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The formation of dispersive shock waves in one-dimensional Bose gas represents a limitation of Generalized
Hydrodynamics (GHD) due to the coarse-grained nature of the theory. Nevertheless, GHD accurately captures
long-wavelength behavior, thus indicating an implicit knowledge of the underlying microscopic physics. Such
representations are already known through the Whitham modulation theory, where dispersionless equations de-
scribe the evolution of the slowly varying shock wave parameters. Here we study the correspondence between
Whitham’s approach to the Gross-Pitaevskii equation and GHD in the semiclassical limit and beyond. Our
findings enable the recovery of the shock wave solution directly from GHD simulations, which we demonstrate
for both zero and finite temperature. Additionally, we study how free expansion protocols affect the shock wave
density and their implications for experimental detection. The combined picture of Whitham and GHD lends
itself to additional physical interpretation regarding the formation of shock waves.
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I. INTRODUCTION

Owing to experimental advances over the last few decades,
gases of ultracold atoms have become a ubiquitous plat-
form for studying out-of-equilibrium dynamics of many-body
quantum systems [1]. Upon confinement to one dimension,
a repulsively interacting Bose gas is well described by the
quantum integrable Lieb-Liniger model [2,3], whose exact
equilibrium solution, expressed in the form of collective
quasiparticles, can be obtained by means of the Bethe Ansatz
[4]. Out of equilibrium, quantum integrable systems exhibit
very different behavior compared to their higher-dimensional
counterparts; owing to the presence of an infinite number of
conservation laws, their dynamics are highly constrained and
thermalization is inhibited [5].

Recently, the theory of Generalized Hydrodynamics
(GHD) [6,7] was developed, applying general principles of
hydrodynamics to quantum integrable systems: By expressing
the currents of conserved quantities in the basis of Bethe
Ansatz quasiparticles, GHD achieves a dispersionless, coarse-
grained hydrodynamic description [8]. Despite the conceived
fragility of quantum integrability, GHD has successfully
described dynamics of experimental systems far from equi-
librium [9–12].

However, the description provided by GHD also has its
limitations; for instance, as a local density perturbation of a
condensate expands, its density profile will eventually acquire
a near-infinite gradient, heralding a breaking of the wave. In a
weakly interacting condensate, such an unphysical hydrody-
namic gradient catastrophe is avoided by transferring energy
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from large to small length scales by the means of dispersion.
The result is a dispersive shock wave (DSW) characterized
by a nonlinear, oscillatory wave train of short wavelength,
whose front propagates faster than the local sound velocity of
the medium [13]. The formation of DSWs has been observed
in several experiments with ultracold atoms [14–17] and flu-
ids with light [18–21]. Such behavior of the condensate can
be derived from the mean-field description provided by the
Gross-Pitaevskii equation (GPE), whose quantum pressure
term represents the dispersive properties of the gas. Mean-
while, Euler-scale (lowest order in spatial derivatives) GHD
fails to capture the DSW, as its hydrodynamic equations are
dispersionless and its coarse-grained scale is much larger than
the length scale of the DSW oscillations. Nevertheless, the
theory seemingly predicts mean quantities of the oscillating
wave [22].

In classical fluid dynamics, the nonlinear dynamics of
dispersive shock waves can be asymptotically represented
through Whitham modulation theory [23]. By averaging
a number of conservation laws of the underlying disper-
sive equation, here the GPE, over the period of the DSW,
one obtains a system of dispersionless hydrodynamic equa-
tions describing the slow modulation of the DSW amplitude,
wavelength, and mean on a scale much greater than the travel-
ing wave. Conceptually, this separation of scales in Whitham’s
approach to classical systems is very similar to the assump-
tions of local equilibrium in the GHD approach to quantum
systems; indeed, the steady modulated solutions of the clas-
sical system are analogous to the locally stationary quantum
states. This remarkable observation was first pointed out in
Ref. [24], which proved the explicit correspondence between
Whitham’s approach and GHD in the semiclassical limit of
the one-dimensional Bose gas, i.e., the high-occupation limit
for weak interactions and large particle number. In separate
numerical studies of GHD [22,25], suggestions of this similar-
ity were also made, while further correspondence between the
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two approaches was established in Ref. [26], where a GHD de-
scription of the soliton gas for the Korteweg–de Vries (KdV)
equation was constructed. Other approaches for capturing
coherent effects beyond the Euler scale of GHD include the
Quantum Generalized Hydrodynamics [27] (QGHD), which,
conceptually, is a generalization of time-dependent and in-
homogeneous Luttinger liquids to truly out-of-equilibrium
situations. This formalism captures spatially separated, equal-
time correlations, which otherwise vanish at the fully local
Euler scale [28,29] as well as the formation of Friedel-like
oscillations following shocks in free fermion systems [30,31].

In this work, the connection between Whitham’s approach
and GHD is explored, as we study their agreement at finite,
but weak, interactions beyond the semiclassical limit and
employ Whitham techniques to recover beyond-Euler-scale
features from GHD simulations. We begin by briefly review-
ing the zero-temperature GHD of the Lieb-Liniger model
and the Gross-Pitaevskii equation (Sec. II). Next, in Sec. III
we expand upon the results of Ref. [24] by proposing an
Ansatz for the relation between Riemann invariants of GPE
Whitham theory and the Fermi rapidities of GHD, which
we test by studying the convergence of the theories as one
approaches the semiclassical limit. In particular, we seek to
answer the question of whether a reasonable correspondence
can be established in regimes accessible by current cold gas
experiments. In Sec. IV we demonstrate how Whitham’s ap-
proach can be employed to recover the oscillating density of
a dispersive shock wave from Euler-scale GHD simulations,
whose coarse-grained scale would otherwise average out such
features. To this end we simulate dynamics of the bipartition
problem at both zero and finite temperature. Additionally, we
study the evolution of a shock waves following free expan-
sion and how such protocols may improve their experimental
detection. Section V is devoted to discussing the physical
interpretation of DSW formation and the generalization of
Whitham’s approach to arbitrary interaction strengths of the
Bose gas. We review the different nature of shock wave os-
cillations in the weakly and strongly interacting regimes and
compare different approaches for describing said oscillations,
in particular the Quantum Generalized Hydrodynamics [27].
Here a discussion of the differences, but also possible connec-
tion points, between the approaches is presented. Finally, we
conclude in Sec. VI.

II. THEORETICAL MODELS

We consider a one-dimensional (1D) gas of N bosons with
repulsive contact interaction, which is well described by the
quantum integrable Lieb-Liniger model [2,3]. The Hamilto-
nian in first-quantized form is given by

Ĥ = −
N∑
i

h̄2

2m

∂2

∂z2
i

+ h̄2c

m

N∑
i< j

δ(zi − z j ), (1)

where m is the atomic mass and c is the two-body coupling
strength. The latter is, within the commonly used s-wave scat-
tering approximation, directly related to the atomic scattering
properties in cold atom experiments.

Several excellent reviews of Generalized Hydrodynamics
(see Refs. [32–34], for instance) and the Gross-Pitaevskii

equation (see, e.g., Refs. [35,36]) already exist. Hence, we
here restrict ourselves to only a short outline of the main
concepts and results, relevant for the subsequent connection
to the Whitham approach presented in Sec. III. In particu-
lar, we will in the following focus on the zero-temperature
case, i.e., comparison between the mean-field GPE [36] and
zero-entropy formulation of GHD [37]. We further note that
we exclusively concern ourselves with the lowest order GHD
(Euler-scale).

A. Generalized Hydrodynamics

Following the thermodynamics Bethe Ansatz, a local equi-
librium macrostate of the system can be fully characterized
by a distribution of quasiparticles ρp [2,3]. The quasiparticles
are collective excitations of the system and exhibit fermionic
statistics, with each particle uniquely labeled by its quasimo-
mentum, or rapidity, θ [38]. In the thermodynamic limit, the
rapidity becomes a continuous variable. Furthermore, if the
system varies only on long space and time scales, one can
assume that local equilibrium is always established. Thus,
the quasiparticle distribution can be considered time- and
position-dependent ρp(z, t, θ ). An equivalent representation
of the macrostate is provided by the filling function ϑ (θ ) =
ρp(θ )/ρs(θ ), which describes the fraction of allowed rapidity
states ρs(θ ) occupied by particles.

The ground state of the Lieb-Liniger model is given by a
Fermi sea of rapidities, as the fermionic quasiparticles will fill
up all low-rapidity states up to some Fermi quasimomentum
�0, thus yielding the filling function

ϑ (θ ) =
{

1, for − �0 � θ � �0

0, otherwise. (2)

The value of �0 is determined by the dimensionless parameter
γ = c/n, where n is the local atomic density. In the presence
of a finite hydrodynamic velocity u, the local Fermi quasi-
momenta are boosted by mu/h̄, yielding �± = mu/h̄ ± �0.
While the ground state and simple waves are represented by a
single Fermi sea, more complicated states featuring multiple
local Fermi seas are possible [39–41]. For instance, the filling
function of a state with two Fermi seas will assume the value
1 between the Fermi rapidity pairs (�1,�2) and (�3,�4),
with �1 � �2 � �3 � �4, while 0 anywhere else. Thus, it is
sufficient to encode any local zero-temperature state by only
its Fermi rapidities.

Given the filling function ϑ (θ ), thermodynamic expecta-
tion values of local operators can be computed. Of particular
importance is the atomic density given by

n̄ = 1

2π

∫ ∞

−∞
dθ ϑ (θ ) (∂θ p)dr

{�}(θ ) (3)

and the hydrodynamic current

ū = 1

2π n̄

∫ ∞

−∞
dθ veff

{�}(θ ) ϑ (θ ) (∂θ p)dr
{�}(θ ), (4)

where p(θ ) is the momentum of a single quasiparticle with
rapidity θ . Note that for a local state represented by multiple
Fermi seas, the corresponding thermodynamic expectation
values of operators, such as the ones above, remain single
valued and well defined. Further, the bar notation indicates
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FIG. 1. Illustration of the formation of a dispersive shock wave
(DSW) resulting from a density perturbation propagating on a ho-
mogeneous condensate. (a) Fermi contours 
± of a zero temperature
Lieb-Liniger state are shown, enclosing the rapidities θ for which
the filling assumes ϑ = 1, i.e., the Fermi sea (shaded in orange).
Outside the contour, ϑ = 0. After the breaking time tb, the local state
in the region of the condensate where the DSW forms is represented
by two Fermi seas. (b) The corresponding density is displayed; for
t < tb the density varies slowly and is well described by GHD (shown
in red), while for t = tb the GPE solution develops a DSW (shown
in blue). The length scale of the DSW oscillations is smaller than the
coarse-grained scale of GHD, which therefore predicts the average
of the DSW density.

the coarse-grained nature of the expectation values; in the
presence of multiple Fermi seas, they correspond to the value
obtained when averaging over the oscillation period of the
emergent shock wave.

In Eqs. (3) and (4) we have introduced the dressing opera-
tion defined as

f dr
{�}(θ ) = f (θ ) + 1

2π

∫ ∞

−∞
dθ ′�(θ, θ ′)ϑ (θ ′) f dr

{�}(θ
′), (5)

where �(θ, θ ′) = 2c
c2+(θ−θ ′ )2 is the two-body scattering kernel

of the Lieb-Liniger model. The dressing equation reflects the
inherent collective nature of integrable systems; interactions
between all local quasiparticles lead to the modification of
single-particle quantities. Hence, for a zero-temperature state,
dressed quantities are implicitly functions of the set of all
local Fermi rapidities {�} = {�1,�2, . . .}, as denoted by the
subscript.

In an inhomogeneous system, the local Fermi rapidities of
neighboring states may vary. To parametrize the full system
ϑ (z, t, θ ), we introduce the Fermi contours 
±(z, t ), which
are defined such that the filling is 1 for all points (z, t ) en-
closed by the contours, and 0 outside. For a single Fermi sea
state, the contours are simply equal to the Fermi rapidities
�±, however, the contours can also be distorted into a locally
multivalued function to account for the presence of multiple
Fermi seas. An example of this is illustrated in Fig. 1. Ac-
cording to GHD, the dynamics of a zero-temperature state
is given through the evolution of the contours following the
dispersionless equation [37]

∂t
± + veff
{�}(
±) ∂z
± = 0. (6)

Here the effective velocity is computed following [6,7,42]

veff
{�}(θ ) = (∂θε)dr

{�}(θ )

(∂θ p)dr
{�}(θ )

, (7)

where ε(θ ) = h̄2θ2/(2m) and p(θ ) = h̄θ are the single quasi-
particle energy and momentum for the Lieb-Liniger model,
respectively. The effective velocity veff

{�}(θ ) represents the bal-
listic propagation velocity of a quasiparticle with rapidity
θ ; following interactions between particle their velocity is
modified, which in the thermodynamic limit is captured by
Eq. (7) [42]. Meanwhile, in the semiclassical picture, the ef-
fective velocity can be understood as the accumulated effect of
Wigner time delays associated with the phase shifts occurring
under elastic collisions in quantum integrable systems [43,44].
Remarkably, it is possible to obtain Eq. (7) from either
perspective, thus demonstrating an exact quantum/classical
correspondence [42,45].

Notably, the evolution according to Eq. (6) displaces the
position of Fermi rapidities while preserving their value.
Hence, to numerically simulate the GHD dynamics we dis-
cretize the contour as a set of points 
± = {(z j,� j )}, whose
evolution is given by [37]

dz j

dt
= veff

{�}(� j ), (8)

where the effective velocity veff
{�}(� j ) is evaluated by consid-

ering all local Fermi rapidities at position z j . Simulating the
evolution of the contour is much easier than simulating the
dynamics of the full filling function [46,47].

B. The Gross-Pitaevskii equation

In the semiclassical limit, the Lieb-Liniger model is well
approximated by the Gross-Pitaevskii equation (GPE) [48,49]

ih̄
∂ψ

∂t
= − h̄2

2m
∂2

z ψ + h̄2c

m
|ψ |2ψ. (9)

The GPE describes the evolution of the order parameter
ψ (z, t ) of a quasicondensate. Rewriting the Lieb-Liniger
Hamiltonian in second-quantized form, the GPE can be read-
ily obtained as the equation of motion of the wave function for
the condensate state, i.e., replacing the creation and annihila-
tion operators by a classical field.

Using the Madelung representation of the order parameter
ψ (z, t ) = √

n(z, t )eiϕ(z,t ) in terms of the density n(z, t ) and
phase ϕ(z, t ) variables, the GPE, Eq. (9), can be formulated
via an equivalent set of hydrodynamic equations

∂t n + ∂z(nu) = 0,

∂t u + ∂z

(
1

2
u2 + h̄2cn

m2
− h̄2

2m2

∂2
z

√
n√

n

)
= 0, (10)

where the hydrodynamic velocity field is defined as u(z, t ) =
h̄
m ∂zϕ(z, t ). Equation (10) is almost identical to the Euler
equations, given the fact that the superfluid velocity is a poten-
tial flow, except for the last (dispersive) term ∼∂2

z

√
n called

quantum pressure. It is this term that is responsible for the
absence of wave breaking in the GPE and the formation of the
oscillatory wave train, since the quantum pressure dominates
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the usual pressure term for variations of the density on length
scales less than the healing length ξh = 1/

√
2nc.

III. THE WHITHAM APPROACH TO GHD

An important feature of the effective velocity of the Lieb-
Liniger model is that it is a monotonically increasing function
of rapidity. Hence, solutions with multiple local Fermi seas
may develop dynamically from a single sea state [50–52],
for instance, following the “breaking” of a simple wave il-
lustrated in Fig. 1, where the contour 
+(z, t ) deforms over
time to locally become multivalued at the breaking time tb.
The “breaking” of the Fermi contour heralds the development
of a dispersive shock wave; in one dimension a multivalued
density is entirely unphysical, whereby, as the density gradient
approaches infinite, dispersion becomes necessary to regular-
ize the solution. The result is a nonlinear, rapidly oscillating
wave traveling in front of the breaking point z−, namely, a
DSW.

The DSW theory of the GPE, also known as the Gurevich-
Pitaevskii theory [53], involves averaging over the periodic
solution to obtain expressions for the parameters of a slowly
modulated wave and its evolution. This slowly modulated
wave, which connects the leading and trailing edges of the
shock wave, can be represented by the so-called Riemann
invariants [54,55]. Following Whitham theory, one can re-
cover the microscopic structure of the DSW from the Riemann
invariants [23]. Meanwhile, GHD passes through the breaking
point with seemingly no issue, although the theory fails to
capture the oscillations of the DSW. This is somewhat to be
expected, as GHD is coarse grained at a scale greater than the
microscopic scale of the oscillations. Indeed, GHD has been
demonstrated to adequately capture the average density within
the DSW [25,56], as illustrated in Fig. 1.

For the 1D Bose gas, the Riemann invariants of the
Whitham theory and the Fermi rapidities of GHD bear strong
resemblance; for instance, their evolution is governed by sim-
ilar dispersion-free equations. In the following, we propose
and test an explicit relation between the two theories for finite
interaction strengths.

A. Equivalence in the dispersionless limit

The similarity between the Riemann invariants of Whitham
theory and the Fermi contour of the zero-temperature GHD
is apparent in the dispersionless limit, where only large-scale
variations of the fluid are present. In the absence of steep
density gradients, the quantum pressure term of Eq. (10) can
be neglected, whereby the hydrodynamic system assumes the
form

∂t n + ∂z(nu) = 0, ∂t u + u∂zu + h̄2c

m2
∂zn = 0. (11)

Consider a simple wave propagating to the right, correspond-
ing to the scenario in Fig. 1 for t < tb. The flow velocity u(z, t )
and the density n(z, t ) cannot change arbitrarily with respect
to one another; instead, their relation is fixed by the Riemann
invariants

r± = u

2
± vs, (12)

where vs = h̄
m

√
nc is the sound velocity in a quasicondensate.

Note that we have omitted the (z, t ) dependence for a more
compact notation. Similarly to the Fermi contour of the zero-
temperature GHD, the Riemann invariants are solutions that
remain constant along the characteristics trajectories deter-
mined by the equations

∂t r± + v±∂zr± = 0, (13)

where the characteristic velocities v± = v±(r+, r−) are given
by

v+ = 3
2 r+ + 1

2 r−,

v− = 1
2 r+ + 3

2 r−. (14)

For a traveling wave, the Riemann invariants r± specify that
u and vs cannot change arbitrary but must fulfill the relation
(12). Next, let us consider the Fermi contours 
±(z, t ) for
the same scenario. In the γ � 1 regime, the Fermi quasi-
momentum of the ground state is accurately approximated
by �0 = 2n

√
γ [2]. Thus, it is straightforward to see that in

the dispersionless limit, the Fermi rapidities and the Riemann
invariants are related by [57]

�± = 2m

h̄
r±. (15)

Furthermore, the characteristic velocities of the GHD Fermi
contour is given by the effective velocity veff (�±). Consider-
ing the microscopic definition of the sound velocity and the
excitation spectrum of quasiparticles above the ground state
[3], one finds that the effective velocity at the Fermi edge is
equal to the sound velocity [58], that is, vs = veff

0 (�0). Thus, it
is clear that veff (�±) = v± in the dispersionless, semiclassical
limit of the Lieb-Liniger model.

B. Whitham modulation theory

Similarly to the Fermi contour depicted in Fig. 1, following
its breaking point a DSW is represented by four Riemann
invariants r1 � r2 � r3 � r4 according to the Whitham mod-
ulation theory. Details of the full procedure can be found
in Refs. [13,23,59]; here we report the Whitham equations,
which describe the characteristic trajectories of the Riemann
invariants, in their final form:

∂t ri + vi ∂zri = 0, i = 1, 2, 3, 4. (16)

The characteristic velocities vi = vi(r1, r2, r3, r4) are given by
the expressions

v1 = V − (r4 − r1)(r2 − r1)K (M )

(r4 − r1)K (M ) − (r4 − r2)E (M )
,

v2 = V + (r3 − r2)(r2 − r1)K (M )

(r3 − r2)K (M ) − (r3 − r1)E (M )
,

v3 = V − (r4 − r3)(r3 − r2)K (M )

(r3 − r2)K (M ) − (r4 − r2)E (M )
,

v4 = V + (r4 − r3)(r4 − r1)K (M )

(r4 − r1)K (M ) − (r3 − r1)E (M )
,

(17)

where V = 1
2 (r1 + r2 + r3 + r4) is the velocity of the travel-

ing wave, K and E are the complete elliptic integrals of first
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and second kind, respectively, and

M = (r2 − r1)(r4 − r3)

(r4 − r2)(r3 − r1)
, 0 � M � 1. (18)

Whitham modulation theory describes the DSW solution as
a single-phased periodic wave with phase φ = kz − ωt . The
wave parameters (such as amplitude, wave vector k, and
frequency ω) vary slowly and are parameterized by the Rie-
mann invarants. Thus, given the Riemann invariants, one can
directly compute the periodic wave solution, whose density
profile for the Gross-Pitaevskii equation reads

n = m2

4ch̄2 (r4 − r3 − r2 + r1)2 + m2

ch̄2 (r4 − r3)

× (r2 − r1)sn2(φ, M ),

(19)

where φ = kz − ωt + φ0 is the DSW phase with the offset φ0,
and sn(·, M ) is the Jacobi elliptic function. The wave vector k
and frequency ω are given by

k = m

h̄

√
(r4 − r2)(r3 − r1),

ω = kV. (20)

Similarly, the hydrodynamic velocity is given by

u =V − h̄2c

8m2n
(−r1 − r2 + r3 + r4)

× (−r1 + r2 − r3 + r4)(r1 − r2 − r3 + r4). (21)

Note that in literature one typically defines convenient di-
mensionless variables, such that factors like m2/(ch̄2) in the
expressions above vanish.

Beyond the dispersionless regime, establishing an explicit
relation between the Riemann invariants and Fermi rapidities
is a much more daunting task. However, if governed by the
same evolution equations, the Riemann invariants and Fermi
rapidities must retain their relation from the dispersionless
regime (15) past the formation of the DSW, whereby

�i = 2m

h̄
ri, for i = 1, 2, 3, 4. (22)

In the semiclassical limit of the 1D Bose gas, the corre-
spondence between Whitham’s approach and GHD has been
proven [24]. This process involves finding to each quantum
solution all conserved quantities and assigning to that solu-
tion a classical solution featuring the same set of conserved
quantities. Hence, an exact correspondence between the Rie-
mann invariants and the Fermi rapidities of the classical and
quantum solution, respectively, must exist, as it is indicative of
a matching of the conserved quantities. Beyond the semiclas-
sical limit, the relation (22), and thus by extension Eqs. (19)
and (21), must be taken as an Ansatz.

To test the convergence of the two theories, and thus the
Ansatz (22), we directly compare the characteristic veloc-
ities (17) with the effective velocity (7) while taking the
semiclassical limit: The semiclassical limit is accessed by
introducing a fictitious Planck constant h and scaling the
quantum interaction and observables accordingly [60,61] (see
also Refs. [62–65] specifically for semiclassical limits of
GHD); in the h → 0+ limit, i.e., the semiclassical limit, the
quantum system is well described by the classical model

(a)

(b)

FIG. 2. (a) Characteristic velocities vi of the Riemann invariants
r1 = −20, r2 = 15, r3 = 20, and r4 = 25 are calculated via Eqs. (17)
and plotted as black dashed lines. From the given Riemann invariants
and varying coupling c, the Fermi rapidities �i are obtained via
Eq. (22) and their effective velocities are computed following Eq. (7)
and plotted as colored symbols. (b) Relative error between the two
velocities as function of the coupling c.

(GPE). In practice, we perform the scaling by letting c → 0+
while keeping the product cn ∼ 80 fixed, where the density n
is computed using Eq. (3). The resulting velocities are plotted
in Fig. 2, expressed in units of h̄/2m = 1. For c → 0+ we find
that the effective velocities converge towards the characteris-
tic velocities of the classical model, as proven in Ref. [24].
Meanwhile, departing from the semiclassical limit, the errors
scale as O(c), and we find that a reasonable agreement still
persists in a regime accessible by current experimental setups
[9,12]. Therefore, assuming that we are in a regime with
sufficient correspondence between the quantum and classical
description, we can employ Eq. (19) to recover the periodic
solution of DSWs directly from the Fermi contours of GHD.
Notably, the application of Eq. (19) to the GHD solutions at
finite c is to be understood as an extrapolation of the specific
Whitham theory for the Gross-Pitaevskii equation.

IV. RECOVERING BEYOND-EULER-SCALE FEATURES
IN THE BIPARTITION PROBLEM

One of the simplest setups for studying dispersive shock
waves is the bipartition problem, where an infinitely long
system features an initial discontinuity at z = 0. Here we
consider an initial discontinuity in the density profile with
zero initial hydrodynamic velocity, specifically uL = uR = 0
and nL > nR. At t > 0 the solution of the GPE for the given
initial condition consists of two waves traveling in opposite
directions; on the side with higher density a rarefaction wave
forms, while on the low-density side a DSW forms, here
traveling to the right [66]. The two waves propagate away
from the point of the initial discontinuity and are joined by a
domain of homogeneous flow, where a density plateau forms.

We consider a setup with initial densities nL = 1000 and
nR = 250 and a coupling strength c = 0.5; this is sufficiently
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(a) (b) (c)

FIG. 3. Wave structure formed following evolution of an initial density discontinuity. Top row: Zero temperature Lieb-Liniger state
represented by the Fermi contours 
±, whose evolution is simulated using GHD. Bottom row: Given the simulated Fermi contours, Whitham’s
approach is used to calculate the atomic density via Eq. (19). For comparison, the results of numerical GPE simulations are plotted. Finally, the
coarse-grained expectation value of the density given by thermodynamics Bethe Ansatz (TBA) n̄ of Eq. (3) is plotted, capturing the average
density of the DSW.

close to the semiclassical limit to achieve a good agreement
between the quantum and classical model. The Lieb-Liniger
parameters of the left and right side are γL = 0.0005 and
γR = 0.002, respectively, whereby the initial Fermi quasimo-
menta are accurately given by �0 = 2n

√
γ . It is convenient

to define appropriate length and time scales to express the
results; here we employ the healing length ξh = 1/

√
2nLc

and sound velocity vs = h̄
√

nLc/m evaluated according to the
density on the left boundary.

A. Zero temperature

At zero temperature, the GHD dynamics is solved numer-
ically by propagating the Fermi contours 
± according to
Eq. (8). In Fig. 3 we plot Fermi contours (and associated
filling function) at select evolution times. On the right side
of the initial discontinuity (z > 0), a region has developed
in which the state is represented by two Fermi seas, thus
indicating the formation of a DSW. Meanwhile, the wave
traveling to the left, represented by a single, widening Fermi
sea, is a rarefaction wave. Comparing with typical illustrations
of Riemann invariants for this problem (see Ref. [67], for
instance), we find a high resemblance to the Fermi contours
of our simulation.

Next, given the propagated Fermi contours, we calculate
the corresponding Riemann invariants via Eq. (22) from which
we compute the density of the traveling wave solution accord-
ing to Whitham theory (19). The results are plotted in Fig. 3.
In the region of the system where the local state is described
by two Fermi seas, the calculated density exhibits the rapidly
oscillating behavior of a DSW. We stress again that this is
beyond the capabilities of the thermodynamic Bethe Ansatz,
whose coarse-grained expectation value for the density (3) is
plotted for comparison, which captures only the average of the
oscillating solution.

Last, we compare our results with numerical simulations of
the GPE system (10) employing the Fourier split-step method;
the results are plotted in Fig. 3. We find a good agreement
upon comparing the two densities, particularly when con-
sidering that the GHD simulations are conducted at finite c.
Notably, the agreement within the DSW region becomes bet-
ter at longer evolution times. The reason therefore is twofold:
First, the Riemann approach is expected to be accurate only
in the asymptotic limit, where a clear separation of scales
between the oscillations of the DSW and their modulation
is found. Second, the GPE simulations are initialized with a
smooth, but steep, boundary between the two halves of the
system such that typical length scales of the problem can
be faithfully represented on the numerical grid with finite
resolution. Hence, at shorter times, artifacts of the boundary
may still be present in the solution.

In the Appendixes, we present further demonstrations of
the application of Whitham’s theory to GHD simulations: Ap-
pendix B demonstrates the dependence of the DSW shape on
the background density, and Appendix C features benchmarks
on the problem of a moving piston. In both cases, the results
of calculating the DSW density (19) using the simulated GHD
contour exhibit good agreement with GPE simulations.

B. Finite temperature

Finite temperature effects are known to wash out the con-
trast of DSWs [56]. In Whitham modulation theory, we find
that thermal effects manifest as incoherent fluctuations of
the DSW phase φ, resulting in a dephasing of the oscillat-
ing solution. To see this, consider the collective variables
of density and hydrodynamic velocity, which are subject to
thermal fluctuations following the bosonization procedure
[58,68,69]. These fluctuations are superpositions of many
thermally populated momentum modes; for thermal states
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with low temperature T , we can assume that the thermal
fluctuations are statistically mutually independent, whereby
their probability follow a normal distribution with zero mean
and variance

σ 2
δn = K

6

(
kBT

h̄vs

)2

, (23)

σ 2
δu = h̄2π2

6m2K

(
kBT

h̄vs

)2

, (24)

where K = 2πn/vs is the Luttinger liquid parameter. The
fluctuations of density and velocity result in fluctuations of the
Fermi contours, or equivalently, the Riemann invariants δr±;
following the central limit theorem, fluctuations of the Rie-
mann invariants are also Gaussian with zero mean, and their
variance can be obtained using Eqs. (12) and (15) yielding

σ 2
δr± = 1

4
σ 2

δu + h̄2γ

4m2
σ 2

δn. (25)

Next, to understand how fluctuations affect the contrast of
DSWs, we assume that the fluctuations are sufficiently small
to neglect their contribution to the effective velocity, i.e.,
the dynamics of fluctuations is linearized around the back-
ground state similarly to time-dependent Bogoliubov theory
or quantum GHD. Thus, the distribution of fluctuations for
each Riemann invariant is preserved following the formation
of a shock, and the variance of DSW phase fluctuations δφ

reads

σ 2
δφ =

4∑
i=1

(
∂φ

∂ri

)2

σ 2
δri

. (26)

From this expression, we see that the variance of the DSW
phase following the shock formation scales with T 2 of the ini-
tial state. Meanwhile, the partial derivatives depend on details
of the oscillating solution and can be worked out from Eq. (20)
yielding

∂φ

∂ri
= ∂k

∂ri
(z − V t ) − k

2
t, (27)

with derivatives of the wave vector k being

∂k

∂r1
= −(r4 − r2)m2

2h̄2k
,

∂k

∂r2
= −(r3 − r1)m2

2h̄2k
,

∂k

∂r3
= (r4 − r2)m2

2h̄2k
,

∂k

∂r4
= (r3 − r1)m2

2h̄2k
. (28)

Consider the bipartition problem of the previous section,
where the two halves of the system are initially in ther-
mal equilibrium with one another, i.e., they share the same
temperature T . Following the shock (t > 0), the Riemann
invariant fluctuations δr1 and δr2 are determined by the initial
density on the right boundary nR, while δr4 depends on nL.
The Riemann invariant r3 corresponds to the initial boundary
region between the two halves of the system; as this region
is infinitesimally small, the thermal fluctuations, which at

FIG. 4. Reduction of DSW contrast following thermal fluctua-
tions in the bipartition problem. Finite temperature states are sampled
following Ref. [70], then propagated according to GHD (6). The evo-
lution time is tvs/ξh = 75. The density is calculated using Whitham’s
approach (19) and averaged over the ensemble.

low temperatures are dominated by long-wavelength modes,
are vanishing. Hence, Eqs. (27) and (28) show that σ 2

δφ is
greater for larger density difference between the two system
halves. Furthermore, the contribution of thermal fluctuations
is strongest around the front edge of the DSW where the
difference r3 − r1 is maximal (see Fig. 3 for reference).

To numerically test these predictions, we proceed in
the spirit of the truncated Wigner approximation, following
the approach of Ref. [70]: Starting from a given zero temper-
ature state 
T =0

± (here considering the bipartition problem of
the previous section), we sample density and phase fluctua-
tions for a given temperature T and then resolve the Bethe
Ansatz to obtain the fluctuating Fermi contours 
T

±(z) =

T =0

± + δ
±(z). Many initial states of fluctuating Fermi con-
tours are independently sampled (here 200), such that the pop-
ulation of each collective mode follows the Bose-Einstein dis-
tribution (fluctuation quasiparticles “boostons” are bosonic).
Next, each realization is propagated according to a linearized
GHD, following Eq. (6) where the contribution of fluctua-
tions to the effective velocity is neglected. Last, observables
(here the DSW density via Eq. (19)) are evaluated for each
realization, then averaged over the ensemble to produce the
final result. Results obtained for different temperatures are
shown in Fig. 4: As predicted, the DSW contrast is reduced
as temperature increases, and we find a stronger distortion
of the DSW towards its front end, particularly for the hotter
realizations.

For comparison, simulations of the finite temperature bi-
partition using the stochastic-projected GPE method were
carried out; initial states with thermal fluctuations are acquired
using a stochastic noise term, then propagated according to
zero-temperature GPE (10). Here we find the effect of thermal
fluctuations weaker than in GHD, i.e., a higher temperature
is required to achieve the same level of contrast reduction
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as seen in Fig. 4. We attribute this discrepancy to the GPE
dispersive term coupling to the fluctuations: When not lin-
earizing the fluctuation dynamics, the fluctuations themselves
are known to create tiny shocks [70]; dispersively regularizing
these shocks introduces oscillations with frequency beyond
the UV cutoff of the GPE simulation, effectively diminish-
ing the fluctuations. Notably, this mechanism is especially
prominent within the region of the main shock. A detailed
analysis of linearized and nonlinear fluctuation dynamics is
an interesting perspective for further studies, but beyond the
scope of this work.

C. Shock wave evolution during free expansion

In experiments with ultracold atoms, a routine method of
probing the system is releasing the trapping potential, thus
effectively quenching interactions to zero, and letting the
atomic cloud undergo free expansion followed by imaging
of its density. In one-dimensional systems, such expansion
protocols lead to the formation of density ripples along the
longitudinal axis, as fluctuations of the condensate phase (hy-
drodynamic velocity field) transform into density fluctuations
[71]. These phase fluctuations are typically thermal, leading to
density ripples being used for thermometry by measuring their
(temperature dependent) power spectrum [72] or by training
neural networks to associate ripple features to the underlying
temperature [73]. Additionally, density ripples have been em-
ployed to monitor squeezed collective modes [74].

Following the formation of a DSW, large oscillations in
the hydrodynamic velocity (in addition to the oscillating den-
sity) develop as per Eq. (21). Thus, during free expansion of
an atomic cloud, features of the shock wave are magnified,
which could be highly beneficial for the purpose of experi-
mentally detecting them. Indeed, in experiments realizing a
Lieb-Liniger gas in the weakly interacting regime (γ � 1),
the imaging resolution is typically much larger than the wave-
length of the shock wave. Hence, density profiles measured in-
situ resemble the TBA prediction (3), as the imaging apparatus
effectively averages over the oscillating shock wave density.

In Fig. 5 we illustrate the amplification of shock wave fea-
tures following free expansion. Figures 5(a) and 5(b) show the
hydrodynamic velocity for the zero-temperature bipartition
problem; the latter subfigure corresponds to the system also
depicted in Fig. 3, while the former is calculated for a smaller
right-hand density nR = 0.08nL. Starting from the Fermi ra-
pidities of the GHD simulation, the velocity is computed using
TBA (4) and Whitham’s approach (21). When the shock wave
amplitude approaches the background density, the hydrody-
namic velocity features very sharp peaks at the locations of
the density minima. Again, we find a good agreement with
GPE simulations.

Next, in Figs. 5(c) and 5(d), the shock wave density fol-
lowing different free expansion times τ is depicted for the two
Riemann setups above. For τ > 0, the shock wave continues
propagating towards the right while experiencing a substan-
tial growth in its contrast, particularly around the back of
the wave where the magnitude of the velocity is the largest.
Interestingly, although the hydrodynamic velocities of the two
setups are very different, their density profiles following free
expansion are rather similar.

FIG. 5. Evolution of Riemann protocol DSW during free expan-
sion. (a), (b) Hydrodynamic velocity obtained from zero-temperature
GHD simulations using TBA (4) and Whitham’s approach (21) for
right-hand density of nR = 0.08nL and nR = 0.25nL, respectively.
The simulation duration is tvs/ξh = 50. The results are compared to
GPE simulations. (c), (d) Corresponding density profiles following
free evolution of duration τ . (e), (f) Convolution of the density
profiles with a Gaussian with standard deviation σ = 5ξh.

Finally, to emulate the effect of an imaging system, we
convolve the freely evolved density profiles with a Gaussian.
Here we have selected a standard deviation σ = 5ξh, which is
representative of the resolution found in experimental setups.
The results are plotted in Figs. 5(e) and 5(f). For τ = 0,
corresponding to an in situ measurement, we indeed obtain
a density profile very similar to the TBA prediction. However,
for τ > 0, the magnified features of the shock wave results
in a noticeable density peak near the back of the shock wave,
which continues to grow for increasing expansion times. In the
nR = 0.08nL case, even secondary peaks towards the center of
the shock wave appear in the “imaged” profiles. While thermal
effects still represent a significant challenge in the context of
measuring DSWs, the results of Fig. 5 are encouraging.

V. TOWARDS GENERALIZATION TO ARBITRARY
INTERACTION STRENGTH

The presented results lend themselves to a clear physical
interpretation of the formation of DSWs in the 1D Bose gas.
For a state represented by a single Fermi sea and where γ �
1, the local density is determined by the squared width of the
Fermi sea, i.e., the squared difference of its Fermi rapidities.
Meanwhile, in the presence of multiple local Fermi seas, their
contributions interfere rather than simply add up, which can
easily be seen from Eq. (19); its first term represents the
lower envelope of the shock wave density, i.e., the destructive
interference of the two components. The interpretation of
DSWs as the interference of two local fluid components rep-

013328-8



WHITHAM APPROACH TO GENERALIZED HYDRODYNAMICS PHYSICAL REVIEW RESEARCH 6, 013328 (2024)

resented by separate Fermi seas complements the conclusion
of Ref. [56], namely, that DSWs are the result of quantum
mechanical self-interference between a traveling wave and its
background.

Following the construction of GHD upon exact Bethe
Ansatz solutions, the theory applies for all interaction
strengths γ of the Lieb-Liniger model. This raises the ques-
tion, whether the combined GHD-Whitham picture can be
framed in a more general scenario, thus facilitating a de-
scription in any regime with the Fermi rapidities constituting
a set of generalized Riemann invariants. Since the effective
velocity (7) exactly describe the characteristic velocities of the
Fermi contours for all interaction strengths, it would constitute
the generalization of the Whitham system (17). However, no
general expression for the periodic solution of the DSW exists
as of yet, as it depends on the underlying dispersive hydro-
dynamics. To obtain the correct dispersive hydrodynamics
(at arbitrary interaction strength), one would need to derive
the dispersive term directly from the Bethe Ansatz, possibly
following the approach outlined in Ref. [75], and then apply
Whitham’s theory.

In studies of 1D free fermion gases, whose dynamics
is equivalent to the 1D Bose gas in the strongly interact-
ing Tonks-Girardeau regime (γ � 1, i.e., opposite to the
regime treated here), the formation of density oscillations
following a shock has been interpreted as Friedel-type oscil-
lations between different branches of the Fermi momentum
[27,50,76]. Notably, the emergent oscillations of strongly in-
teracting systems are parametrically different to those of the
GPE (see Refs. [22,52,56] for examples). In one attempt to
describe the oscillations, a phenomenological hydrodynamics
and Whitham equations were derived [52]; while the resulting
oscillation period is solely determined by the wave vector
k32 = �3 − �2 (see Appendix A), results of direct quantum
simulations exhibit much more irregular oscillations. Mean-
while, Quantum Generalized Hydrodynamics [27] accurately
predicts the formation of such irregular oscillations following
a shock in the strongly interacting Bose gas [77].

QGHD provides equations for the linear sound waves
around zero-temperature GHD, effectively realizing a time-
dependent, spatially inhomogeneous, multicomponent Lut-
tinger liquid [58,78]. The formalism enables the connection
with physical observables such as correlations through opera-
tor expansion [79,80]. Nonuniversal prefactors in the operator
expansion are highly difficult to obtain for finite interactions,
however, progress has been made in the Tonks-Girardeau
regime, where asymptotically exact formula have been de-
rived [30,31]. Another approach [81,82], also capable of
describing the emergent Friedel-like oscillation, considers the
GHD equation as the zeroth order evolution equation for
the Wigner distribution [83–85]. Similarly to QGHD, several
open problems remain in extending this approach to finite
interaction. Although not yet fully understood, the mechanism
behind the observed oscillations in QGHD appears linked
to initial correlations between spatially separated regions of
the fluid (not captured at the coarse-grained Euler scale);
following the shock and branching of the Fermi momen-
tum, correlated points of the Fermi contour overlap in space,
thus creating coherent oscillations through interference. This
differs from that of DSWs described by Whitham’s theory,

whose microscopic origin stems from the high-momentum
part of the particles dispersion relation.

Nevertheless, all three approaches address the same is-
sue of reintroducing coherent effects lost by coarse graining,
while retaining the Euler-scale hydrodynamic equations. This
similarity begs the question of whether a connection between
the approaches exists, particularly whether Whitham theory
could be considered a semiclassical limit of QGHD. Estab-
lishing such connection could provide a prescription to fix
nonuniversal prefactors in the operator expansions (at least
close to the semiclassical limit), thereby aiding in future de-
velopments of QGHD and providing important benchmarks.
Although beyond the scope of this work, We briefly outline
how one may proceed in this endeavor. Within the Whitham
approach, one considers the solution to hydrodynamic equa-
tions in the shock region as a single-phase periodic wave
with slowly modulated parameter (such as the wave vector).
According to GHD, the single wave vector is expressed in
terms of the Fermi momenta, whose evolution is governed by
the dispersionless Euler-scale hydrodynamic equation. Mean-
while, in QGHD, the oscillations are parameterized in terms of
a time-dependent Wentzel-Kramers-Brillouin (WKB) phase
along the contour [31]. Thus, a possible first step in connect-
ing the theories would be to match the oscillation wave vector
and WKB phase.

VI. CONCLUSION

In this work, we have studied the connection between
Whitham modulation theory and Generalized Hydrodynam-
ics. First, we have stated an Ansatz explicitly relating the
Riemann invariants of Whitham’s theory for the GPE to the
Fermi rapidities of the Lieb-Liniger model at finite, but weak,
interaction strengths beyond the semiclassical limit. To test
the Ansatz, we have calculated the convergence of the theories
when approaching the semiclassical limit. Our analysis sup-
port a reasonable agreement in regimes accessible in current
experiments with ultracold gases. Next, we have demonstrated
how short wavelength density oscillations following a hydro-
dynamic shock, otherwise lost in the GHD description, can
be recovered through Whitham’s approach. We have further
shown how thermal fluctuations diminish the contrast of the
shock wave, while free expansion of the system amplifies its
features and thus facilitates experimental detection. At zero
temperature, our results are in agreement with GPE simu-
lations; at finite temperature, the qualitative behavior is the
same, although we find a higher temperature necessary for
GPE to achieve the same level of contrast reduction.

The combined picture of the two theories lends itself to
additional physical interpretation, connecting the formation
of DSWs to the interference between multiple Fermi seas
representing separate components of the fluid. Further, clear
parallels to the theory of Quantum Generalized Hydrody-
namics [27] can be drawn; explicitly connecting Whitham’s
theory to QGHD could provide a prescription to fix nonuni-
versal prefactors in operator expansion of the latter. Finally,
extending the GHD Whitham approach to arbitrary interac-
tion strength should be possible, however, would require a
derivation of the resulting dispersive hydrodynamics directly
from the Bethe Ansatz [75].
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APPENDIX A: WHITHAM’S APPROACH
TO THE 1D FREE FERMION GAS

In this Appendix we present the modulation equations for
an approximate hydrodynamic theory for the free Fermi gas,
originally derived in Ref. [52] (see also Refs. [86,87]) in the
context of a density perturbation traveling on a homogeneous
background.

The starting point for obtaining the hydrodynamics is the
Euler equation for the free Fermi (FF) gas Wigner function,
which notably is identical to the zero temperature GHD of
the Tonks-Girardeau gas. Next, the equation is rephrased in
terms of the mean density and velocity of the fluid and a
dispersive term is included to regularize the shock. To this
end, two regularizing contributions are considered, namely
gradient corrections to the Hamiltonian and loop corrections.
The resulting hydrodynamic equations read

∂t n + ∂z(nu) = 0,

∂t u + u∂zu + ∂zw = 0, (A1)

where the enthalpy w is given by

w = π2n2

2
− 1

4
∂2

z ln n − 1

8
(∂z ln n)2 + Ân, (A2)

and the action of the operator Â in momentum space is Ânk =
π |k|nk [88]. The first term of Eq. (A2) is the pressure of a
homogeneous Fermi gas, the two middle terms arise from gra-
dient corrections and describe the cyclotronic pressure, while
the final term accounts for loop corrections. Interestingly, the
contributions of the former effects also appear in the GPE.
However, for free fermions, the analysis of Ref. [52] proved
that the latter effect is more important.

Applying Whitham’s approach to the hydrodynamics
above, one obtains the following expression for the shock
wave density

n = n1 − k32

2π

sinh a

cosh a − cos φ
. (A3)

Here φ = k32z − ωt is the phase of the oscillating wave, n1 =
n0 + k32/(2π ), while the parameter a control the amplitude
and shape of the wave and reads

tanh a = 4πk3
32ρ

3
1

k4
32n2

1 + 4π2k2
32n4

1 − 4(k32 j − ωn0)2 . (A4)

The wave vector of the wave k32, its frequency ω, as well as
its mean density and current are given by

k32 = �3 − �2,

ω = 1

2

(
�2

3 − �2
2

)
,

n0 = �4 − �3 + �2 − �1

2π
,

j = �2
4 − �2

3 + �2
2 − �2

1

4π
. (A5)

Note that the equations above were originally phrased in terms
of the Fermi momenta of the postshock Wigner function, how-
ever, in the Tonks-Girardeau regime, these are equivalent to
the Fermi rapidities of GHD. Thus, for the sake of consistent
notation, we express the equations in terms of the latter.

In addition to the hydrodynamic approach, Ref. [52] also
conducted a semiclassical analysis using the Wigner function.
Naively, one would expect the Wigner function of a free
fermion gas in a potential well to behave similarly to the
filling function of the thermodynamics Bethe Ansatz; within
the Fermi momenta it assumes the value 1, while outside it
abruptly drops to 0. In fact, the dynamics and resulting density
of such a Wigner function are equivalent to the zero tem-
perature GHD of the Tonks-Girardeau gas. However, in the
correct semiclassical approximation of the Wigner function,
the function develops oscillations in momentum space near
the Fermi momentum. The number of oscillations is deter-
mined by the number of particles in the initial perturbation.
Following dynamics, these oscillations in momentum space
translate into density oscillations within the shock wave re-
gion. When compared to “exact” results obtained from direct
quantum simulations of free fermions on a lattice, this semi-
classical approach reproduces the shock wave oscillations
almost faithfully. However, the oscillations of the quantum
simulation are more irregular, particularly around the center
of the shock wave region; note that the results of the quantum
simulations are correctly captured by QGHD [77]. Neverthe-
less, the semiclassical Wigner approach will be used as our
reference solution in the following discussion.

In Fig. 6 we plot the oscillation period obtained from the
FF Whitham (A3), the semiclassical Wigner function, and the
GPE Whitham solution (19). The physical setup in question
is a density perturbation traveling on a homogeneous back-
ground, where the underlying data are taken from Ref. [52].
Immediately we observe that the GPE Whitham fails to cap-
ture the “correct” oscillation period, whereas the FF Whitham
and semiclassical Wigner methods converge when approach-
ing the front edge of the shock. Indeed, the wave vector
k32 of the FF Whitham coincides with k42 = �4 − �2 at the
front edge, since �3 → �4. Evidently, the oscillations of the
Wigner approach are accurately captured by the wave vector
k42, however, the reason for this is not fully apparent. Notably,
the oscillation period of neither the FF Whitham nor the
semiclassical Wigner approach explicitly depend on the lower
Fermi momentum �1, unlike the GPE oscillations. As a result,
the effective shock wave vector of the GPE solution is much
larger [also the oscillating term sn( · ) is squared].
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FIG. 6. Oscillation period of a shock wave from a density per-
turbation in the 1D free Fermi gas. Data are taken from Ref. [52].
Symbols denote the periods obtained via evolution of the semiclassi-
cal Wigner function (diamonds), Whitham theory of an approximate
hydrodynamics of the free Fermi gas (A3) (circles), and the Whitham
theory for the Gross-Pitaevskii equation (19) (triangles). The lines
indicate the period associated with the wave vector of a particular
momentum branch interference, i.e., δzi j = 2π/(�i − � j ).

APPENDIX B: THE BIPARTITION PROBLEM
WITH DIFFERENT BACKGROUND DENSITIES

The characteristics of a DSW depend not only on the
traveling wave itself, but also the background on which it
propagates; in particular the density of the background, here
nR, is fundamental to the shape of the DSW. In order to
demonstrate this behavior, we repeat the GHD and GPE sim-
ulations of Sec. IV A for varying densities on the right side
of the initial boundary and plot the resulting DSWs after an
evolution time tvs/ξh = 100 in Fig. 7. We find that for small
values of nR, the amplitude of the shock wave oscillations
decreases until the DSW fully disappears for nR = 0. Such
behavior is well known in the bipartition problem [66]; con-
sider the soliton on the border with the central density plateau,
whose amplitude is

A = 2(
√

nLnR − nR). (B1)

Starting with equal density on either side of the initial bound-
ary nL = nR and gradually decreasing nR, the difference
between A and the plateau density n̄ = 1

4 (
√

nL + √
nR)2 de-

creases. For the densities nR = nL/9, we obtain A = n̄ and
the first soliton becomes black as the condensate density at its
minimum reaches zero. As nR further decreases, the amplitude
of oscillations in the DSW decreases, while the point of zero
density moves deeper into the DSW. Finally, as the density on
the right side vanishes, the entire traveling wave solution be-
comes a rarefaction wave. The results of Fig. 7 reflect exactly
this behavior; comparing the oscillating solutions of the GPE
simulations with the DSW density obtained from the GHD
simulations via Eq. (19), we again find a good agreement.
This demonstrates a certain robustness of our approach while
providing further example for the physical interpretation of
DSW formation as the interference of the two Fermi seas.

(a) (b)

(c) (d)

FIG. 7. Dispersive shock wave in the bipartition problem at time
tvs/l = 100 for various densities on the right boundary: (a) nR =
0.5nL, (b) nR = 0.04nL, (c) nR = 0.01nL, and (d) nR = 0. The den-
sity is calculated from the Fermi contours of GHD simulations using
the Bethe Ansatz (3) and Whitham theory (19) and compared with
results from GPE simulations.

APPENDIX C: THE CONSTANTLY
ACCELERATING PISTON

Last, we consider the action of a piston moving through
a homogeneous condensate with density n0 initially at rest.
To this end, we consider a constantly accelerating piston,
whose position and velocity are denoted zp(t ) = apt2/2 and
vp(t ) = apt , where ap > 0 and is constant. This problem was
first treated using Whitham’s approach in Ref. [89]; here we
summarize the main analytical predictions, which we will
later compare with the results of GHD simulations.

The piston acts only at its boundary with the condensate,
whereby its effect is taken into account through the boundary
condition

u(z, t ) = vp(t ) for z = zp(t ), (C1)

which specifies that the hydrodynamic velocity of the con-
densate must be equal to the piston velocity at their point of
contact [90]. At sufficiently short times, the piston velocity is
lower than the sound velocity of the background condensate
vs0 = h̄

√
n0c/m, whereby the wave does not break immedi-

ately as in the bipartition problem. Instead, similarly to the
illustration of Fig. 1, the breaking time tb denotes the time at
which a vertical tangent appears in the profiles of the density
and hydrodynamic velocity, corresponding to the development
of the second Fermi sea in GHD. Before the breaking time,
the condensate consists of two distinct regions: In the region
zp(t ) < z < vs0t the hydrodynamic velocity is positive as the
condensate has been accelerated by the piston, while for z >

vs0t the condensate remains at rest. At the boundary between
the two regions, the following condition must be met

n = n0, u = 0 for z = vs0t . (C2)
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(a) (b) (d)(c)

FIG. 8. Simulated Fermi contours 
± of a condensate under the action of a constantly accelerating piston plotted at select times following
the breaking time tb. Below, the corresponding density profiles computed using thermodynamic Bethe Ansatz [Eq. (3), plotted in red] and
Whitham’s theory [Eq. (19), plotted in blue] are shown. The gray-shaded area marks the position of the piston.

In the bulk of the condensate the gradient of the density is
small, whereby the flow can be described by the expressions
of the dispersionless regime. From these considerations one
finds the breaking time to be

tb = 2vs0

3ap
, (C3)

and the point of the initial wave breaking to be

zb = 2v2
s0

3ap
. (C4)

When approaching the breaking point, dispersion becomes
relevant and a DSW starts forming near zb. By considering the
boundary conditions of the Whitham equations at the DSW
edges, it is possible to obtain a complete description of the
condensate flow under the action of the piston [89]. Thus, the
position of the trailing (soliton) edge of the DSW is given by

z−(t ) = 5

36

v2
s0

ap
+ 7

12
vs0t + 5

16
apt2, (C5)

while the position of the leading (low amplitude) edge reads

z+(t ) = 2v2
s0

5ap

8y4 − 6y2 + 3

2y2 + 1
, (C6)

where y = min(r4)/vs0. Finally, at the critical time

tc = 10vs0

3ap
, (C7)

the piston catches up to the trailing edge of the DSW, whereby
an additional (third) Fermi sea will develop. Analysis of the
piston problem past this point is beyond the scope of this
work.

In order to simulate the piston problem using zero-
temperature GHD, we proceed in a similar manner to the
bipartition problem by discretizing the Fermi contour as a
number of points. Given the piston boundary condition (C1),
the Riemann invariants take the form

r+ − vs0 = vp for z = zp(t ), (C8)

while r− = −vs0 remains a constant invariant. Thus, the ac-
tion of the piston can be seen as reflection of the lower
Riemann invariant plus a local boost by the piston velocity.
For the GHD simulation, we assume that the piston acts on
the Fermi contours in an equivalent manner.

In Fig. 8 we plot the Fermi contour at a few evolution
times t simulated for n0 = 200, c = 0.5, and a = 0.1v2

s0/ξh.
By virtue of the accelerating piston, the width of the Fermi
sea at the solition edge of the DSW grows increasingly wider,
leading to an increasing density difference across the DSW.
Furthermore, the rapidity at the leading edge of the DSW z+
increases, indicating that the boundary is accelerating. This in
contrast to the constant velocity piston [90], where both the
density difference and the boundary velocity remain constant.
Once again we compute the periodic density solution from
the Fermi contour and plot the results in Fig. 8. As the width
of the second Fermi sea grows, the amplitude of the DSW

013328-12
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FIG. 9. Position of the dispersive shock wave boundaries over
time. The results of GHD simulations are represented as colored
lines; the black dashed and dotted lines denote the analytic predic-
tions of Eqs. (C5) and (C6); the green crosses are the results of GPE
simulations. The breaking time tb of Eq. (C3) heralds the formation
of the DSW, while the critical time tc of Eq. (C7) marks the point at
which the piston boundary, plotted as a solid gray line, reaching the
edge of the shock wave.

oscillations increases; as evident from Eq. (19), once the width
of the Fermi sea corresponding to the traveling wave equals
that of the background, the first soliton of the shock wave
train becomes black. Increasing the width of the second Fermi
sea beyond this point further increases the number of black
solitons. Once again we compute the GHD density and find
that it accurately represents the average density of the DSW.

Next, we extract the positions on the Fermi contour, where
the state transitions from one to two Fermi seas, and plot
the results in Fig. 9 along with the position of the piston.
At time tb the wave breaks and the DSW forms; by virtue
of their different velocities, the width of the DSW increases
over time until the critical point tc, where the piston reaches
the trailing edge of the wave. Comparing the results of the
GHD simulation to the analytic expressions for the trailing
and leading edge positions of the DSW given by Eqs. (C5)
and (C6), respectively, we find a very good agreement. Upon
careful inspection a small discrepancy can be found, which we
attribute to the finite coupling strength employed in the GHD
simulation. For the sake of completeness, we also compare
our results with GPE simulations and find a good agreement,
as seen in Fig. 9.
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