si substrate. We take advantage of
the power and temperature dependence of the internal quality
factor for a superconducting resonator. At the lowest tem-
peratures, resonance losses are dominated by TLS losses at
the dielectric interface [12,33]. Such interface TLSs absorb
photons from the resonator, creating a loss mechanism and
increasing � fr . At low input power, where the average photon
number is low, TLS losses are maximal, but as power in-
creases, TLS states become persistently excited by the greater
number of resonator photons. As a result, TLS losses de-
crease, and the resonator’s internal quality factor increases.
This is indeed observed experimentally, as shown in the inset
of Fig. 1, which shows the internal quality factor of an NbN
resonator.

Using the power dependence of the resonator internal qual-
ity factor, the coupling ratio Qi/Qc can be tuned. Since the
coupling quality factor is affected only by the resonator de-
sign and the resonance harmonic [34], it has no expected
power dependence, as is consistent with the results of the
fitting algorithm. By sweeping input power to the resonator,
Qi increases from Qi < Qc to Qc < Qi. As previously noted,
the errors on Qi are affected by the measurement noise σn,
which changes with input power Pin. Trace average number
is increased with decreasing power with 920 trace averages at
the lowest power (see Appendix B for more details). Since σn

changes from both power and trace averaging, the fit errors are
normalized by σn, and the results are shown in Fig. 2(b). For
comparison, we simulated an artificial resonance signal using
the fit parameters of the measured resonator (background,

φ, Qc, etc.) while tuning Q̃i. We find good agreement be-
tween the analyses of our artificial and real resonance data,
demonstrating that the simulated data adequately imitate real
measurement data.

Since many of the results here focus on the circle fit errors,
we detail here how such uncertainty values are calculated.
Additional information can be found in Ref. [18] and the
QKIT code [25]. Circle fit errors themselves are calculated
as χi = Sdata

21 ( fi ) − S f it
21 ( fi ). A Jacobian matrix Ĵ is calculated

with components Ji j = Re{ dS21
dε j

χi

|χi| } with ε j respectively being
Ql , |Qc|, fr , and φ in the four columns of the matrix. With
the total squared error χ2 = ∑ |χi|2, the covariance matrix is
given as σ̂ 2 = χ2

N−4 (ĴT Ĵ )−1, where ĴT is the transpose of Ĵ .
The uncertainties on Ql , |Qc|, fr , and φ are then taken as the
square roots of the diagonal components of σ̂ 2. The error on
Qi is then derived from the uncertainties on Ql and Qc using
standard error propagation techniques.

IV. FITTING BIAS

In the standard vector network analyzer (VNA) trans-
mission measurement, frequency data points are distributed
linearly across the measurement span �F . However, when
a resonance measurement with this standard point distribu-
tion (SPD) is projected onto the complex plane, points are
distributed inhomogeneously over the circumference of the
circle with a quadratically increasing point density near the
off-resonant point (see Appendix D for a derivation). As has
been shown for the fitting of power laws [35], nonuniform
point distributions can potentially lead to bias in fitting algo-
rithms. To further understand if such biases exist in the circle
fit of SPD measurements, we have constructed an alternative
homophasal point distribution (HPD), which redistributes the
frequency measurement points such that the resonance data
are homogeneously distributed around the complex circle (i.e.,
homogeneous in phase). This redistribution method is similar
to one derived for nanomechanical resonators [36]. An exam-
ple comparison of SPD and HPD resonator data is shown in
Fig. 3(a).

The HPD is constructed using the frequency-phase relation
[18] θ ( f ) = θ0 + 2 arctan(2Ql [1 − f / fr]), which depends
only on the loaded quality factor Ql , the resonance frequency
fr , and an offset phase θ0 (see Ref. [18] for further de-
tails). The inverse function is f (θ ) = fr (1 − 1

2Ql
tan[ θ−θ0

2 ]),
and by defining N equidistant points distributed within θ −
θ0 ∈ (−π, π ), a new frequency point distribution can be cal-
culated that will spread points uniformly around the circle’s
circumference. Importantly, this method does not require an
explicit prior determination of Qc or Qi and only requires
an approximate determination of Ql , fr , and θ0. It should be
noted that a least-squares fit of the phase data is already used
in the circle-fitting process of Ref. [18] to determine these
parameters.

Fitting errors are analyzed in the same manner as the Qi/Qc

dependence. An artificial resonance signal was generated with
a known Q̃i and Q̃c, while the frequency distribution was
generated using both SPD and HPD. Equivalent levels of
noise were generated independently and then injected into
both signals. To test for bias, the point distribution of the SPD
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FIG. 3. (a) A comparison of two measurements of the same resonator signal using the SPD and HPD (N = 101, �F/� fr = 10). Inset:
The two data sets project onto the complex plane as a circle. Whereas the SPD has an increased point density near the off-resonant point, the
HPD has a uniform point density around the circumference of the circle. (b) Fit values for Qi using the SPD and HPD measurements shown
in (a) except with N = 10 001. The measurement bandwidth �F was gradually increased as a means of varying the degree of bias. Aside
from the measurement band and point distributions, all other measurement parameters were identical. Whereas the SPD shows a gradual bias
toward higher Qi values, the fit of HPD returns a constant Qi, independent of �F . (c) As in Fig. 2(a), a systematic fit of simulated data allows
for a comparison of the fit uncertainty (dashed lines) and the true error (points). While the SPD error increases as

√
�F (see Appendix D),

the HPD error remains constant at the minimal error of the SPD. In other words, the HPD maximizes fit accuracy relative to the SPD. (d) The
increased performance of the HPD over the SPD is dependent on the level of resonance frequency noise σ fr . The relative performance can
be parametrized by the error ratio σ SPD

Qi
/σ HPD

Qi
, where σ SPD

Qi
and σ HPD

Qi
are the errors from the SPD and HPD fits, respectively. At low σ fr ,

σ SPD
Qi

/σ HPD
Qi

follows the behavior shown in (c) for the case with σ fr = 0. However, near σ fr > 10 Hz, the frequency noise begins to dominate
the fit errors and σ SPD

Qi
/σ HPD

Qi
rapidly approaches 1. This behavior implies that the benefit of the HPD over the SPD is due to a reduction of σn

error contributions.

is tuned by changing the measurement span �F . As discussed
in Appendix D, the point density of the SPD becomes more
clustered toward the off-resonant point as �F grows larger.
To test for fit bias, the same resonance signal is repeatedly
measured with a steadily increasing �F centered around fr .
As is shown in Fig. 3(b), the fit value of Qi steadily increases
with �F . Such an increase does not reflect an actual change in
the resonator quality and derives purely from the measurement
protocol and fit algorithm. In contrast, an HPD measure-
ment remains consistent over a wide range from 1 � �F/� fr

� 100.
Not only does the HPD remove bias from the measurement,

it also minimizes fit error with respect to the SPD. Figure 3(c)
shows the Qi fit errors for the SPD and HPD on an artificial
overcoupled resonator signal. While the SPD error increases
as σ SPD

Qi
∝ √

�F/� fr , the error on the HPD remains constant,
demonstrating that HPD measurements are independent from
the choice of measurement span. The constant σ HPD

Qi
value

also corresponds to the minimum σ SPD
Qi

at �F/� fr = 1, and
therefore the HPD is a more efficient measurement protocol
than the SPD. This benefit of the HPD over the SPD is not
independent of the resonator properties, however. Figure 3(d)

shows a color map of the error ratio σ SPD
Qi

/σ HPD
Qi

as a function
�F/� fr and resonance frequency noise level σ fr . When σ fr is
small, the errors of the SPD and HPD behave as described in
Fig. 3(c), but as resonance noise becomes the dominant source
of error, σ SPD

Qi
/σ HPD

Qi
≈ 1, and therefore in this regime there is

no benefit of the HPD over the SPD. However, while there are
indeed regimes where errors of the HPD match those of the
SPD, it should be emphasized that in no regime is the SPD
observed to outperform the HPD.

V. DISCUSSION

As demonstrated above, we find that the circle-fitting pro-
cedure of Probst et al. [18] accurately determines Qi over a
wide parameter space. While this study used superconducting
notch-type resonators, the methods used here are general and
can be applied to any type of resonance system. Although
fit errors increase linearly with |Qi/Qc|, the fit values are
observed to remain within a standard deviation of the true
values over the full range of coupling parameters. Depending
on the noise source, fit errors either accurately predict the
true error of the fit or overestimate it slightly. Although Qi

013329-5



PAUL G. BAITY et al. PHYSICAL REVIEW RESEARCH 6, 013329 (2024)

fit values are still found within the 95% confidence interval,
frequency noise increases the calculated fitting error with-
out a corresponding increase in true error (see discussion in
Appendix C). The frequency noise leads to rotational error
that increases χ2 but does not affect the calculation of Qi,
which is determined only by the radial degrees of freedom.
Interestingly, like the systematic errors induced by parasitic
Fano resonances in the measurement circuit [19], the effect
from frequency noise is strongest in the overcoupled regime
[see Fig. 4(d)], implying that this regime is particularly sus-
ceptible to increased errors. Regardless of the regime, this
uncertainty overestimation from frequency noise should be
present for all fit algorithms that do not distinguish between
phase and radial degrees of freedom when calculating fit un-
certainties. Therefore, a fit uncertainty calculation that isolates
only the radial degrees of freedom may lead to lower errors.

On the other hand, we find that a new type of measure-
ment protocol, specifically one possessing a homophasal point
distribution, can reduce fitting errors by redistributing points
around the resonance circle. Errors for standard VNA mea-
surements (i.e., the SPD) grow with the square root of the
ratio �F/� fr . Therefore, for a typical measurement with
�F � 4� fr , a factor of 2 or greater improvement in accuracy
can be expected for circle-fit results. Interestingly, SPD errors
are minimized when �F/� fr = 1 (errors grow dramatically
for �F/� fr < 1 for both the SPD and HPD). However, when
�F = � fr , this is only a measurement of half of the reso-
nance circle [8], implying that under some circumstances a
half-circle fit can return better accuracy than a full-circle fit
for a constant N . An improvement on the fitting error, either
by implementing an HPD or by changing �F/� fr , allows
for the possibility for reducing measurement time without a
sacrifice accuracy. By implementing these methods, the total
number of data points, and therefore time per measurement,
can be reduced while maintaining the same accuracy. Indeed,
since errors scale inversely with

√
N , a factor-of-2 error re-

duction from an HPD would allow for a factor-of-4 reduction
in N and time to maintain an equivalent error with an SPD
measurement.

Insight into why the HPD outperforms the SPD can be
gained by considering the information that is contained within
a microwave transmission measurement. Appendix F details
how the information yield of a resonator measurement can be
defined in terms of the Shannon entropy H ( f ) [37]. As shown
in Fig. 7(a), the H ( f ) peaks at ±� fr/2 for an ideal resonance
signal, meaning that these points nearest to the resonance
linewidth are the most uncertain and therefore contain the
most information about the resonance signal once measured.
Indeed, as shown in Fig. 7(b), the total entropy Hset within
a measurement sweep peaks near �F/� fr ∼ 1.5. The HPD
maintains an overall higher information content compared
to the SPD, and this corresponds to the decreased fit error
[inset of Fig. 7(b)].

We note that this simplistic analysis of the informa-
tion yield only considers amplitude degrees of freedom.
Furthermore, the mutual information [38] shared between
measurement points may need to be considered when the
density of points becomes very high, such as in the regime
�F < � fr , and correlations between each adjacent measure-
ment point become large. A formal theory of the information

FIG. 4. (a) A comparison of artificial and measurement arg(S21)
data as a function of frequency. The top curve (green) denotes ar-
tificial data with only complex background noise S21 = S̃21 + δ + iε
added. The middle curve (orange) is generated with both background
noise and frequency noise σ fr ≈ 50 Hz. The bottom curve (blue)
denotes the phase data for the −35 dBm measurement of Fig. 1.
The two artificial resonance curves are generated with fit parame-
ters derived from a circle fit of the measurement curve. The curves
are displaced vertically for clarity. As shown here, the inclusion of
fr noise is essential for adequately replicating measurement data.
(b) A comparison of fit results for simulated and measured resonance
data. Blue data points are Qi fit values for the resonator shown in
Fig. 3(a) as a function of span ratio �F/� fr . The orange curve is
a fit result on simulated data with parameters identical to the mea-
surement data with |Qc| ≈ 6.730×104, Qi ≈ 5.181×106, φ ≈ 0.668,
fr ≈ 4.364 GHz, a ≈ 1.149, α ≈ 1.597, and τ ≈ −8.825×10−11 s.
The noise levels are σn = 0.00035 + i0.00016 and σ fr = 50 Hz and
comparable to estimates of the noise in the measurement data. The
green curve is a similar simulation, except with an ideal background
with a = 1, α = 0, and τ = 0.

from a resonance signal measurement may need to include
additional degrees of freedom (such as phase or frequency)
and the influence of the information shared between data
points. The establishment of such a formal theory will be the
goal of future work.

As demonstrated, the circle fit is also susceptible to bias
from changes to the measurement span �F . At relatively
modest values of �F/� fr � 10, a systematic trend which
exceeds the error can be observed in the data of Fig. 3(b). For
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artificial resonance data with an ideal background, we find no
bias with �F (see Appendix C), indicating that the true source
of bias is not the point distribution of the SPD but rather
how this distribution weights in favor of influences from the
microwave background signal. Because the HPD shifts data
points to focus on the resonance signal itself, it minimizes the
influence of the microwave background on the fitting proce-
dure and thus the bias. Furthermore, while a small degree of
bias can be replicated in our simulated data, the degree of bias
is much smaller than found in the actual measurement. This
indicates that the majority of bias originates from sources not
captured in the model, such as potential parasitic resonances
in the measurement setup [19], and while some works [39,40]
have indeed presented Q-factor results for measurements with
�F/� fr > 10, the more important and broader conclusion
from the study presented here is that since the degree of fit
bias is unknown, a systematic measurement protocol needs to
be implemented to ensure such biases do not occur even for
the case of �F/� fr < 10.

The point distribution of the SPD has a more compli-
cated dependence on � fr (see Appendix D). In Fig. 2(b),
a slight deviation of the measurement and simulated data is
observed. We postulate that this deviation is due to the � fr

dependence of the SPD point distribution. Since the point
distribution of SPD measurements changes with the resonance
linewidth, bias may influence results for wideband measure-
ments with changing resonance quality factors [41–45]. We
want to emphasize that none of the studies cited here should
be regarded as affected by bias, since bias in this study is
only demonstrated for one specific measurement setup and
fitting algorithm. It is unknown if other fitting algorithms
(e.g., those presented in Refs. [8,17,46,47]) are susceptible to
the same sources of bias; however, this possibility may explain
the high variability of results observed in a comparison of
fitting methods [16]. Because of this, care should be taken
when comparing Q-factor measurements across studies with
different measurement and fitting procedures for the sake of
determining an optimal materials platform for quantum com-
puting.

VI. CONCLUSIONS

As demonstrated here, circle fit analysis remains a robust
method for characterizing resonance signals. Even in extreme
limits where Qi � Qc, the method fits the resonance model to
the data to extract accurate values for Qi. Away from critical
coupling, where σQi reaches a minimum, the statistical un-
certainty increases only linearly with Qi/Qc. Uncertainty can
be reduced by increasing the number of measurement points
and reducing signal noise, but uncertainty also has a lower
limit due to the intrinsic resonance noise from TLS effects.
We note, however, that a more recent model of resonance
behavior [19] has indicated that parasitic Fano resonances in
measurement circuits can lead to experimentally inaccessible,
systematic errors in the overcoupled regime. To determine Qi,
it is therefore recommended either to perform a full on-chip
calibration of the system crosstalk using short-open-load-
through measurements or to design resonators so that they are
definitively undercoupled so as to exclude systematic errors.
However, the fit uncertainty is also related to the information

content within a data set, and we have shown that measure-
ments that are optimized to have more information content
produce more accurate predictions of Qi. Such a relationship
can be expected for the application of any model of resonance
data, as the information contained within the data itself will be
the fundamental limiter on fit uncertainty once the influence of
the measurement circuit has been adequately described.

In a similar manner, bias in our circle fit results due to
the influence of the microwave background has also been
demonstrated through changes of the measurement bandwidth
�F . By comparing simulation to actual measurements, we
find that the degree of bias could not be replicated in the
standard resonator model. This may yet be another indicator
that models which more accurately describe the influence of
the measurement background are needed. Additionally, sys-
tematic study may be required to ensure that such biases do
not affect results from other, non-circle-fitting methods. To
resolve this issue for the circle fit method, a new measurement
technique (the HPD) has been established that minimizes not
only fit bias but also the overall fitting error. The improved
fit results are due to the increase in information content within
the measurement data for the HPD, and for a typical resonance
measurement with �F ∼ 4� fr , a factor-of-2 fit uncertainty
reduction can be expected. Therefore, we conclude that the
HPD is an overall improved method for resonance measure-
ment compared to the standard method. Due to its generality,
this new protocol can be applied not only for the study of su-
perconducting notch-type resonators but also other resonance
systems such as those in the fields of spin waves and optics.
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APPENDIX A: TABLE OF VARIABLES

To assist the reader, we have included a table of variables
and definitions used to model the resonance signal and noise
(see Table I).

APPENDIX B: SAMPLE DETAILS
AND MEASUREMENT PROTOCOLS

The superconducting CPW microwave resonators used in
this study were fabricated from a 55-nm NbN film deposited
on a Si substrate using an Oxford Instruments FlexAL Atomic
Layer Deposition system. The resonators were designed with
central conductor width S = 10 µm and gap width W = 6 µm.
The details of the material growth techniques will be provided
in a different paper. The designs were etched into the NbN
films by an inductively coupled SF6 plasma on an Oxford
Instruments PlasmaPro 100 ICP180, after either optical or
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FIG. 5. The fitting errors on the internal quality factor Qi for simulated resonance data. Simulations assume an ideal or calibrated
microwave background (a = 1, α = φ = 0, τ = 0), coupling quality factor Q̃c = 104, and resonance frequency fr = 5 GHz. Q̃i is varied
from 10 to 1011. The measurement bandwidth is maintained at �F = 10� fr , where � fr = fr/Ql , and is centered around fr . Except where
noted otherwise, N = 20 001. (a) Fitting errors for various background noise levels σn, similar to the dashed curves of Fig. 2(a). Frequency
noise is omitted (σ fr = 0 Hz). When errors are normalized by σn, they collapse onto a single curve as shown. This indicates that errors scale
linearly with the background signal noise. (b) Qi errors for fits with different number of points, N . When multiplied by

√
N , errors also collapse

onto a single curve. Therefore, as noted in the main text, σQi /Qi ∝ σn/
√

N . (c) Resonator noise can also be added into the simulated data.
This is done by adding a small random deviation (σ fr ≈ 50 Hz) to the resonance frequency for each data point calculated with Eq. (1). The
frequency noise increases the fit error (dashed lines) in the overcoupled regime; however, the frequency noise does not affect the true error
(scatter points). (d) When normalized by σn, the errors in (c) scale with σn for large values of background noise, but this scaling breaks down
for small σn.

electron-beam lithography and respective resist development.
The 5×5 mm2 chips were mounted into a microwave mea-
surement box, which itself was mounted onto the mixing
chamber stage of a dilution refrigerator. Magnetic shielding
was provided by a cryoperm shield. The input microwave lines
had ∼70 dB of attenuation. After passing through the chip,
output signals were amplified by a 4 K high-electron-mobility
transistor (HEMT) providing ∼40 dB amplification. Signals
were further amplified by an additional 20 or 40 dB room-
temperature amplifier depending on the setup used.

Each curve in Fig. 1 is measured with N = 4001 points
distributed linearly across the measurement bandwidth �F
and a VNA output power PV NA. A power-dependent trace-
averaging protocol was used to mitigate measurement noise
at low powers. For PV NA < −50 dBm, Ntr = (PV NA + 50)2

+ 20, where Ntr is the number of traces averaged, while
Ntr = 20 for PV NA > −50 dBm. Before the circle fit, the trans-
mission phase was normalized by subtracting the linear delay.

APPENDIX C: COMPARISON OF SIMULATED
DATA WITH MEASUREMENTS

As mentioned in the main text, we included resonance
frequency noise to better model real resonator measurements.

For more realism, the frequency noise was simulated using
a 1/

√
f spectrum, as found in Ref. [31]; however, no dis-

cernible difference in fit results was found when using pink
noise rather than white noise. Figure 4(a) shows a comparison
of artificial resonance [arg(S21)] data along with measurement
data from Fig. 1. As shown, the real measurement data exhibit
an increased noise at the phase jump near fr . In simulated
data, the standard injection of complex noise does not repli-
cate the increased phase noise shown in the measurement.
Instead, by injecting a small random shift on fr with a standard
deviation σ fr ≈ 50 Hz, an increased phase noise at fr can be
replicated.

The effects of the resonance noise on the circle fit error
are shown in Fig. 5. For σ fr = 0, fit errors on Qi agree with
the true error |Qi − Q̃i|/Q̃i as shown in Fig. 2(a). In this
case, the errors scale linearly with the background noise σn

as shown in Fig. 5(a). However, when σ fr > 0 is included,
errors are observed to deviate from this scaling trend. As
shown in Fig. 5(c), σQi/Qi overestimates the true error in the
overcoupled regime. Hence, we can conclude that the increase
in fit error is only an artificial increase and not a true increase.
In addition, errors no longer scale fully with σn. Instead, errors
scale with σn when σn is large, but this trend deviates for small
σn [Fig. 5(d)]. The source of the increase is likely the increase
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in χi for each data point due to the rotational jitter from phase
noise. However, since the noise is only rotational in nature, it
does not actually affect the calculation of the circle diameter
and thus Qi. A method that distinguishes radial and phase
uncertainties may prove beneficial in reducing fit uncertainty
in the presence of large frequency noise.

As discussed in Sec. IV, fitting results of SPD data have a
dependence on the ratio �F/� fr . Interestingly, as shown in
Fig. 4(b), the strength of the bias is larger for measured data
than for simulated data with identical fit parameters and noise
levels. Indeed, for simulated signals with an ideal (i.e., cali-
brated) background, there is virtually no �F/� fr dependence
for fit results. For simulated data with a nonideal background,
a small but perceptible amount of bias is observed as indicated
by a slight slope in the results; however, this bias is still much
smaller than the bias (i.e., slope) observed in the measurement
data. This indicates both that the types of noise modeled here
(frequency and amplitude) do not contribute to fitting bias
observed in this study and that the majority of this bias stems
from effects not captured in Eq. (1). The resonator model used
here assumes that the background parameters a, τ , and α are
frequency independent locally near fr ; however, such assump-
tions may not be applicable for many cryogenic microwave
measurement setups. Furthermore, the influence from Fano
resonances [19] in the measurement setup is also excluded.
Because the source of bias is not captured in the resonator
model itself, it is entirely possible for the magnitude of the fit
bias to be setup dependent. However, it should be reiterated
that the benefit of the HPD is that it removes fit bias even if
the source of the bias is seemingly unparametrized and can be
implemented without changes to the experimental setup.

APPENDIX D: DENSITY OF POINTS
AROUND THE CIRCLE

For the SPD of a VNA sweep, data points are distributed
quadratically around the circle with a minimum point den-
sity near fr and maximum near the off-resonant point. The
distribution can be derived from the frequency-phase rela-
tion θ ( f ) = θ0 + 2 arctan(2Ql [1 − f / fr]) [18]. By taking the
derivative of θ ( f ) with respect to f and then inverting [or
alternatively by taking the derivative of the inverse function
f (θ ) and then substituting θ ( f ) back into df (θ )/dθ ], the
expression

df

dθ
= fr

4Ql

[
4(1 − f / fr )2Q2

l + 1
]

(D1)

can be derived. Remembering that Ql = fr/� fr , where � fr

is the linewidth, the expression simplifies to

df

dθ
= � fr

[(
fr − f

� fr

)2

+ 1/4

]
. (D2)

For the SPD, frequency points are distributed linearly with the
separation between points δ f = �F/N , where �F is the fre-
quency span and N is the number of data points. A continuous
to discrete transformation can be made assuming a large-N
limit and by substituting df /dθ → δ f /δθ , where δθ is the
discrete difference between neighboring phase data points.
With this substitution, the discrete phasal density ρθ of data

points around the circle is

ρθ ≡ 1

δθ
= N

�F/� fr

[(
fr − f

� fr

)2

+ 1/4

]
. (D3)

This expression can be confirmed by manually calculating
1/δθ in simulated data, as shown in Fig. 6(a). Interestingly,
while the distribution is tuned by the measurement span �F ,
it also has a more complicated dependence on the resonance
linewidth � fr . Therefore, a constant �F SPD measurement
for a resonance signal with a changing linewidth might also
exhibit an unknown bias. However, if such biases exist, the
HPD protocol can be expected to eliminate such effects by
normalizing the point density around the circle.

Aside from bias, SPD fit errors also increase with in-
creasing �F/� fr , as shown in Fig. 3(c). Figure 6(b) shows
similar data generated on a logarithmic scale. A linear fit of
the errors demonstrates how the error σ SPD

Qi
increases with

the square root of �F/� fr . This simulation result conflicts
with the experimental results, which find that errors increase
as σ SPD

Qi
∝ (�F/� fr )1.7. This difference between simulation

and experimental results further emphasizes how the model
in Eq. (1) may not fully capture all sources of error in real
experiments. Other sources of errors, such as the inclusion
of parasitic Fano resonances in the measurement circuit [19],
may be necessary to appropriately model resonance signals.

APPENDIX E: CALCULATION OF PHOTON
NUMBERS FOR φ > 0

In the inset of Fig. 1, the internal quality factor Qi is
plotted against the estimated average photon number 〈nr〉
in the resonator. The calculation of 〈nr〉 includes a correc-
tive term for the case of φ > 0 that reduces the number of
photons in the resonator. To derive the modified relation,
we follow the method of Ref. [48]. Under a steady-state
condition, the average energy stored within the resonator is
〈nr〉h fr = PlossQi/2π fr , where h is Planck’s constant and Ploss

is the energy dissipated per resonance cycle. The dissipated
power is the difference between the chip input power Pchip and
the transmitted and reflected powers, which are respectively
proportional to the scattering parameters |S21|2 and |S11|2. The
dissipated power is then Ploss = Pchip(1 − |S21|2 − |S11|2).

The expression for |S21|2 and |S11|2 can be simplified by
assuming an ideal microwave background and evaluating only
at f = fr . In this case and using Eq. (1), the transmission
coefficient for power is

|S21|2 = |Qc|−2
(|Qc|2 + Q2

l − 2Ql |Qc| cos(φ)
)
. (E1)

On the other hand, |S11|2 is independent [49] of φ with
|S11|2 = Q2

l /|Qc|2 at f = fr . Remembering that Q−1
i =

Q−1
l − (|Qc| cos(φ))−1, the average photon number can then

be calculated as

〈nr〉 = Pchip

2πh f 2
r

2Q2
l cos(φ)

|Qc| . (E2)

This expression is consistent with the case of an ideal
notch-type resonator with φ = 0. Interestingly, this implies
that when Qc is purely imaginary, i.e., φ = π/2, then the
average photon number goes to zero; however, such a

013329-9



PAUL G. BAITY et al. PHYSICAL REVIEW RESEARCH 6, 013329 (2024)

FIG. 6. (a) The normalized phasal density of points (ρθ/N) around the resonance circle as a function of frequency. These curves are
calculated manually from artificial resonance data as 1/δθ , where δθ is the phase difference between adjacent measurement points. As shown
in Eq. (D3), the phasal point density of the SPD is quadratic with respect to frequency. As the measurement span �F grows, the density of
points near fr becomes more disperse while data become more concentrated toward near the off-resonant point. For comparison, the uniform
ρθ of the HPD is shown as a dashed line. (b) A linear fit of the σ SPD

Qi
/Qi for artificial resonance data as a function of �F/� fr . A linear fit of

the errors shows that it grows as σ SPD
Qi

/Qi ∝ √
�F/� fr . These data are similar to those in Fig. 3(c), except they are generated on a logarithmic

scale to prevent fit bias [35].

scenario is unphysical as it would require an infinite circuit
capacitance [17].

APPENDIX F: THE INFORMATIONAL DENSITY
OF A RESONANCE DATA SET

The purpose of a measurement is to gain information about
the system under probe. Depending on the measurement de-
tails, a data set may contain more or less information about the
system. For instance, even for very large N , a measurement
centered at f = 4 GHz will contain very little information
about a narrow resonance signal at fr = 5 GHz. In this line
of reasoning, one may expect that data points measured fur-
ther and further away from fr will contribute increasingly
diminishing amounts of information about the resonance sig-
nal itself. As noted in the main text, fitting errors for the
SPD are minimal for �F = � fr and increase steadily as data
points are dispersed further and further away from fr as �F
increases. Therefore, there is an intuitive relation between fit
uncertainty and the information within a data set. Indeed, by
calculating the information content of a resonance data set, we
will show that such a relation does seem to exist. Furthermore,
we will show that for wide ranges the HPD contains more
information over the SPD, which helps explain why the HPD
returns smaller fit errors.

The resonator system is probed by sending a known elec-
tromagnetic signal through a coupled transmission line. The
electromagnetic signal sent to the chip by the VNA is a
wave packet consisting of 〈nph〉 photons at frequency f and
phase φ. From a semiclassical standpoint, a change in the
number of photons can occur via an interaction with the
system under probe, i.e., the resonator. Should no change to
the input signal occur, then no information is gained from
the measurement. On the other hand, should the number of
photons, their frequency, or their phase change, then such a
change would indicate that new information has been gained
by performing the measurement. This system can be mapped
onto a binary communication system in which a constant

bit undergoes a random bit-flip process during transmission
through a noisy communication channel. If the photon number
is considered in isolation (i.e., no frequency or phase shifts
occur in the signal), then the informational yield per photon
can be parametrized by the Shannon entropy [37] H (pr ) =
−pr log2(pr ), where pr is the probability of a singular photon
leaving the wave packet to enter the resonator (or a singular in-
put bit is flipped). For a transmission measurement, the VNA
measures the ratio of output to input voltages, Vout put/Vinput ,
which is equivalent to the ratio of the change in the number
of photons, 〈n′

ph〉/〈nph〉, where 〈n′
ph〉 is the number of photons

after transmission through the circuit. Therefore, under these
conditions, a VNA transmission measurement is a measure-
ment of the probability pr , which is frequency dependent with
a Lorentzian distribution pr ( fi) = |1 − S21|2.

H (pr ) is a metric of how unpredictable a measurement’s
outcome will be [50], and therefore measurements with larger
H (pr ) yield more information about the system. Since pr ,
and therefore H (pr ), is frequency dependent, not all points
in a VNA measurement yield equal amounts of information
about the resonance signal. Figure 7(a) shows the H ( f ) dis-
tribution for a slightly overcoupled resonance signal with
an ideal background and Qi = 50 000, |Qc| = 10 000, fr =
5 GHz, and φ = 0. Near fr are two sharp peaks in H ( f ),
where each is centered at ±0.5� fr . At fr itself is a dip with
a magnitude that depends on the quality factors. H ( f ) is a
metric of the “surprise” that a photon will be absorbed by the
resonator. In this case, far from fr there is no surprise that
a photon is not absorbed, hence the diminishing entropy far
from fr . On the other hand, at fr there is little surprise that
a photon will be absorbed into the resonator because this is
where the peak absorption is. Indeed, for very high quality
factor resonators, where the probability of absorption trends
toward 1 at fr , the information entropy at fr goes to zero
as there will be no surprise for absorption (not shown). The
two peaks at ±0.5� fr occur because at these values there
is an equal 50% probability that a photon will or will not
be absorbed into the resonator. Thus, the result of a single
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FIG. 7. (a) The Shannon entropy H as a function of frequency f for a resonance signal with an ideal background and Qi = 50 000,
|Qc| = 10 000, fr = 5 GHz, φ = 0, and N = 201. The spectrum of H has two peaks at ±0.5� fr (dashed lines), which correspond to the
half-maximum points of the Lorentzian distribution of the resonance signal. These points also correspond to opposite points on the complex
resonance circle and are separated by the full diameter of the circle. (b) The normalized information content or information density Hset/N for
SPD and HPD data sets with N = 10 001. Hset/N possesses a peak at �F/� fr ∼ 1.5, implying that a half-circle measurement is maximally
efficient for information content. The inset shows that the fitting error σQi /Qi has an approximate inverse square-root dependence on Hset/N
with higher amounts of information content corresponding to lower levels of fit uncertainty.

photon measurement is unpredictable, and therefore these two
frequency points have a maximal entropy.

For a measurement, each data point at frequency fi yields
a small portion of information corresponding to the entropy
H ( fi ) = −pr ( fi ) log2(pr ( fi )). The total information yield in
the data set is then the sum of the information yield at each
measurement frequency Hset = ∑

H ( fi ). We normalize Hset

by the number of data points to find a metric for the total
information density Hset/N . Figure 7(b) shows Hset/N for a
series of simulated SPD and HPD resonance data with varying
�F/� fr . Both point distributions have a peak in information
density near �F/� fr ∼ 1.5, which corresponds to a measure-
ment of a little more than half a resonance circle. Interestingly,
the SPD has a slightly higher peak in entropy compared to
the HPD; however, this behavior is seemingly masked by
measurement noise in our results in Fig. 3. In any case, as
�F increases away from � fr , Hset/N decreases rapidly for
the SPD but only slightly for the HPD. Therefore, the HPD
maintains a constant and overall higher information yield at
large �F .

Since the entropy is a metric of the uncertainty in the
system [50], data points with the largest amounts of uncer-
tainty yield the most information when measured. Therefore,

increasing Hset of a measurement should yield more informa-
tion, which translates into better fit accuracy. Indeed, we find
that Hset corresponds well with the fit uncertainty. The inset
of Fig. 7(b) shows the dependence of σQi/Qi with respect
to Hset/N . There is an approximate inverse square-root rela-
tionship σQi/Qi ∝ (Hset/N )−1/2, and as Hset/N decreases for
both �F < � fr and �F > � fr , σQi/Qi increases. Therefore,
there is a good correspondence between the total information
entropy of a VNA scan and the minimal uncertainty that can
be achieved with a circle fit algorithm. One benefit of the HPD
is that it better preserves the maximal entropy of the data set
compared to the SPD. We note, however, that the analysis
above assumes that there is no phase or frequency shift in
the photons after traveling through the circuit. When this
assumption is false, i.e., when φ �= 0, then pr �= |1 − S21|2,
since |S21( fi )| > 1 at some fi due to rotation of the circle.
Additionally, sources of measurement error, such as additional
photons being added or removed by thermal fluctuations in the
measurement circuit, are also neglected. Instead, a more com-
plete analysis which takes into consideration measurement
noise and the information gained by a phase shift is required.
Such an analysis may be an avenue for future research in
resonance measurement theory.
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