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Efficient tensor network simulation of IBM’s largest quantum processors
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We show how quantum-inspired 2D tensor networks can be used to efficiently and accurately simulate the
largest quantum processors from IBM, namely Eagle (127 qubits), Osprey (433 qubits), and Condor (1121
qubits). We simulate the dynamics of a complex quantum many-body system—specifically, the kicked Ising
experiment considered recently by IBM in Y. Kim et al., Nature (London) 618, 500 (2023)—using graph-based
projected entangled pair states (gPEPS), which was proposed by some of us in Phys. Rev. B 99, 195105 (2019).
Our results show that simple tensor updates are already sufficient to achieve very large unprecedented accuracy
with remarkably low computational resources for this model. Apart from simulating the original experiment
for 127 qubits, we also extend our results to 433 and 1121 qubits, and for evolution times around eight times
longer, thus setting a benchmark for the newest IBM quantum machines. We also report accurate simulations for
infinitely many qubits. Our results show that gPEPS are a natural tool to efficiently simulate quantum computers
with an underlying lattice-based qubit connectivity, such as all quantum processors based on superconducting
qubits.
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I. INTRODUCTION

We are currently witnessing an unprecedented technol-
ogy race to develop practical large-scale quantum computers.
While several hardware architectures have been developed,
the largest available quantum processors are those built with
superconducting qubit technology [1]. In this setting, IBM’s
quantum roadmap is particularly promising, with the delivery
of increasingly larger quantum processors every year: Eagle
with 127 qubits in 2021, Osprey with 433 qubits in 2022, and
Condor with 1121 qubits and expected by the end of 2023.
These are presently among the most powerful quantum ma-
chines worldwide. Furthermore, a large effort is being devoted
to mitigate errors in the processors, to become able to run
longer quantum circuits and therefore increase quantum vol-
ume. Such error mitigation was pushed to an unprecedented
level in a recent paper [2], where the IBM team simulated the
dynamics of a kicked quantum Ising model on a 127-qubit
2D lattice that matched the connectivity topology of Eagle’s
quantum computer. These results are a great step forward
toward practical quantum computation in superconducting
quantum processors. However, and unlike originally thought,
they are still far from any sort of quantum advantage: as
pointed out by several authors, the experiment can be simu-

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

lated efficiently by purely classical means [3–9], and specially
by methods using quantum-inspired tensor networks [10,11].

In this paper we go one step further, and show how 2D ten-
sor networks based on projected entangled pair states (PEPS)
[12–14] can be used to simulate IBM’s largest quantum pro-
cessors: Eagle (127 qubits), Osprey (433 qubits), and Condor
(1121 qubits). We show this by simulating the kicked Ising
experiment mentioned above, with unprecedented accuracy
and not just for 127 qubits, as in the original proposal, but
for the larger quantum processors and longer evolution times,
setting new benchmarks for those machines. We use graph-
based projected entangled pair states (gPEPS) [15], a type of
2D tensor network algorithm which provides great flexibility
in adapting to new lattices, both of finite and infinite size.
We conclude that gPEPS is a natural tool to efficiently and
accurately simulate slightly entangled quantum computations
on quantum computers that have an underlying lattice-based
qubit connectivity.

II. MODEL

We implement a simulation of the IBM kicked quantum
Ising model. Specifically, we consider the dynamics generated
by the spin-1/2 Hamiltonian

H = −J
∑
〈i, j〉

ZiZ j + h
∑

i

Xi, (1)

with Zi, Xi being the Z and X Pauli matrices at site i, coupling
J , transverse magnetic field h, and where the the sum of
interactions is over nearest neighbors 〈i, j〉 on a lattice match-
ing the topology of IBM’s quantum processors. A first-order
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FIG. 1. Different heavy-hexagon lattices, corresponding to the
topology of qubit connectivity of three IBM quantum processors:
(a) Eagle, with 127 qubits; (b) Osprey, with 433 qubits; (c) Condor,
with 1121 qubits. Every dot in the lattices corresponds to a supercon-
ducting qubit, and every link corresponds to a qubit-qubit coupling.

trotterization of the time evolution leads to the unitary
operator

U (θh) =
⎛
⎝∏

〈i, j〉
ei π

4 ZiZ j

⎞
⎠(∏

i

e−i
θh
2 Xi

)
, (2)

with θh a parameter controlling the relative strength of the
field with respect to the spin-spin interaction. Starting from
an initial state with all spins in the |0〉 state (i.e., all “up”), we
simulate the dynamics by applying the unitary operator U (θh)
multiple times, therefore generating the state

|ψ (θh, n)〉 ≡ (U (θh))n|0〉⊗m, (3)

after n applications of the operator, m being the number of
spins in the lattice.

III. METHOD

Here we simulate the dynamics of the above model on
finite heavy-hexagon lattices with open boundary conditions
and 127, 433, and 1121 vertices, respectively, matching the
connectivity of qubits in Eagle, Osprey, and Condor, see
Fig. 1. For this, we adapt the gPEPS method [15]—initially
proposed for infinite systems—to finite-size lattices. We also
use gPEPS to study the heavy-hexagon lattice in the ther-
modynamic limit with a unit cell of ten sites. The gPEPS
algorithm is a quantum-inspired tensor network method that
allows to easily simulate systems on generic lattices with
desired dimensionality. As such, it is a natural evolution of the
original iPEPS algorithm [13,14] to simulate two-dimensional
quantum lattice systems and was also proposed years ago
by some of us. gPEPS makes use of the simple update of
tensors [16–18] and a mean-field approximation for expec-
tation values. These approximations are accurate for slightly
entangled 2D quantum lattice systems. Though they can be
systematically improved, e.g., by using full and fast-full [19]
updates and corner transfer matrices [14], we have observed
that the simplest of our approximations is already capable

of simulating the system at hand with large accuracy. In our
approach, the bond dimension of the PEPS tensor network is
χ , and is also the truncation parameter in our simulations: the
larger the χ , the larger the allowed entanglement per bond.
For comparison, we have also studied the effect of regauging
the PEPS using belief propagation (BP) after each trotter step,
as proposed in Ref. [3].

IV. RESULTS

A. Benchmarking

First, we simulate the 127-site heavy-hexagon lattice from
Fig. 1(a). Using gPEPS we perform the unitary evolution
(U (θh))n up to n = 5 trotter steps, followed by computing
expectation values using a mean-field approximation. We re-
produce Fig. 3 from Ref. [2] in our Fig. 2, where we compare
the outcome of our simulations with those obtained from ex-
perimental calculations performed on the IBM Eagle quantum
processor. Additionally, we benchmark our findings against
other tensor network methods. Comparison of our average
magnetization values with the available light cone-based exact
solution [2] shows exceptional precision (∼10−15 of absolute
error), with each data point taking on average two seconds
to run on a standard desktop PC (Windows 11, Intel i7-
11700 @2.50GHz, 16 GB RAM). Our results not only surpass
the outcomes of IBM’s quantum simulations, but they also
outperform some of the best state-of-the-art tensor networks
methods in both precision and speed.

Additionally, to study the effect of belief propagation (BP)
gauging, we have independently simulated the unitary evo-
lution of five trotter steps, where we do BP gauging after
each trotter step. We find that BP does not improve accuracy
[20], as can be seen in Fig. 2(a), even though the average
computational time per point increased to 9.2 seconds.

We also computed the expectation value of “higher-
weight” observables (Appendix B) reported in the IBM
experiment, as shown in Figs. 2(b) and 2(c). Here, we have
also included the tensor network results from Ref. [3] for
comparison. In these plots we provide the expectation values
for the weight-10 and weight-17 operators, acting respectively
on 10 and 17 lattice sites, across a range of θh values. The
plots show that we obtain better precision than the quantum
processor with a small bond dimension χ = 32, requiring an
average compute time of ten seconds per computed data point.
As expected, we see an increase in accuracy by ramping up the
bond dimension to χ = 64 and χ = 128 in Fig. 2(c).

However, in the range θh ∈ (π/8, π/4) in Fig. 2(b), the
weight-10 observable expectation value with χ = 32 is found
to be more accurate than the higher bond dimension results;
the explanation can be found in Appendix A.

Next, we have studied the case in which the unitary
evolution spans more than five trotter steps. This involves
simulating the state corresponding to the extended-depth
quantum circuit, as shown in Fig. 4 of Ref. [2]. We computed
the weight-17 observable after six trotter steps and compare
it with the result obtained by the 127-qubit quantum proces-
sor, and our results can be found in Fig. 3(a). Comparison
against the exact result [2] shows that gPEPS simulations
with bond dimension χ = 64 already outperform the Eagle
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FIG. 2. Comparing the gPEPS method in simulating the kicked transverse field Ising model against the 127-qubit IBM Eagle quantum
processor and various other tensor network methods. The operator expectation values shown in (a) average magnetization, (b) weight-10
observable, and (c) weight-17 observable are computed with respect to the state |ψ (θh, 5)〉. Each bottom plot shows the absolute difference
between the light-cone based exact results and the results obtained through simulations (gPEPS and Eagle processor). Labelling of qubits is
done sequentially, from left to right and top to bottom, starting with zero.

quantum processor in accuracy. As expected, we have ob-
served further enhancements in accuracy for larger bond
dimensions χ = 128.

To further test the algorithm we performed simulations
involving longer unitary evolutions, with 20 trotter steps,
and across a range of θh values. We computed the expec-
tation value of the weight-1 (single-site) operator, as shown
in Fig. 3(b). Notably, we achieved numerically exact results
for the Clifford points θh = 0 and θh = π/2 when using bond
dimension χ = 64. While an exact solution for longer unitary
evolution remains elusive, we were able to compare with
tensor network results in the infinite bond dimension limit [3],
obtained from finite-entanglement scaling. While our χ = 64
bond dimension accurately captures points for θh � 3π/16,
noticeable deviations become apparent beyond this regime.
As shown in the figure, we could improve the accuracy

significantly by increasing the bond dimension to χ =
128, 256, and 512. Finally, to show the reliability of our
method we have studied the finite-entanglement scaling of
〈Z62〉(θh) with the inverse bond dimension (1/χ ), as shown
in Fig. 3(c) for θh = 1.0 and θh = 0.7. We have plotted the
values for nine different bond dimensions and the fitting of
extrapolation is done for the five highest bond dimensions.
While for θh = 0.7 we start to see a tendency to saturation at
large bond dimension, at θh = 1.0 we see no clear evidence
yet of bond dimension saturation, which indicates that the
quantum state has large entanglement.

B. Large systems

Next, and thanks to the computational efficiency of gPEPS,
we have successfully simulated larger IBM quantum systems

FIG. 3. Comparison of the gPEPS simulation with higher number of trotter steps with the Eagle quantum processor and various other tensor
network methods. (a) Weight-17 observable computed after six trotter steps with respect to the state |ψ (θh, 6)〉. The bottom plot shows the
absolute difference between our simulation and the available exact result. (b) Weight-1 expectation value computed after 20 trotter steps with
respect to the state |ψ (θh, 20)〉. Because of the absence of exact results for this simulation, we have computed the absolute difference between
our simulation and the BP-approximation tensor network state approach with χ → ∞, presented in the bottom subplot. (c) Finite-entanglement
scaling of weight-1 observable expectation value 〈ψ (θh, 20)|Z62|ψ (θh, 20)〉 with respect to the inverse of bond dimension (1/χ ) for two distinct
θh values. Labeling of qubits is done sequentially, from left to right and top to bottom, starting with zero.

013326-3



PATRA, JAHROMI, SINGH, AND ORÚS PHYSICAL REVIEW RESEARCH 6, 013326 (2024)

FIG. 4. Results of simulating various IBM quantum chips with higher number of qubits using gPEPS: Eagle processor with 127 qubits,
Osprey with 433 qubits, Condor with 1121 qubits, and the heavy-hexagon lattice in the thermodynamic limit. (a) Average magnetization,
(b) weight-10 observable near the open edge, (c) weight-17 observable deep inside the bulk. The structure of the weight-10 and weight-17
observables is discussed in Appendix B.

involving 433 (Osprey) and 1121 (Condor) qubits, corre-
sponding to the heavy-hexagon lattices in Figs. 1(b) and 1(c).
While the original IBM experiment in Ref. [2] was imple-
mented only for the 127 qubit system, we understand our
results as a benchmark for future experiments on these larger
quantum processors. In addition, we have also implemented
gPEPS for the system with infinitely many qubits, by assum-
ing translation invariance in the PEPS tensor network with a
unit cell of ten sites. For all these sizes, we have simulated the
unitary evolution of five trotter steps and computed a number
of observables. Our results can be found in Fig. 4. First, we
computed the average magnetization in the z direction for χ =
32, as shown in Fig. 4(a). We can see that there are minimal
differences for all sizes (127, 433, 1121, and infinite), indi-
cating that the bulk of the system is already quite close to the
thermodynamic limit already for 127 qubits. For this plot, the
average simulation time of one data point for sizes 127, 433,
1121, and infinite are respectively 2, 8.3, 50, and 0.17 seconds.
Next, in order to test possible boundary effects, we com-
pare in Fig. 4(b) the results for a weight-10 observable near
the open boundary of the heavy-hexagon lattice, for the three
finite-size systems, again for χ = 32. The composition of the
observable and its calculation is discussed in Appendix B .
As we can observe, there is no appreciable difference in the
result, signaling again that even the smallest lattice is already
close to the thermodynamic limit. Last but not least, we have
also computed the expectation value of a weight-17 operator
deep inside the bulk of the system, for all lattices (including
the infinite one for χ = 64), and the results are in Fig. 4(c).
Minimal difference among the results of different system sizes
show that the 127 qubit system is already very close to the
thermodynamic limit.

C. Long time evolution

All the above results motivate us to test the limit of our
simulation method. One should expect that long time evolu-
tions may create a large amount of entanglement that is hard to
be captured by the gPEPS technique. This could be captured

as a loss of convergence with the bond dimension χ in our
simulations, setting then a benchmark: a quantum computer
claiming quantum advantage in simulating this model should
(at the very least) be able to compute time evolutions longer
than those for which gPEPS loses convergence. Therefore, to
understand the limit of our method, we computed the results
in Figs. (5) and (6), respectively, for the time evolution of
the magnetization of a site deep in the bulk and the average
magnetization over all sites, for the three considered sizes
(127, 433, and 1121 qubits). The results are for a large number
of Trotter steps (between 37 and 39), and for the largest bond
dimension that we could achieve for each size. χ = 270 is the
maximum common bond dimension that we could simulate
for all three system sizes. Bond dimension scaling is shown
in Fig. 7. As we can see in the plots, for all sizes we find
the same result: the study of consecutive bond dimensions
shows that the observables converge even for a large number
of Trotter steps. This is indeed surprising and seems to indi-
cate that the gPEPS technique is particularly suited to capture
the entanglement structure of the heavy hexagon lattice. The
reason behind this may be that this lattice, after all, can be
quite well approximated by a treelike structure with no loops
(Appendix C). The properties of such loop-free structures can
be captured with large precision by the simple tensor update
that we use in gPEPS.

V. CONCLUSIONS

In this paper we have simulated IBM’s kicked Ising ex-
periment [2] on heavy-hexagon lattices with 127, 433, 1121,
and infinitely many qubits using a quantum-inspired tensor
network technique tailored to higher-dimensional systems.
Our method uses the so-called gPEPS algorithm, which is
remarkably efficient and accurate. Our method not only re-
produces the results of the original experiment for 127 qubits
but also settles new benchmarks for large quantum circuits
on IBM’s Eagle, Osprey, and Condor quantum processors.
We conclude that gPEPS is a natural tool to efficiently and
accurately simulate slightly entangled quantum computations
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FIG. 5. Long time evolution of the magnetization for a site in the bulk at θh = 1.0 and the three different sizes: (a) 127 qubits, up to
χ = 560 and 39 Trotter steps, (b) 433 qubits, up to χ = 370 and 38 Trotter steps; (c) 1121 qubits, up to χ = 270 and 37 Trotter steps. Lower
panel shows relative errors with respect to the maximum achievable bond dimension.

on quantum computers with an underlying lattice-based qubit
connectivity, be it in two or higher dimensions, going much
beyond the capabilities of other tensor network structures.
In particular, it is an ideal tool to classically simulate quan-
tum computers based on superconducting qubits. A relevant
question triggered by our results is whether quantum proces-
sors based on artificial qubits (e.g., superconducting qubits,
quantum dots, etc.), and with an underlying lattice-based
connectivity, can reach a sufficiently low noise level so that
they cannot be simulated classically by some tailored ten-
sor network algorithm. It would also be interesting to assess
gPEPS in the simulation of other types of quantum hardware
with all-to-all qubit connectivity, such as trapped ions and
neutral atoms.
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APPENDIX A: RESULTS NEAR CRITICAL POINT

In the range of θh ∈ (π/8, π/4) depicted in Fig. 2(b), our
gPEPS results with lower bond dimension are more accurate
than the higher ones, contrary to the monotonic improvement
of accuracy with the increment of bond dimension. The un-
derlying reason is the presence of a critical point (θh ≈ 0.6)
in the vicinity, where the correlation length diverges. Our
simple update-based gPEPS approach, along with local mea-
surements, struggles to capture the correlations adequately
with smaller bond dimensions, leading to overestimation
or underestimation. Nonetheless, we have confirmed the

FIG. 6. Long time evolution of the average magnetization of the whole system at θh = 1.0 and the three different sizes: (a) 127 qubits, up
to χ = 560 and 39 Trotter steps, (b) 433 qubits, up to χ = 370 and 38 Trotter steps, (c) 1121 qubits, up to χ = 270 and 37 Trotter steps. The
lower panel shows relative errors with respect to the maximum achievable bond dimension.

013326-5



PATRA, JAHROMI, SINGH, AND ORÚS PHYSICAL REVIEW RESEARCH 6, 013326 (2024)

FIG. 7. Bond dimension scaling of the average magnetization for
different system sizes.

convergence of our observable expectation values toward
higher bond dimension.

APPENDIX B: WEIGHT-N OBSERVABLES

In the process of measuring the onsite observable, we
use the mean-field approximation of the environment within
the gPEPS algorithm. We provide comprehensive details of
this approach in the main paper. However, measuring an ob-
servable that involves multiple particles with intricate loop
structures poses a considerable challenge when aiming for
optimal measurements. To address this challenge, we leverage
the special Clifford property of the circuit at θh = π/2. This
strategic choice allows us to transform the problem of com-
puting higher-weight observables into a more tractable task:
measuring a weight-1 observable but with a higher number
of trotter steps involved. Though the computational cost in-
creases with the number of trotter steps, in this way, we can
use local measurements only to get an accurate value of the
higher-weight observables. For example, in the case of the
127-size system, the weight-10 and weight-17 operators of
Fig. 2 are given by

W (127)
10 = X13,29,31Y9,30Z8,12,17,28,32,

W (127)
17 = X37,41,52,56,57,58,62,79Y75Z38,40,42,63,72,80,90,91. (B1)

The expectation value of these operators with respect to the
state |ψ (θh, 5)〉 (obtained after five trotter steps) can be rewrit-
ten at the Clifford point as〈

W (127)
10

〉
5 = 〈ψ (θh, 5)|U 5(π/2)Z13(U †(π/2))5|ψ (θh, 5)〉,〈

W (127)
17

〉
5 = 〈ψ (θh, 5)|U 5(π/2)Z58(U †(π/2))5|ψ (θh, 5)〉.

(B2)

As a result, to determine, e.g., the weight-10 expectation value
after n trotter steps, one may just compute the single site
expectation value of 〈Z13〉 with respect to the state

|ω(θh, n)〉 = (U †(π/2))n|ψ (θh, n)〉. (B3)

To obtain the state |ω(θh, n)〉 we evolve the |ψ (θh, n)〉 with
the operator U †(π/2) for n trotter steps. We have used this

TABLE I. Relation of qubit labels for different sizes, for the
weight-10 and weight-17 observables of Fig. 4.

Size → 127 433 1121 Infinity

P 13 25 41
Q 62 181 505 2

approach to compute observables for all lattice sizes, namely
127, 433, 1121, and infinite. In particular, we compute the
expectation values

〈
W (size)

10

〉
5 = 〈ω(θh, 5)|ZP(size)|ω(θh, 5)〉,〈

W (size)
17

〉
5 = 〈ω(θh, 5)|ZQ(size)|ω(θh, 5)〉. (B4)

In the above equations, integers P(size) and Q(size) represent
qubit labels depending on the size, as shown in the Table I.
Vertices are labeled sequentially from left to right and top to
bottom, starting with zero.

APPENDIX C: LOCAL TREE STRUCTURE OF
HEAVY-HEXAGON LATTICE

Simple update and local measurements are most effective
for lattices exhibiting a local tree structure and shorter-range
correlations, owing to the absence of loops. In Fig. 8, we
present a comparison between a patch of 2D heavy-hexagon
lattice and a 2D square lattice, illustrating the environment
of the blue edge (pair of spins). It is evident that for a
2D square lattice, the “n th” neighbor environment contains
loops for n > 1. Conversely, in the case of a heavy-hexagonal
lattice, the “ n th” neighbor environment exhibits loops for
n > 5. Thus, for models with short-range correlations, such
as the Ising transverse field away from the critical point, the
heavy-hexagon lattice behaves akin to a tree structure locally.
Consequently, local tensor updates employed in gPEPS, as
well as local measurements, excel in capturing the real-time
dynamics of the kicked Ising experiment.

FIG. 8. Comparing a patch of heavy-hexagon lattice (left) with
square lattice (right).
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