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Nonlinear mechanosensation in fiber networks
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In the extracellular matrix, eukaryotic cells exert forces that deform their surroundings. By doing so, they
can perform mechanosensation: Cells measure the mechanics of their environment, and adapt their behavior
accordingly. Extracellular matrices are, however, disordered nonlinear media: How can a mechanosensor at
the cellular scale reliably measure the surroundings mechanics through local probing? Here, we develop a
model for nonlinear mechanosensation in disordered fiber networks. At low forces, the linear response of the
matrix combined with its extreme mechanical heterogeneity precludes reliable mechanosensation. In contrast,
we find that this heterogeneity is strongly suppressed in the physiologically relevant nonlinear mechanical regime
where fibers buckle. Conceptually, nonlinearity increases the range of mechanosensation, thereby enhancing
disorder averaging and providing more accurate nonlinear mechanical measurements. We support our model
using microrheology experiments and show theoretically that this nonlinear mechanosensation is generic to all
fiber networks. This contrasts with the collagen-specific observation that nonlinear macroscopic elastic moduli
are independent of network density, which we show to originate from the fiber’s constitutive nonlinearity.
Together, our theoretical study disentangles the micro- and macrorheological nonlinearities of fiber networks,
and shows how mechanosensors such as cells can take advantage of these nonlinearities to robustly measure
their mechanical environment despite heterogeneities.
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Cell behavior is steered by various cues from their extracel-
lular environment. Such cues include chemical, electrical, and
topographic signals that regulate key cell functions such as
migration [1] and thereby impact processes ranging from em-
bryonic development [2–4] and tissue maintenance to disease
progression [5,6]. In particular, there is growing evidence for
mechanosensation: Cells sense and respond to the mechanical
properties of their environment [5,7–10]. The stiffness of the
cell’s substrate can guide developmental processes in vivo,
such as axonal growth [11]. In vitro model systems further
revealed that cells mechanically probe their substrate and
subsequently modify behaviors such as differentiation [12],
gene expression [13], and motility [14–16]. It remains unclear,
however, what mechanical information cells can perceive
inside the complex environments they encounter naturally
[17,18].

In vivo, many cell types mechanically interact with the
extracellular matrix (ECM) by adhering to network fibers and
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exerting local forces. The polymerization and gelation pro-
cesses through which these collageneous matrices form result
in an inherently disordered fiber network with large struc-
tural variations at the cellular scale [19,20]. Consequently, the
mechanical properties a cell-scale mechanosensor can locally
measure depend strongly on network location [21–26]. This
implies that cells face a highly heterogeneous mechanical
environment [27,28] in which the cell-scale linear stiffness,
measured at different locations in a single network, exhibits
relative variations as large as between the macroscopic stiff-
ness of tissues as distinct as brain (1 kPa) and bone (100 kPa)
[22]. Thus, even if cells had ideal mechanosensors that could
perfectly measure the local linear mechanical response, their
ability to perform mechanosensation would remain limited by
matrix disorder. Importantly, however, cells can exert forces
of up to few nanonewtons [29–32] to probe their environ-
ment, easily exceeding the linear response regime of the ECM
[33–35]. Indeed, collagen networks exhibit a pronounced non-
linear response at relatively small stresses or deformations.
Understanding how such nonlinearities impact mechanosen-
sation at the scale of a cell inside the disordered ECM is the
primary goal of this article.

The macroscopic nonlinear behavior of disordered fiber
networks is well characterized both theoretically [36–43]
and experimentally [44–50]. Nonlinearities arise through a
range of effects, including constituent nonlinearities such
as fiber buckling [51] and entropic stiffening [39,47,52], or
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network nonlinearities arising from their low connectivity
[53–55]. By contrast, the nonlinear mechanics of the net-
work in response to local probes at scales relevant to how
a cell mechanically interacts with the ECM remains poorly
understood [21,23,43,56–58]. As the force is increased, fiber
buckling occurs and marks the transition from a bending-
to a stretching-dominated response [59]. A nonlinear region
thus emerges in the vicinity of a local probing force [33,52],
where fiber buckling and associated fiber alignment, facili-
tated by the removal of orthoradial constraints, result in a
stress decay that is slower than in linear elasticity, consistent
with cell-generated displacement fields [35]. Recent discrete
and continuous theoretical approaches established the role of
buckling in the formation of this region [60–63], determined
its spatial range [62–64], and its impact on stress transmission
[62,65]. To investigate the ability of a cell-scale mechanosen-
sor to infer matrix mechanics using local force probes, we thus
need to understand the interplay between these nonlinearities
and the structural disorder of the network.

Here, we theoretically investigate the relation between bulk
and local nonlinear elasticity to elucidate the ability of an ideal
mechanosensor at the cellular scale to measure the nonlin-
ear mechanical properties inside a disordered fiber network.
First, we derive a simple relation describing how the fiber
constituent stiffening and density control the macroscopic
nonlinear mechanics, which explains the unique density inde-
pendence of the nonlinear stiffness of collagen networks [44].
Surprisingly, however, we find that these macroscopic nonlin-
ear properties do not control the local nonlinear mechanical
properties. The local mechanical response measurable by an
ideal mechanosensor is strongly modulated by variations in
fiber density, although the relative variations in the mechan-
ics decrease with force as the response becomes nonlinear.
Using both theory and experiments, we discover a generic
power-law decay of the relative variability of local mechanical
measurements with force. This power law controls how the
the local nonlinear mechanical response becomes increasingly
insensitive to network disorder for a range of fiber constitutive
nonlinearities. To provide insights, we develop a simple model
for this concept that we term nonlinear mechanosensation.
Our model shows how large probing forces applied by a local
mechanosensor induce fiber buckling over an extended range,
thereby effectively enhancing the length-scale over which a
mechanical measurement is averaged in a disordered network.
Thus, we here find that elastic nonlinearities can be exploited
by mechanosensors, such as cells, to overcome the inher-
ent disorder of their environment and making it possible to
use local measurements to infer the macroscopic mechanical
properties of the ECM.

I. MODEL FOR DISORDERED NONLINEAR
FIBER NETWORKS

To investigate the consequences of structural heterogeneity
in fiber networks on the local mechanical environment an
ideal mechanosensor can measure, we build on a broadly used
minimal model for a disordered fibrous matrix [38,66]. In this
model (see Materials and Methods), we introduce structural
disorder by randomly depleting bonds on a regular lattice. The
lattice fibers are represented by these bonds that are present
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FIG. 1. Nonlinear fiber network model. Constitutive law (CL) of
the fibers, (a) bond tension (τ ) vs deformation (ε), (b) corresponding
bond differential stiffness (k), normalized by the linear modulus (μ)
as a function of its tension, (c) mathematical expression of CLs.
(d) Macroscopic loading of a 3D EXP-fiber network with p = 0.35 at
three dilatation strains γ = 10−5, 8×10−2 and 2×10−1. Color code:
low to high tensile forces (resp. compressive forces) from light to
dark blue (resp. red).

with a probability p, setting the fiber density. Fiber bonds
resist both bending and longitudinal deformations. Here, we
describe the longitudinal fiber response with a nonlinear
force-extension constitutive law (CL) τ = f (ε), with ε the
fiber’s relative longitudinal deformation and τ its tension. This
CL is chosen to be asymmetric in compression and tension.
Indeed, fibers buckle and soften under compression (ε < 0)
and can stiffen beyond a characteristic tension, with a power
law increase k ∝ τ x of their differential stiffness k = dτ/dε,
where the exponent x characterizes the stiffening mechanism.

The exponent x is varied to assess the effects of the non-
linear fiber micromechanics on mechanosensing. The values
are selected to capture the mechanical behavior of various
biopolymers employed in experiments, in particular colla-
gen, the main ECM constituent [20]. Indeed, the case x = 1,
corresponds to an exponential CL [EXP, Figs. 1(a)–1(c)], re-
flecting the empirically established stress-strain relationship
of tendon and reconstituted collagen networks [44,67,68]. We
also consider three other CLs, Figs. 1(a)–1(c). These CLs all
exhibit buckling-induced fiber softening and several distinct
tensile responses described by a power law k ∝ τ x: x = 0
(LIN) corresponds to linear nonstiffening springs, x = 1/2
(QUAD) to a quadratic force-extension relation, and x = 3/2
(WLC) describes a divergent entropic force-extension relation
of the worm-like chain model [36,47]. Throughout this article,
we use the mechanical equilibrium response to global and
local loading of these model networks to study the ability
of a mechanosensor at the scale of the mesh size to glean
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FIG. 2. Stress- and fiber density-dependence of the bulk modulus. Macroscopic differential elastic modulus (K) vs bulk stress (σ ) of 3D
depleted networks with various fiber densities set by the bond occupation parameter p (low to high value indicated by a dark to bright color)
and constituted of (a) EXP-fibers, (b) LIN-fibers, (c) QUAD-fibers, and (d) WLC-fibers. Inset highlights the p dependence in the large-stress
regime. Tension distribution in 2D EXP-fiber networks [same color code as Fig. 1(c)] of (e) randomly depleted networks with, from left
to right, p = 0.5, 0.6, and 0.8 at a fixed stress in the asymptotic large stress regime. (f) p dependence of the large-stress modulus of 3D
depleted networks. The normalization constant K1 is the modulus for the p = 1 homogeneous network. (g) Same as (e) for regular networks of
decreasing fiber density. (h) n dependence of the large-stress modulus of the regular networks. The normalization constant K1 is the modulus
for the n = 1 denser network. (i) K vs σ of regular networks with low to high fiber densities for the different CLs, (j) corresponding rescaled
response, with A0 and σ0 CL-dependent constants.

information on the mechanical properties of its surrounding
heterogeneous environment.

II. DENSITY DEPENDENCE OF NONLINEAR
BULK MODULUS

When using small probing forces, local measurements by
a cell-scale mechanosensor are highly sensitive to density
heterogeneity: the random architecture leads to some regions
of the network being denser than others, thereby modulating
the local mechanical properties [21–26]. To understand how,
we first investigate how fiber density affects the bulk stiffness
of the network. While this dependency is well understood in
the linear, low-stress regime [66,69], this is not the case in the
nonlinear stiffening regime arising at larger stress.

We simulate the response to a dilatation strain of networks
with varying fiber density of EXP fibers representing collagen
[Figs. 1(d) and 2(a)]. The network stiffness is quantified by
the differential bulk modulus K = dσ/dγ , with σ and γ the
macroscopic stress and strain (see Materials and Methods).
At low stress, the response is linear: network stiffness is stress
independent and, intuitively, increases with fiber density. In
contrast, after a cross over at intermediate stresses, the modu-
lus increases with stress as a power law K ∝ σ that reflects the
fiber constitutive nonlinearity. Strikingly, in this regime the
macroscopic elastic responses converge to a stress-controlled

value, insensitive to fiber density, consistent with macrorheol-
ogy experiments on collagen gels [44].

To elucidate the stress and density dependence of the
nonlinear macroscopic response of collagen, we propose a
differentially affine model. While nonaffinity, meaning local
deviations from the globally applied deformation field, can be
large at low stress, these nonaffine deviations decay strongly
at larger stress [70]. These observations support a differen-
tially affine model, in which increments in the deformations
to additionally applied strains become slaved to the glob-
ally applied affine strain increments. Indeed, we here observe
that at large stresses a tense subnetwork that carries most of
the stress emerges and remains stable under further loading
[Fig. 2(e), Movie S1 within the Supplemental Material (SM)
[76]). In this regime, we assume that the stress is evenly
distributed among the bonds of this load-bearing subnetwork.
These bonds have a density n and a tension τ , resulting in a
macroscopic stress

σ = nτ. (1)

In our model, we further assume that an increase δγ of the
macroscopic strain results in an equal stretch δε = δγ of
the load-bearing fibers, i.e., that the system is differentially
affine. This implies that the macroscopic differential modulus
K at large stress directly reflects the microscopic differential
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stiffness k = dτ/dε of the load-bearing fibers,

K = nk. (2)

Importantly, Eqs. (1) and (2) imply strong constraints connect-
ing the stress- and density dependence of the bulk modulus.
Indeed, for fibers with power-law stiffening, k ∝ τ x, we find
at large stress that

K ∝ σ xn1−x. (3)

This equation implies that a single exponent x of the fiber-
level CL controls both the n and σ dependence of the
macroscopic modulus. Strikingly, for collagen-like fibers with
x = 1, we find K ∝ σ , independently of n. Our simple dif-
ferentially affine model thus recapitulates the observations for
collagen at large stress. While an alternate explanation involv-
ing normal stresses was previously proposed under shear [44],
our model proposes a simple and general rationalization of
the density independence of the nonlinear elastic modulus of
collagen.

Our differentially affine model [Eq. (3)] also makes predic-
tions for other CLs. For linear elements (x = 0), we recover a
stress-independent modulus proportional to n. For 0 < x < 1,
K (σ ) increases with the load-bearing bond density. Remark-
ably, if x > 1, we predict that K (σ ) decreases with n. This
startling behavior can be understood by considering the load-
ing of a set of two bonds in parallel. If one of these segments
is cut, the load is transferred to the remaining bond, doubling
its load. If x = 1, however, this would also double the bond
stiffness, thus leaving the rigidity of the system unchanged.
For x < 1, depleting the network leads to a reduced modulus.
By contrast, if x > 1 the stiffness of the remaining bond more
than doubles, clarifying our counterintuitive prediction that at
constant stress, network depletion leads to stiffening.

We further confirm these predictions by simulating the
fiber density- and stress-dependence of K for networks with
various fiber CLs [Fig. 1]. Considering first the simple case
of regular networks of variable mesh size [Fig. 2(g)], where
all fibers are load bearing, we recover precisely the scaling
behavior predicted by Eq. (3) [Figs. 2(h)–2(j)] and, in partic-
ular, the n dependence of the large-stress modulus [Fig. 2(h)].
For networks with random depletion [Fig. 2(e)], the fiber
density is controlled by the depletion parameter p, and the
connection with the load-bearing fiber density n is less ev-
ident. Qualitatively, however, we observe that the influence
of p is consistent with our prediction [Fig. 2(f)]. For all four
CLs considered here, our model adequately captures the stress
scaling of the differential modulus K ∝ σ x [Figs. 2(a)–2(d)].

The scaling of K we observe can be compared with
macrorheology experiments that report a stiffening exponent
3/2 for F-actin [47], fibrin [49], vimentin, and neurofila-
ments networks [48] and biomimetic hydrogels [50], whereas
Zn2+-modified fibrin networks exhibit an exponent 1/2 [71].
Our minimal model adequately captures the density de-
pendencies observed for the different stiffening exponents
[Fig. 2(h)]. In particular, for x > 1, as for WLC fibers, the
differential modulus decreases for denser networks [Figs. 2(d)
and 2(f)], in agreement with earlier experiments [47]. By
contrast, for 0 � x < 1 denser networks display an increased
modulus [Figs. 2(c) and 2(f)], as for the Zn2+-modified fibrin
networks [71]. Taken together, our results show how at large

stress the fiber density controls the mechanical response of
soft heterogeneous networks in a way that depends sensitively
on the nonlinear micromechanics of the constituents. Interest-
ingly, collagen networks stand out by uniquely displaying a
stress-controlled mechanical response independently of net-
work fiber density.

III. LARGE FORCE ENSURES ROBUST
LOCAL RESPONSE

To determine the macroscopic mechanical information
a cell can in principle obtain by performing local me-
chanical measurements inside a disordered network, we
consider the mechanical measurements performed by an ideal
mechanosensor. Such an ideal mechanosensor probes the
network by actively exerting a force at the scale of the
network mesh size and measures the network’s local com-
pliance without error. To conceptually understand how such
a mechanosensor probes its mechanical microenvironment in
the simplest possible setting, we study the response of fiber
networks to point-like force monopoles.

We employ the model introduced in Fig. 1 and simulate
local loading induced by a point-force monopole in a large
spherical network with fixed boundary conditions [Fig. 3(c)
inset; see Materials and Methods]. This setup is informative
for mechanosensing as it allows us not only to probe the
network at the cellular scale, but also to apply forces that
are large enough to locally trigger the nonlinear response of a
matrix, as observed in the vicinity of cells embedded in fibrous
matrices [33–35]. Numerically, to avoid boundary effects and
correlations between individual measurements considered in
[22], we perform a local mechanical probe in the center of
independently sampled network configurations.

For collagen-like fibers with EXP CL, we measure
many statistically independent force-displacement curves
[Fig. 3(a)]. These responses reveal two key features: (i) the
curves exhibit large variability, with a broad distribution of
displacements at any force level, and (ii) they are nonlinear
and exhibit a pronounced stiffening response. For each force-
displacement curve F (u) we measure locally, we determine
the differential stiffness k = dF/du as a function of force
[Fig. 3(b)]. Indeed, while it has been suggested that cells could
be sensitive to several quantities such as the strain energy
[72], viscoelastic properties [73], and stiffness with extensive
evidence [12–15,35,74,75], a complete determination of the
mechanical variables cells respond to is still lacking, espe-
cially in nonlinear environments. However, as cells have been
shown to adapt to the stiffness in collagen matrices, including
the local differential stiffness increased by the forces exerted
by the cell [35], we here characterize the mechanical response
of a cell-scale mechanosensor in terms of this differential
mechanical quantity.

At low forces (F < 1), k is independent of F and this
linear response is highly heterogeneous. Thus, at low forces
a cell-scale mechanosensor can only acquire unreliable infor-
mation about the mechanical landscape of their environment,
as previously observed [21–25]. As the force is increased,
however, the network stiffens, with locally softer networks
stiffening at lower probe forces. Remarkably, at large forces
(F � 10), the stiffness no longer strongly varies relative to
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FIG. 3. Nonlinear response to local probing of an ideal
mechanosensor in disordered fibrous networks. Local probing of 3D
depleted EXP-fibers networks, small random sample of measure-
ments performed, (a) applied force (F ) vs measured displacement
(u) of the monopoles embedded at various locations, (b) correspond-
ing differential stiffness (k) vs F . (c) Signal-to-noise ratio (rk) of
the stiffness measurements vs applied force, normalized by the force
F ∗ at the onset of the power law regime, for simulated networks
with different CLs [Fig. 1] and microrheology measurements on
two collagen and one fibrin gels. Rectangular inset: a probe (red
sphere) in the center of a numerically generated disordered network;
circular inset: tension distribution in fibers located behind the probe
[F = 10, same colorcode as in Fig. 1(d)].

the mean [Fig. 3(b)]. This transition from a highly fluctuat-
ing differential stiffness in the linear response regime, where
soft bending deformations dominate the response [22], to a
large force regime where measurements converge towards a
single k(F ) curve, is consistent with the behavior observed
with microrheology measurements in collagen networks [33].
Thus, in this nonlinear regime, the local mechanical properties
that a cell-scale mechanosensor could measure inside a fi-
brous matrix becomes reliable and increasingly robust to local
fluctuations in fiber density, as observed for cells in collagen
[33,35].

This may appear unsurprising in light of the fiber den-
sity independence of the nonlinear macroscopic modulus of
a collagen network at fixed stress [44] [Fig. 2(a), Eq. (3)].
However, to show that the observed macroscopic density
independence of collagen networks does not explain the con-
vergence of the microscopic k(F ) curves, which become
independent of local fiber density heterogeneity, we perform
microrheological simulations on networks with other fiber
CLs [Figs. 1(a)–1(c)] whose nonlinear bulk stiffness is not

independent of average fiber density. Surprisingly, we observe
the same features for all CLs (Fig. S5 within the SM [76]):
the local stiffness strongly fluctuates in the linear response
regime, while the various differential measurements robustly
tend to a single master curve at large forces.

To further quantify this increased robustness, we charac-
terize the ensemble of independent stiffness values at a given
force in terms of the signal-to-noise ratio rk = 〈k〉/std(k)
[Fig. 3(c)]. This ratio quantifies how well a particular mechan-
ical measurement inside a disordered medium compares to the
average mechanical properties. As rk increases with force, the
mechanical signal becomes stronger relative to the mechanical
heterogeneity. Interestingly, we find that the growth of rk with
increasing force can be approximated as a power law in the
nonlinear regime,

rk = 〈k〉
std(k)

∼ Fα. (4)

We measure α ≈ 0.6 for our simulated mechanical responses.
This exponent is also independent of network dimensionality
(Fig. S1 within the SM [76]). In addition, α does not vary
substantially when changing the CL: convergence of mea-
surements is observed in all cases according to this universal
power law.

To experimentally test our prediction of the constituent-
independent exponent α describing the increased robustness
of local mechanosensation, we follow the microrheology
experiments described in [33] and expand by probing
biopolymers with distinct nonlinear bulk properties [44,77]:
reconstituted collagen and fibrin networks (Fig. S9 within
the SM [76], see Materials and Methods). Indeed, for both
matrices we observe a marked increase of rk in the nonlinear
response regime. The observed discrepancies, in particular the
narrow force range over which the power law is observed,
can have several possible origins such as finite size effects,
a limited control of the particle location with respect to the
boundary and fluctuations in terms of particle radius vs pore
size. Nevertheless, we observe a marked increase similar to
that observed in simulations [Fig. 3(c)]. Therefore, the origins
of this microrheological robustness cannot be the same as for
the macrorheological convergence of nonlinear bulk modulus,
which is specific to collagen.

In summary, at low force a single mechanical measure-
ment is a poor estimator of the network’s average mechanical
properties: Mechanosensing is strongly limited by structural
heterogeneities. By contrast, our experiments and simulations
indicate that the local mechanical response of fiber networks
becomes largely insensitive to structural disorder at large
force.

IV. NONLINEAR MECHANOSENSING MODEL

As the increased robustness of local micromechanical mea-
surements at large force is generically observed for a range
of CLs, we argue that its physical origin must lie in the
fibrous structure of the network, rather than in the specific
micromechanical properties of its constituents. This is further
supported by the modest influence of the CL on differential
stiffness in the nonlinear regime: While at the macroscopic
scale the bulk modulus followed K ∼ σ x at large stress, the
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FIG. 4. Scale-dependent nonlinear mechanosensation. Local probing of depleted EXP-fibers networks. (a) Tension distribution in 2D
networks loaded by probes (gray circular objects) of two different radius R0 [F = 0.001, same tensions color code as in Fig. 1(d)]. (b) Highlight
of the nonlinear region R∗ (dashed circle) surrounding the point-force probe (arrow). The buckled fibers are shown in green (only on the right
half of the figure). (c) Schematics of the stiffened buckling zone embedded in a linearly deforming soft network. (d) Signal-to-noise ratio (rk)
of stiffness measurements as a function of the probe radius (R0) for an applied probe force F = 0.001. (e) Radius of the buckling region R∗,
normalized by the system radius R, vs F applied by a point-force probe. (f) Comparison of the measured (dots and diamonds) and expected
(dashed lines) signal-to-noise ratio, determined using Eqs. (4) and (6), as a function the size of the probe taken as R∗.

exponent x does not set the microscopic stiffening response
[78] (Fig. S5G within the SM [76]). Building on recent the-
oretical results showing that the nonlinear response of fiber
networks to force dipoles results in an effective increase of
the dipole size [62], we propose that this robustness can in-
stead be understood in terms of an effective increase of the
size of the probed region. As network heterogeneity aver-
ages out on larger scales, this would imply that, as the force
increases, the probe becomes less sensitive to local density
fluctuations.

To explore this idea, we first examine the linear local
response and investigate how the size of the mechanosen-
sory probe affects relative stiffness fluctuations of both 2D
and 3D networks with EXP fibers. While a measurement
integrates mechanical contributions at all scales, the rapid
decay of linear elastic deformations [79] leads to a dominant
contribution of density fluctuations in a small volume in the
vicinity of the probe [22]. Consequently, individual measure-
ments strongly depend on their location and the corresponding
stiffness values display a large variability. A larger probe,
however, samples the local mechanics of a bigger region in
the vicinity of the network, thereby averaging more effectively
over structural heterogeneity. Larger probes are thus more
informative about the system’s macroscopic response.

To demonstrate that increasing probe size indeed leads to
more robust measurements, we perform simulations of a cir-
cular rigid body of radius R0 applying a small force monopole
(F = 0.001) to the network [Fig. 4(a)]. For each probe radius
R0, we compute the signal-to-noise ratio of linear stiffnesses,
revealing a power-law increase

rk ∼ Rβ

0 (5)

with β � 0.5 in 2D and β � 1.1 in 3D [Fig. 4(d)]. This power
law increase of rk with probe size confirms that the responses
depend less on local fiber density fluctuations.

We tentatively connect this increased robustness of local
sensing of the linear mechanical response with probe size to
the increased robustness we observe in the nonlinear response
for large local probing forces [Fig. 3(c)]. Thus, we argue that
a sufficiently large applied force triggers the response of the
network over an effectively larger region than in the linear
response regime. To determine the force-dependent length-
scale that sets the local response, we note that at the onset of
the nonlinear response, fibers start to buckle near the probe
[Fig. 4(b) left]. Buckling spreads to a larger region in the
network as the applied force increases [62] [Fig. 4(b) right].
This leads to the emergence of a “buckling zone” of growing
size R∗ with both a large density of buckled fibers that lifts
orthoradial constraints and the formation of tensed rope-like
structures in the radial direction. These load-bearing fibers
display enhanced alignment and contribute to the stiffening
[43,64]. Consequently, within the buckling zone the network
strain stiffens in the radial direction as the elastic response is
dominated by stretching of the ropes, which is a much stiffer
mode of deformation than the fiber bending modes governing
the linear response regime [38]. As buckling and other geo-
metric nonlinearities are inevitable and necessarily introduce
an asymmetric response that is inherent to fiber networks, this
emergence of this strain stiffening region does not rely on the
particular CL we employ.

A probe force deforms both the network inside the buckling
zone and the surrounding network beyond R∗. These two net-
work sections thus effectively act as two mechanical elements
in series. Because the buckling zone strain stiffens, however,
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it becomes much stiffer than the network section beyond R∗
that is still dominated by soft bending modes [Fig. 4(c)].
To first approximation, the buckling zone therefore becomes
effectively rigid, and the compliance in response to the probe
is dominated by the linear response of the network beyond
R∗. Thus, elastic nonlinearity renders the network disorder
irrelevant inside the stiffened buckling zone, and local stiff-
ness fluctuations are instead determined by network disorder
outside the nonlinear zone. Put simply, the emergent length
scale R∗ renormalizes the size of the local probe in a force-
dependent way. Local probes with large enough forces thus
effectively probe the local linear mechanical properties of the
network over a larger length scale making the response less
sensitive to local disorder.

To understand the force dependence of the buckling zone
radius induced by monopole probing, we perform an anal-
ysis similar to previous studies on dipole-induced buckling
[60,62,63]. Away from the probe, the stress decays as σ (r) ∼
F/rD−1 due to force conservation. From the buckling condi-
tion, here written in terms of stress as σ ∼ σb, with σb the
buckling stress, we expect σ (R∗) ∼ σb. Therefore, buckling
occurs over a region of size

R∗ ∼ F ζ (6)

with ζ = 1/(D − 1). Indeed, we measure ζ � 0.45 in 3D and
0.95 in 2D in our simulations (Fig. 4(e), Figs. S7 and S8
within the SM [76]).

To complete our nonlinear mechanosensing model, we now
quantitatively connect the increase of rk with probe size in the
linear response regime [Eq. (5)] to the power-law increase of
rk with the applied point force [Eq. (4)]. To do so, we identify
the effective probe size R0 induced by nonlinear effects with
the buckling length-scale R∗. Using Eqs. (4) and (6), our non-
linear mechanosensing model predicts a power-law increase
of rk with the buckling range R∗: rk ∼ R∗α/ζ . Importantly,
for both 2D and 3D simulated responses the expected power-
law increase is consistent with Eq. (5) (Fig. 4(f), Table 1
within the SM [76]). Thus, our scaling model establishes that
locally probing the network in the nonlinear regime can be
conceptualized as a linear probe with a renormalized probing
radius associated to the radius of the buckling zone. This
model quantitatively explains the CL-independent increase of
mechanosensation reliability at large forces in fiber networks.

V. NONLINEAR MECHANOSENSATION IS RELIABLE

Could a nonlinear mechanosensor reliably infer the large-
scale mechanical properties of their surrounding matrix from
local stiffness measurements? Two ingredients are needed for
reliable mechanosensation: the local measurements should
have low noise, but importantly they should also be in-
formative about the macroscopic stiffness. To address this
question, we consider local mechanical measurements per-
formed in EXP-fibers networks with varying mean fiber
density [Fig. 5(a)], which sensitively tunes the linear macro-
scopic modulus K0 [44,47–50,66,69,71].

We find that in the low-force regime, there is a large overlap
of the local differential stiffness measurements in networks
with different p values: the variation of individual measure-
ments exceeds the difference in mean stiffness of networks

(a) (b)

FIG. 5. Robust nonlinear mechanosensing. (a) Mean stiffness as
a function of force for different values of p, the shaded areas show
the stiffness standard deviation. (b) Pearson correlation coefficient
between the local stiffness (k) and the linear bulk modulus (K0) as a
function of the local probing force.

with different fiber densities. More quantitatively, we find
that individual local stiffness measurements are only weakly
correlated with K0 in the linear regime, as quantified by the
Pearson’s correlation coefficient [Fig. 5(b)]. Mechanosensa-
tion based on such linear stiffness measurements is thus highly
unreliable.

By contrast, at large forces the differential stiffness mea-
sured on networks with different fiber densities become
clearly separated [Fig. 5(a)] and these local nonlinear mea-
surements strongly correlate with the bulk stiffness [Fig. 5(b)].
The Pearson correlation coefficient approaches 1 at large
forces: A single nonlinear local stiffness measurement is thus
sufficiently informative to accurately infer bulk network prop-
erties. By probing the mechanical response with large force,
a cell could thus in principle robustly measure the average
nonlinear mechanical properties of its surroundings and dis-
criminate between the materials properties of networks of
varying fiber density.

VI. DISCUSSION

To understand the physical limits of nonlinear
mechanosensing, we studied the response of disordered
networks to local force probes at the cell scale. Using a
fiber network model, we demonstrated that a local ideal
mechanosensor can reliably determine both the local
and macroscopic mechanical response of the disordered
network by triggering elastic nonlinearities. This nonlinear
mechanosensation becomes progressively insensitive to
network disorder with increasing force, as confirmed via
microrheology experiments. Nonlinear mechanosensing thus
offers cells a reliable strategy to both locally determine and
control the mechanical properties of a disordered ECM.

We showed that macroscopic and microscopic nonlinear
responses of disordered fiber networks are set by distinct
mechanisms arising because nonlinearities affect the me-
chanical response in a different way at the two scales.
Macroscopically, the network stiffens approximately homo-
geneously and the differential bulk stiffness is a power law of
the applied stress in the nonlinear regime [Figs. 2(a)–2(d)],
with an exponent x set by the constitutive stiffening of a
single fiber [Fig. 1(c)]. We capture this macroscopic behavior
with a differentially affine model. This model predicts that the
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load-bearing fiber density dependence of the differential bulk
modulus is set by an exponent 1 − x [Eq. (3)], which thus
solely depends on the constitutive fiber stiffening [Fig. 2(h)].
Remarkably, this implies that the differential modulus of col-
lagen (x = 1) uniquely becomes insensitive to fiber density
at large stress [Fig. 2(a)], as observed experimentally [44].
Our model further offers insights into experiments with differ-
ent stress and density dependencies on various reconstituted
networks with distinct stiffening behaviors [44,47–50,71].
Microscopically, in contrast, the network stiffens heteroge-
neously and the local differential stiffness also increases with
force as a power-law (Fig. S5 within the SM [76]), but with
an exponent that is not determined by the constitutive fiber
stiffening [78]. Instead, this local stiffening is controlled by
force-induced buckling and network nonlinearity in the form
of a bending-stretching stiffening transition, giving rise to a
stiffened buckling zone embedded in a linearly responding
network [Fig. 4(c)]. Thus, local force stiffening is caused
by the effective probing of the linear network stiffness at
increasingly larger scales set by the buckling zone radius.
The linearly deforming network at these larger scales sets
the mechanical response, which hence remains density depen-
dent. Our results on the difference between microscopic and
macroscopic stiffening mechanisms could be used to further
develop accurate approaches for 3D traction force inference
or stress inference around cells in 3D matrices [33,35].

The emergence of the stiffened buckling zone explains
the mechanical robustness to local force probes. Indeed, a
sufficiently large force effectively probes the linear response
averaged over the structural disorder of an enlarged region
of the network, with dimension set by the force-dependent
buckling length-scale. This elastic regime is relevant for
cell-ECM mechanical interactions. Indeed, several cell types
apply traction forces of the order of tens of nanonewtons
[29–32,80]. These forces can trigger the nonlinear response of
reconstituted networks, as shown by our microrheology mea-
surements in collagen and fibrin (Fig. S9 within the SM [76]).
This nonlinear response is consistent with observations of
contractile cells in a matrix: Fibers buckle [33] and displace-
ments are enhanced, decreasing more slowly than predicted
by linear elasticity [35,61,81]. Furthermore, the network
stiffens in the wake of a cell applying traction [33,35,81], and
our nonlinear mechanosening model can be used to determine
the stiffness such cells could locally determine and respond
to. The magnitude of the force cells need to exert on their
substrate to employ nonlinear mechanosensation in vivo likely
depends on context, where softer environments typically
require smaller forces to trigger nonlinearity. Thus, even
though neurons apply smaller forces [82] than, e.g., fibroblasts
or cardiomyocites [80], differences in stiffness and nonlinear
force thresholds of the natural surroundings could still allow
such different cells to employ nonlinear mechanosensation.

The formation of the force-controlled buckling zone is
qualitatively independent of the local structure of the probe
forces. In particular, the characteristic length-scale emerging
in response to dipole loading is well characterized [62–64].
We thus expect a similar robustness increase as a power
law for dipole mechanosensors, but with modified exponents.
Since cells are mechanically better described as force dipoles
[83], this anticipated power-law increase in response to dipole

loading further supports nonlinear mechanosensing as a cellu-
lar strategy.

Many aspects of cellular mechanosensation are still de-
bated, including the internal cellular machinery and processes
that are involved, as well as the mechanical variable that
can be sensed by cells [84,85]. Here, we characterized the
reliability of the mechanical response in terms of stiffness,
a mechanical property that is experimentally shown to influ-
ence cellular behavior [12–15,35,74,75]. Yet, cells are also
found to respond to other mechanical variables, such as the
substrate strain energy [72]. Therefore, one could consider
other mechanical quantities to assess the limits of nonlinear
mechanosensing, such as strain and elastic energies, which we
characterized as alternatives (Fig. S6 within the SM [76]). In
these cases, the signal-to-noise ratio also generically increase
with force for networks with a range of fiber constituents. This
is understandable since local sensing becomes nonlocal due to
the emergence of the buckling zone that facilitates disorder
averaging over an increased length scale, regardless of the
precise mechanical variable that is considered. Therefore, we
argue that enhanced nonlinear mechanosensing is a general
characteristic of disordered fibrous networks.

Finally, our paper suggests that cells could employ non-
linear mechanosensation as a strategy to reliably sense and
respond to the stiffness of their environment. In the linear
regime, cells face a highly heterogeneous mechanical land-
scape [21–25]. If this linear regime dominated cell-ECM
interactions, we would expect the mechanical heterogeneity
perceived by cells to lead to erratic stiffness-dependent cell
behaviors following the large local stiffness fluctuations in
the ECM. In contrast, if cells trigger the nonlinear response
with large forces, then our nonlinear mechanosensation model
implies that cells instead face a strikingly homogeneous me-
chanical landscape that is directly correlated with the matrix
macroscopic modulus, and where stiffness-dependent cell be-
havior would become coherent and would no longer depend
randomly on the cell’s location in the matrix. Nonlinear
mechanosensation also has implications for the cell’s ability
to control the stiffness of their environment. The idea that
cells actively stiffen their matrix and adapt in response to
the enhanced stiffness has long been introduced [35,77,81],
and it was speculated that such a feedback mechanism aims
at reaching a specific substrate resistance. We here propose
that nonlinear mechanosensation allows cells to exploit this
mechanical feedback to accurately control their surrounding
stiffness despite the inherent randomness of their local envi-
ronment, allowing them to robustly perform mechanosensitive
cellular functions even in a highly disordered ECM.

VII. MATERIALS AND METHODS

A. Random network generation

Networks are generated by placing straight fibers on an
ordered triangular (2D) or face centered cubic (3D) lattice.
These networks are randomly depleted with a bond occupa-
tion probability p. Unless stated otherwise, we use p = 0.6 in
2D and p = 0.4 in 3D.

B. Mechanical model

Fibers are discretized with bonds of rest length 
0 = 1.
Each bond acts as a spring with linear stretching modulus
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μ = 100 and their nonlinear longitudinal response f (εi j ) is
described by a CL displayed in Fig. 1. Fibers also resist
transverse deflection with a bending rigidity κ = 1 that pe-
nalizes deflections of angle θ . Fibers are connected by freely
deforming hinges at their intersection. We consider a probe
located on sites i of position Ri and applying a force Fi. The
Hamiltonian of the system is

H = −
∑

forces i

Fi · Ri +
∑

bonds 〈i, j〉
f (εi j ) +

∑

hinges 〈i, j,k〉
2 sin2 θi jk

2
.

C. Macroscopic loading

The boundaries of the network are displaced to impose
isotropic dilatation. Our depleted networks have dimensions
30×30×30 and periodic boundary conditions are imposed.
The results are averaged over three independent random net-
works. The bulk stress and bulk modulus are computed from
the first and second derivative of the system’s energy,

σ = 1

V

∂H
∂γ

, K = 1

V

∂2H
∂γ 2

where γ is the applied dilatation strain and V the system’s
volume.

D. Local probing

A point force F is applied to a vertex at the center of
spherical (circular in 2D) depleted networks of radius R = 40
in 3D (R = 100 in 2D) for QUAD-, EXP- and WLC fibers,
and R = 45 for LIN fibers. Finite-size effects on the stiffness
statistics are displayed in Fig. S3 within the SM [76]. The
probe loading direction is [0,1,0], not following any fiber
direction in the undeformed network. The network bound-
aries are fixed. For each CL, 100 disorder realizations are
performed. To determine rk vs R0 [Fig. 4(d)], the same bound-
ary conditions apply and a sphere (disk) of radius R0 is placed
in the system’s center (R = 30 in 3D, refer to Fig. S4 within
the SM [76] for a characterization of finite size effects and
R = 200 in 2D) All bonds within the probe are removed and

we apply a force F = 10−3 in the direction [0,1,0] to all
intersecting nodes, which move collectively as one rigid body.
One hundred network realizations are used.

E. Numerical resolution

At each applied loading, mechanical equilibrium
is obtained by minimizing the total energy using the
GNU Scientific Library BFGS implementation of the
Broyden-Fletcher- Goldfarb-Shanno algorithm.

F. Microrheology experiments

Experimental and data analysis procedures are performed
as described in [33] and [78]. Briefly, microparticles (2 µm in
diameter, C37278, ThermoFisher) are embedded in 4 mg/mL
collagen gel and 3 mg/mL fibrin gel. A homemade optical
tweezer is used to drag the particle at a velocity of 1 µm/s.
The displacements of the particles and the optical forces are
recorded.

Data used in this article have been deposited on Zenodo
[86].
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